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Abstract

With the rising popularity of the Internet of Things (IoT), the use of small,
low-power embedded devices is rapidly increasing. Unfortunately, these kind of
devices often lack the security features we are grown used to in the domain of
desktop and server computing. However, in a context where multiple mutually
distrusting stakeholders are able to share an IoT infrastructure to process
sensitive data, the lack of, for example, basic software isolation is becoming
increasingly irresponsible. Finding secure yet inexpensive ways to protect those
low-end devices is therefore becoming more and more critical.

The first part of this thesis proposes Sancus, an inexpensive security architec-
ture for resource-constrained IoT devices. We start with accurately defining our
context; the kind of systems we want to protect and the attacker model we will
use. Then, we introduce Sancus’ design in enough detail for interested parties to
be able to create alternative implementations. Next, our own implementation,
based on the TI MSP430 architecture, is described and evaluated in terms
of hardware cost and software overhead. We conclude this part by giving an
overview of related work and a comparison of Sancus with the most relevant
alternative architectures.
In the second part, we discuss some applications of the Sancus architecture.

The first application shows how to use a small number of protected Sancus
modules to attest the state of a large unprotected software base. This can be
used when adapting the whole software base to make use of Sancus’ features
is for some reason infeasible. We then show, in our second application, how
Sancus can be used to provide security guarantees for distributed applications
that use I/O devices. We provide a deployment and attestation technique that
gives high assurance that if a distributed application produces an output, there
must have been a sequence of physical input events that, when processed by the
application as specified in its source code, produces the observed output event.
We conclude this thesis with a discussion of some of the design decisions of

Sancus and ways to improve the architecture. We show how to improve the
secure communication primitive, how to employ public-key cryptography, and
how to overcome some of the inflexibilities in Sancus’ design.
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Samenvatting

Met de opkomende populariteit van het Internet der Dingen (the Internet of
Things), stijgt het gebruik van kleine, laag vermogen ingebedde apparaten
exponentieel. Helaas missen dit soort apparaten vaak de beveiligingsfuncties
die we gewend zijn bij desktop- en serversystemen. Echter, in een context
waar verschillende onderling wantrouwende partijen een infrastructuur delen
om gevoelige data te verwerken, wordt het gebrek aan, bijvoorbeeld, software
isolatie in toenemende mate onverantwoord. Het wordt daarom steeds kritieker
om veilige doch goedkope manieren te vinden om zulke low-end apparaten te
beveiligen.

In het eerste deel van deze thesis stellen we Sancus voor, een goedkope beveili-
gingsarchitectuur voor apparaten die slechts beperkte middelen ter beschikking
hebben. We definiëren eerst exact wat onze context is; het type systemen dat we
willen beveiligen en het aanvalsmodel dat we zullen gebruiken. Dan presenteren
we het ontwerp van Sancus in genoeg detail zodat geïnteresseerden alternatieve
implementaties kunnen maken. Vervolgens wordt onze implementatie, die geba-
seerd is op de TI MSP430 architectuur, beschreven en geëvalueerd in functie van
de hardwareprijs en softwareoverhead. We besluiten dit deel met een overzicht
van gerelateerd werk en een vergelijking van Sancus met de meest relevante
alternatieve architecturen.
Het tweede deel bediscussieert een aantal toepassingen van de Sancus archi-

tectuur. Een eerste toepassing toont hoe een klein aantal beschermde Sancus
modules gebruikt kan worden om de staat van een groot onbeveiligd softwaresys-
teem te attesteren. Dit is nuttig wanneer het om bepaalde redenen onmogelijk
is om het volledige softwaresysteem gebruik te laten maken van de beveiligings-
functies van Sancus. In een tweede toepassing laten we daarna zien hoe Sancus
beveiligingsgaranties kan bieden aan gedistribueerde applicaties die gebruik
maken van I/O apparaten. We ontwikkelen een installatie- en attestatietechniek
die een grote mate van zekerheid geeft dat wanneer een applicatie een output
produceert, er een sequentie van fysische inputs moet geweest zijn die, wanneer
deze verwerkt wordt door de applicatie zoals gespecificeerd in de broncode, de
geobserveerde output voortbrengt.
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We besluiten deze thesis met een bespreking van bepaalde ontwerpbeslissingen
van Sancus en manieren om de architectuur te verbeteren. We laten zien hoe
veilige communicatie met Sancus vereenvoudigd kan worden, hoe asymmetrische
cryptografie gebruikt kan worden, en hoe bepaalde gevallen van starheid van
het ontwerp van Sancus overwonnen kunnen worden.
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Chapter 1

Introduction

Computing devices and software are omnipresent in our society, and society
increasingly relies on the correct and secure functioning of these devices and
software. Two important trends can be observed. First, network connectivity of
devices keeps increasing. More and more (and smaller and smaller) devices get
connected to the Internet or local ad-hoc networks. Many consumer products
contain embedded technology to have Internet connectivity. This Internet
of Things (IoT) is estimated to grow to an astonishing number of 26 billion
units by 2020 [38]. Second, more and more devices support extensibility of
the software they run – often even by third parties different from the device
manufacturer or device owner. The IoT becomes an infrastructure on which
many stakeholders can install and run software applications. These two factors
are important because they enable a vast array of interesting applications,
ranging from over-the-air updates on smart cards, over updateable implanted
medical devices, to programmable sensor networks or smart home applications.
However, these two factors also have a significant impact on security threats.
The combination of connectivity and software extensibility leads to malware
threats. Researchers have already shown how to perform code injection attacks
against embedded devices to build self-propagating worms [39, 35]. Viega and
Thompson [88] describe several recent incidents and summarize the state of
embedded device security as “a mess”.

An important research question in this context is what infrastructural support
should be provided to make it easier for device manufacturers to construct secure
networked and extensible devices. Of course, this is by no means a new question
and we have a rich body of experience to build on from securing classical
computing devices like servers and desktops. One of the challenges addressed in
this thesis is learning from this experience to create a security architecture for
devices that do not have the hardware features – nor the resources to implement
them – commonly found in these classical devices.
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2 INTRODUCTION

A first important and widely deployed technique used on classical devices is
hardware support for virtual memory and processor privilege levels. An operat-
ing systems can use these features to run processes in isolation from each other,
guard interaction between processes, and guard itself from malicious processes.
It should be noted, however, that virtual memory was not designed for security
but rather for usability; i.e., to make it easier to implement multiprocessing.
This can be seen, for example, in the poor granularity virtual memory systems
usually provide for isolation. A second technique is the use of a memory-safe
Virtual Machine (VM) where modules are deployed in memory-safe bytecode
and the VM implementation guards interactions between them.
While these techniques are valuable and definitely help to strengthen the

security of computing devices, they require the presence of a sizable Trusted
Computing Base (TCB); respectively, the Operating System (OS) or the VM
implementation. Unfortunately, history has shown that it is notoriously difficult
to protect such large software layers from being exploited by software attacks
such as buffer overflows and code injection attacks [90]. Moreover, in the context
of an infrastructure that may be shared between mutually distrusting parties,
it becomes increasingly important to be able to attest the correct state of the
software that has been deployed on the infrastructure. However, the larger
the size of the TCB, the smaller the trustworthiness of the attestation results
provided by it, making it difficult to securely implement attestation using the
classic solutions.

As a consequence, researchers have started to investigate alternatives to reduce
the size of the TCB. One important line of research is developing Protected
Module Architectures (PMAs) [66, 65, 83]. These are security architectures
running independently from classical OSs and can execute security sensitive
code in an isolated area of the system. Since the isolation does not rely on
the OS, the security guarantees that can be offered are significantly increased.
That PMAs are a promising avenue for security research can be seen from the
introduction by Intel of Software Guard Extensions (SGX), a hardware-based
PMA, in their 6th Generation Intel Core processor platform. Alas, the current
generation of PMAs rely on expensive hardware features, like virtualization,
making them not directly applicable to resource-constrained devices.

To return to the embedded world, no effective low-cost solutions are known for
low-end, resource-constrained devices. Many embedded platforms lack standard
security features present in high-end processors, such as the ones discussed
in the previous paragraphs. Depending on the overall system security goals,
as well as the context in which the system must operate, there may be more
optimal solutions than just porting the general-purpose security features from
high-end processors.

Over the past few years, researchers have been exploring alternative security
architectures for low-end networked devices. For instance, Eldefrawy et al. [29]
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propose SMART, a simple and efficient hardware-software primitive to establish
a dynamic root of trust in an embedded processor, and Strackx, Piessens, and
Preneel [84] propose a simple Program Counter Based Access Control (PCBAC)
system to isolate software components. For a more complete overview of this
line of work, the reader is referred to Chapter 6.
The key contribution of this thesis is the design, implementation and evalu-

ation of one such security architecture: Sancus. Sancus was first proposed in
2013 at the USENIX Security conference [72] as a security architecture that
supports secure third-party software extensibility for a network of low-end
processors with a hardware-only TCB. Over the past three years, significant
experience has been gained with applications of Sancus, including for instance
the development of a trust assessment infrastructure that uses Sancus to protect
the trust measurement code [69], and the design of a smart meter secured by
Sancus [68]. Also, researchers have been investigating several extensions of
Sancus, for instance to support more flexible resource sharing [87] or to support
confidential loading of code [42]. Informed by these additional research results,
this thesis describes an improved design and implementation, supporting addi-
tional security guarantees, such as confidential deployment and a more efficient
cryptographic core. More specifically, I make the following contributions:

• I propose Sancus1, a security architecture for resource-constrained, ex-
tensible networked embedded systems, that can provide strong isolation
guarantees, remote attestation, secure communication, secure linking, and
confidential software deployment with a minimal (hardware) TCB.

• I implement the hardware required for Sancus as an extension of a main-
stream microprocessor architecture, the TI MSP430.

• I implement a C compiler that targets Sancus-enabled devices. Building
software modules for Sancus can be done using simple annotations on
standard C code.

• I implement a Contiki-based (untrusted) software stack to automate the
deployment process of Sancus modules.

• I evaluate Sancus in terms of security, hardware cost, and software over-
head.

• I report on our experience with implementing trust assessment modules –
used to measure the state of unprotected code – on Sancus.

• I design and implement a deployment strategy for securing distributed
applications on Sancus and demonstrate how to securely perform I/O
operations from these applications.

1Sancus was the ancient Roman god of trust, honesty and oaths.



4 INTRODUCTION

• I discuss a number of interesting design decisions and potential alternatives
to, for example, the way Sancus implements its memory access logic or
uses cryptographic primitives.

To guarantee the reproducibility and verifiability of my results, all my research
materials, including the hardware design of the processor, the C compiler, and
the deployment stack are publicly available [71].

Since research is a collaborative effort, I cannot take credit for each and every
aspect of Sancus described in this thesis. In particular, I would like to thank Jan
Tobias Mühlberg for his work on the trust assessment modules (Chapter 8) and
Pieter Maene for implementing confidential loading (Section 3.6) and measuring
the ASIC area of Sancus (Section 5.2).

Besides the results described in this thesis, I have made the following contri-
butions:

• I designed and implemented a novel compiler technique to protect against
return-address smashing attacks [73]. This technique works by duplicating
functions in such a way that every function always returns to the same
location, allowing the compiler to replace return instructions by direct
jumps.

• I assisted the design and implementation of a secure resource sharing
technique for Sancus [87]. Since Sancus’ access control rules are rigid, it is
difficult to share resources between modules. This work explores the use
of secure resource sharing modules to implement sharing policies between
other modules.

• I helped exploring how Sancus should be adapted in order to be able to
provide availability and real-time guarantees [86].

The remainder of this thesis is structured as follows. In Part I, I first clarify the
problem I address by defining the system model, attacker model, and the security
properties I aim for (Chapter 2). Then, I detail the design of Sancus (Chapter 3)
and some interesting implementation aspects (Chapter 4). Chapter 5 reports
on my evaluation of Sancus and I conclude this part by giving an overview of
related work (Chapter 6). Part II describes two interesting application of the
Sancus architecture. First, I extend Sancus’ security guarantees to distributed
applications (Chapter 7). Then, I show how Sancus can be used to perform
trust measurements in order to provide security guarantees about unprotected
code (Chapter 8). I end this thesis in Part III by first discussing some of Sancus’
design decisions (Chapter 9) and finally concluding (Chapter 10).
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Core Architecture
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Chapter 2

Problem Statement

Before introducing the design of the Sancus architecture (Chapter 3), this
chapter introduces the context in which this design is supposed to work. The
goal of this chapter is to precisely state the security properties Sancus aims to
provide (Section 2.3). To be able to do this, we will start with describing the
type of system that we target (Section 2.1) and the attacks we want to prevent
(Section 2.2).

2.1 System Model
We consider a setting where a single infrastructure provider, IP, owns and
administers a (potentially large) set of microprocessor-based systems that we
refer to as nodes Ni. A variety of third-party software providers SPj are
interested in using the infrastructure provided by IP. They do so by deploying
software modules SMj,k on the nodes administered by IP. Figure 2.1 provides
an overview.

This abstract setting is an adequate model for many ICT systems today, and
the nodes in such systems can range from high-performance servers (for instance
in a cloud system), over smart cards (for instance in GlobalPlatform-based
systems [41]) to tiny microprocessors (for instance in sensor networks). In this
thesis, we focus on the low-end of this spectrum, where nodes contain only a small
embedded processor that does not support a Memory Management Unit (MMU),
protection rings, hypervisors, or other security mechanisms typically found on
high-end processors.
Any system that supports extensibility (through installation of software

modules) by several software providers must implement measures to make sure
that the different modules cannot interfere with each other in undesired ways,
either because of bugs in the software or because of malice. For high- to mid-end

7
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N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SMj,k · · ·

...
Figure 2.1: Overview of our system model. IP provides a number of nodes Ni

on which software providers SPj can deploy software modules SMj,k.

systems, this problem is relatively well-understood, and good solutions exist.
Two important classes of solutions are (1) the use of virtual memory, where
each software module gets its own virtual address space, and where an OS
or hypervisor implements and guards communication channels between them
(for instance shared memory sections or inter-process communication channels),
and (2) the use of a memory-safe VM, for instance a Java VM, where software
modules are deployed in memory-safe bytecode and a security architecture in
the VM guards the interactions between them.

For low-end systems with cheap microprocessors, providing adequate security
measures for the setting sketched above is still an open problem, and an active
area of research [32]. One straightforward solution is to transplant the higher-
end solutions to these low-end systems: one can extend the processor with
virtual memory, or implement a Java VM. This will be an appropriate solution
in some contexts, but there are two important disadvantages. First, the cost
(in terms of required resources such as chip surface, power or performance) is
non-negligible. And second, these solutions all require the presence of a sizable
trusted software layer (either the OS or hypervisor, or the VM implementation).
The problem we address in this thesis is the design, implementation and

evaluation of a novel security architecture for low-end systems that is inexpensive
and does not rely on any trusted software layer. The TCB on the networked
device is only the hardware. More precisely, a software provider needs to trust
only the hardware of the infrastructure and his own modules; he does not need
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to trust any infrastructural or third-party software on the nodes.

2.2 Attacker Model
We consider attackers with two powerful capabilities. First, we assume attackers
can manipulate all the software on the nodes. In particular, attackers can act as
a software provider and can deploy malicious modules to nodes. Attackers can
also tamper with the operating system (for instance because they can exploit a
buffer overflow vulnerability in the operating system code), or even install a
completely new operating system.
Second, we assume attackers can control the communication network that

is used by software providers and nodes to communicate with each other.
Attackers can sniff the network, can modify traffic, or can mount man-in-the-
middle attacks. Note that the security of the communication channel between
IP and software providers is out of scope.

With respect to the cryptographic capabilities of the attacker, we follow the
Dolev-Yao attacker model [25]: attackers cannot break cryptographic primitives,
but they can perform protocol-level attacks.
Finally, attacks against the hardware of individual nodes are out of scope.

We assume the attacker does not have physical access to the hardware, cannot
place probes on the memory bus, cannot disconnect components, and so forth.
While physical attacks are important, the addition of hardware-level protections
is an orthogonal problem that is an active area of research in itself [49, 50, 14,
6]. The addition of hardware-level protection will be useful for many practical
applications (in particular for sensor networks) but does not have any direct
impact on our proposed architecture or on the results of this thesis.

Although our attacker model excludes hardware attacks, our security proper-
ties do limit the consequences of such an event (Section 2.3, hardware breach
confinement).

2.3 Security Properties
For the system and attacker model described above, we want our security
architecture to enforce the following security properties:

• Software module isolation. Software modules on a node run isolated in
the sense that no software outside the module can access its runtime state
and code. The only way for other software on the node to interact with a
module is by calling one of its designated entry points.
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• Remote attestation. A software provider can verify the state of a software
module they deployed. That is, they can verify the integrity of a loaded
module and that it has been isolated on a specific node of IP.

• Secure communication. A software provider can communicate with a
specific software module on a specific node with confidentiality, integrity,
and authenticity guarantees.

• Secure linking. A software module on a node can securely link with other
modules on the same node. That is, whenever calling (or being called
by) another module, a module can verify that the callee (caller) is the
intended module. Also, the runtime interactions between these modules
cannot be observed or tampered with by other software on the same node.

• Confidential deployment. If so desired, a software provider can deploy
modules with the guarantee that no attacker will be able to access the
module’s code at any point in time.

• Hardware breach confinement. If an attacker manages to breach the
hardware of a node, they may be able to manipulate or impersonate
modules running on that node. However, such a breach should not allow
them to do the same with modules running on other nodes.

Obviously, these security properties are not entirely independent of each
other. For instance, it does not make sense to have secure communication but
no isolation: given the power of our attackers, any message could then simply
be modified right after its integrity was verified by a software module.
Note that the isolation property is valid at the machine code level of the

underlying architecture. That is, the state of a module can be fully understood
based on its machine code and the interactions with its entry points. If a
module is compiled from a higher level programming language, special care
must be taken to ensure that the expected isolation properties are preserved
at the machine code level; especially for languages that allow for undefined
behavior to occur. Agten et al. [2] show how one can securely compile higher
level programming languages to an architecture that supports our isolation
properties and our compiler (Section 4.2) implements many of their techniques.



Chapter 3

Design of Sancus

This chapter details the design of the Sancus architecture; that is, how we achieve
the desired security properties in the context of our system- and attacker model
(Chapter 2).

The main design challenge is to realize the desired security properties without
trusting any software on the nodes. That is, software providers should not have to
trust any software other than the modules they deployed or explicitly choose to
trust. Another constraint is that nodes are low-end, resource-constrained devices.
An important first design choice that follows from the resource-constrained
nature of nodes is that we limit cryptographic techniques to symmetric key,
in particular authenticated encryption. While public key cryptography would
simplify key management, the cost of implementing it in hardware is too
high [55]. Section 9.2 discusses the impact asymmetric cryptography would
have on Sancus’ design.

We first present some cryptographic primitives that will be used in the rest of
this thesis (Section 3.1). Then, we give an overview of our design (Section 3.2)
followed by the elaboration of its most interesting aspects (Sections 3.3 to 3.7).
We conclude this chapter with an end-to-end example (Section 3.8).

3.1 Cryptographic Primitives
Throughout the design of Sancus, we assume the existence of three crypto-
graphic primitives. First, a classical cryptographic hash function is used to
compute digests of data. Second, a key derivation function is used to derive a
cryptographic key from a master key and some diversification data:

KM,D = kdf(KM , D)

11
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Third, an authenticated encryption with associated data primitive is used to
simultaneously provide confidentiality, integrity, and authenticity guarantees
on data. Such a primitive consists of two functions: one for encryption and
one for decryption. The encryption function takes as input a key, plaintext,
and associated data and produces ciphertext and an authentication tag. The
ciphertext covers the given plaintext and the tag is a Message Authentication
Code (MAC) over both the plaintext and the associated data:

C, T = aead-encrypt(K,P,A)

The decryption function does the opposite operation and fails (i.e., produces no
plaintext) if the tag is incorrect for the given ciphertext and associated data:

P = aead-decrypt(K,C,A, T )

Note that this primitive can be used to compute a plain MAC over some data:

mac(K,D) ≡ π2(aead-encrypt(K, {}, D))

(Here, we discard the ciphertext result of aead-encrypt.)

3.2 Overview
3.2.1 Nodes
Nodes are low-cost, low-power microcontrollers (our implementation is based
on the TI MSP430). The processor in a node uses a Von Neumann architecture
with a single address space for instructions and data. To distinguish actual
nodes belonging to IP from fake nodes set up by an attacker, IP shares a
symmetric key with each of its nodes. We call this key the node master key, and
use the notation KN for the node master key of node N . Given our attacker
model where the attacker can control all software on the nodes, it follows that
this key must be managed by the hardware, and it is only accessible to software
in an indirect way.

3.2.2 Software Providers
Software providers are principals that can deploy software to the nodes of IP.
Each software provider has a unique public ID SP.1 IP uses a key derivation
function kdf to compute a key KN,SP = kdf(KN ,SP), which SP will later use to
setup secure communication with its modules. Since node N has key KN , it can
compute KN,SP for any SP. The node will include a hardware implementation
of kdf so that the key can be computed without trusting any software.

1Throughout this text, we will often refer to a software provider using its ID SP.
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3.2.3 Software Modules
Software modules are essentially simple binary files containing two mandatory
sections: a text section containing code and constants and a data section
containing a module’s runtime data. As we will see later, the contents of
the latter section are not attested and are therefore vulnerable to malicious
modification before hardware protection is enabled. Therefore, the processor
will zero-initialize its contents at the time the protection is enabled to ensure
an attacker cannot have any influence on a module’s initial state. Next to the
two protected sections discussed above, a module can opt to load a number of
unprotected sections containing code or data. This is useful to, for example,
limit the amount of code that can access protected data. Indeed, allowing code
that does not need it access to protected data increases the possibility of bugs
that could leak data outside of the module. In other words, this gives developers
the opportunity to keep the trusted code of their own modules as small as
possible. Each section has a header that specifies the start and end address of
the section.

The identity of a software module consists of a hash of (1) the contents of the
text section and (2) the start and end addresses of the text and data sections.
We refer to this second part of the identity as the layout of the module. It
follows that two modules with the exact same code and data can coexist on
the same node and will have different identities as their layout will be different.
We will use notations such as SM or SM1 to denote the identity of a specific
software module.

Software modules are always loaded on a node on behalf of a specific software
provider SP. A software module is deployed by loading each of the sections of
the module in memory at the specified addresses. For each module, the processor
maintains the layout information in a protected storage area inaccessible from
software. It follows that the node can compute the identity of all modules
loaded on it: the layout information is present in protected storage and the
contents of the text section are in memory.
An important sidenote here is that the loading process is not trusted. It is

possible for an attacker to intervene and modify the module during loading.
However, this will be detected as soon as the module communicates with its
provider (Section 3.5).

Finally, the node computes a symmetric key KN,SP,SM that is specific to the
module SM loaded on node N by provider SP. It does so by first computing
KN,SP = kdf(KN ,SP) as discussed above, and then computing KN,SP,SM =
kdf(KN,SP,SM). All these keys are computed by hardware (Section 3.4) and
kept in the protected storage, and will only be available to software indirectly
by means of new processor instructions we discuss later. Table 3.1 gives an
overview of the keys used by Sancus.
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Table 3.1: Overview of the keys used in Sancus, how they are created and who
can access them. Note that derived keys are also accessible by any entity that
has access to their master keys but this is not explicity mentioned.

Key Creation Accessible by
KN Random IP, N
KN,SP kdf(KN ,SP) SP
KN,SP,SM kdf(KN,SP,SM) SM (indirectly)

Unprotected

En
tr
y
po

in
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 data section

Unprotected

M
em

or
y

KN,SP,SM1 IDSM1Next ID

Caller ID

KN

SM1 metadata

Layout Key ID

Protected
storage
area

Node

Figure 3.1: A node with a software module loaded. The left part of the protected
storage area is global while the right part is per module metadata. Sancus
ensures the keys can never leave the protected storage area by only making
them available to software in indirect ways through new processor instructions.

Note that the provider SP can also compute KN,SP,SM, since he received
KN,SP from IP and since he knows the identity SM of the module he is loading
on N . This key will be used to attest the presence of SM on N to SP and to
secure the communications between SM and SP.

Figure 3.1 shows a schematic of a node with a software module loaded. The
picture also shows the keys and the layout information that the node has to
manage. Section 3.8 details the loading process through an end-to-end example.
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3.2.4 Memory Protection on the Nodes
The various modules on a node must be protected from interfering with each
other in undesired ways by means of some form of memory protection. Our
design relies on PCBAC [84], as this memory access control model has been
shown to support strong isolation [83], as well as remote attestation [29].
Roughly speaking, isolation is implemented by restricting access to the data
section of a module such that it is only accessible while the program counter is
in the corresponding text section of the same module. Moreover, the processor
instructions that use the keys KN,SP,SM will be program counter-dependent.
Essentially, the processor offers special instructions to access the cryptographic
capabilities. If such an instruction is invoked from within the text section of
a specific module SM, the processor will use key KN,SP,SM. Moreover, these
instructions are only available after memory protection has been enabled for
module SM. It follows that only a well-isolated SM installed on behalf of SP on
N can compute cryptographic primitives with KN,SP,SM, and this is the basis
for implementing both remote attestation and secure communication.

3.2.5 Remote Attestation and Secure Communication
In order to provide a confidential, integrity-protected, and authenticated commu-
nication channel between a software provider and its modules, Sancus includes
an authenticated encryption primitive. New instructions are provided to encrypt
and decrypt messages using the key of the calling module. When SP receives
a message encrypted with KN,SP,SM, they will have high assurance that the
message has been produced by SM since, as mentioned above, only SM is able
to use this key. Note that since SM is the identity of the module that SP is
communicating with, this primitive also provides for remote attestation.

3.2.6 Secure Linking
A final aspect of our design is how we deal with secure linking. When a software
provider sends a module SM1 to a node, this module can specify that it wants
to link to another module SM2 on the same node, so that SM1 can call services
of SM2 locally. SM1 specifies this by including the identity (i.e., a hash) of SM2
in its text section.2 The processor includes a new instruction that SM1 can call
to check that (1) there is a module loaded (with memory protection enabled) at
the address of SM2 and (2) the identity of that module has the expected value.

2Note that if SM2 also wants to link to SM1, this method creates a circular dependency
between their identities. This can be resolved by not including the other’s identity in the text
section but having the software provider securely send it after deployment and storing it in
the data section.
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A similar mechanism can be used by SM2 to verify that it is indeed called by
SM1 (caller authentication). In its entry point, SM2 can call a new instruction
that verifies the identity of the module that called the entry point. For this to
work, the processor keeps track of the previously executing software module.

Fortunately, this expensive hash calculation over a potentially large text
section is only needed during the first authentication. Section 3.7 discusses a
more efficient procedure for subsequent authentications.

3.3 Key Management
We handle key management without relying on public-key cryptography. IP is
a trusted authority for key management. All keys are generated and/or known
by IP. There are three types of keys in our design (Table 3.1):

• Node master keys KN shared between node N and IP.

• Software provider keys KN,SP shared between a provider SP and a node
N .

• Software module keys KN,SP,SM shared between a node N and a provider
SP, and the hardware of N makes sure that only SM can use this key.

We have considered various ways to manage these keys. A first design choice is
how to generate the node master keys. We considered three options: (1) using
the same node master key for every node, (2) randomly generating a separate
key for every node using a secure random number generator and keeping a
database of these keys at IP, and (3) deriving the master node keys from an IP
master key using a key derivation function and the node identity N .
We discarded option (1) because for this choice the compromise of a single

node master key breaks the security of the entire system, hence violating
hardware breach confinement (Section 2.3). Options (2) and (3) are both
reasonable designs that trade off the amount of secure storage and the amount
of computation at IP’s site. Our prototype uses option (2).
The software provider keys KN,SP and software module keys KN,SP,SM are

derived using a key derivation function as discussed in the overview section.
Finally, an important question is how compromised keys can be handled in

our scheme. Since any secure key derivation function has the property that
deriving the master key from the derived key is computationally infeasible, the
compromise of neither a module key KN,SP,SM nor a provider key KN,SP needs
to lead to the revocation of KN . If KN,SP is compromised, provider SP should
receive a new name SP′ since an attacker can easily derive KN,SP,SM for any SM
given KN,SP. If KN,SP,SM is compromised, the provider can still safely deploy
other modules. SM can also still be deployed if the provider makes a change to
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the text section of SM.3 If KN is compromised, it needs to be revoked. Since
KN is different for every node, this means that only one node needs to be either
replaced or have its key updated.

3.4 Memory Access Control
Memory can be divided into (1) memory belonging to modules, and (2) the
rest, which we refer to as unprotected memory. Memory allocated to modules
is divided into two sections, the text section, containing code and constants,
and the data section containing all the data that should remain confidential
and should be integrity protected. Modules can also have an unprotected data
section that is considered to be part of unprotected memory from the point of
view of the memory access control system.

Apart from application-specific data, runtime metadata such as the module’s
call stack should typically also be included in the data section. Indeed, if a
module’s stack were to be shared with untrusted code, confidential data may
leak through stack variables or control-data might be corrupted by an attacker.
It is the module’s responsibility to make sure that its call stack and other
runtime metadata is in its data section, but our implementation comes with a
compiler that ensures this automatically (Section 4.2).
The memory access control logic in the processor enforces that (1) the

data section of a module is only accessible while code in the text section of
that module is being executed, (2) the text section can only be executed by
jumping to a well-defined entry point, and (3) the text section cannot be
written and can only be read while code in that section is being executed.
The second part is important since it prevents attackers from misusing code
chunks in the text section to extract data from the data section. For example,
without this guarantee, an attacker might be able to launch a Return-Oriented
Programming (ROP) attack [17] by selectively combining gadgets found in the
text section. Of course, if a module contains a bug that allows an attacker to
divert its control-flow, he might still be able to launch such an attack; enforcing
an entry point prevents these attacks being launched from code outside of the
module. Note that, as shown in Figure 3.1, our design allows modules to have
a single entry point only. This may seem like a restriction but, as we will
show in Section 4.2, it is not since multiple logical entry points can easily be
dispatched through a single physical entry point. Table 3.2 gives an overview of
the enforced access rights.
Besides memory access control, the processor also ensures that modules

cannot be interrupted while being executed to prevent register contents from
3For example, a random byte could be appended to the text section without changing the

semantics of the module.
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Table 3.2: Memory access control rules enforced by Sancus using the traditional
Unix notation. Each entry indicates how code executing in the “from” section
may access the “to” section.

From/to Entry Text Data Unprotected
Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Unprotected/
Other SM --x --- --- rwx

leaking outside the module. Supporting interruptible modules is orthogonal to
our goals and is left as future work.
Memory access control for a module is enabled at the time the module is

loaded. First, untrusted code (for instance the node’s operating system) will load
the module in memory as discussed in Section 3.2. Then, a special instruction
is issued:

protect layout, SP

This processor instruction has the following effects:

• the layout is checked not to overlap with existing modules, and a new
module is registered by storing the layout information in the protected
storage of the processor (Figure 3.1);

• memory access control is enabled as discussed above; and

• the module key KN,SP,SM is calculated – using the text section and layout
of the actually loaded module – and stored in the protected storage.

This explains why we do not need to trust the OS that loads the module in
memory: if the content of the text section or the layout4 would be modified before
execution of the protect instruction, then the key generated for the module
would be different, and subsequent attestations or authentications performed
by the module would fail. Once the protect instruction has succeeded, the
hardware-implemented memory access control scheme ensures that software on
the node can no longer tamper with SM.
The only way to lift the memory access control is by calling the processor

instruction:

unprotect continuation
4Note, however, that it is still possible to dynamically link modules at load time. See

Section 4.3 for details.
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The effect of this instruction is to lift the memory protection of the module from
which the unprotect instruction is called. To prevent the leakage of confidential
data, this instruction also clears the module’s code- and data sections. Since
the unprotect instruction itself is part of the code section, the programmer
has to provide a pointer to the code where the execution is to be continued in
the continuation argument.

Finally, it remains to decide how to handle memory access violations. We opt
for the simple design of resetting the processor and clearing memory on every
reset. This has the advantage of clearly being secure for the security properties
we aim for. However an important disadvantage is that it may have a negative
impact on availability of the node: a bug in the software may cause the node to
reset and clear its memory. An interesting avenue for future work is to come up
with strategies to handle memory access violations in less severe ways. Invalid
reads could return some default value as in secure multi-execution [23]. Invalid
writes or jumps could be dropped or modified to actions that are allowed as
in edit-automata [60]. For instance, an invalid memory read might just return
zero, and an invalid jump might be redirected to an exception handler.

3.5 Remote Attestation and Secure Communica-
tion

We extend the processor with two more instructions that are used for remote
attestation and secure communication:

encrypt plaintext, associated data, ciphertext (output), tag (output)[, key]
decrypt ciphertext, associated data, tag, plaintext (output)[, key]

These instructions have the same semantics as the aead-encrypt and aead-decrypt
functions, respectively (Section 3.1).

As can be seen from the signatures above, both instructions have the key as
an optional argument. If none is given, the module key of the invoking module
is implicitly used (or an error code is returned if invoked by unprotected code).
This is the only way for software to access a module key and the key KN,SP,SM
will only be used when invoked by the module with identity SM deployed by
SP on node N . Note that, besides being able to access the module key, these
instructions are not privileged and the same memory access rules are enforced
as for any instruction that accesses memory.
These instructions can be used to provide confidentiality, integrity, and

authenticity guarantees of data exchanged between modules and their providers.
The ciphertext plus the corresponding tag can be sent using the untrusted
operating system over an untrusted network. If the tag verifies correctly (using
KN,SP,SM) upon receipt by the provider SP, they can be sure that the decrypted
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plaintext indeed comes from SM running on N on behalf of SP as the node’s
hardware makes sure only this specific module can use the module key KN,SP,SM.
The reasoning is equivalent for data sent to the module.

To implement remote attestation, we only need to add a freshness guarantee
(i.e., protect against replay attacks). Provider SP sends a fresh nonce No to
the node N , and the module SM returns the MAC of this nonce using the
key KN,SP,SM, computed with the encrypt instruction (Section 3.1 explains
how this can be done). This gives the SP assurance that the correct module is
running on that node at this point in time.
Building on this scheme, we can also implement secure communication.

Whenever SP wants to receive data from SM on N , it sends a request to the node
containing a nonce No and possibly some input data I that is to be provided to
SM. This request is received by untrusted code on the node which passes No and
I as arguments to the function of SM to be called. When SM has calculated the
output O, it asks the processor to calculate aead-encrypt(KN,SP,SM, O,No||I)
using the encrypt instruction. The resulting ciphertext and tag are then sent
to SP. By verifying the tag with its own copy of the module key, the provider
has strong assurance that O has been produced by SM on node N given input
I.

3.6 Confidential Loading
If, besides the integrity guarantees provided through remote attestation, one
wants to have confidentiality guarantees for a module’s text section, more
architectural support is necessary. Indeed, although a module’s text section is
not readable by other modules (Table 3.2), this is only enforced after enabling
a module; i.e., up to that point an attacker can easily read the module’s text
section.
Therefore, we provide a second way to use the protect instruction:

protect layout, SP, MAC

In this form, the protect instruction behaves exactly the same (Section 3.4)
except that, before calculating the module key, the module’s text section is
decrypted in place using KN,SP. If the integrity check using the given MAC,
i.e., an authenticated encryption tag, fails, the text section is cleared and the
protection disabled.

Note that KN,SP is now used to encrypt confidential modules, as well as for
key derivation. However, the uniqueness of both operations can be guaranteed
by domain separation, i.e., by setting the first bit of the associated data to 0 or
1 for the encryption and key derivation respectively.

It should be mentioned that the integrity check is not strictly necessary for
confidential loading, since any subsequent remote attestation will also verify
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the module’s integrity. However, it could be used as a simple form of module
authentication: by disabling the non-decrypting form of the protect instruction,
only entities possessing a valid software provider key can install modules on the
system.

3.7 Secure Linking and Local Communication
In this section, we discuss how we assure the secure linking property mentioned
in Section 2.3. More specifically, we consider the situation where a module
SM1 wants to call another module SM2 and wants to be ensured that (1) the
integrity of SM2 has not been compromised, and (2) SM2 is correctly protected
by the processor.
In our design, if module SM1 wants to link securely to SM2, SM1 should be

deployed with the identity of SM2. The processor provides a special instruction
to check the existence and integrity of a module at a specified address:

attest address, expected hash

This instruction will:

• verify that a module is loaded (with protection enabled) at the provided
address;

• compute the identity of that module (i.e., a hash of its text section and
layout);

• compare the resulting hash with the expected hash parameter of the
instruction; and

• if the hashes are equal, return the module’s ID (to be explained below),
otherwise return zero.

Using this processor instruction, a module can securely check for the presence
of another expected module, and can then call that other module.
Since this authentication process is relatively expensive (it requires the

computation of a hash), our design also includes a more efficient mechanism for
repeated authentication. The processor will assign sequential IDs5 to modules
that it loads, and will ensure that – within one boot cycle – it never reuses these
IDs. This can be implemented by storing the ID to be used for the next module
in a register (“Next ID” in Figure 3.1), incrementing it after a new module is
enabled, and generating a violation when it overflows. A processor instruction:

5To avoid confusion between the two different identity concepts used in this text, we will
refer to the hardware-assigned number as ID while the text section and layout of a module is
referred to as identity.
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get-id address

checks that a protected module is present at address and returns the ID of the
module. Once a module has checked using the initial authentication method
that the module at a given address is the expected module, it can remember
the ID of that module, and then for subsequent authentications it suffices to
check that the same module is still loaded at that address using the get-id
instruction.

For caller authentication, the processor keeps track of the previously executing
module by recording its ID in a register (“Caller ID” in Figure 3.1). This register
is updated whenever execution enters a new module. Modules can attest their
caller through two instruction: attest-caller and get-caller-id. These
instructions behave similar to attest and get-id respectively but use the
previously executing module implicitly.

3.8 An End-to-End Example
To make the discussion in the previous sections more concrete, this section gives
a small example of how our design may be applied in the area of sensor networks.
Figure 3.2 shows our example setup. It contains a single node to which a sensor
S is attached; communication with S is done through memory-mapped I/O.
The owner of the sensor network, IP, has deployed a special module, SMS , that
is in charge of communicating with S. By ensuring that the data section of
SMS contains the memory-mapped I/O region of S, IP ensures that no software
outside of SMS is allowed to configure or communicate directly with S; all
requests to S need to go through SMS . Section 7.3.1 goes into more detail on
how to write secure I/O drivers using Sancus.
Figure 3.2 also shows a number of software providers (SP1, . . . ,SPn) who

have each deployed a module (SM1, . . . ,SMn). In the remainder of this section,
we walk the reader through the life cycle of a module in this example setup.

The first step for a provider SP is to contact IP and request permission to
run a module on the sensor node. If IP accepts the request, it provides SP with
its provider key for the node, KN,SP.

Next, SP creates the module SM that he wants to run on the processor and
calculates the associated module key KN,SP,SM. Since SM will communicate
with SMS , SP requests the identity of SMS from IP. This identity is included
in the text section of SM, so that SM can use it to authenticate SMS . Then
SM is sent to the node for deployment.

Once SM is received on the node, it is loaded – by untrusted software like the
operating system – into memory and the processor is requested to protect SM,
using the protect processor instruction. As discussed, the processor enables
memory protection, computes the key KN,SP,SM, and stores it in hardware.
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Figure 3.2: Setup of the sensor node example discussed in Section 3.8. Sancus
ensures only module SMS is allowed to directly communicate with the sensor S.
Other modules securely link to SMS to receive sensor data in a trusted way.

Now that SM has been deployed, SP can start requesting data from it. We
will assume that SM’s function is to request data from S through SMS , perform
some transformation, filtering, or aggregation on it, and return the result to
SP. The first step is for SP to send a request containing a nonce No to the
node. Once the request is received (by untrusted code) on the node, SM is
called passing No as an argument.

Before SM calls SMS , it needs to verify the integrity of module SMS . It does
this by executing the attest instruction passing the address of the expected
identity of SMS (included in SM’s text section) and the address of the entry
point it is about to call. The ID of SMS is then returned to SM and, if it is
non-zero, SM calls SMS to receive the sensor data from S. SM will usually also
store the returned ID of SMS in its data section so that future authentications
of SMS can be done with the get-id instruction.
Once the received sensor data has been processed into the output data O,

SM will request the processor to calculate aead-encrypt(KN,SP,SM, O,No) using
the encrypt instruction. SM then passes the ciphertext C and tag T to the
(untrusted) network stack to be sent to SP. When SP receives the output of
SM, it can verify its integrity by calculating aead-decrypt(KN,SP,SM, C,No, T ).





Chapter 4

Implementation

This chapter discusses the implementation of Sancus. We have implemented
hardware support for all security features discussed in Chapter 3, as well as
a compiler that can create software modules suitable for deployment on the
hardware.

4.1 The Processor
Our hardware implementation is based on an open source implementation of
the TI MSP430 architecture, the openMSP430 from the OpenCores project [40].
We have chosen this architecture because both GCC and LLVM support it, and
there exists a lot of software running natively on the MSP430, for example the
Contiki [27] operating system.

The discussion is organized as follows. First, we explain the features added to
the openMSP430 in order to implement the isolation of software modules. Then,
we discuss how we added support for the cryptographic operations. Finally, we
describe the modifications we made to the openMSP430 core itself.

4.1.1 Isolation
This part of the implementation deals with enforcing the access rights shown in
Table 3.2. For this purpose, the processor needs access to the layout of every
software module that is currently protected. Since the access rights need to be
checked on every instruction, accessing these values should be as fast as possible.
For this reason, we decided to store the layout information in special registers
inside the processor. Note that this means the total number of software modules
that can be protected at any particular time has a fixed upper bound. This
upper bound, NSM, can be configured when synthesizing the processor.

25
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Figure 4.1: Schematic of the Memory Access Logic circuit, the hardware used
to enforce the memory access rules for a single protected module.

Figure 4.1 gives an overview of the Memory Access Logic (MAL) circuit used
to enforce the access rights of a single software module. This MAL circuit is
instantiated NSM times in the processor. It has five inputs: pc and prev_pc
are the current and previous values of the program counter, respectively. The
input mab is the memory address bus – the address currently used for load or
store operations1 – while mb_en indicates whether the address bus is enabled
for the current instruction and mb_wr indicates whether the access is a write.
The MAL circuit has one output, violation, that is asserted whenever one of
the access rules is violated.

Apart from the input and output signals, the MAL circuit also keeps state in
registers. The layout of the protected software module is captured in the TS
(start of text section), TE (end of text section), DS (start of data section) and DE
(end of data section) registers. The EN register is set to 1 if there is currently a
module being protected by this MAL circuit instantiation. The layout is saved
in the registers when the protect instruction is called, at which time EN is also
set. When the unprotect instruction is called, we just unset EN which disables
all checks.
Since the circuit is purely combinatorial, no extra cycles are needed for the

enforcement of access rights. As explained above, this is exactly what we want
since these rights need to be checked for every instruction. The only downside
this approach might have is that the large combinatorial circuit adds to the

1Of course, this includes implicit memory accesses like a call instruction.
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length of the critical path of the processor. We will explore the implications
our design has on the processor’s critical path in Section 5.1.
Apart from hardware circuit blocks that enforce the access rights, we also

added a single hardware circuit to control the MAL circuit instantiations. It
implements four tasks: (1) combine the violation signals from every MAL
instantiation into a single signal; (2) keep track of the value of the current
and previous program counter; (3) keep track of the currently and previously
executing SM; and (4) when the protect instruction is called, select a free
MAL instantiation to store the layout of the new software module and assign it
a unique ID.

4.1.2 Cryptography
As explained in Section 3.1, a hardware implementation of three cryptographic
primitives is needed to implement our design: authenticated encryption, key
derivation and hashing. Since our implementation is based on a small micro-
processor, one of our main goals here is to make the implementation of these
features as small as possible.
We have chosen to build these cryptographic primitives on the Sponge-

Wrap [12] authenticated encryption construction using spongent [13] as the
underlying sponge function. Since keyed sponge functions are shown to be
pseudorandom functions [8], we can reuse SpongeWrap to calculate MACs,
and consequently for key derivation. Since the security of SpongeWrap relies
on the soundness of the sponge function it uses, it can also be used as a hashing
function by calling aead-encrypt({}, {},M).
Besides being able to use it for all necessary primitives, there are several

reasons we use SpongeWrap with spongent. Since the security of Sponge-
Wrap is proportional to the capacity of the underlying sponge function2, and
spongent is defined for a large range of capacities, we can create an implemen-
tation with a selectable security parameter. More specifically, our core can be
synthesized with a security parameter between 16 and 256 bits, although values
less than 80 bits should be avoided. Since the security parameter influences the
core’s area (Section 5.2), it is a trade-off between cost and security.
As we will see later, all module keys are stored in hardware making the

key size an important design parameter regarding area. Another advantage of
SpongeWrap is that the key size may be as small as the security parameter
whereas some other lightweight authenticated encryption primitives require a
key that is twice as long, e.g., APE [7].
A downside of SpongeWrap is that uniqueness of the associated data is

required for confidentiality, and no security guarantees can be given when a
2To be precise, for a sponge function with a capacity of c bits, SpongeWrap has a security

of c/2 bits [12].
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nonce is reused. More specifically, if two ciphertext messages are captured that
are encrypted with the same key and associated data, part of the XOR of the
corresponding plaintext message may be leaked (see [12] for details). Therefore,
the user of this primitive should ensure that, for a specific key, the associated
data is unique, i.e., that it includes a nonce. Note that this is only necessary
when encrypting data and there is no nonce requirement for creating MACs.
In contrast, nonce-misuse resistant authenticated encryption algorithms (e.g.,
APE mentioned above) limit information leakage about the message when the
nonce is reused, but this comes at an additional implementation cost.

It is a software provider’s responsibility that the nonce requirement is fulfilled
by the modules it deploys. In our prototypes, this is achieved by having SP
send an initial counter value as nonce in its first message to a newly deployed
module. For subsequent messages, modules can simply increment the counter
and use that value as the next nonce. Alternatively, if SP never wants to send
messages to a module, the initial counter value can be included in the module’s
text section.
The node key KN is fixed when the hardware is synthesized and should be

created using a secure random number generator. When a module SM is loaded,
the processor will first derive KN,SP using the SpongeWrap implementation
which is then used to derive KN,SP,SM. The latter key will then be stored in
the hardware MAL instantiation for the loaded module. Note that we have
chosen to cache the module keys instead of calculating them on the fly whenever
they are needed. This is a trade-off between size and performance which is
justified because, when using 128 bit keys, SpongeWrap needs about 90 cycles
per input byte (Section 5.1). Since the module key is needed for every remote
attestation and whenever the module’s output needs to be encrypted, having to
calculate it on the fly would introduce a runtime overhead that we expect to be
too high for most applications.
Because of the associated data uniqueness requirement explained above,

our implementation of confidential loading is slightly different from its design
(Section 3.6). Since modules deployed on N by SP are always encrypted using
KN,SP, the protect instruction takes an extra argument, nonce, to be able to
fulfill the nonce requirement. This argument is used as the associated data
input for the decryption routine.

4.1.3 Core Modifications
The largest modification that had to be made to the core is the decoding of the
new instructions. We have identified a range of opcodes, starting at 0x1380,
that is unused in the MSP430 instruction set and mapped the new instructions
in that range.
Further modifications include routing the needed signals, like the memory

address bus, into the access rights modules as well as connecting the violation
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signal to the internal reset. Note that the violation signal is stored into a
register before connecting it to the reset line to avoid the asynchronous reset
being triggered by combinatorial glitches from the MAL circuit.

Since our experience has shown that developing applications on a system that
resets on violations is rather tedious, we added a synthesis option to generate a
non-maskable interrupt instead. If this option is enabled, the memory backbone
will disable all memory accesses when a violation is generated and the frontend
will initiate the IRQ sequence. Although this may superficially seem secure, it
brings with it a number of problems (e.g., if a module generates a violation,
its register contents will be leaked) we have not dealt with yet. Therefore,
it currently is not enabled by default and should not be used in production
environments.

Figure 4.2 gives an overview of the added hardware blocks when synthesized
with support for two protected modules. In order to keep the figure readable, we
did not add the input and output signals of the MAL blocks shown in Figure 4.1.

4.2 The Compiler
Although the hardware modifications enable software developers to create
protected modules, doing this correctly is tedious, as the module can have only
one entry point, and as modules may need to implement their own call-stack to
avoid leaking the content of stack allocated variables to unprotected code or
to other modules. Hence, we have implemented a compiler extension based on
LLVM [62] that deals with these low-level details. We have also implemented a
support library that offers an API to perform some commonly used functions
like calculating a MAC of data.

Our compiler compiles standard C files.3 To benefit from Sancus, a developer
only needs to indicate which functions should be part of the protected module
being created, which functions should be entry points and what data should
be inside the protected section. For this purpose, we offer three attributes –
SM_FUNC, SM_ENTRY and SM_DATA – that can be used to annotate functions and
global variables.

4.2.1 Entry Points
Since the hardware supports a single entry point per module only, the compiler
implements multiple logical entry points on top of the single physical entry
point by means of a jump table. The compiler assigns every logical entry point
a unique ID. When calling a logical entry point, its ID is placed in a register
before jumping to the physical entry point of the module. The code at the

3We use Clang [61] as our compiler frontend. This means any C-dialect accepted by Clang
is supported.
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Figure 4.2: Overview of the hardware blocks in the Sancus core. Lightly shaded
blocks are part of the original openMSP430 design while the darkly shaded
ones are added specifically for Sancus. Remember that, while we only draw two
SM blocks for clarity, this number (NSM) can be chosen when synthesizing the
core. Notice how the SM control unit takes the program counter (PC) and the
memory address bus (MAB) as input to produce the violation signal using the
MAL circuits.

physical entry point then jumps to the correct function based on the ID passed
in the register.

When a module calls an external function, the same entry point is also used
when this function returns. This is implemented by using a special ID for
the “return entry point”. If this ID is provided when entering the module, the
address to return to is loaded from the module’s stack. Of course, this is only
safe if stack switching is enabled.

4.2.2 Stack Switching
As discussed in Section 3.4, it is preferable to place the runtime stack of software
modules inside the data section. Our compiler automatically handles everything
needed to support multiple stacks. For every module, space is reserved at a
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fixed location in its protected section for the stack. The first time a module is
entered, the stack pointer is loaded with the address of this start location of
the stack. When the module is exited, the current value of the stack pointer is
stored in the protected section so that it can be restored when the module is
reentered.

4.2.3 Exiting Modules
Our compiler ensures that no data is leaked through registers when exiting from
a module. When a module exits, either by calling an external function or by
returning, any register that is not part of the calling convention is cleared. That
is, only registers that hold a parameter or a return value retain their value.

4.2.4 Secure Linking
Calls to protected modules are automatically instrumented to verify the called
module. This includes automatically calculating any necessary module identities.
The compiler also automatically uses the optimization described in Section 3.7.

4.3 Deployment
Since the identity of a module is dependent on its load addresses on node N ,
SP must be aware of these addresses in order to be able to calculate KN,SP,SM.
Moreover, any identity hashes needed for secure linking will also be dependent on
the load addresses of other modules. Enforcing static load addresses is obviously
not a scalable solution given that we target systems supporting dynamic loading
of software modules by third-party software providers.

Given these difficulties, we felt the need to develop a proof-of-concept software
stack providing a deployment solution. Our stack consists of two parts: a set of
tools used by SP to deploy SM on N and host software running on N . Note
that this host software is not part of any protected module and, hence, does
not increase the size of the TCB.
We will now describe the deployment process implemented by our software

stack. First, SP creates a relocatable Executable and Linkable Format (ELF)
file of SM and sends it to N . The host software on N receives this file, finds a
free memory area to load SM and relocates it using a custom made dynamic
ELF loader. Then, hardware protection is enabled for SM and a symbol table
is sent back to SP. This symbol table contains the addresses of any global
functions4 as well as the load addresses of all protected modules on N . Using
this symbol table, SP is able to reconstruct the exact same image of SM as the
one loaded on N which can then be used to calculate KN,SP,SM.

4For example, libc functions and I/O routines.
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Note that an alternative linking strategy is for SP to first request the node’s
symbol table, link the module locally and then send it to the node to be loaded.
This would simplify the node since the custom ELF loader is not needed in this
scheme. However, since our toolchain does not support position-independent
code, this would mean that the memory locations where the module is going
to be loaded need to be reserved while SP links the module. We feel that this
two-phase deployment scheme adds more overall complexity than a simple ELF
loader.
Since the dynamic loader needs to inspect and update parts of the text

section of modules, this process does not work when confidential loading is used.
Although our tools currently do not support the fully automatic loading of
encrypted modules, it can be implemented as follows. First, SP sends a request
to N indicating the sizes of the sections of the module it wants to load. Then,
the host software allocates memory for those sections and replies with a handle
identifying the allocated memory and a symbol table. Using this symbol table,
SP links SM locally and sends the resulting image, together with the memory
handle, back to N . The host software on N then loads it in the pre-allocated
memory sections and enables its protection.

After SM has been deployed, the host software on N provides an interface to
be able to call its entry points. This can be used by SP to attest that SM has
not been compromised during deployment and that the hardware protection
has been activated.

This interface is used to upload the identity hashes to SM of the modules it
securely links to. To this end, SP either calculates these hashes after it received
the symbol table or, if it concerns modules belonging to a different software
provider that use confidential loading, receives them from their respective
providers. Then, SP encrypts those hashes using KN,SP,SM and sends them to
SM using the interface described above.



Chapter 5

Evaluation

In this chapter we evaluate Sancus in terms of runtime performance, impact on
chip size, and provided security. All experiments were performed using a Xilinx
XC6SLX25 Spartan-6 FPGA with a speed grade of −2, synthesised using Xilinx
ISE Design Suite.

5.1 Performance
There are two important performance aspects to consider with our design. First,
since we made changes to the CPU core, we evaluate the impact on its critical
path, i.e., the maximum frequency it can run at. Second, we measure the
runtime overhead of the added instructions, as well as the code transformations
performed by the compiler.

5.1.1 Critical Path
Since the Xilinx tools offer no direct way to find the critical path of a design,
we measured it indirectly. Using timing constraints, one can specify what clock
rate certain signals should be able to sustain; the tools will then err when the
constraint cannot be met. By varying the constraint on the input clock signal,
we can get a measure on how fast the design will be able to run and, thus, on
the length of the critical path.
We found that the unmodified openMSP430 core can run at 51 MHz with

our setup. For our modifications, there are two parameters that may influence
the critical path: the security level (i.e., the size of the keys) and the number
of supported modules NSM. The reason these parameters may influence the
critical path is the same for both. The keys are stored in the MAL circuits and
routed to the crypto unit through a multiplexer. Both the key size and NSM
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Figure 5.1: The maximum frequency for which the core can be synthesized in
function of the number of modules (NSM) for a number of security levels. The
maximum frequency decreases with NSM due to the large multiplexer needed
to get the module key out of the MAL circuits. This also explains why the
maximum frequency decreases much faster when the key size is larger. Note
that the unmodified openMSP430 core can be synthesized at 51 MHz.

will increase the size of this multiplexer, and hence increase the length of the
critical path.

Figure 5.1 shows the maximum obtainable frequency in function of NSM for
a number of different security levels. Note that although our implementation
allows for security levels up to 256 bits, 128 bits are ample for our target
platforms, and we therefore do not evaluate higher security levels.
The influence of the security level and NSM should be clear from the figure.

However, it should also be clear that the maximum frequency for any security
level is not influenced much by values of NSM up to 8. The reason for the
maximum frequency for low numbers of NSM being smaller than the unmodified
core (51 MHz) is because of the MAL circuits (Figure 4.1), which add a number
of comparators to the path of the memory address bus.
It should be noted that it is the global trend in Figure 5.1 which should

interest the reader the most, not each individual value. Indeed, as pointed out
by Drimer [26, Chapter 5], speed measurements reported by FPGA tools exhibit
a very large variability. We acknowledge this difficulty and follow the advice
in [26, Section 5.2.1] by fully disclosing the source code of our implementation.
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Figure 5.2: Execution time of the encrypt instruction for a number of security
levels. The cost of the other cryptographic instructions is similar with the
exception of enable for confidential loading, which is twice as big. Notice how
the performance for the 80- and 96 bit security levels is almost equal because
they use the same spongent variant.

5.1.2 Microbenchmarks
To quantify the impact on performance of our extensions, we first performed
microbenchmarks to measure the cost of each new instruction. To this end, we
added a custom timestamp counter peripheral to the CPU core that allowed us
to conveniently measure the amount of cycles passed since power up. It should
also be noted that all measurements are completely noiseless and thus accurate.
Consequently, it is not necessary to calculate an average value over multiple
measurements.
The get-id and unprotect instructions are very fast: they both take one

clock cycle. The other instructions perform cryptographic operations on their
input, and hence their runtime cost depends linearly on the size of the input
they handle. Remember that all cryptographic operations are implemented
using the same underlying primitive (Section 4.1.2), which means their runtime
cost is almost exactly the same. The only exception is the enable instruction
when confidential loading is used. In this case the underlying primitive is called
twice: once for decryption and once for key derivation. Its cost is therefore
twice as big as the other instructions. Figure 5.2 shows the measurements for
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Figure 5.3: Although the absolute overhead Sancus imposes on our example
setup (Figure 3.2) is quite large, the relative overhead quickly drops when the
modules perform some useful work. Notice how the subsequent runs are much
faster than the first due to the optimization discussed in Section 3.7.

the encrypt instruction for a number of different security levels.
Note that the performance of the 80- and 96 bit implementations is almost

the same. The reason for this is that the performance of our crypto unit is
determined by the underlying spongent variant. Recall that spongent is
defined in different variants and we select the correct variant for the required
security level (Section 4.1.2). The 80- and 96 bit security levels require the
same spongent variant.

5.1.3 Macrobenchmark
To give an indication of the impact on performance in real-world scenarios,
we performed the following macro benchmark. We synthesized our processor
with 128-bit keys and configured it as in the example shown in Figure 3.2. We
measured the time it takes from the moment a request arrives at the node until
the response is ready to be sent back. More specifically, the following operations
are timed: (1) the request is passed, together with the nonce, to SMi; (2) SMi

requests SMS for sensor data; (3) SMi performs some transformation on the
received data; and (4) SMi encrypts its output together with the nonce. The
overhead introduced by Sancus is due to a call to attest in step (2) and a call
to encrypt in step (4) as well as the entry and exit code introduced by the
compiler. Since this overhead is fixed, the amount of computation performed in
step (3) will influence the relative overhead of Sancus. Note that the size of the
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text section of MS is 230 bytes, and that nonces and output data encrypted by
Mi both have a size of 16 bits.

We measured the fixed overhead to be 26, 834 cycles for the first time data is
requested from the module. Since the call to attest in step (2) is not needed
after the initial verification (Section 3.7), we also measured the overhead of
any subsequent requests, which is 3, 481 cycles. Given these values, the relative
overhead can be calculated in function of the number of cycles used during the
computation in step (3). The result is shown in Figure 5.3.

5.2 Area
We measured the area of our design in terms of registers and LUTs using the
Map Report generated by the Xilinx tools. The unmodified openMSP430 core
uses 700 registers and 2, 032 LUTs. The area of Sancus in function of the
number of modules NSM for a number of security levels is shown in Figure 5.4.

We also evaluated the ASIC area of our design using Synopsys Design Compiler
v2013.12 with the UMC 130nm and NanGate 15nm standard-cell libraries. The
default ASIC synthesis settings for the openMSP430 were used, except for
disabling clock gating and DFT insertion. The unmodified openMSP430 core
measures 11kGE and 15kGE, respectively, using these libraries. The results are
shown in Figure 5.5.
If computational overhead is of lesser concern, the area can be reduced by

computing the module key on the fly instead of storing it in registers. Exploring
other improvements is left as future work.

5.3 Security
We provide an informal security argument for each of the security properties
Sancus aims for (Section 2.3). First, software module isolation is enforced by the
memory access control logic in the processor. Both the access control model as
well as its implementation are sufficiently simple to have a high assurance in the
correctness of the implementation. Moreover, Agten et al. [2] and Patrignani
et al. [74] have shown that higher-level isolation properties (similar to isolation
between Java components) can be achieved by compiling to a processor with
PCBAC. Sancus does not protect against vulnerabilities in the implementation
of a module. If a module contains buffer overflows or other memory safety related
vulnerabilities, attackers can exploit them using well-known techniques [30] to
get unintended access to data or functionality in the module. Dealing with such
vulnerabilities is an orthogonal problem, and a wide range of countermeasures
for addressing them has been developed [90].
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Figure 5.4: The total number of registers and LUTs in function of NSM when
synthesizing the openMSP430 core with Sancus extensions for different security
levels.
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15nm standard-cell libraries. Synthesis was done for a target clock frequency of
25MHz.
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The security of remote attestation and secure communication follows from the
following key observation: the computation of MACs with the module key is
only possible by a module with the correct identity running on top of a processor
configured with the correct node key (and, of course, by the software provider
of the module). As a consequence, if an attacker succeeds in completing a
successful attestation or communication with the software provider, he must
have done it with the help of the actual module. In other words, within our
attacker model, only API-level attacks against the module are possible, and it
is indeed possible to develop modules that are vulnerable to such attacks, for
instance if a module offers an entry point to compute MACs with its module
key on arbitrary input data. But if the module developer avoids such API-level
attacks, the security of Sancus against attackers conforming to our attacker
model follows.
If a module has access to the correct identity of another module it wants

to call, the security of secure linking follows from the definition of the attest
instruction (Section 3.7). Indeed, this instruction will only succeed if a module
with the given identity is enabled at the given location. This means that an
attacker can only force the instruction to succeed by either (1) loading the correct
module; or (2) constructing a different module with the same identity. The
latter amounts to finding a hash collision, which our attacker model precludes.

The identity used for secure linking must not be stored in unprotected memory
where an attacker can easily manipulate it. There are two options to provide
the identity securely to a module. First, it can be stored in a module’s text
section. Although, if confidential loading is not used for this module, an attacker
can manipulate the text section before protection is enabled, this manipulation
will be detected when its provider performs remote attestation. Second, the
identity can be sent using secure communication after deployment and stored
in the module’s data section. This is the technique that our implementation
uses (Section 4.3).
The security of confidential loading follows from two observations. First,

before the enable instruction is called, the module’s text section is encrypted
using the vendor key, which the attacker does not have access to. Second, after
the instruction is finished, Sancus’ access rules (Table 3.2) will deny any access
to the text section from outside the module. Therefore, only API-level attacks
would enable an attacker to read (parts of) the text section of modules that use
confidential loading.
Finally, hardware breach confinement follows from the fact that we use

independent master keys on all nodes (Section 3.3).





Chapter 6

Related Work

Ensuring strong isolation of code and data is a challenging problem. Many
solutions have been proposed, ranging from hardware-only to software-only
mechanisms, both for high-end and low-end devices.

6.1 Isolation in High-End Devices
The Multics [20] operating system marked the start of the use of protection rings
to isolate less trusted software. Despite decades of research, high-end devices
equipped with this feature are still being attacked successfully. More recently,
research has switched to focus on the isolation of software modules with a
minimal TCB by relying on recently added hardware support. McCune et al. [66]
propose Flicker, a system that relies on a Trusted Platform Module (TPM)
chip and trusted computing functionality of modern CPUs, to provide strong
isolation of modules with a TCB of only 250 Lines Of Code (LOC). Subsequent
research [65, 9, 78, 83] focuses on various techniques to reduce the number of
TPM accesses and significantly increase performance, for example by taking
advantage of hardware support for virtual machines.

ARM TrustZone [3] implements hardware based access control to use a physi-
cal core as two virtual processors so as to execute security critical applications
in their own “world”, in isolation from the normal world. The secure world runs
its own OS, libraries and applications, which mutually trust each other.

More recently, Intel started shipping x86 processors equipped with Software
Guard Extensions (SGX) [67] that allows the execution of security-critical code
via hardware-enforced individually isolated enclaves in a shared address space,
managed by an untrusted OS. SGX also provides functionality for local and
remote attestation and for data sealing [5].

41
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The Programmable Unit for Metadata Processing (PUMP) machine supports
per-word metadata tags of arbitrary size together with software defined rules
operating on these tags [24]. This allows complex policies, such as taint tracking
or control-flow integrity, to be defined by software. Relevant to us is that it
has also been shown to be able to implement compartmentalization of software
modules [4].

The idea of deriving module specific keys from a master key using (a digest of)
the module’s code is also used by the On-board Credentials project [52]. They
use existing hardware features to enforce the isolated execution of credential
programs and securely store secret keys. Only one credential program can
effectively be loaded at any single moment, but the concept of families is
introduced to be able to share secrets between different programs. Although
secure communication is implemented using symmetric cryptography, they rely
on public key cryptography to set it up.

6.2 Isolation in Low-End Devices
While recent research results on commodity computing platforms are promising,
the hardware components they rely on require energy levels that exceed what is
available to many embedded devices such as pacemakers [45] and sensor nodes.
A lack of strong security measures for such devices limits how they can be
applied and vendors may be required to develop closed systems or leave their
system vulnerable to attack.
Sensor operating systems and applications, for example, were initially com-

piled into a monolithic and static image without safety or security considerations,
as in early versions of TinyOS [58]. The reality that sensor deployments are
long-lived, and that the full set of modules and their detailed functionality is
often unknown at development time, resulted in dynamic modular operating
systems such as SOS [46] or Contiki [28]. As stated in the introduction of this
thesis, the availability of networked modular update capability creates new
threats, particularly if the software modules originate from different stakehold-
ers and can no longer be fully trusted. Many ideas have been put forward
to address the safety concerns of these shared environments, and solutions to
provide memory protection, isolation, and (fair) multithreading have appeared.
t-kernel [44] rewrites code on the sensor at load time. Coarse-grained memory
protection (basically MMU emulation) is available for the SOS operating system
by sandboxing in the Harbor system [53] through a combination of backend
compile time rewriting and runtime checking on the sensor. Safe TinyOS [19]
equally uses a combination of backend compile time analysis and minimal run-
time error handlers to provide type and memory safety. Java’s language features
and the Isolate mechanism are used on the Sun SPOT embedded platform using
the Squawk VM [80]. SenShare [56] provides a virtual machine for TinyOS
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applications. While these proposed solutions do not require any hardware
modifications, they all incur a software-induced overhead. Moreover, third-party
software providers must rely on the infrastructure provider to correctly rewrite
modules running on the same device.

To increase security of embedded devices, Strackx, Piessens, and Preneel [84]
introduced the idea of a program counter-based access control model, but
without providing any implementation. Agten et al. [2] prove that isolation of
code and data within such a model only relies on the vendor of the module
and cannot be influenced by other modules on the same system. Eldefrawy
et al. [29] implemented hardware support for allowing attestation that a module
executed correctly without any interference, based on a similar access control
model. While this is a significant step forward, it does not provide isolation, as
sensitive data cannot be kept secret from other modules between invocations.
Trustlite [51], on the other hand, features an Execution-Aware Memory Protec-
tion Unit (EA-MPU) that records program counter-based memory access rules
in a configurable hardware table. Compared to Sancus, this allows for more
complex policies, such as multiple private data sections per module, or protected
data sharing between two or more modules. Trustlite, however, relies on a
trusted Secure Loader software entity to initialise the EA-MPU table at boot
time, and does not allow modules to be unloaded at runtime. More recently,
the TyTAN [15] architecture extends Trustlite with dynamic loading, and local
and remote attestation guarantees for isolated tasks from mutually distrusting
stakeholders. Their approach to attestation resembles Sancus’ in that they
derive keys from task identities and a hardware-level platform key. In contrast
to Sancus however, TyTAN relies on a trusted software runtime to measure
task identities, and to guard inter-module authenticated communication.

6.3 Capability-Based Addressing
One of the earliest memory protection techniques is segmentation, where mem-
ory is divided in segments with associated access rights. Instead of referring
to memory locations using linear addresses, a segment descriptor was used
together with an offset within the segment. When addressing a memory loca-
tion, the hardware would use the information from the segment descriptor to
decide whether the access is allowed. The first such descriptor architecture,
the Burroughs B5000 [59, Section 2.2] developed in 1961, supported different
descriptor types. Data descriptors, for example, were used to provide bounds
checking for array accesses and program descriptors ensured that functions
could only be executed from their beginning, not unlike Sancus’ entry points.
Today, segmentation is still supported on the x86 architecture although it is
hardly used. One notable exception is PaX [85], which uses the segmentation
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features of the x86 to implement non-executable pages on systems that do not
support the NX-bit.
From these descriptor architectures later evolved capability-based address-

ing [31], starting with Dennis and Van Horn’s Supervisor [22]. A capability
is a protected version of a segment descriptor; one that cannot be forged by
unprivileged software. This usually means that only a restricted set of opera-
tions are allowed on capabilities; e.g., reducing the referenced memory segment
or the access rights is allowed. If all addressing is done through capabilities,
one can restrict what memory a module can access by providing it with just
the capabilities it needs. Thus, capabilities provide a way to sandbox software.
Note that this is really the opposite of Sancus’ isolation goals where we want to
restrict what outside code can do to a module; i.e., we want to provide a reverse
sandbox. This will be discussed in some more detail in Sections 9.3.2 and 9.4.3.
Most capability systems provide a way to implement protected subsystems

that have access to a private set of capabilities. Although the exact mechanisms
differ from system to system, protected subsystems are usually implemented
through what is called an enter capability in the Plessey System 250 [59,
Section 4.7]. Here, a protected subsystem is represented by a memory segment
containing its code and data capabilities. An enter capability, then, refers to
such a segment without giving explicit access to it. A holder of such a capability
can only use it by calling it, giving the offset of one of the contained code
capabilities as argument. This would cause the processor to transfer control to
the beginning of the specified code segment and transform the enter capability
into a read capability, giving the protected subsystem access to all capabilities
stored in the segment. Note how similar this is to entry points in Sancus,
although enter capabilities alone are not quite enough to implement reverse
sandboxing (Section 9.4.3).
More recently, CHERI [89] introduced capabilities to modern architectures

by implementing them on a 64-bit MIPS processor. Their work was based on
the implementation of guarded pointers, another term for capabilities, on the
M-Machine [16]. However, where the M-Machine only allowed power-of-two-
sized segments to compress the size of capabilities, CHERI allows arbitrary
sized segments to support true fine-grained memory protection. Another key
difference is that the M-Machine is a pure capability machine while CHERI
adds capability support on top of the existing memory protection features of
the processor, allowing for incremental adoption of the capability model.

6.4 Secure Compilation
An interesting application of PMAs, and thus of Sancus, as that of secure, or
fully abstract, compilation [1]. Roughly speaking, compilation of a program is
fully abstract if an attacker interacting with the compiled program is not able
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to do anything he would not be able to with the program as specified in the
source language.1 A simple example of a failure of full abstraction is that of
the private access modifier in C++ programs: at the source level, one cannot
access class members marked as such but, to the best of our knowledge, this
restriction is lost when compiled to machine language by any current compiler.
The concept of secure compilation is interesting because it allows reasoning
about the security of programs at the source level without having to worry
about low-level details.

Agten et al. [2] show how to securely compile a simple object-oriented language
to an architecture supporting PCBAC and provide a prototype implementation
based on Fides [83]. These results were later extended to more realistic source
languages by Patrignani et al. [74]. On a different architecture, Juglaret et al. [48]
propose a fully abstract compilation scheme for the PUMP machine. Although
the Sancus compiler (Section 4.2) is not fully abstract, its design is heavily
based on these results. For example, the ideas of having a per-module call stack
and clearing registers when exiting a module are taken from the suggested fully
abstract compilation schemes.

1Although this definition is inaccurate, it will do for the present discussion.
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Chapter 7

Authentic Execution of
Distributed Event-Driven
Applications

This chapter studies the problem of securely executing distributed applications
on shared infrastructure with a small TCB. We want to provide the owner
of an application running on the shared infrastructure with strong assurance
that their application is executing securely. We focus on (1) authenticity and
integrity properties of (2) event-driven distributed applications, because for this
security property and class of applications, it is relatively easy to specify the
exact security guarantees offered by our approach. But we believe our approach
to be valuable for any kind of distributed application (event-driven or not). In
particular, our prototype supports arbitrary C code for building distributed
applications.
Roughly speaking, our notion of authentic execution is the following: if the

application produces a physical output event (for instance, turns on an LED),
then there must have happened a sequence of physical input events such that
that sequence, when processed by the application (as specified in the high-level
source code), produces that output event. Let us elaborate a bit what this
means.
First, it is clear that authentic execution gives no availability guarantees: if

the execution never produces any output, then it is vacuously secure. Extending
our approach with availability guarantees is a challenging direction for future
work. Second, authentic execution also specifies no confidentiality guarantees:
the property does not prevent attackers from observing all events in the system.
Our approach also offers significant confidentiality properties, but this is not
the focus of this chapter. Third, authentic execution does provide strong
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integrity guarantees: it rules out both spoofed events as well as tampering with
the execution of the program. Informally, if the executing program produces
an output event, it could also have produced that same event if no attacker
was present. Any physical output event can be explained by means of the
untampered code of the application, and the actual physical input events that
have happened.
The main contribution of this chapter is the design, implementation and

evaluation of an approach for the authentic execution of event-driven distributed
applications with a small TCB and under a strong attacker model. More
specifically, the contributions are:

• The design of an approach for authentic execution of event-driven programs
under the assumption that the execution infrastructure offers specific
security primitives (essentially standard protected modules plus support
for secure I/O).

• A novel technique for implementing such support for secure I/O by means
of protected driver modules on small microprocessors like the MSP430.

• A prototype implementation of the approach on Sancus where all security
primitives are implemented by hardware only, and hence a distributed
application can execute authentically with a hardware-only TCB.

• An evaluation of the performance and security aspects of that implemen-
tation.

The rest of this chapter is structured as follows. First, we introduce the kind
of applications we support with our approach together with a running example
and our security objectives (Section 7.1). Then we describe the design of our
approach together with the assumptions made of the underlying architecture
(Section 7.2). This section is meant as a blueprint to be able to implement our
design on a PMA. We then show how we implemented this design on Sancus
(Section 7.3) followed by an evaluation of this implementation (Section 7.4). We
conclude by discussing some possible directions for future work (Section 7.5).

7.1 Running Example, Infrastructure & Objectives
Figure 7.1 illustrates a simple example of the kind of system we consider. The
figure shows a sensor network on a parking lot with two parking spots. This
infrastructure can be reused for a variety of applications which can be provided
by different stakeholders. Applications include parking guidance, parking lot
utilization analysis, or detection of cars that violate parking rules. We show two
of these applications: one (AVio) that detects and displays parking violations,
and another (AAvl) that displays the number of available parking spots. Their
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Figure 7.1: A simple example system with two applications, AAvl (green) and
AVio (red). Gray parts (i.e., the hardware) are trusted by all applications. The
OS (blue) as well as the interconnecting network are completely untrusted. As
an example, the AVio deployer creates the three red software modules with
a trusted compiler (source code in Figure 7.2a), inspects the correctness of
the shared parking sensor-, clock- and display drivers (yellow) and sets-up
connections between the modules. Using our techniques, the deployer can be
assured of authentic execution of the AVio application.

source code is shown in Figure 7.2. We now describe the different aspects more
precisely, using Figure 7.1 as a running example.

7.1.1 The Shared Infrastructure
The infrastructure is a collection of nodes (Ni), where each node consists of a
processor, memory, and a number of I/O devices (Di). The infrastructure is
shared among a number of mutually distrusting stakeholders that deploy and
execute distributed applications (Ai). For simplicity, we assume processors are
simple microprocessors such as the MSP430 used in our prototype.

An I/O device interfaces the processor with the physical world and supports
(1) sensing some physical quantity (for instance the state of a switch), (2) influ-
encing some physical quantity (such as an LED), and (3) notifying the processor
of some state change (e.g., a key being pressed) by issuing an interrupt.

In our running example, there are 5 nodes. Two of these (NP1 and NP2) are
each attached to two input devices (a clock DTi and a car presence detector
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module VioP1
on Button ( pressed ):

if pressed :
taken = 1

else:
taken = 0
count = 0
Violation (0)

on Tick ():
if taken:

count += 1
if count > MAX:

Violation (1)

module VioP2
# Similar to VioP1

module VioD
on Violation1 (v):

v1 = v
if v1: Display (1)
if v2: Display (2)

on Violation2 (v):
# Similar to
# Violation1

(a) AVio

module AvlP1
on Button ( pressed ):

CarMoved ( pressed )

module AvlP2
# Similar to AvlP1

module Agg
on CarMoved1 ( entered ):

p1 = entered
num_avl = NUM_PARKINGS
if (p1):

num_avl -= 1
if (p2):

num_avl -= 1
AvlChanged ( num_avl )

on CarMoved2 ( entered ):
# Similar to CarMoved1

module AvlD
on AvlChanged ( num_avl ):

Display ( num_avl )

(b) AAvl

Figure 7.2: Source code of the example applications (Figure 7.1) in a Python-like
syntax. Modules are declared using the module keyword and last until the
next module or the end of the file. The on keyword starts an event handler
which can be connected, using the deployment descriptor, to an output event of
another module or to a physical I/O channel (Section 7.1.2). Output channels
are implicitly declared when invoked through a function call-like syntax.
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DPi) and are installed on parking spots. Two other nodes (ND1 and ND2) are
connected to display devices (DDi) and show the output of the applications. One
node (NAgg) is not connected to any I/O device and can be used by applications
to perform general purpose computation (e.g., aggregating data from multiple
sensor nodes).

7.1.2 Modules & Applications
Since we use an event-driven application model, modules (Mi) contain input-
and output channels. Upon reception of an event on an input channel, the
corresponding event handler is executed atomically and this may result in new
events on the module’s output channels.
An application, then, is a collection of modules together with a deployment

descriptor. This descriptor specifies on which nodes the modules should be
installed as well as how all the module’s channels should be connected. Channels
can be connected in two ways. First, one module’s output channel can be
connected to another’s input channel. Such a connection behaves as a buffered
queue of events. Second, the infrastructure can provide a number of physical I/O
channels which can be connected to a module’s I/O channels. The infrastructure
must ensure that the events on such channels correspond to physical events. For
example, an event received on a physical input could correspond to a button
press or an event produced on a physical output could turn on an LED. A key
contribution of this chapter is a way to securely connect modules to physical
I/O channels (Section 7.3.1).
To elaborate on one of the example applications (Figure 7.1), AVio consists

of three modules: two (MVioP1 and MVioP2) are deployed on parking spots and
detect single violations and one (MVioD) aggregates and displays all violations.
The two parking spot modules have two inputs that are connected to input
devices provided by the infrastructure: one that produces events for cars entering
and exiting the parking spot (DPi) and another that sends periodical timer
events (DTi). As the source code (Figure 7.2a) shows, these modules wait for a
car enter event, then for a maximum number of timer events and then produce
an output event indicating a violation. These output events are connected to
the inputs of MVioD which in turn produces output events for all violations and
sends them to the output display device DD1.

7.1.3 Security Objective
We are now in position to state the security objective of this chapter. We want to
provide security guarantees to the deployer of an application. The deployer uses
his own (trusted) computing infrastructure to compile the application A and
to deploy the compiled modules to the nodes in the shared infrastructure, and
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to configure connections between modules, and between modules and physical
input and output channels.
At runtime, an actual trace of physical I/O events will happen, and the

deployer can observe an actual sequence of physical output events. We say that
this sequence of outputs is authentic for a deployed application A if it is allowed
by A’s modules and deployment descriptor in response to the actual trace of
input events. In other words: the source code of A explains the physical outputs
on the basis of actual physical inputs that have happened.
For instance for AVio, suppose we have physical events where a car arrives

on parking 1, MAX clock ticks pass and then the display shows a 1. The trace of
outputs is an authentic trace for AVio, because its source code allows for this
display event given the physical input events. A trace for the same sequence of
physical events, but now ending with the display showing a 2, is not authentic.
Our objective is to design a deployment algorithm such that the deployer

can efficiently check authenticity of traces. If the deployer observes a trace of
physical output events, and the authenticity check of the deployer succeeds,
then our approach guarantees that this trace of output events is authentic.
Note that this security notion rules out a wide range of attacks, including

attacks where event transmissions on the network are spoofed or reordered,
and attacks where malicious software that tampers with the execution of
modules is injected. Other relevant attacks are not covered by this security
objective. As discussed earlier, there are no availability guarantees – e.g.,
the attacker can suppress all network communication. There are also no
confidentiality guarantees: the attacker is not prevented from observing events
flowing in the system. However, although this is not the focus of our design,
our implementation does come with substantial protection of the confidentiality
of the application’s state as well as the information in events (Section 7.5.1).

7.2 Design of Authentic Execution
In this section we explain how to accomplish the goals described in Section 7.1.3.
We start by giving an overview of what we expect of the underlying architecture
in terms of security properties and features. Then we show how these features
can be used to meet our security goals.

7.2.1 Underlying Architecture
Given the shared nature of the infrastructure assumed in our system model
(Section 7.1.1), we require the ability to isolate source modules from other code
running on a node. Since an important non-functional goal is to minimize the
TCB, relying on a classical omnipotent kernel to provide isolation is ruled out.
Therefore, we assume the underlying architecture is a PMA [82].



DESIGN OF AUTHENTIC EXECUTION 55

Although the details may differ between PMAs, isolation of a software module
is generally understood to include the following two properties. First, a module
should be able to specify memory locations containing data that is only accessible
by the module’s own code (data isolation). Second, the code of a module should
not be writable and a module should be able to specify a number of entry points
through which its code must be executed (code isolation). For simplicity we will
further assume that both a module’s code and data are located in contiguous
memory areas called, respectively, its code section and its data section.

We also expect the availability of a compiler that targets PMs on the under-
lying architecture. The input to this compiler is as follows: (1) a list of entry
point functions; (2) a list of non-entry functions; (3) a list of variables that
should be allocated in the data section; and (4) a list of constants that should
be allocated in the code section. The output of the compiler should be a PM
suitable for isolation on the underlying architecture.

Besides isolation, we expect the PMA to provide a way to attest the correct
isolation of a PM. Attestation provides proof that a PM with a certain identity
has been isolated on the node, where the identity of a PM should give the
deployer assurance that this PM will behave as the corresponding source module.

We also expect that, after enabling isolation, the PMA is capable of establish-
ing a confidential, integrity protected and authenticated communication channel
between a PM and its deployer. Although the details of how this works may
differ from one PMA to another, for simplicity we assume the PMA establishes
a shared secret between a PM and its deployer and provides an authenticated
encryption primitive. We will refer to this shared secret as the module key.
Note that the authentication property of the communication channel refers to a
PM’s identity and hence to attestation. Indeed, the PMA should ensure that if
a deployer receives a message created with a module key, it can only have been
created by the corresponding, correctly isolated, PM.

7.2.2 Mapping source modules to PMs
To map a source module to a PM, we use the following procedure. First, each
of the source module’s inputs and outputs is assigned a unique connection
identifier. The format of this identifier is unimportant as long as it uniquely
specifies a particular input or output.
A table (KeyTable) is added to the PM’s variables that maps connection

identifiers to symmetric keys. Using this table, every connection has one key
associated with it. These keys will be initialized to all zeros by the underlying
architecture which is interpreted as an unconnected input or output. For
establishing a connection, an entry point is generated (SetKey). This entry
point takes a connection identifier and a key – encrypted using the module
key – as input and updates the corresponding mapping in KeyTable if it is not
already set (Figure 7.3).
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def SetKey ( payload ):
try:

conn_id , key = Decrypt ( payload )
if KeyTable [ conn_id ] == 0:

KeyTable [ conn_id ] = key
except : pass

Figure 7.3: Pseudocode of the SetKey entry point using a Python-like syntax.
Note that Decrypt uses the module key to decrypt the payload and throws an
exception if the operation failed (i.e., the payload’s MAC is incorrect).

Since every connection needs to be protected from reordering and replay
attacks, the compiler adds another table (NonceTable) to the PM’s variables.
This table maps connection identifiers to the current nonce for each connection.
How nonces are used is explained below.
All the module’s event handlers are marked as non-entry functions. A

callback table (CbTable) is added to the PM’s constants that maps connection
identifiers of inputs to the corresponding event handlers. This table is used by
the entry point HandleInput, which is called whenever an event is delivered
to the PM (Section 7.2.3). HandleInput takes two arguments: a plain-text
connection identifier and an encrypted payload. If KeyTable has a key for the
given identifier it is used to decrypt the payload (using the expected nonce
as associated data), which is then passed to the callback function stored in
CbTable. If any of these operations fails, the input event is ignored (Figure 7.4).
This means that, from a programmer’s point of view, an input callback is only
called with an event that was generated by an entity that has access to the
correct connection key.
Each call to an output is replaced by a call to the new non-entry wrapper

function HandleOutput. This function takes a connection identifier and a
payload, encrypts the payload together with the current connection nonce
(which is incremented afterwards) using the corresponding connection key
and publishes it to the event manager (via HandleLocalEvent, Section 7.2.3),
passing it the connection identifier. If the output is currently unconnected, the
output event will be dropped (Figure 7.5).

To summarize, the following PM definition will be given as input to the PMA
compiler (Section 7.2.1): (1) SetKey and HandleInput as entry points; (2) each
input event handler and HandleOutput as non-entry functions; (3) KeyTable,
NonceTable, and module globals as variables; and (4) CbTable and module
constants as constants. Figure 7.6 shows the compiled memory layout of one of
the example modules.



DESIGN OF AUTHENTIC EXECUTION 57

def HandleInput (conn_id , payload ):
try:

key = KeyTable [ conn_id ]
if key != 0:

cb = CbTable [ conn_id ]
nonce = NonceTable [ conn_id ]
cb( Decrypt (nonce , payload , key ))
NonceTable [ conn_id ] += 1

except : pass

Figure 7.4: Pseudocode of the HandleInput entry point. Note that erroneous
accesses to the tables, as well as errors during Decrypt, cause exceptions. This
means that such events, as well as those for which no input key has been set,
are ignored. Notice the use of Decrypt here: it takes a key and the expected
associated data as arguments.

def HandleOutput (conn_id , data ):
key = KeyTable [ conn_id ]
if key != 0:

nonce = NonceTable [ conn_id ]
NonceTable [ conn_id ] += 1
payload = Encrypt (nonce , data , key)
HandleLocalEvent (conn_id , payload )

Figure 7.5: Pseudocode of the generated output wrapper. Note that since the
compiler generates calls to this function and it cannot be called from outside
the module, the connection identifier is always valid and no error checking is
necessary.

7.2.3 Untrusted Software on the Nodes
To support the deployment of modules and the exchange of events between
modules, a number of untrusted software components need to be installed on
the nodes. This section given an overview of these components.

Module Loader

The module loader is an untrusted software component running on every node.
It provides services for external entities to interact with modules on its node. To
this end, it listens for two types of remote requests: LoadModule and CallEntry.
The former takes a compiled PM as input, loads it into the PMA and returns the
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· · ·
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HandleInput
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CarMoved1
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CbTable
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· · ·
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p1

p2
· · ·

(1) Entry points

(2) Non-entry
functions

(4) Constants

(3) Variables

Generated

Event handlers

Generated
Constants
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Globals

Figure 7.6: Memory layout of the compiled version ofMAgg of AAvl (Figure 7.2b).
The code- and data sections are shaded in yellow and green, respectively. The
numbers on the left labels correspond to the compiler inputs (Section 7.2.1)
while the right labels indicate whether parts are implicitly generated by the
compiler or correspond to source code.

module’s unique identifier together with all information necessary for attestation
and module key establishment. (What exactly this information is and how
the attestation and key establishment is performed is specific to the used
PMA.) CallEntry takes a PM’s identifier, the identifier of an entry point and
potentially some arguments and calls the entry point with the given arguments.

It should be stressed that the module loader is completely untrusted. Indeed,
a loaded module can be verified using remote attestation and an entry can be
called securely by using the secure communication channel provided by the
PMA.

Event Manager

The event manager is another untrusted software component running on every
node that is used to route events from outputs to inputs. It recognizes three types
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of requests: AddConnection, HandleLocalEvent and HandleRemoteEvent. A
deployer can invoke AddConnection remotely to connect the output of a module
to the input of another. How exactly inputs and outputs are identified is
implementation specific but it will in some form involve specifying (1) a node
address (e.g., an IP address); (2) a PM identifier; and (3) a connection identifier.
As will become clear later, AddConnection only needs to be called on the event
manager of the node where the output source module is deployed.

HandleLocalEvent is used by modules that want to publish an event; i.e.,
inside the output wrappers (Section 7.2.2). The arguments are the module-
and connection identifiers and the event payload. Based on the identifiers
the event manager looks up the destination event manager and invokes its
HandleRemoteEvent API, providing the identifiers of the input to which the
request should be routed. For a HandleRemoteEvent request, the event manager
will check if the destination module exists and, if so, invoke its HandleInput
entry point, passing the connection identifier and payload as arguments.

7.2.4 Physical Input and Output Channels
We assume that the infrastructure offers physical input and output channels
using protected driver modules that translate application events into physical
events and vice versa. For input channels, these modules should generate events
that correspond to physical events and provide a way for application modules
to authenticate the generated events. For output channels, a driver module
(MD) should have exclusive access to its device (D) and allow an application
module (MA) to take exclusive access over the driver. That is, the driver will
only accept events – and hence translate them to physical events – from the
application module currently connected to it. The infrastructure should also
provide a way for the deployer of MA to attest that it has exclusive access to
MD and that MD also has exclusive access to D. Moreover, the deployer should
be able to attest MD itself to ensure that it indeed only accepts events from
the module currently having exclusive access and that it does not release this
exclusive access without being asked to do so by the module itself.

7.2.5 Deployment
Deployment is the act of installing all application modules on their respective
nodes and setting up the connections between outputs and inputs. All compu-
tations described in this section are run on the deployer’s infrastructure and
are therefore completely trusted. Of course, any requests to the nodes are
performed over an untrusted network.

In phase 1, the deployer starts by compiling each source module (Section 7.2.2)
into a loadable image. Then, it uses the deployment descriptor to find the
node on which the module should be deployed and sends its module loader a
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LoadModule request with the image as argument. It then performs the PMA-
specific method of attestation and setting up the module key. At the end of
this step, the deployer has a secure communication channel with each of its
deployed source modules.

To complete phase 1 of the deployment, the deployer sets up the connections
between modules (not yet the connections to physical I/O channels). To this
end, it will generate a unique connection key and send it to both endpoints of
the connection. Sending the key to a PM is done by first encrypting it together
with the connection identifier (Section 7.2.2) using the module key. This payload
is then passed to the SetKey entry point using the module loader’s CallEntry
API.

Next (phase 2) the deployer sets up the connections to the physical I/O
channels. The deployer first sets up the connection to physical outputs (phase
2a). This is the point in time from which we know that outputs will be authentic
(Section 7.2.6). Finally, all connections to physical inputs are set up (phase 2b).

7.2.6 Security Argument
We now present a security argument for the construction proposed in this section.
Recall that, informally, our goal is to ensure that all physical output events can
be explained by the application’s source code and the observed physical input
events (Section 7.1.3).
More precisely, we show the following: Consider the time frame starting at

the end of phase 2a of deployment of the application (Section 7.2.5), and ending
at a point where the deployer starts a new attestation of a specific protected
driver module for an output device DO. If this attestation succeeds, and if the
deployer has observed a specific sequence of physical output events on DO in the
considered time frame, then there have been contiguous sequences of physical
input events on the input devices connected to the application such that the
observed outputs follow from these inputs according to the application source
code semantics.

As an example, consider AVio (Figure 7.2a). If there appears a “1” on the
display output device after the application has been deployed, and if after
appearance of that “1” attestation confirms that the driver of the display is still
in the expected state, then there must have been physical input events of a car
arriving on parking spot 1 and MAX clock ticks.

We argue here that these output events can only be produced by the applica-
tion’s protected modules; the assumption of a correct compiler then leads to
the desired property.

Since (1) a physical output event can only be produced by the corresponding
device (DO); (2) output drivers have exclusive access to their device; and
(3) a protected module (MO) has exclusive access to the driver (Section 7.2.4);
only MO can initiate physical output events on DO. The deployer’s successful
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attestation of the output driver module after the outputs have been observed
ensures that this exclusive access was maintained over the entire considered
time frame.
The construction of PMs (Section 7.2.2) ensures that a module can only be

invoked through its two entry points. Of these two, only HandleInput can
result in output events (Figures 7.3 and 7.4). Since HandleInput authenticates
its input, output events are always the result of correct input events. Since our
deployment scheme only allows for two types of correct input events, physical
input events and outputs from other modules, our security property follows.

7.3 Implementation
We have created a fully functional prototype of our design based on Sancus.
We provide both the necessary compiler extensions to compile source modules
to Sancus PMs and the runtime components to deploy full applications on
Contiki [27] based networks. A novel contribution of this implementation are
driver PMs that facilitate secure I/O.

7.3.1 Secure I/O on Sancus
This section describes how protected drivers can be implemented using Sancus.
Recall that for output channels, we want an application module to have exclusive
access to a driver (Section 7.2.4). This, in turn, implies that the driver should
have exclusive access to the physical I/O device. Although for input channels
the requirements are less strict – we only need to authenticate a device – for
simplicity, we also use exclusive device access here.

Exclusive Access to Device Registers

Sancus, being based on the MSP430 architecture, uses Memory-Mapped I/O
(MMIO) to communicate with devices. Therefore, providing exclusive access
to device registers is supported out of the box by mapping the driver’s private
section over the device’s MMIO region. There is one difficulty, however, caused
by the private section of Sancus modules being contiguous and the MSP430
having a fixed MMIO region (i.e., the addresses used for MMIO cannot be
remapped). Thus, a Sancus module can use its private section either for MMIO
or for data but not for both. Therefore, a module using MMIO cannot use any
memory, including a stack, severely limiting the functionality this module can
implement.
The obvious solution is to add a second private section to Sancus modules

which can be used for MMIO. However, since this would mean that two new
registers should be added to the hardware representation of every Sancus module
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(Section 4.1.1), even to those that do not need to perform I/O, we have chosen
a different approach.
Driver modules can be split in two separate modules, one performing only

MMIO (mod-mmio) and one using the API provided by the former module to
implement the driver logic (mod-driver). The task of mod-mmio is straightfor-
ward: for each available MMIO location it implements entry points for reading
and/or writing this location and ignores calls to those entry points by modules
other than mod-driver. This task is simple enough to be implemented using
only registers for data storage, negating the need for an extra data section.

This technique lets us implement exclusive access to device registers on Sancus
without changing its underlying hardware representation of modules. However,
this incurs a non-negligible performance impact because mod-mmio has to attest
mod-driver on every call to one of its entry points. The optimization described
earlier (Section 3.7), doing the attestation once and only checking the module
identifier on subsequent calls, is not applicable because it requires memory for
storing the identifier. We address this by hard coding the expected identifier of
mod-driver in the code section of mod-mmio. During initialization, mod-driver
will check if it was assigned the expected identifier and abort otherwise. At this
point, mod-driver also attests mod-mmio to verify that module’s integrity and
to ensure that the device’s MMIO registers are mapped within mod-mmio’s data
section. If the attestation fails, mod-driver aborts as well. This procedure
ensures that, after an application module successfully attested mod-driver, it
either has exclusive access to its device, or it is aborted. How this is used by
applications is shown later (Section 7.3.1).

Secure Interrupts

On the MSP430, interrupt handlers are registered by writing their address to
a specific memory location called the interrupt vector. Therefore, handling
interrupts inside PMs is supported out of the box by registering the module’s
entry point as an interrupt handler. However, if the PM also wants to support
“normal” entry points, we would need a way to detect when the entry point is
called in response to an interrupt.

More generally, we need a way to identify which interrupt caused an interrupt
handler to be executed. Indeed, otherwise an attacker might be able to inject
events into an application by spoofing calls to an interrupt handler. To this
end, we extended the technique used for caller authentication (Section 3.7).
Whenever an interrupt occurs, the processor stores a special value specific to
that interrupt in the register that keeps track of the previously executing module.
This way, an interrupt handler can identify by which interrupt it was called
in the same way modules can identify which module called one of their entry
points. Note that the processor obviously ensures that these special values used
to identify interrupts are never assigned to any PM.
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Interfacing with Applications

There are a number of possible ways to interface protected driver modules with
application modules. This section discusses one possibility that uses Sancus’
secure linking feature (Section 3.7) for efficiency. The downside of this approach
is that the application module has to be deployed on the same node as the
driver. Note that for simplicity this section discusses drivers for single physical
events but the described techniques can easily be extended to drivers supporting
multiple physical events.
Input drivers provide an entry point to register a callback function to be

called whenever a physical event happens (RegisterInputCb). During the
deployment phase, application modules call this entry point – using Sancus’
secure linking feature – to register one of their entry points as a callback. The
driver’s identifier, which is the result of a successful secure linking step, is stored
in the module’s private data section. Whenever the module’s callback entry
point is called, this identifier is compared with the result of the get-caller-id
instruction to verify it was called by the expected driver.

Output drivers provide an entry point that allows modules to gain exclusive
access (AcquireOutput). When called, this entry point checks if some module
already has exclusive access and, if not, uses get-caller-id to store the
identifier of the requesting module. It also offers an entry point for posting
events which will check, again using get-caller-id, if the module posting
the event has exclusive access. During deployment, an application module
firsts attests the output driver, storing its module identifier, and then calls
AcquireOutput, aborting on failure. For attestation, the application modules
provides an entry point for the deployer that attests that the module has
exclusive access. This is implemented by comparing the driver module’s current
module identifier with that of the module located at the location where the
driver module was loaded at the time of deployment. Note that this implements
the attestation referred to in our informal security argument (Section 7.2.6).
The reason this attestation procedure is secure is as follows. When an

application module (MA) attests a driver module (MD) during deployment, MA
checks the correctness of MD’s code. This encompasses, among other things,
that the code only allows a single module to have access to the driver, and that it
does not release this access without the module having exclusive access asking for
it. If MA records the module identifier of MD after having attested it, MA can
later check if MD still exists by simply checking the identifier of the PM loaded
at the location where MD was loaded during deployment. This works because
Sancus ensures module identifiers are unique within a boot cycle (Section 3.7).
IfMA calls AcquireOutput onMD and it succeeds, and later it verifies thatMD
still exists, MA can be sure it still has exclusive access to MD. Note that this
procedure also ensures that MD has exclusive access to its underlying device.
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SM_OUTPUT ( Violation );
SM_DATA int taken , count;
SM_INPUT (Button , data , len) {

if (data [0]) {
taken = 1;

} else {
taken = count = 0;
char event = 0;
Violation (& event , sizeof (event ));

}
}
SM_INPUT (Tick , data , len) {

if (taken && ++ count > MAX) {
char event = 1;
Violation (& event , sizeof (event ));

}
}

Figure 7.7: Possible translation of module MVioP1 (Figures 7.1 and 7.2a) to C
using the annotations understood by our compiler.

Indeed, because of MD’s initialization sequence (Section 7.3.1), it would have
aborted otherwise, in which case AcquireOutput always fails.

7.3.2 Compiler and Untrusted Runtime
Our compiler implementation is a literal translation of the design outlined in
Section 7.2.2. All modifications to the Sancus compiler (Section 4.2) are exten-
sions meaning that all original Sancus features are still available to programmers
(e.g., calling external functions or other PMs).

On top of the existing annotations provided by the Sancus compiler for
specifying entry points (SM_ENTRY), internal functions (SM_FUNC) and private
data (SM_DATA), we added two new annotations: SM_INPUT and SM_OUTPUT for
specifying inputs and outputs respectively. Figure 7.7 shows an example module
written in C using our annotations.

SM_OUTPUT expects a name as argument (more specifically, a valid C identifier).
For every output, the compiler generates a function with the following signature:
void name(char* data, size_t len). This function can be called to produce
an output event. For input handlers, SM_INPUT generates a function with the
same signature as above. Inside this function, the programmer has access
to a buffer containing the (unwrapped) payload of the event that caused its
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Table 7.1: Size of the software for running the evaluation scenario. The shaded
components are part of the TCB.

Component LOC Binary size (B)
Contiki 38386 14880
Event manager 598 1730
Module loader 906 1959
Buttons Driver 338 1016
LCD Driver 137 640
Parking Sensor 43 1383
Aggregator 84 1970
Display 31 1333
Deployment Descriptor 57 n/a

executions. For both inputs and outputs, the name provided to the annotation
is the identifier used in the deployment descriptor.
The untrusted runtime consists of two components deployed on every node:

the module loader and the event manager (Section 7.2.3). Both components
are implemented as TCP servers running as regular Contiki [27] processes.
This means that our solution can be deployed alongside conventional Contiki
applications.

7.4 Evaluation
To assess the runtime overhead and the size of the software TCB we have
implemented and deployed AAvl (Figures 7.1 and 7.2b). Each computing node
is configured to provide 64 bits of security.1 On it, we installed a Contiki kernel,
our module loader and event manager, and PM drivers for the devices it needs:
a button driver for the car sensors and a serial LCD driver for the display. Then
the application modules are deployed.
Table 7.1 shows the sizes of the different software components deployed on

nodes. As can be seen, the majority of the code running on a node – about
40k LOC – is untrusted in our model. A total of 633 LOC comprising of drivers
and the actual application code is compiled to PMs and needs to be trusted,
together with 57 LOC of the deployment descriptor. That is, only 1.7% of the
deployed code base is part of the software TCB.

1Note that, although it is probably not recommended in production systems (Section 4.1.2),
64 bits of security is enough for the present evaluation. Using the information in Figure 5.2,
the results in Figure 7.8 can easily be extrapolated to higher security levels.
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When looking at the binary sizes of the these software components, the
difference between infrastructure components (18.1 KiB) versus TCB (6.2 KiB,
25.5%) appears less prominent, which is due to a large number of conditionally
compiled statements in Contiki as well as compiler generated entry points and
stub code in the PMs. Nevertheless, the reduction of the TCB when using our
approach is substantial, leading to a considerably reduced attack surface on
each node, and – importantly – the application owner does not need to trust
any infrastructural software if he reviews the driver modules that his application
uses.

We also performed a detailed performance analysis of this example application;
the results of which are shown in Figure 7.8. The sequence diagram corresponds
to the AAvl application but, for simplicity, shows a variant where there is a
direct connection between the sensor module and the display module (i.e., the
aggregator is ignored). Notice, however, that the given timing information can
easily be extrapolated to the complete version of the application and, indeed,
to any application.
For fast devices like the button sensors, the overhead of our secure I/O

approach can be quite large: the protected driver executes about 13 times as
slow as the unprotected one. However, not much effort was put in optimizing our
implementation and we expect that significant performance gains are possible
(e.g., the wrapper for encrypting output events uses malloc to create a buffer
which contributes about 30µs to the total overhead). For slower devices like
the serial LCD, it is clear that the relative overhead drops significantly: the
protected driver executes about 7% slower than the unprotected one.
Another type of overhead generated by our approach is the increased size

of events. The sequence diagram shows that an event containing 2 bytes of
useful data, (the size of an integer on the MSP430) will be 6 times as large. In
general, the representation of events has a constant overhead of 10 bytes: 2 for
the nonce and 8 for the MAC.

Whether these overheads are acceptable will depend heavily on the application.
Yet, they are reasonable in the light of the security guarantees and TCB
reduction provided by our approach.

7.5 Discussion
7.5.1 Integrity versus Confidentiality
We have focused our security objective on integrity and authenticity, and
an interesting question is to what extent we can also provide confidentiality
guarantees. It is clear that, thanks to the isolation properties of protected
modules and to the confidentiality properties of authenticated encryption, our
prototype already provides substantial protection of the confidentiality of both
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Figure 7.8: Sequence diagram showing the control flow and timings of part of
the AAvl application in Figure 7.1. The diagram shows how a physical input is
handled starting from the moment an IRQ is generated for it by an input device
up to the moment a physical output is shown on an output device. The timings
for the protected application are shown in black while those for an unprotected
version are shown in grey. For the lifelines, “Event Loop” corresponds to our
event manager; “Buttons” and “LCD” to the mod-driver part of the protected
drivers (Section 7.3.1); “MMIO” to the mod-mmio part (which is subsumed
in the driver part for the unprotected application); “App” to the application
modules; and “Sancus” to the Sancus core (which obviously does not exists for
the unprotected application). Notice how, similar to many OSs, the “Buttons”
ISR is kept as short as possible by splitting it in two levels. The first level will
notify the event loop to call the second level before returning from the ISR.
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the state of the application as well as the information contained in events.
However, providing a formal statement of the confidentiality guarantees offered
by our approach is non-trivial: some information leaks to the attacker, such as
for instance when (and how often) modules send events to each other. This
in turn can leak information about the internal state of modules or about
the content of events. The ultimate goal would be to make compilation and
deployment fully abstract [1] (indicating, roughly, that the compiled system
leaks no more information than can be understood from the source code), but
our current approach is clearly not fully abstract yet. Hence, we decided to
focus on guaranteeing strong integrity first, and understanding exactly what
confidentiality guarantees can be offered is future work.

7.5.2 Metaprogramming
The critical reader may have observed that programming many devices in our
reactive programming language (or in C) will quickly get tedious. For instance,
all the parking sensors will run similar code in the AVio application. In realistic
deployment scenarios where thousands of devices need to be programmed, one
clearly would not want to program all these devices manually. We believe
our approach would integrate well with approaches for metaprogramming such
applications (such as for instance the Flask approach [64]).

7.5.3 Hardware Attacks and Side-Channels
Although hardware attacks and side-channels are explicitly ruled out by our
attacker model (Section 2.2), it is interesting to discuss the impact an attacker
would have given access to such techniques.

An attacker that successfully circumvents the hardware protections on a node
would be able to manipulate and impersonate all modules running on that node.
That is, the attacker would be able to inject events into an application but only
for those connections that originate from the compromised node. The impact
on the application obviously depends on the kind of modules that run on the
node. If it is an output module, the application is completely compromised
since the attacker can now produce any output they want. If, on the other
hand, it is one among many sensor nodes that get aggregated on another node,
the impact may be minor.
Given the kind of small microprocessors that we target, many side-channels

such as cache timing attacks ([54, 47]) or the “page fault channel” ([91]) are sim-
ply irrelevant to our implementation. However, analysis of our implementation
in terms of side-channels is an interesting direction for future work.
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7.5.4 Towards a Formal Security Proof
The main focus of this chapter is the design, implementation and evaluation of
our system, and a formalization of our approach is out of scope. We believe
however that a formalization of both the security property and the security
argument are feasible. In this section, that can safely be skipped by readers not
interested in such a formalization, we outline a path towards a formal security
proof.
First, the source programming language needs to be formalized. A source

module m declares a name, zero or more identifiers for input channels, and zero
or more identifiers for output channels. For each declared input channel, an event
handler to process events arriving on that input channel is defined. A program
p then consists of zero or more modules, and zero or more connections, where
a connection id1 → id2 specifies that the outputs sent on output channel id1
should be delivered to input channel id2. Connections behave as buffered queues.
The input and output channels that are not connected to anything are the
primitive input and output channels of the application. These are the channels
that will be connected to I/O devices on deployment. The semantics of programs
is then relatively straightforward: execution is triggered by an event ?id(n) on
a primitive input channel. This leads to the execution of the corresponding
handler for that event. Execution of this handler generates output events, that
can be (1) internal (unobservable, silent) events like internal computation within
a module or transmissions over connections between modules, or (2) primitive
output events !id(n). On completion of the handler, a next event is handled –
either another primitive input event, or one of the transmitted events buffered in
one of the connections. Using standard techniques, the semantics of a program
can be defined to be a labeled transition system where the labels are events α
of the form ?id(n) and !id(n). This labeled transition system defines precisely
the traces of events α that a source program p has. We will use the notation
α ↓id to project a trace α to the subtrace that only contains events on channel
id; that is, events of the form !id(n) if id is an output channel and ?id(n) if it
is an input channel.

Second, the runtime infrastructure needs to be modelled, including support for
loading, isolating and attesting protected modules, and also including a model
of the cryptographic primitives used in our approach. It is less straightforward
to build a suitable model here. Important design choices include how to model
cryptography (symbolic or computational model) and at what level of detail to
model the machine code of protected modules. The semantics of the runtime
infrastructure will define exactly when physical input events ?pi(n) and physical
output events !po(n) occur.
Third, our approach needs to be formalized as (1) a compiler that compiles

source level modules to runtime protected modules, and (2) an implementation
of the deployment algorithm on the model of the runtime infrastructure. With
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an appropriate model of the runtime infrastructure in place, we expect this to
be straightforward.

Fourth, the security property we aim to achieve needs to be formalized. This
will look roughly as follows. Let p(ini, outj) be a program with primitive input
channels ini and primitive output channels outj . Deployment connects ini to
physical input channels pii and outj to physical output channels poj . We use the
notation de to relate runtime physical events to the corresponding source-level
event, i.e., d?pii(n)e = ?ini(n) and d!poj(n)e = !outj(n). Our security property
now becomes: For the time frame starting at the end of phase 2a of deployment,
and ending at a point where the deployer starts a new successful attestation of
the protected driver module for poj , let ρoutj be the sequence of output events
on poj . Then p has a trace α such that (1) α ↓outj

= dρoutj
e, and (2) for each

primitive input channel ini, there has been a contiguous sequence of inputs ρini

on pii with α ↓ini
= dρini

e.
Fifth and finally, the theorem needs to be proven formally. This is likely to

be a substantial effort, and hence is out of scope for this thesis, but remains an
interesting topic for future work.



Chapter 8

Trust Assessment Modules
for the Internet of Things

In order to benefit from Sancus’ security features, one must annotate the
module’s source code and compile it using our compiler (Section 4.2). Although
we have tried to make this process as non-intrusive as possible, it might not be
feasible to run every software system within a Sancus module. In some cases,
for example, the source code might simply not be available to recompile. In
other cases, the limit on the number of supported modules (NSM, Section 4.1.1)
may make it impossible to provide protection for all modules that need it.
This chapter explores a way to use Sancus to provide security guarantees

for software that, itself, is not able to be protected by Sancus. By deploying
so-called trust assessment modules alongside unaltered and unprotected code,
we are able to measure certain security relevant properties in a secure way.
Of course, given our strong attacker model (Section 2.2) and the fact that we
do not protect the measured code, the obtained security properties are of a
heuristic nature.

8.1 Trust Assessment Modules
Our approach to trust assessment is designed to integrate seamlessly with the
deployment of low-cost and low-power hardware in Wireless Sensor Networks
(WSNs) and in the IoT. In particular, we make use of a Sancus-enabled
CPU to run a protected trust assessment module and to facilitate secure and
authenticated communication with a remote operator of this module. This
operator can be, for example, a human operator with a particular interest
in inspecting a specific device, or a trust management system that keeps
track of the integrity and trustworthiness of a larger network of devices. Our

71
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trust assessment module executes as a PM, in isolation from a base of largely
unmodified and generally untrusted OS and application code. Yet, our approach
partially relies on services provided by this untrusted code, e.g., networking,
scheduling and memory management, in a way such that failure is detected
by the trust assessment module or by the remote operator. Trust assessment
modules are capable of inspecting and modifying the state of the untrusted OS
and applications autonomously or on request, giving the operator a trustworthy
means of assessing the integrity of the software on a node and to take actions
accordingly.
In this section we describe the process of deploying and communicating

with Sancus-protected trust assessment modules and discuss inspection targets
and trust metrics. We further outline weaknesses and attack scenarios to
our approach. While the examples in this section are given with respect to
the Contiki OS and its internals, we believe that our approach can be easily
adapted to support other OSs in the domain of the IoT, such as TinyOS [57] or
FreeRTOS [11].

8.1.1 Module Deployment
To deploy trust assessment modules, we implemented the standard Sancus
deployment strategy (Section 4.3) on Contiki. This gives the trust management
system a way to attest the correct deployment of trust assessment modules as
well as a secure communication channel. Figure 8.1 gives an overview of the
deployment process.
After this process, the trust assessment module is now ready to execute on

the computing node and may access all data and code on that node, with the
exception of data belonging to other PMs. Consequentially, the module may
inspect arbitrary address ranges and report its findings to the operator as an
indication of the trustworthiness of the node. In the following section we discuss
a number of these trust indicators in detail.

8.1.2 Trust Indicators
Our approach to trust assessment readily supports measuring a number of trust
indicators as listed and explained in detail below. Importantly, our system is
not limited to these indicators and we believe that additional or alternative
indicators may be more suitable for specific application scenarios. Research, in
particular in the context of software aging and software rejuvenation [21] names
many such indicators that may be securely measured using our approach.
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Figure 8.1: Deployment of a trust assessment module on a Sancus node. The
TCB, from the perspective of the operator, is shaded in orange.

Code Integrity

A particularly useful measurement is code integrity. Sancus-enabled hardware
features a cryptographic primitive to compute a MAC of a section of memory
using the module key (Sections 3.1 and 3.5). This MAC may then either
be reported to the remote operator or be compared with a MAC stored in
the secret section of the trust assessment module in autonomous operation.
Code integrity checks with a MAC are used by the trust assessment module to
establish whether a particular section of code has been modified, which is then
securely communicated to the operator. Unexpected code modifications may be
caused by an attack against, or a malfunction of, the unprotected software on
the device. Candidates for integrity checks are core functions of the OS such
as the scheduler, the memory management system or the network stack, or
application code. Integrity checking all code sections is technically feasible but
may impose unacceptable computational overheads.

OS Data Structures

Trust assessment modules are further capable of inspecting and reporting the
content of internal data structures of the OS. Interesting candidates for this
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are the process table or the interrupt vector table. Similar to code integrity
checks, unexpected changes of these data structures are a strong indication of a
malfunction or a successful attack against a device.

Available Resources

A group of indicators that is heavily used in the domain of software aging is
the availability of resources such as memory and swap space: as software runs
for extended periods of time, small memory leaks can accumulate and degrade
performance, eventually leading to failure. In the context of Contiki and the
MSP430 we use the general availability of program memory and data memory
and the size of the largest available chunks of these as trust indicators. The
chunk size is an important characteristic as our architecture does not feature
a MMU that could mitigate the fragmenting effect of repeated allocation and
deallocation. Importantly, reliably measuring the availability of program and
data memory requires implementing part of the allocator, typically an OS
component, as part of the trust assessment TCB.

Application Data Structures

Similar to monitoring OS data structures, we have experimented with using
application data as trust indicators. For example, on WSN nodes that run a
webserver, activity can be measured by monitoring the length of the request
queue. Also static content that is used to compile dynamic websites can be
inspected to detect modification due to a bug or a malicious attempt. Generally
all these measures are highly specific with respect to critical use cases of a node.

Event Occurrence and Timing

A key feature of our trust assessment infrastructure is to monitor and attest
intentional activity on a node. More specifically, by integrating part of the OS’s
scheduler into the TCB, our approach can attest when critical code on a node
has been executed. This allows an operator to infer which parts of a node are
behaving within expected parameters.

Combined Indicators

In particular in the context of autonomous operation of a trust assessment
module, combining trust indicators is desired so as to automatically adapt
to changing deployment scenarios. In particular, we have experimented with
modules that combine the inspection of OS data structures, i.e., the process
table, and periodically performing integrity checks on the functions associated
with each process. This can be interleaved with measuring the frequency of
process invocation and execution times, giving the operator a detailed picture
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of the behaviour of a computing node and allowing for specific autonomous
responses to faults.

8.1.3 Fault Recovery
As a trust assessment module or the operator detect anomalies on a node, the
module is even capable of responding to the situation. Responses may range
from a simple reset of the node over a more thorough investigation of the fault
up to actively manipulating the system state and restoring damaged code and
data.

8.2 Evaluation
We have implemented the approach described in the previous section as a
number of flexibly configurable trust assessment modules that can be loaded
into a Contiki OS at runtime. In this section we evaluate our implementation
with respect to overheads in terms of module sizes and run time. We further
discuss security gains, attack scenarios and their mitigation.

8.2.1 Scenario & Implementation
Our prototypic implementation is based on a developmental version of Contiki
3.x running on Sancus. We evaluate an application scenario in which the trust
assessment module regularly reports on the application processes running on
a node, periodically checks the integrity of a number of code sections of these
processes and integrates with Contiki’s scheduler to detect and log process
invocations. We have further added a public entry point to the trust assessment
module that allows an application to register invariant address ranges, which
are then included in periodic integrity checks. This section gives an overview of
entry points and the internal behaviour of our trust assessment module and the
demo scenario.
As outlined in Table 8.1, our example module provides a number of entry

points to be called from unprotected code. Most importantly, the TAMainFunc
is invoked by the scheduler. In a first run, it will initialise internal data
structures of the module and then populate these data structures with initial
measurements from the unprotected OS. This involves shadowing part of the
scheduler’s process list and calculating MACs of the process functions and the
interrupt vector table. Subsequent invocations result in the current state of
the unprotected OS being compared with the internal state of the module.
In addition, TASecureCallProcess is used by the scheduler to start process
functions. As this function is part of the trust assessment module, it can securely
log which process is invoked and keep track of meta data. Of course, all data,
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Table 8.1: Entry points of our trust assessment module.

Function Name Description
TAMainFunc Main entry point controlling initialisation and pe-

riodic behaviour.
TARegisterInvar Can be used by application code and internally

to register an address range for regular integrity
checks.

TASecureCallProcess Used by the OS scheduler to invoke application
functions; the trust assessment module extends the
call with counting the number of invocations and
measuring time.

TAInvarsStatus Returns an encrypted status report on the integrity
checked address ranges.

TAProcessStatus Returns an encrypted status report on the processes
currently running on a node.

including MACs and meta data on process invocations is stored in the trust
assessment module’s private data section. The functions TAInvarsStatus and
TAProcessStatus return a snapshot of this data, encrypted with the module
key and using a nonce to guarantee freshness. Thus, the module’s state can be
reported to the operator for further assessment.

To test the effectiveness of our trust assessment module, our scenario integrates
a number of trivial application processes and a “malicious” process that aims to
perform alterations to OS data and application code. Specifically, our attacker
is invoked by an event timer. With every invocation it performs one of the
following random actions: do nothing, modify a function pointer in the process
list, remove an entry from the process list, overwrite a process function, or modify
an entry in the interrupt vector. Event timing typically results in alternating
invocation of the attacker and the trust assessment module. Expectedly, all
changes performed by the attacker are detected with the next invocation of the
trust assessment module.

8.2.2 Overheads
Our evaluation shows at what expenses the alterations made by the attacker are
detected. In Table 8.2 we list measurements of the size of our trust assessment
components and these components’ execution time. All code of the demo
scenario is compiled either with MSP430-GCC 4.6.3 if no Sancus features are
involved, or with the Sancus toolchain (Section 4.2). The trust assessment



EVALUATION 77

Ta
bl
e
8.
2:

Si
ze

an
d
ex
ec
ut
io
n
tim

e
of

di
ffe

re
nt

tr
us
t
as
se
ss
m
en
t
co
m
po

ne
nt
s
on

an
M
SP

43
0
ru
nn

in
g
at

20
M
H
z:

1
cy
cl
e

co
rr
es
po

nd
s
to

50
ns
.
Fu

nc
tio

n
siz

es
in
cl
ud

e
pr
ot
ec
te
d
he

lp
er

fu
nc

tio
ns
.

Fu
nc

tio
n

Si
ze (B
)

R
un

tim
e

(c
yc
le
s)

D
es
cr
ip
tio

n

TA
Co

re
En

ab
le

58
23
6,
44
0

En
ab

le
s
m
od

ul
e
pr
ot
ec
tio

n
an

d
in
iti
at
es

ke
y
ge
ne

ra
tio

n.
TA

Ma
in

Fu
nc

43
0

57
8

M
ai
n
fu
nc

tio
n,

in
iti
al
isa

tio
n.

73
,6
78

..
.
va
lid

at
io
n
ru
n
(5

pr
oc
es
se
s,

9
in
te
gr
ity

ch
ec
ks
).

TA
Re

gi
st

er
In

va
r

40
2

1,
24
2

St
or
es

m
et
a-
da

ta
an

d
M
A
C
s
of

32
B
.

10
,7
62

..
.
19
9
B
.

19
,9
30

..
.
39
9
B
.

TA
Ch

ec
kI

nv
ar

s
49
8

69
,6
59

C
he

ck
s
in
te
gr
ity

of
9
ad

dr
es
s
ra
ng

es
(1
83
3
B
).

TA
Ad

dP
ro

ce
ss

56
8

≤
18
,3
74

Sh
ad

ow
s
an

en
tr
y
fr
om

th
e
pr
oc
es
s
lis
t
an

d
de

te
rm

in
es

le
ng

th
of

pr
oc
es
s
fu
nc

tio
n.

TA
Ch

ec
kP

ro
ce

ss
es

28
8

2,
37
1

C
he

ck
s
sh
ad

ow
ed

pr
oc
es
s
da

ta
ag
ai
ns
t
pr
oc
es
s
lis
t
(5

pr
oc
es
se
s)
.

TA
Se

cu
re

Ca
ll

Pr
oc

es
s

39
2

26
6

Pr
oc
es
s
in
vo

ca
tio

n
w
ith

no
lo
gg
in
g.

≤
73
1

..
.
lo
gs

tim
e
an

d
nu

m
be

r
of

in
vo

ca
tio

ns
.

TA
In

va
rs

St
at

us
20
2

10
,2
54

E
nc

ry
pt
s
m
et
a-
da

ta
on

in
te
gr
ity

-c
he

ck
ed

co
de

an
d
da

ta
(1
60

B
+

16
B

no
nc

e)
.

TA
Pr

oc
es

sS
ta

tu
s

20
2

17
,4
88

En
cr
yp

ts
m
et
a-
da

ta
on

ru
nn

in
g
pr
oc
es
se
s
(3
20

B
+

16
B

no
nc
e)
.

To
ta
l

3,
74
2

n/
a

C
od

e
an

d
da

ta
.



78 TRUST ASSESSMENT MODULES FOR THE Internet of Things

module is executed on Sancus configured with 41 KiB of program memory1

and 16 KiB of data memory, running at 20 MHz. Synthesis is done on a Xilinx
Spartan-6 FPGA. In Table 8.2 we report execution times in terms of CPU
cycles. With the given clock speed, 1 cycle corresponds to 50 ns.
As can be seen from Table 8.2, our approach does imply non-negligible

overheads. Whether these overheads are acceptable depends largely on the
constraints on reactivity and energy consumption versus safety and security
requirements in a specific deployment scenario. Our trust assessment module
is designed to keep the cost of periodic validation tasks small, typically below
70,000 cycles (3.5 ms), at the expense of incurring higher initial overheads.
Overall, most overheads are caused by the use of Sancus-provided cryptographic
operations. The performance of these operations is evaluated in detail in
Section 5.1.2.

As mentioned in Section 8.1.2 certain trust indicators, such as logging process
invocations, required us to modify the Contiki core. These modifications
are always small, i.e., replacing a call to a Contiki internal function with
a PM-equivalent. Yet, the resulting overhead is considerably high due to
switching protection domains – 26 cycles for an unprotected call and return
versus 160 cycles for calling a protected entry point function. Due to passing
arguments, return values, and logging the function invocation with a time
stamp, process invocations through TASecureCallProcess incurs an overhead
of 731 cycles.

With respect to runtime performance it is important to mention that Sancus
does not support interruption of protected code execution. Thus, protected
modules run with interrupts disabled, which may lead to important interrupts
not being served by the OS and certain properties of the unprotected code
potentially being broken. Examples for this could be real-time deadlines not
being met due to extensive integrity checks. This issue can be mitigated by
splitting up periodic validation tasks, e.g., do not perform all integrity checks
but only one per scheduled invocation of the trust assessment module. Similar
approaches have been used to perform expensive validation tasks in desktop
and server environments [37]. Ongoing research aims to resolve this issue by
making Sancus PMs fully interruptible and re-entrant. Mechanisms for securely
handling interrupts in the context of PMAs have been discussed in [18, 51]. The
non-interruptibility of Sancus PMs also makes it necessary to use trampoline
functions that re-enable and again disable interrupts when transferring control
to an application process in TASecureCallProcess, incurring relatively high
overheads for scheduled process invocations.
We neither evaluate nor provide an integration with a trust management

system. In particular, we do not evaluate the infrastructure that has to be
1ROM is often used as program memory in embedded devices. However, on platforms that

support module deployment at runtime, as we do, program memory is writable.
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in place to load a software module at runtime, and to communicate with a
PM on the OS level. This infrastructure performs fairly generic tasks, yet its
implementation is highly dependent on the deployment scenario. Contiki and
many other embedded OSs provide module loaders and a network stack that is
fully sufficient to implement the required functionality. Yet, the performance
of these components depend on the storage and communication hardware
connected to the CPU and is, thus, beyond the scope of this thesis.

8.2.3 Security Evaluation
Bootstrapping Autonomous Operation

An obvious issue of the scenario presented and evaluated here is with respect
to the suggested autonomous mode of operation: the trust assessment module
automatically discovers running processes and then periodically checks the
discovered data structures and code sections for unexpected changes. Of course,
an attacker may tamper with these sections at or before boot time, effectively
preventing detection in regular checks. In our scenario it would be the responsi-
bility of the operator to request and evaluate the output of TAInvarsStatus
and TAProcessStatus to detect such modifications. Alternatively, a trust as-
sessment module may also be provided with a list of expected processes and
MACs by the operator at runtime, using secure communication.

Communication Failure

While the code and the internal state of the PM cannot be tampered with, it
is of course possible that malfunctions or a successful attack against the node
prevent the trust assessment module from successfully communicating with the
operator or from executing altogether. Yet, this is detected by the operator
who then may conduct actions appropriate for the deployment scenario.

Preventing Invocation of the Trust Assessment Module

In the evaluated application scenario, the trust assessment module is invoked
by the scheduler and its entry point is stored in the unprotected process list.
This gives the attacker process the opportunity to tamper with the pointer
to the entry point, allowing it to disable execution of the trust assessment
module. Alternatively, an attacker or a malfunction may disable interrupts
while preventing control flow from returning to the scheduler. In our evaluation
scenario this attack would not be detected by the trust assessment module
directly but rather by the operator who would not be able to communicate with
the module.

For autonomous operation, this attack can be easily mitigated by configuring
the trust assessment module to be invoked as an interrupt service routine for a
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non-maskable timed interrupt using our secure I/O techniques (Section 7.3.1).
Since the MSP430 does not have a non-maskable timer interrupt, we simulated
this behaviour by using the watchdog as a source of timed interrupts, which
we have implemented as an optional configuration option in our evaluation
scenario. To ensure that the module will complete its tasks, this approach
requires the worst-case execution time of the trust assessment module to be
smaller than the interrupt rate. It is possible to guarantee that the watchdog
configuration is not modified by an attacker by making the control register
and the respective entry in the interrupt vector table part of the secret section
of a PM. In combination with extensive integrity checks, this approach also
hinders stealthy attacks where malicious code would attempt to restore a valid
system state before the trust assessment module is executing. Yet, using a
non-maskable interrupt to invoke the trust assessment infrastructure requires
some consideration: It must be possible to determine the worst-case execution
time of the trust assessment module and it must be acceptable to interrupt
application code for that time as the PM itself is non-interruptible. Using a
scheduler to invoke the trust assessment module allows for more permissible
policies that prevent starvation of applications.

Attacker Adaptation

A stealthy attacker that is well-adapted to a specific trust assessment module
may be able to hide code or data in address ranges that are not inspected by the
module. The attacker may also restore inspected memory content to the state
that is expected by the trust assessment module right before inspection takes
place. Our approach to trust assessment counters these attacks by allowing the
operator to deploy trust assessment modules at runtime, confronting the attacker
with an unknown situation. Alternatively, a generic module may inspect targets
by request from the operator rather than controlled by a deterministic built-in
policy.

Process Accounting

Our trust assessment module features logging and reporting a time stamp of
the latest invocation and the total number of invocations of scheduled processes.
Of course, these numbers are only exact as long as processes are called through
the scheduler, which passes the call through our trust assessment module. As
processes may be invoked without using the scheduler, the numbers reported
by our module represent a lower bound on the actual number of invocations. If
more precise measures are needed for a particular process, this process should
be implemented as a PM and perform its own accounting.
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Extending the TCB

Of course, the safety and security of a node could be improved greatly by
implementing larger parts of the OS, e.g., the scheduler, or applications as PMs.
PMAs imply a number of complications that are a direct consequence of the
strong isolation guarantees provided: resource sharing between components
is generally prohibited, yet it is often desired for efficiently implementing
communication between components. In Sancus, for example, one would have
to explicitly copy the protected state of a module so as to share it with another
module or unprotected code. While technically feasible, we believe that it
is not trivial to re-implement a more complex code base as a set of neatly
separated PMs. Alternatively one could think of compiling an entire embedded
OS together with its applications as a single PM. This would ensure integrity
but does not provide for isolation between components and severely restricts
runtime extensibility and the use of dynamic memory. Thus, the trust assessment
modules provided here present a pragmatic approach to measure and improve
safety and security of an IoT node while not interfering with the existing code
on that node. This results in low development overheads and runtime overheads
that should be acceptable for many deployment scenarios.

8.3 Related Work
This section discusses some related work in the domains of WSNs and trust
assessment on high-end systems. Where applicable, we compare the work
with our contributions. Note that this section is not meant as an exhaustive
exposition on trust assessment – a domain that can be interpreted rather broadly
– but as an overview of the work that we consider closely related to ours.

8.3.1 Trust Management in Wireless Sensor Networks
Many schemes for trust management in WSNs have been devised by researcher
over the years [34, 43, 63]. Most of these schemes deal with the problem of
distributing trust management over a network of sensor nodes. Individual
nodes usually obtain trust values about neighboring nodes by observing their
externally visible behavior. These trust values are then propagated through the
network allowing nodes to make decisions based on the trustworthiness of other
nodes.
Although our approach does not deal directly with distributed networks,

it can be used to enhance trust metrics used by existing trust management
systems. Indeed, our trust assessment modules can provide nodes with a detailed
view on the internal state of their neighbors; allowing them to make better
informed decisions about their trustworthiness. Moreover, since the produced
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trust metrics are attested, the bar is significantly raised for existing attacks
on trust management systems where malicious nodes try to impersonate good
nodes.

8.3.2 Trust Assessment on Desktop & Server Systems
Techniques similar to our trust assessment modules have been described for the
domain of desktop and server systems. Copilot [75] and Gibraltar [10] employ
specialised PCI hardware to access OS kernel memory with negligible runtime
overhead. Both systems detect and report modifications to kernel code and
data.
A number of approaches use virtualisation extensions of modern general

purpose CPU. Here, a hypervisor is employed to inspect a guest operating
system. SecVisor [79] protects legacy OSs by ensuring that only validated code
can be executed in kernel mode. Similarly, NICKLE [76], shadows physical
memory in a hypervisor to store authenticated guest code. At runtime, kernel
mode instructions are then only loaded from shadow memory and an attempt to
execute code that is not shadowed is reported as an attack. Hello rootKitty [37]
inspects guest memory from a hypervisor to detect and restore maliciously
modified kernel data structures. Due to frequent transitions between execu-
tion hypervisor and guest code, and expensive address translation between
those domains, these inspection systems typically incur significant performance
overheads. HyperForce [36] mitigates this problem by securely injecting the
inspection code into the guest and forcing guest control flow to execute this
code.

Our approach to trust assessment using PMs on a Sancus-enabled TI MSP430
provides isolation guarantees that are equivalent to executing the trust assess-
ment code in a hypervisor. Yet, our PM executes in the same address space as
the OS and application, which makes expensive domain switches and address
mapping unnecessary. In addition, Sancus provides attestation features in hard-
ware that the above systems do not employ. On modern desktop architectures,
these features can be implemented using the TPM, or by using SGX.
Sancus enables the implementation of effective security mechanisms on ex-

tremely light-weight and low-power hardware. In terms of inspection abilities
and isolation guarantees, these mechanisms are similar to the state-of-the-art
in the desktop and server domain. Our approach to trust assessment modules
illustrates that, using Sancus, comprehensive inspection mechanisms can be
implemented efficiently, incurring runtime overheads that should be acceptable
in many deployment scenarios with stringent safety and security requirements.
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8.4 Conclusion
In this chapter we presented an approach to trust assessment for extremely
light-weight and low-power computing nodes as they are often used in the
IoT. Instead of relying on the externally observable behaviour of a node, we
deploy flexible trust assessment modules directly on the node. These modules
are executing in isolation from an unprotected OS and application code. Yet,
the modules are capable of inspecting the unprotected domain and report
measurements that are indicative for the trustworthiness of a node to a trust
management system. We employ Sancus to guarantee isolation, to facilitate
remote attestation of the correct deployment of a trust assessment module, and
to secure communication between a module and a trust management system.
In terms of inspection abilities and isolation guarantees, Sancus-protected trust
assessment modules are similar to using virtualisation technology or specialised
security hardware in the desktop and server domain.

We have implemented our approach to trust assessment modules on a Sancus-
enabled TI MSP430 microcontroller. Our results demonstrate that, using Sancus,
comprehensive inspection mechanisms can be implemented efficiently, incurring
runtime overheads that should be acceptable in many deployment scenarios with
stringent requirements with respect to safety and security. Indeed, we believe
that our approach enables many state-of-the-art inspection mechanisms and
countermeasures against attacks to be adapted for IoT nodes and in the domain
of WSNs, which are in dire need of modern security mechanisms [77]. These
mechanisms include integrity checks and data structure inspection as discussed
in this chapter. Yet, more complex mechanisms such as automatic invariant
detection and validation [37], stack inspection [33] or protection against heap
overflows [70] are in scope for our approach.
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Chapter 9

Discussion on some Design
Decisions and Future Work

We will conclude this thesis by exploring some of the design decisions made
for Sancus that could have been done differently. This chapter can be used
by readers interested in designing a security architecture similar to Sancus to
gain insight in the different alternatives that can be used to accomplish Sancus’
security guarantees.
More specifically, we will investigate how a different approach to software

provider keys may lead to easier secure communication with modules belonging
to a different provider (Section 9.1); how public-key cryptography could be used
by Sancus and the advantages it would bring (Section 9.2); how the layout of
modules can be made more flexible (Section 9.3); and how the hardware limit
on the number of concurrently loaded modules can be lifted (Section 9.4).

9.1 Software Provider Keys
During early design stages, Sancus did not have the concept of software provider
keys (Section 3.2.2 and Table 3.1). Instead, module keys were supposed to
be generated by the infrastructure provider. Software providers would be
required to request a module key – by submitting an image of the module to
the infrastructure provider – before deployment.
Although this scheme would support the same security features as Sancus’

current design, there is an obvious practical objection to it: software providers
would not be able to deploy modules on their own. This issue led us to add
another level to the key hierarchy: software provider keys only needed to be
issued once by the infrastructure provider and allowed software providers to
deploy modules without interaction with third parties.

87
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9.1.1 Problems with the Current Design
Recall that module keys are derived at the time the module’s protection is
enabled and kept unchanged in the protected storage area in hardware from
then on. The implication of this design is that every module is permanently
tied to a certain software provider. Since it so natural to think of modules to
always belong to a specific software provider, this implication was not given
much thought during Sancus’ initial design.

An issue that was given some thought was the difficulty for a software provider
to communicate with modules that were not deployed by them. Indeed, remote
attestation and secure communication (Section 3.5) works by deriving a shared
secret from the software provider key making it unavailable to third-parties that
do not have access to this key.
Note that there is an interesting asymmetry here with secure linking (Sec-

tion 3.7) where modules belonging to different providers are able to attest
and securely link with each other. This property can be used to provide a
workaround for the secure communication issue above. If SPi wants to securely
communicate with SMj belonging to SPj , SPi can deploy SMi on the same node
and let this module attest SMj . Then, SMi can either establish a shared key
between SPi and SMj or act as a proxy between them. Although this scheme
provides a way for software providers to securely communicate with modules
not belonging to them, there are obvious downsides to it in terms of code
size. Especially on the kind of resource constraint devices that Sancus targets,
installing a module just for the sake of establishing a secure communication
channel might be infeasible.
For completeness, it should be mentioned that there is another possible

workaround: SPi could simply ask SPj to establish a shared secret with SMj

using their own secure communication abilities. At first sight, this might seem
a reasonable solution since it does not involve the code size overhead as the
scheme discussed above. However, note that SPi looses the ability to attest
the correctness of SMj and instead has to completely trust SPj for doing so
correctly and honestly. Therefore, this workaround is strictly inferior to the
previous one.

9.1.2 Multi-Vendor Protected Modules
The problem described above is caused by software providers not having a
native shared secret with modules not deployed by them. This, in turn, is a
consequence of the earlier observation that modules are tied to a single provider.
Since this was an accidental design choice rather than a necessary one, we
are now thinking of alternatives that make secure communication easier to
implement for application developers.
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If modules would be able to use module keys derived from another SP than
the one they were deployed by, secure communication with different software
providers would be directly supported. Therefore, we propose to add an optional
argument, sp, to the encrypt and decrypt instructions. When provided, Sancus
will first derive KN,SP, then KN,SP,SM, and then use that key for the operation.
Since SP itself is also able to calculate KN,SP,SM given the identity of SM, these
primitives enable the establishment of a shared key between SM and any SP.
An important question is whether these new instructions introduce any

weaknesses in Sancus’ security guarantees. Since we propose to give modules
(restricted) access to the provider key of a provider they were not deployed by,
one may wonder if this would enable this module to impersonate this provider.
To see why this is not the case, note that a module SM only has access to key
KN,SP to derive the key KN,SP,SM with its own identity. Since SP would only
be using KN,SP,SM if they wanted to communicate with a module with identity
SM on node N , no malicious impersonation can be performed.

A last interesting question is whether modules should still somehow be bound
to the provider that deployed them. If we would make the sp argument to
the encrypt and decrypt instruction mandatory, there would be no need
for modules to be bound to any particular provider. If provider SP needs to
communicate with SM, they would simply encrypt their message usingKN,SP,SM
putting SP in the associated data (Section 3.1). This way, SM is able to decrypt
the message with the correct key.

However, in many cases module sharing would not be desirable and a provider
wants to have exclusive access to its modules. In other cases, sharing may
be desirable but the provider still wants to have ultimate control over its
modules; e.g., to decide when to stop sharing its functionalities. If modules
were not bound to any specific provider, these use cases would be impossible to
implement. Indeed, all providers would be considered completely equal by the
module. Therefore, binding modules to the provider that deployed them is an
essential feature to have. Indiscriminate sharing of a module can then easily be
implemented by ignoring this binding.

9.1.3 Module Identity and its Main Vendor
The previous section raises an interesting question: If a module is bound to its
deploying software provider and hence has a special relation to this provider,
should this somehow be reflected in its identity? Due to the significance that
this special relation may have for a module’s behavior, it should definitely
be possible to discover which provider deployed a module. For the deploying
provider, this can be accomplished by making the module use its default key
during the attestation procedure since this key should be derived from the
provider’s key. For other providers, making the deploying provider’s identity
part of a module’s identity would be a way to attest this.
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However, in some cases it might not matter which provider deployed a module.
For those cases making the deploying provider’s identity part of the module’s
identity would make the remote attestation procedure more cumbersome for
other providers. Indeed, the provider would first need to ask the module for its
deploying provider in order to be able to calculate the module key before the
remote attestation procedure can start. Therefore we propose to not add the
deploying provider’s identity to the module’s identity. When this information
is important, the module can simply add it to the initial remote attestation
message.

9.1.4 Remote Attestation Procedure
To summarize, let us show the messages exchanged during the attestation
procedure in both cases. Here, A → B : {P} means A sends a message with
payload P to B. SM : R = instr means that SM executes an instruction instr
and the result is stored in R. No is a (non-secret) nonce.

First, the case that SPi wants to attest a module SMi that he deployed (this
is the same procedure as described in Section 3.5):

SPi → SMi : {No}

SMi : mac(KN,SPi,SMi ,No) = encrypt {},No

SMi → SPi : {mac(KN,SPi,SMi
,No)}

Here, KN,SPi,SMi
is the module’s default key so the MAC is produced by the

encrypt instruction without the new sp argument.
Then, for SPi to attest a module SMj deployed by SPj :

SPi → SMj : {No | SPi}

SMj : mac(KN,SPi,SMj
,No | SPj) = encrypt SPi, {},No | SPj

SMj → SPi : {SPj |mac(KN,SPi,SMj ,No | SPj)}

Note the use of the new form on the encrypt instruction here. If it is not
important that SMj was deployed by SPj , this information can simply be left
out of the MAC calculation and the last message.

9.1.5 Secure Linking Revisited
We have made the case above (Section 9.1.3) that when adding support for multi-
vendor modules, it is important to be able to attest which provider deployed a
module. This is also important when modules securely link to each other. As
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an example, say some module SM wants to use the services of a secure logging
module SMl. The latter module accepts data from local modules and sends
it to SPl to be securely stored in a database. Clearly, the identity of SPl is
important and it should be possible to attest it during the secure linking step.
Note that the above also holds for single-vendor modules; i.e., in Sancus’

current design. However, Sancus currently provides no way to attest the
provider a module was deployed by. Adding the provider’s identity to the
module’s identity is, for the same reasons as above, probably not an appropriate
solution. Therefore, we propose to add a new instruction to get the identity of
the provider that deployed a module.

9.2 Public-Key Cryptography for Sancus
While designing Sancus in 2012, we dismissed the use of public-key cryptography
because it would be too expensive to implement on the resource constrained
devices that we wanted to target (Chapter 3). Since there has been a lot of
development in low-cost public-key cryptography since then – Elliptic Curve
Cryptography (ECC) in particular is promising [81] – it is worth to evaluate
what the impact on Sancus would be if we were able to use it. We will start
with describing a possible way to leverage public-key cryptography in Sancus
en then describe its advantages.

9.2.1 Public-Key Protocol for Sancus
This section describes a possible way of using public-key cryptography to support
Sancus’ security features. In particular, the described protocol supports remote
attestation and secure communication. Note that we do not claim that this is
the only or best way to use public-key cryptography in Sancus; we merely want
to demonstrate how it could be used.

We will use the same notation for cryptographic operations as in the rest of
this text (Section 3.1) with the addition of the following. We write PK i respec-
tively PK−1

i to denote the public and private parts of a key pair. To encrypt
respectively sign some data D using the key PK i we write pk-encrypt(PK i, D)
and pk-sign(PK−1

i , D). For ease of notation, pk-sign outputs both the signature
and the signed data.

In our public-key protocol, every node N is manufactured with a private key
PK−1

N in protected storage, much like the node key KN in our current design.
When an infrastructure provider IP buys a node, they are provided with the
corresponding public key PKN . IP will be the Certificate Authority (CA) for
the public keys of the nodes they own by signing key certificates using PK−1

IP
and making these keys together with their certificates (publicly) available.
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Whenever a software provider SP wants to deploy a module, they first ask
IP for PK IP.1 They will then retrieve – and verify the certificate of – PKN for
the node N they want to deploy a module on. After compiling the module SM
into a binary file BSM, SP sends to following message to N :

SP→ N : {No | PKSP |BSM}

When the node receives this message, it will load SM in memory, enable
memory protection, and generate a key pair (PKSM,PK−1

SM). The keys PKSP
and PK−1

SM are stored in the protected storage area of SM. Then, N sends the
following message to SP:

N → SP : {pk-sign(PK−1
N ,No | PKSP | PKSM | SM)}

where SM is the identity of the installed module and No is a nonce used for
freshness. Note that this message can be used as a certificate to verify PKSM. In
addition, this certificate provides the same guarantees as the remote attestation
procedure of Sancus: a module with identity SM has been correctly deployed
on node N by software provider SP (identified by its public key PKSP). It
is also clear that since SP has access to the keys (PK−1

SP,PKSM) and SM to
(PK−1

SM,PKSP), secure communication is easily accomplished:

SP→ SM : {pk-sign(PK−1
SP,No | pk-encrypt(PKSM, I))}

SM→ SP : {pk-sign(PK−1
SM,No | pk-encrypt(PKSP, O))}

where No is a nonce used for freshness, and I and O are input and output data,
respectively. Of course, for efficiency reasons it might make sense to establish
a symmetric session key after deploying a module and use that for further
communication.

Before going into the advantages of this protocol, notice that we have basically
defined a Public Key Infrastructure (PKI) for PMs. The root certificate binds
PK IP to IP and is assumed to be available to the software providers. The
corresponding private key PK−1

IP is used to create certificates binding node keys
PKN to nodes N . Private node keys PK−1

N are in turn used to sign certificates
binding module keys PKSM to a module with identity SM deployed on node N
by a software provider with public key PKSP.

9.2.2 Advantages of a Public-Key Protocol
Easier Handling of Secrets at the Infrastructure Provider

Because an infrastructure provider acts as a CA for the nodes they own, software
providers only need to securely receive PK IP in order to be able to install

1Doing this securely is a difficult problem but out-of-scope.
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modules on any node. Compare this with Sancus’ current design, where a
different symmetric key is needed for all nodes a software provider wants to
install modules on. Using a public key protocol would thus mean much less
interaction between IP and SP and this interaction only needs to be integrity
protected.
For the same reason, the only secret stored by IP is PK−1

IP and this secret
only needs to be accessed when a new node is deployed to sign its public key.
The symmetric key design of Sancus forces infrastructure providers to have
access to a node’s key whenever a new software provider registers for that node.
Therefore, using public-key cryptography would mean that less access is needed
to secrets which would make it more viable to air-gap this secret for added
security.

Easier Inter-Provider Module Authentication

Imagine a software provider SPi wanting to receive authenticated data from
SMj deployed by SPj . Currently, SPi would need to securely negotiate a shared
secret with SPj which SPj then needs to send, using its secure communication
channel, to SMj . Using the described public-key protocol, however, SPi can
independently verify SMj ’s certificate to start an authenticated communication
session.
However, the authentication only works in one direction since SMj has no

way to authenticate SPi. Using a TLS-like handshake SMj could verify that
all messages come from the same source but not that this source is SPi. If
two-way authentication is required, SPi would need to ask SPj to send PKSPi

to SMj using its secure communication channel. Therefore, the advantages of
the public-key protocol would be lost.
Note that the same considerations hold for communication between two

modules deployed by different providers: Inter-provider communication is only
necessary if both modules need to authenticate each other.

9.3 Rigid Access Control Rules
Sancus’ access control rules (Section 3.4) are rigid in two ways: (1) every module
has exactly one data section; and (2) every data section belongs to maximum
one module. We have already already encountered the inflexibility of (1) when
designing our secure device drivers (Section 7.3.1). It is clear that (2) makes it
difficult to share large amounts of data between modules. Although solutions
have been proposed to make the latter easier for the user [87], they are not
particularly efficient because the only way to share data between modules is by
passing it through registers.
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We will now discuss two ways to reduce this rigidity: one by lifting the
restrictions of the current access control rules and another by decentralizing
the rules through the use of memory capabilities.

9.3.1 A Many-to-Many Mapping Between Code and Data
Trustlite [51] solves both rigidities by allowing a many-to-many mapping between
code- and data sections. Since every mapping can specify the kind of accesses
that are allowed, this provides a memory access control scheme that is more
generic, and hence flexible, than that of Sancus.
However, while Trustlite assumes a static set of access control rules, one of

Sancus’ goals is to support dynamic systems where modules are loaded and
unloaded at runtime. Although there is no technical reason for the Trustlite
model not to support dynamically changing the access control rules, from a
security perspective there are some things that need to be thought through.
First note that, while overlapping access rules may exists, they should not

exist for a newly created module. That is, when enabling a module, it should
be ensured that no other modules on the node have access to the same mem-
ory regions. This is obviously necessary to support Sancus’ reverse sandbox
guarantees.
Another important consideration is how new access rules should be allowed

to be defined. Since allowing any module to add any mapping would completely
circumvent the memory access rules, a policy needs to be defined on how rules
can be added to the system. A first observation is that new rules can always
be added for memory regions that have no rules associated with them. This
can then be used by modules to dynamically extend their data sections to, for
example, incorporate MMIO regions. To support efficient data sharing, modules
should also be allowed to give access to (a part of) their data regions to other
modules. This means the system should have a policy on how to add access
rules for memory regions that already have some other rules associated with
them.
Clearly, for a module to be allowed to add a mapping for a memory region,

it should at least have access to it itself. However, simply having access to a
region is probably not enough for most use cases. Take, for example, a module
SMA that shares a private memory buffer with a module SMB . If SMB would
be allowed to create new mappings for the buffer, it would be impossible for
SMA to fully reclaim the buffer. To solve this, a notion of memory ownership
could be defined and only owners of a memory region should be allowed to
create new mappings for this region. This could simply be implemented by
adding an extra “owner” access bit to the hardware representation of access
rules. Whenever a new mapping is created for an as of yet unmapped memory
region, this owner bit should be set. If the owner later creates new mappings
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for (a part of) this region, the bit could either be automatically cleared or the
owner could be given the option to keep it set.

A last important question to be answered is what exactly a module’s identity
is in a context where its memory regions can dynamically be changed. The
easiest way is probably to define it in exactly the same way as Sancus currently
defines it: the contents of its text section together with its layout information
at the time protection is enabled. Although the text section and the layout
information can now obviously change over time, using the ownership concept
defined above, this can only be initiated by the module itself. This means
that by attesting the initial state of a module, its provider will have the same
guarantees of its secure execution as in Sancus’ current design.

9.3.2 Sharing Data Using Capabilities
In capability-based addressing, access to a memory region is provided through
an unforgeable reference. This reference is much like a classical pointer with
additional information on the size of the referenced memory region and the
way it may be accessed. Since it is unforgeable, the memory access logic can
be completely decentralized: access to a memory region is allowed if it is done
through a proper capability.
Using capability-based addressing, sharing a memory region is as simple as

passing a capability for that region around. Therefore, this could provide a
solution to the efficient memory sharing problem in the current Sancus design.
Moreover, adding data sections to a module might be implemented by giving the
module access to additional memory regions by providing it with capabilities.
Thus, capabilities might provide a solution to both access control rigidities
addressed in this section.
Unfortunately, things are not quite so easy. For example, as mentioned

above, we may want modules to be able to reclaim full control over memory
regions they shared in the past. This would boil down to the ability to revoke
shared capabilities, a notoriously difficult problem. Another problem that
we glossed over above is that, although it seems easy to define a module’s
data sections through the capabilities it owns, we want to ensure that no
other capabilities exist for those regions to support Sancus’ reverse sandbox
guarantees. Section 9.4.3 discusses these problems in some more detail.

9.4 Hardware Limit on the Number of Modules
As explained in Section 4.1.1, there is an upper limit on the number of modules
that can be concurrently loaded. This limit, NSM, has to be chosen when
synthesizing the processor. From a security engineer’s perspective, NSM should
be as large as possible since it allows for more fine-grained compartmentalization
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of applications. From a hardware vendor’s perspective, however, it should not
be too high since it has an adverse effect on the hardware cost and the maximum
attainable frequency (Figures 5.1 and 5.4).
Of course, there will always be some limit on the number of concurrent

modules. At the very least, it will be limited by the amount of available memory.
Thus, if we talk about removing the hardware limit on NSM in this section, we
mean a limit smaller than the one imposed by the available memory.

9.4.1 Moving Metadata to Memory
The per-module metadata includes the module’s layout, its key and its identifier
(Figure 3.1). Since all this information is necessary to support Sancus’ features,
we need to find a way to represent it all without requiring hardware registers
to overcome the limit on NSM. One obvious idea might be to move all this
information to memory.
Applying this idea to just the module keys might already alleviate most of

the hardware cost issues since they constitute the largest part of a module’s
metadata for all reasonable security levels. The hardware could reserve a fixed
part of a module’s data section to store the key. To keep the same security
guarantees as Sancus currently has, the hardware should ensure that this part
of the data section is not directly accessible by the module itself, only through
the cryptographic instructions. An important observation is that storing keys
in memory would not incur any runtime overhead on Sancus due to the way
key bytes are accessed by its crypto core.
The layout information, on the other hand, seems more difficult to move to

memory. Without having to define the exact format of how this metadata would
be represented in memory, it should be clear that it is undesirable to have to read
memory in order to decide whether a memory access is allowed. Indeed, since
at least one decision has to be made for every instruction – whether executing
that instruction is allowed – this would incur an unacceptable overhead. This
problem is amplified by the fact that the memory access logic needs global
information; that is, it needs to know about all loaded modules in order to
make a decision. Although a clever caching scheme might be able to make this
much more efficient than just reading all this information from memory when it
is needed, one of the selling points of Sancus is that it incurs zero overhead on
application not using our extensions. Clearly, only a cache big enough to store
the layout information of all loaded modules would be able to guarantee that
kind of performance. This is exactly how Sancus is currently implemented.

9.4.2 Tagging Memory with Ownership Information
The main scalability problem with the current memory access logic seems to
be that for every memory access decision, the layout information of all loaded
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modules needs to be consulted. Doing this efficiently, as pointed out above, is
the reason Sancus currently has a hardware-imposed limit on NSM. A solution
to this problem might exists in finding a way to decentralize this information
such that the memory access logic only needs to consult a small amount of local
information.
The obvious way to decentralize layout information is to tag every memory

location with the identifier of the module that owns it and the location’s type
(i.e., text, data or entry point). This would also allow modules to have a variable
number of sections solving one of the rigid access control problems discussed
earlier (Section 9.3). However, for the same performance reasons as above, this
tag cannot reside in main memory because that would mean that every memory
access requires one extra to read the tag.
It is clear that the overhead of memory tagging grows linearly with the

amount of memory. How big this overhead is exactly, depends on a number
of factors. First, the size of the tag is the size of a module identifier plus
the number of bits for the memory location’s type. Since, as described above,
Sancus currently defines three types, two bits are sufficient to represent it. For
the module identifiers, recall that they should never be reused within a boot
cycle (Section 3.7). This means that the size of this identifier within a tag is
not just a limit of the number of concurrently loaded modules but on the total
number of modules loaded within a boot cycle. Although this number may be
lowered to reduce the overhead, 14 bits for the identifier should be ample for
most use cases, making it an even 16 bits in total for the tag.
The second factor in the total overhead is the size of the memory location

covered by a tag. For the finest granularity, we would require one tag per byte
for a total tag space that is twice the size of the memory space. This overhead
can be reduced by increasing the size of memory locations but this will in
turn increase the effects of memory fragmentation and restrict the number of
modules that can be concurrently loaded. Thus, supporting a larger number
of concurrently loaded modules means increasing the tag space, making this a
non-solution to our problem.
We might therefore think that this memory tagging scheme is no better

that simply synthesizing the current Sancus implementation with a large value
for NSM. However, besides the previously mentioned advantage of modules
supporting multiple sections, there is another important difference that stems
from the decentralization of layout information: The memory access logic no
longer needs access to all layout information to decide whether a memory access
is allowed. Indeed, only the tags of the executing instruction and the accessed
memory location need to be consulted. This means we will only need a single
MAL circuit (Figure 4.1, although the circuit will obviously be different) instead
of one per supported module, potentially decreasing the processor’s critical path
substantially.
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9.4.3 Reverse Sandboxing Using Capabilities
Since capabilities offer another way to decentralize access control, it might
provide a solution to lift the hardware limit on the number of concurrent
modules. This section continues the discussion on using capabilities for data
sharing (Section 9.3.2) by expanding on some of the problems mentioned there.
If we want to employ capability-based addressing to implement Sancus’

security guarantees, we should first define what a protected module is in this
context. In classical capability systems, a protection domain is usually defined
as all memory locations that are accessible through all reachable capabilities.
There is a set of implicit capabilities, usually in the processor’s register file,
that are always accessible. Using these capabilities, the application is able to
address memory locations and these locations may contain more capabilities.
The current protection domain, then, is the set of all memory locations reachable
from the implicit capability set.
Such a protection domain, however, does not define a protected module.

Indeed, a protection domain defines to which memory locations executing code
has access while a protected module defines to which memory locations outside
code does not have access. In other words, a protection domain defines a
sandbox while a protected module defines a reverse sandbox. It seems, therefore,
that the goals of capabilities are the complete opposite of those of Sancus.

While this is true, note that Sancus accomplishes a reverse sandbox by having
hardware logic to ensure that when a new module is loaded, it does not overlap
with other modules. This hardware component is able to do its job by having
a global view of all loaded modules. If we would be able to define a similar
entity in a capability system – one that has a view of all existing capabilities –
we are able to create reverse sandboxes. Indeed, this would allow us to load a
module and then verify that no other capabilities exist for the memory regions
allocated to that module. The simplest way to implement this would be to
scan the whole address space, something that may be feasible for the small
microcontrollers that Sancus targets (e.g., its prototype implementation has a
16-bit address space).

Before explaining how modules can be defined, we have to introduce one more
concept from capability systems: entry capabilities [59, Chapter 4]. Although
the details may differ between implementations, the basic idea of an entry
capability is the following. Like any capability, an entry capability defines
a region of memory. This region, however, is not accessible by a holder of
the capability in any other way than by calling the capability. When such a
capability is called, it is transformed into a read-execute capability and control
is transfered to the first instruction in the memory region. This allows the
called code to gain access to private memory regions by including capabilities
in the memory region pointed to by the entry capability.
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We will now show one possible way to create and attest reverse sandboxed
modules using capabilities. An untrusted loader will obtain two capabilities
from an untrusted memory manager: one to store the module’s text section
and one for the data section. The loader then loads the module’s text section
and appends the data capability to it. At this point, the protect instruction
is called with the text capability as argument which performs the following
steps: (1) verify that there is no other capability referring to the text section;
(2) verify that the last location of the text section contains a capability and no
other capabilities exist that refer to the same memory region; and (3) transform
the text capability into an entry capability. For attestation purposes, this
instruction could calculate a module key in exactly the same way as current
Sancus does and store it at a fixed location in the module’s data section (as
discussed in Section 9.4.1).

This procedure ensures the following: (1) the only capability for the module’s
data section is located at the last location of the module’s text section; and
(2) the only capability for the module’s text section is transformed into an
entry capability. Therefore, the only way to execute a module is by calling its
entry capability which guarantees the module can only be entered through its
first instruction. Moreover, accessing the module’s data capability is also only
possible by executing its entry capability which means only the module’s code
is initially able to access its data section. Of course, the code may later decide
to hand out capabilities to (parts of) its data section to other modules.





Chapter 10

Conclusion

The increased connectivity and extensibility of networked embedded devices in
the IoT leads to exciting new applications, but also to significant new security
threats. Recent incidents have shown the need for research on security in this
context. This thesis proposed a novel security architecture called Sancus, that
is low-cost yet provides strong security guarantees with a small, hardware-only,
TCB.

Sancus’ core feature is to provide memory isolation to software modules
through PCBAC which ensures that (1) a module’s data is only accessible
when executing its code; and (2) its code can only be executed by jumping
to a well-defined entry point. By implementing these access control checks
in hardware, Sancus is able to enforce memory isolation without imposing an
overhead, in terms of cycles, on the existing instruction set of the microprocessor.
Although Sancus causes a small runtime overhead when entering or exiting
modules to ensure a secure switching of protection domains, this is a minor
price to pay for the security guarantees provided by PCBAC.
Isolation in itself, however, is not enough for a security architecture to be

applicable to the shared infrastructures that Sancus aimed to support. Indeed,
there is no point in deploying and isolating a module if we do not also have
way of attesting the state of the module and to securely communicate with
it. Therefore, Sancus adds a cryptographic core supporting authenticated
encryption to the microprocessor’s hardware. By using a key hierarchy that
allows both the hardware and a module’s deployer to derive the same key, Sancus
is able to establish a confidential and integrity protected communication channel
between a module and its deployer. Moreover, by using a key derivation scheme
that generates keys based on, among others, a module’s code section, this same
channel also provides authenticity guarantees which means it implements remote
attestation.

101
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Sancus also supports secure communication between modules running on the
same node. Secure linking, as it is called in Sancus, is implemented by allowing
modules to identify other modules loaded at a certain memory location through
a cryptographic hash of, among others, the module’s code section. After this
attestation procedure, a module can securely call another by jumping to its
entry point and passing confidential data through registers. Sancus keeps track
of the module that called an entry point to allow the called module to attest
its caller. Although this procedure provides mutual authentication between
modules, it is potentially expensive when large amounts of data need to be
passed between them. We proposed some possible solutions to this problem in
the discussion section.
Beside the core architecture, this thesis also discussed two applications of

Sancus. First, we provided a way to employ Sancus in a distributed context.
More specifically, we described a deployment strategy that allows us to gain
trust of the outputs produced by distributed applications. That is, whenever
an output is produced by such an application, then there must have happened
a sequence of physical input events such that that sequence, when processed by
the application as specified in the high-level source code, produces that output
event. In other words, when a distributed application is deployed using our
techniques and it produces an output, it could also have produced that output
if no attacker was present.
An important contribution of this first application is the development of

techniques to perform secure I/O from Sancus modules. We have shown how
to write secure device drivers that allow us to authenticate physical devices.
Future work might use these techniques to implement secure peripherals for
desktop or server platforms.

In a second application, trust assessment modules, we have shown how to use
a protected Sancus module to attest the state of unprotected software running
on the same node. Such a module uses several heuristics – such as code integrity,
available resources, or the timing of events – to gauge the health of the node
and, using Sancus’ secure communication features, reports this state back to
a trust management system. This provides a way to add security guarantees
to an otherwise unchanged legacy software stack, making it a useful tool when
porting the software itself to Sancus is infeasible.

By concluding this thesis with a discussion on a number of design alternatives
for Sancus, we have shown that there is no single right answer in security. Instead,
there is a constant trade-off between security and efficiency. Nevertheless, this
thesis has shown that not too many compromises need to be made since Sancus
provides strong security guarantees at a moderate cost.
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