
A Compositional Typed Higher-Order Logic with
Definitions∗

Ingmar Dasseville1, Matthias van der Hallen†1, Bart Bogaerts‡3,
Gerda Janssens1, and Marc Denecker1

1 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
ingmar.dasseville@cs.kuleuven.be

2 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
matthias.vanderhallen@cs.kuleuven.be

3 Helsinki Institute for Information Technology HIIT, Aalto University, Aalto,
Finland; and
KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
bart.bogaerts@cs.kuleuven.be

4 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
gerda.janssens@cs.kuleuven.be

5 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
marc.denecker@cs.kuleuven.be

Abstract
Expressive KR languages are built by integrating different language constructs, or extending
a language with new language constructs. This process is difficult if non-truth-functional or
non-monotonic constructs are involved. What is needed is a compositional principle.

This paper presents a compositional principle for defining logics by modular composition of
logical constructs, and applies it to build a higher order logic integrating typed lambda calculus
and rule sets under a well-founded or stable semantics. Logical constructs are formalized as
triples of a syntactical rule, a semantical rule, and a typing rule. The paper describes how
syntax, typing and semantics of the logic are composed from the set of its language constructs.
The base semantical concept is the infon: mappings from structures to values in these structures.
Semantical operators of language constructs operate on infons and allow to construct the infons
of compound expressions from the infons of its subexpressions. This conforms to Frege’s principle
of compositionality.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Logic, Semantics, Compositionality

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.14

1 Introduction

Expressive knowledge representation languages consist of many different language constructs.
New KR languages are often built by adding new (possibly nestable) language constructs to

∗ This research was supported by the project GOA 13/010 Research Fund KU Leuven and projects
G.0489.10, G.0357.12 and G.0922.13 of FWO (Research Foundation – Flanders).

† Matthias van der Hallen is supported by a Ph.D. fellowship from the Research Foundation – Flanders
(FWO – Vlaanderen).

‡ Bart Bogaerts is supported by the Finnish Center of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (grant #251170).

© Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens, and Marc Denecker;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 14; pp. 14:1–14:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 A Compositional Typed Higher-Order Logic with Definitions

existing logics. Principled compositional methods are desired that allow to construct logics
from language constructs, or incrementally extend an existing logic with a new construct,
while preserving the meaning of the remaining language constructs. This is known as Frege’s
compositionality principle.

In classical monotone logics it is common practice to extend a logic with new language
constructs or connectives by specifying an additional pair of a syntactical and semantical rule.
E.g., we can add a cardinality construct to classical first order logic (with finite structures)
by defining:

syntactical rule: #({x : ϕ}) is a (numerical) term if x is a variable and ϕ a formula;
semantical rule: (#({x : ϕ}))I = #({d ∈ DI | I[x : d] |= ϕ}), the cardinality of the set of
domain elements that correspond to the set expression. Here, DI is the domain of I.

The ease and elegance of this is beautiful. In the context of nonmonotonic languages such
as logic programming and extensions such as answer set programming [18, 17, 20] and the
logic FO(ID) (classical logic with inductive definitions) [7], the situation is considerably more
complex. For example, adding aggregates to these logics required, and still requires a serious
effort [15, 25, 10, 22, 21, 9, 11] and resulted in a great diversity of logics.

In this paper, we propose a compositional principle to build logics, and apply it to build
a logic L integrating typed higher order lambda calculus with definitions represented as rule
sets under well-founded semantics. The two main contributions of this work are:

It introduces a compositional principle to build and integrate logics and puts it to the test:
by building an expressive logic including rule sets, with aggregates, lambda expressions,
higher order rules, rule sets to express definitions by monotone, well-founded and iterated
induction, definitions nested in rules, ... The semantical basis is the concept of infon
which provides a semantical abstraction of the meaning of expressions and is related to
intensional objects in intensional logics [14] .
The logic itself brings together the logics of logic programming and descendants such
as answer set programming and FO(ID), and the logic of typed lambda calculus which
has become the foundational framework for formal specification languages and functional
programming. We illustrate the application of the resulting logic to build simple and
elegant theories that express complex knowledge.

2 Related Work

2.1 Logics
Our paper on templates [5] introduced a simpler version of the framework from the current
paper, using informal notions. There, the framework was used to construct a logic permitting
inductive definitions within the body of other inductive definitions. In that logic, templates
are (possibly inductive) second order definitions that allow nesting inductive definitions; this
nesting is required to build, for instance, templates defining one predicate parameter as the
transitive closure of another parameter. In this paper, we present the framework with a
more formal basis, using the concept of infons as the mathematical object corresponding
to the semantics of a language construct, and identify the notion of Frege’s principle of
compositionality as the underlying goal of the framework.

This paper explicitly allows the construction of higher-order logics. In the context of
meta-programming [1], some logics with higher-order syntax already exist. One such example
is HiLog [4], which combines a higher-order syntax with first-order semantics. HiLogs
main motivation for this is to introduce a useful degree of higher order while maintaining
decidability of the deduction inference. Another example is λprolog [19], which extends

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:3

Prolog with (among others) higher-order functions, λ-terms, higher-order unification and
polymorphic types. To achieve this, λprolog extends the classical first-order theory of
Horn-clauses to the intuitionistic higher-order theory of Hereditary Harrop formulas [16].

The algebra of modular system (AMS) [23, 24] is a framework in which arbitrary logics
with a model semantics can be combined. The difference with our work is that in AMS,
connectives from the different logics cannot be combined arbitrarily. Instead, there is a fixed
set of connectives (a “master” logic) that can be used to combine expressions from different
logics. Compared to our logic, this has advantages and disadvantages. One advantage is
that AMS only requires a two-valued semantics (an infon) to be specified for a given logic,
making it more easily applicable to a wide range of logics. A disadvantage is that it does not
allow for interactions between the different connectives.

2.2 Infons
The concept of infon in the sense used in this paper is related to intensional objects in
Montague’s intensional logic [14]. Intensional logic studies the dichotomy between the
designation and the meaning of expressions. Intensional objects are represented by lambda
expressions and model functions from states to objects similar to our infons. The term
“infon” was used by other authors in other areas. In situation semantics [2], infons intuitively
represent “quantums of information” [8]. Although such an infon has a different mathematical
form than an infon in our theory, it determines a characteristic function from situations
(which are approximate representations of states, similar to approximate structures) to true,
false (or undetermined), which intuitively corresponds to an infon. Situation semantics, the
semantics supported by situation theory, provides a foundation for reasoning about real
world situations and the derivations made by common sense. In [13], infons are “statements
viewed as containers of information” and an (intuitionistic) logic of infons is built for the
specific purpose of modelling distributed knowledge authorization.

3 Preliminaries

3.1 Cartesian product, powerset, product, pointwise extension and
lifting

The powerset operator P(·) maps a set X to its powerset P(X). The power operator (·)(·)

maps pairs (I, Y) of sets to the set Y I of all functions with domain I and co-domain Y . We
denote the function with domain D and co-domain C that maps elements x ∈ D to the value
of a mathematical expression exp[x] in variable x as λ : D → C : x 7→ exp[x] (using λ as the
anonymous function symbol as in lambda calculus). Or, if the co-domain is clear from the
context, as λx ∈ D : exp[x]. When exp[x] is Boolean expression, this is also denoted as a set
comprehension {x ∈ D | exp[x]}.

We define the set of truth values Two = {f , t}; here t stands for “true” and f for “false”.
For any X, P(X) is isomorphic to TwoX , using the mapping from a set to its characteristic
function. In the rest of the paper, we will identify P(·) with Two(·).

We frequently use 〈xi〉i∈I to denote the function λ : I → {xi | i ∈ I} : i → xi. We call
this an indexed set (with index set I). Let 〈Vi〉i∈I be an indexed set of sets, i.e., each Vi is a
set. Its product set, denoted ×i∈IVi, is the set of all indexed sets 〈xi〉i∈I such that xi ∈ Vi
for each i ∈ I. This generalizes Cartesian product V1 × · · · × Vn (taking I = {1, . . . , n}).

Let 〈≤i〉i∈I be an indexed set of partial order relations ≤i on sets Vi for each i ∈ I. The
product order of 〈≤i〉i∈I is the binary relation

{(〈vi〉i∈I , 〈wi〉i∈I) ∈ (×i∈IVi)2 | ∀i ∈ I : vi ≤i wi} .

ICLP 2016 TCs

14:4 A Compositional Typed Higher-Order Logic with Definitions

It is a binary relation on ×i∈IVi. Written differently, it is the Boolean function:

λ : (×i∈IVi)2 → Two : (〈vi〉i∈I , 〈wi〉i∈I) 7→ ∧i∈I(vi ≤i wi) .

A special case is if all Vi and ≤i are the same, i.e., for some V and ≤, it holds that Vi = V

and ≤i=≤ for each i ∈ I. Then the product relation ×i∈I ≤ will be called the pointwise
extension of ≤ on V I = ×i∈IV . Taking products of orders preserves many good properties
of its component orders. It is well-known that the product order is a partial order. The
product order of chain complete orders is chain complete order and the product order of
complete lattice orders is a complete lattice order.

Let 〈Oi〉i∈I be an indexed set of operators Oi ∈ XVi
i . Then we define the lift operator

↑i∈IOi as the operator in (×i∈IXi)(×i∈IVi) that maps elements 〈vi〉i∈I to 〈Oi(vi)〉i∈I . In
another notation, it is the function:

λ : ×i∈IVi → ×i∈IXi : 〈vi〉i∈I 7→ 〈Oi(vi)〉i∈I .

A special case arises when all Oi are the same operator O : V → V . In this case, ↑i∈IO
is a function in ×i∈IV = V I mapping 〈vi〉i∈I to 〈O(vi)〉i∈I . That is, it is the function
λ : V I → V I : f 7→ O ◦ f . We call this the lifting of O : V → V to the product V I .

3.2 (Approximation) Fixpoint Theory
A binary relation ≤ on set V is a partial order if ≤ is reflexive, transitive and asymmetric. In
that case, we call the mathematical structure 〈V,≤〉 a poset. ≤ is total if for every x, y ∈ V ,
x ≤ y or y ≤ x. The partial order ≤ is a complete lattice order if for each X ⊆ V , there
exists a least upperbound lub(X) and a greatest lower bound glb(X). If ≤ is a complete
lattice order of V , then V has a least element ⊥ and a greatest element >.

Let 〈V,≤〉, 〈W,≤〉 be two posets. An operator O : V → W is monotone if it is order
preserving; i.e. if x ≤ y ∈ V implies O(x) ≤ O(y).

Let 〈V,≤〉 be complete lattice with least element ⊥ and greatest element >. Its bilattice is
the structure 〈V 2, ≤p ,≤〉 with (v1, v2)≤p (w1, w2) if v1 ≤ w1, v2 ≥ w2 and (v1, v2) ≤ (w1, w2)
if v1 ≤ w1, v2 ≤ w2. The latter is the pointwise extension of ≤ to the bilattice. Both orders
are known to be lattice orders. ≤p is called the precision order. The least precise element is
(⊥,>) and most precise element is (>,⊥). An exact pair is of the form (v, v). A consistent
pair (v, w) is one such that v ≤ w. We say that (v, w) approximates u ∈ V if v ≤ u ≤ w. The
set of values approximated by (v, w) is [v, w]. This set is non-empty iff (v, w) is consistent.
Exact pairs (V, V) are the maximally consistent pairs and they approximate a singleton {X}.
We view the exact pairs as the embedding of V in V 2. Abusing this, we sometimes write v
where (v, v) should be written. Pairs (v, w) ∈ V 2 are written as v, with (v)1 = v, (v)2 = w.

We define V c = {(v, w) ∈ V 2 | v ≤ w}. It is the set of consistent pairs. We will call such
a pair an approximate value, and we call V c the approximate value space of V . It can be
shown that any non-empty set X ⊆ V c has a greatest lower bound glb≤p (X) in V c, but
not every set X ⊆ V c has a least upperbound in V c. In particular, the exact elements are
exactly the maximally precise elements. Hence, V c is not a complete lattice. However, if
X has an upperbound in V c, then lub(X) exists. Also, V c is chain complete: every totally
ordered subset X ⊆ V c has a least upperbound. It follows that each sequence 〈(vi, wi)〉i<α of
increasing precision has a least upperbound lub(〈(vi, wi)〉i<α), called its limit. This suffices
to warrant the existence of a least fixpoint for every ≤p -monotone operator O : V c → V c.

I Example 1. Consider the lattice Two = {t, f} with f ≤ t. The four pairs of its billatice
Four correspond to the standard truth values of four-valued logic. The pairs (t, t) and (f , f)

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:5

are the embeddings of true (t) and false (f) respectively. The pair (f , t) represents unknown
(u) and (t, f) represents the inconsistent value (i). Here, the set Twoc is the set of consistent
pairs and is denoted Three. The precision order is u≤p t≤p i,u≤p f ≤p i and the product
order is f ≤ u ≤ t, f ≤ i ≤ t.

For any lattice 〈V,≤〉 and domain D, the pointwise extension of ≤ to V D is a lattice
order, also denoted as ≤. The lattice V D has a bilattice (V D)2 and approximate value space
(V D)c which are isomorphic to (V 2)D, respectiely (V c)D.

I Example 2. The billattice of TwoD and the approximation space (TwoD)c are isomorphic
to FourD, respectively ThreeD under the pointwise extensions of ≤p and ≤ of Four and
Three. Elements of FourD and ThreeD correspond to four and three valued sets.

Let D,C be complete lattices.

I Definition 3. For any function f : D → C, we say that A : Dc → Cc is an approximator
of f if (1) (≤p -monotonicity) A is ≤p -monotone and (2) (exactness) for each v ∈ D,
A(v)≤p f(v). We call A exact if A preserves exactness. The projections of A(v, w) on first
and second argument are denoted A(v, w)1 and A(v, w)2.

Approximators of f allow to infer approximate output from approximate input for f . The
co-domain of an approximator is equipped with a precision order which can be pointwise
extended on (Cc)Dc .

I Definition 4. We say that F is the ultimate approximator of f if F is the ≤p -maximally
precise approximator of f . We denote F as dfe.

One can prove that dfe(v) = glb≤p
({f(v) | v≤p v ∈ D}).

I Example 5. The ultimate approximators of the standard Boolean functions ∧,¬,∨, . . . ,
correspond to the standard 3-valued Boolean extensions known from the Kleene truth
assignment. E.g. d∧e :

d∧e f u t
f f f f
u f u u
t f u t

Let 〈V,≤〉 be complete lattice with least element ⊥ and greatest element >. With an
operator O : V → V , many sorts of fixpoints can be associated: the standard fixpoints
O(x) = x and the grounded fixpoints of O [3]. For any approximator A : V c → V c, more
sorts of fixpoints can be defined:

The A-Kripke-Kleene fixpoint is the ≤p -least fixpoint of A.
A partial A-stable fixpoint is a pair (x, y) such that
A(x, y) = (x, y),
(x, y) is prudent, i.e., for all z ≤ y, A(z, y)1 ≤ y implies x ≤ z.
there is no z ∈ [x, y[such that A(x, z)2 ≤ z.

The well-founded fixpoint of A is the least precise A-partial stable fixpoint.
An A-stable fixpoint is an element v ∈ L such that (v, v) is a partial A-stable fixpoint.

Assume A approximates O. It is well-known that the KK-fixpoint of A approximates all
fixpoints of O and all partial stable fixpoints of A, hence also the well-founded fixpoint of
A and the (exact) stable fixpoints of A. It can be shown that the three-valued immediate

ICLP 2016 TCs

14:6 A Compositional Typed Higher-Order Logic with Definitions

consequence operator of logic programs is an approximator of the two-valued one, and that
the above sorts of fixpoints induce the different sorts of semantics of logic programming [6].

With a lattice operator O : V → V , we define the ultimate well-founded fixpoint and
the ultimate (partial) stable fixpoints as the well-founded fixpoint and the (partial) stable
fixpoints of dOe. Compared with other approximators A of O, the ultimate approximator
has the most precise KK-fixpoint and well-founded fixpoint, and -somewhat surprisingly- the
most (exact) stable fixpoints. That is, the set of exact stable fixpoints of any approximator
A of O is a subset of that set of dOe. Notice that the ultimate well-founded fixpoint of O is
an element of the bilattice, but it may be (and often is) exact.

4 A typed higher order logic L with (nested) definitions

4.1 Type system
A typed logic L contains a type system, offering a method to expand arbitrary sets B of
(user-defined) type symbols to a set T(B) of types, together with a method to expand a type
structure A assigning sets of values to the symbols of B, to an assignment Ā of sets of values
to all types in T(B). We formalize these concepts.

I Definition 6. A type vocabulary B is a (finite) set of type symbols. A type structure A
for B is an assignment of sets τA to each τ ∈ B.

I Definition 7. A type constructor is a pair (tc, Semtc) of a type constructor symbol tc of
some arity n ≥ 0 and its associated semantic function Semtc which maps n-tuples of sets to
sets such that Semtc preserves set isomorphism. 1

Given a set B of type symbols and a set of type constructor symbols, a set of (finite) type
terms τ can be built from them. In general, the set T(B) of types of a logic theory form a
subset of the set of these type terms.

I Definition 8. A type system consists of a set of type constructors and a function mapping
any set B of type symbols to a set T(B) of type terms formed from B and the type constructor
symbols such that for any bijective renaming θ : B → B′, T(B) and T(B′) are identical
modulo the renaming θ. An element of T(B) is called a type. A compound type is an element
of T(B) \ B.

For a given type system, it is clear that any type structure A for B can be expanded in a
unique way to all type terms by iterated application of the semantic functions Semtc.

I Definition 9. Given a type system and a type structure A for a set B of type symbols, we
define Ā as the unique expansion of A to T(B) defined by induction on the structure of type
terms and using the semantic type constructor functions Semtc of type constructors.

By slight abuse of notation, we write τ Ā as τA.

I Definition 10. We call a type system type closed if for every B, T(B) is the set of all type
terms built over B and the type constructors of the system.

I Example 11. The type system of the logic that we will define below is type closed. Its
type constructor symbols and corresponding semantic type operators are:

1 That is, if there exists bijections between S1 and S′
1, . . . , Sn and S′

n, then there is a bijection between
Semtc(S1, . . . , Sn) and Semtc(S′

1, . . . , S′
n).

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:7

the 0-ary Boolean type constructor symbol BOOL with SemBOOL = Two;
the 0-ary natural number constructor type symbol NAT with SemNAT = N;
the n-ary Cartesian product type constructor symbol ×n; we write ×n(τ1, . . . , τn) as
τ1 × · · · × τn and ×n(τ, . . . , τ) as τn. The semantic operator Sem×n maps tuples of sets
(S1, . . . , Sn) to the Cartesian product S1 × · · · × Sn;
the function type constructor → with Sem→ mapping pairs of sets (X,Y) to the function
set Y X .

In typed lambda calculus, Cartesian product is often not used (it can be simulated using
higher order functions and currying). Here, we keep it in the language to connect easier with
FO.
I Example 12. The type system of typed classical first order logic uses the type constructors
corresponding to BOOL, ×n and→ in the previous example. T(B) is the set {τ1×· · ·× τn →
BOOL, τ1 × · · · × τn → τ | τ1, . . . , τn, τ ∈ B}. It consists of first order predicate types
τ1 × · · · × τn → BOOL and first order function types τ1 × · · · × τn → τ . The type system
of untyped classical first order logic is obtained by fixing B = {U}, where U represents the
universe of discourse. Clearly, (typed) FO is not type closed.

From now on, we assume a fixed type system. We also assume an infinite supply of type
symbols, and for all types τ that can be constructed from this supply and the given type
constructor symbols, an infinite supply of symbols σ of type τ . We write σ : τ to denote
that τ is the type of σ.
I Definition 13. A vocabulary (or signature) Σ is a tuple 〈B, Sym〉 with B a set of type
symbols, Sym a set of symbols σ of type τ ∈ T(B).
We write T(Σ) to denote T(B).

Let Σ be a vocabulary 〈B, Sym〉.
I Definition 14. An assignment to Sym in type structure A for B is a mapping A : Sym→
{τA | τ ∈ T(Σ)} such that for each σ : τ ∈ Sym, σA ∈ τA. That is, the value of σA is of
type τ in A. The set of assignments to Sym in A is denoted AssignASym.
I Definition 15. A Σ-structure I is a tuple 〈A, (·)I〉 of a type structure A for B, and (·)I
an assignment to all symbols σ ∈ Sym in type structure A. We denote the value of σ as σI .
The class of all Σ-structures is denoted S(Σ).
We frequently replace A by I; e.g., we may write τ I for τA.

Let Σ be a vocabulary with type symbols B, I a Σ-structure. Let Sym be a set of symbols
with types in T(B) (it may contain symbols not in Σ). For any assignment A ∈ AssignISym
to Sym in (the type structure of) I, we denote by I[A] the structure that is identical to I
except that for every σ ∈ Sym, σI[A] = σA. This is a structure of the vocabulary Σ ∪ Sym.
As a shorthand notation, let σ be a symbol of type τ and v a value of type τ in I, then
[σ : v] is the assignment that maps σ to v, and I[σ : v] is the updated structure.
I Definition 16. A Σ-infon i of type τ ∈ T(Σ) is a mapping that associates with each
Σ-structure I a value i(I) of type τ in I. The class of Σ-infons is denoted IΣ. Each symbol
σ ∈ Σ of type τ defines the Σ-infon iσ of type τ that associates with each Σ-structure I the
value σI .
Infons of type τ are similar to intensional objects in Montague’s intensional logic [14]. An
infon of type BOOL provides an abstract syntax independent representation of a quantum
of information. It maps a structure representing a possible state of affairs in which the
information holds to true, and other structures to false. It will be the case that two sentences
are logically equivalent in the standard sense iff they induce the same infon.

ICLP 2016 TCs

14:8 A Compositional Typed Higher-Order Logic with Definitions

4.2 Language constructs
I Definition 17. A language construct C consists of an arity n representing the number of
arguments, a typing rule TypeC specifying the allowable argument types and the corresponding
expression type, and a semantic operator SemC. A typing rule TypeC is a partial function from
n argument types τ1, . . . , τn to a type TypeC(τ1, . . . , τn) = τ that preserves renaming of type
symbols; i.e., if θ is a bijective renaming of type symbols, then TypeC(θ(τ1), . . . , θ(τn)) = θ(τ).
If TypeC is defined for τ1, . . . , τn, we call τ1, . . . , τn an argument type for C. The semantic
operator SemC is a partial mapping defined for all tuples of infons i1, . . . , in of all argument
types τ1, . . . , τn for C to an infon of the corresponding expression type τ .

A language construct C takes a sequence of expressions e1, . . . , en as argument and yields
the compound expression C(e1, . . . , en). This determines the abstract syntax of expressions.
We often specify a concrete syntax for C (which often disagrees with the abstract syntax).

Let τ1, . . . , τn be an argument type for C yielding the expresson type τ . Then for well-typed
expressions e1, . . . , en of respectively types τ1, . . . , τn, the (abstract) compound expression
C(e1, . . . , en) is well-typed and of type τ . Some language constructs are polymorphic and
apply to expressions of many types. Others have unique type for each argument.

I Example 18. The tupling operator TUP is a polymorphic language construct that maps ex-
pressions e1, . . . , en of arbitrary types τ1, . . . , τn to the compound expression TUP(e1, . . . , en)
of type τ1 × · · · × τn. The concrete syntax is (e1, . . . , en).

The conjunction ∧ maps expressions e1, e2 of type BOOL to ∧(e1, e2) of type BOOL. The
concrete syntax is e1 ∧ e2.

The set of language constructs of a logic L together with a vocabulary Σ uniquely
determines the set ExpLΣ of well-typed expressions over Σ, as well as a function TypeL :
ExpLΣ → T(Σ). Formally, consider the set of (finite) labeled trees with nodes labeled by
language constructs of L and symbols of Σ. Within this set, the function TypeL is defined
by induction on the structure of expressions

TypeL(σ) = τ if σ ∈ Σ is a symbol of type τ ;
TypeL(C(e1, . . . , en)) = TypeC(TypeL(e1), . . . , T ypeL(en)).

This mapping TypeL is a partial function, the domain of which is exactly ExpLΣ.
Furthermore, the set of language constructs of L determines for each well-typed expression

e ∈ ExpLΣ of type τ a unique infon SemL(e) of that type. The function SemL is defined by
induction on the structure of expressions by the following equation:

SemL(σ) = iσ if σ ∈ Σ;
SemL(C(e1, . . . , en)) = SemC(SemL(e1), . . . , SemL(en)).

This property warrants a strong form of Frege’s compositionality principle.
We call a logic substitution closed if every expression of some type may occur at any

argument position of that type. E.g., propositional logic and first order logic are substitution
closed, but CNF is not due to the syntactical restrictions on the format of CNF formulas.

4.2.1 Simply typed lambda calculus with infon semantics
Below, we introduce a concrete substitution closed logic L with a type closed type system.
We specify the main language constructs.

TUP(e1, . . . , en):
concrete syntax is (e1, . . . , en);
typing rule: for arguments of types τ1, . . . , τn respectively, the compound expression is
of type τ1 × · · · × τn;

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:9

SemTUP maps finite tuples ī to the infon λI ∈ S(Σ) : (i1(I), . . . , in(I)).
APP (e, e1):

concrete syntax e(e1);
typing rule: for arguments of type τ1 → τ, τ1, the expression is of type τ ;
SemAPP : maps well-typed infons i, i1 to λI ∈ S(Σ) : i(I)(i1(I)).

Lambda(σ̄, e): here σ̄ is a finite sequence σ1, . . . , σn of symbols (not expressions);
concrete syntax λσ1 . . . σn : e; if e is Boolean, then {σ1 . . . σn : e};
typing rule: if the symbols σ1, . . . , σn are of types τ1, . . . , τn and the second argument
is of type τ , the expression is of type (τ1 × · · · × τn)→ τ ;
SemLambda maps an Σ ∪ {σ1, . . . , σn}-infon i of type τ to the Σ-infon λI ∈ S(Σ) : FI ,
where FI is the function λx̄ ∈ τ1I × · · · × τnI : i(I[σ̄ : x̄]).

Equality, connectives and quantifiers are introduced using interpreted symbols, symbols
with a fixed interpretation in each structure.

The logical symbols ∧,∨ : BOOL × BOOL → BOOL and ¬ : BOOL → BOOL have the
standard Boolean functions as interpretations in every structure.

Quantifiers and equality are polymorphic. We introduce instantiations of them for
all types τ . For every type τ , ∀τ ,∃τ are symbols of type (τ → BOOL) → BOOL. For
concrete syntax, for ∀τ (Lambda(σ, e)) with e a Boolean expression and σ : τ , we write
∀σ : e (we dropped the underscore from ∀τ since τ is the type of σ). It also corresponds
to a quantified set comprehension ∀τ ({σ : ϕ}). In any structure I, ∀τ I is the Boolean
function λX ∈ (τ → BOOL)I : (X = τ I) that maps a set X with elements of type τ
to t if X contains all elements of this type in I. Likewise, ∃τ I is the Boolean function
λX ∈ (τ → BOOL)I : (X = ∅).

Equality is a polymorphic interpreted predicate. For each τ , introduce a symbol =τ

of type τ × τ → BOOL. The concrete syntax is e = e1. Its interpretation in an arbitrary
structure I is the identity relation of type τ I .

Likewise, standard aggregate functions such as cardinality and sum are introduced as
interpreted higher order Boolean functions. E.g., we introduce the interpreted symbol

Cardτ : ((τ → BOOL)×NAT)→ BOOL

interpreted in each structure I as the function

Cardτ
I : ((τ → BOOL)I × N)→ Two : (S, n) 7→ (#(S) = n)).

We have chosen here to define Cardτ as a binary predicate symbol rather than as a unary
function, because it is a partial function defined only on finite sets and our logic is not
equipped for partial functions.

4.3 The definition construct DEF for higher order and nested
definitions

So far, we have defined typed lambda calculus under an infon semantics. In this section,
we extend the language with higher order versions of definitions as in the logic FO(ID).
There, definitions are conventionally written as finite set of rules ∀σ̄(P (σ̄) ← ϕ) where
P : (τ̄ → BOOL) is a predicate symbol, σ̄ : τ̄ a (sequence of) symbol(s), and ϕ a Boolean
expression. E.g.,

ICLP 2016 TCs

14:10 A Compositional Typed Higher-Order Logic with Definitions

Listing 1 The transitive closure of G.
{
∀x ∀y: Reach(x ,y)← G(x ,y).
∀x ∀z: Reach(x ,z)← G(x ,y)∧ Reach(y ,z).
}

In the abstract syntax, a rule ∀σ̄(P (σ̄)← ϕ) will be represented as a pair (P, {σ̄ : ϕ}).
In general, an abstract expression of the definition construct DEF is of the form

DEF (P̄ , ē) where P̄ is a finite sequence (P1, . . . , Pn) (n > 0) of predicate symbols and
ē an equally long sequence of expressions. We write (P, e) ∈ ∆ to denote that for some
i ≤ n, Pi = P and ei = e. Let DP (∆) be {P1, . . . , Pn}, the set of defined symbols of ∆. It is
possible that the same symbol P has multiple rules in ∆ (as in the above example). Below,
we use the mathematical variable ∆ to denote definition expressions.

For the concrete syntax, DEF (P̄ , ē) represents a definition with n rules corresponding
to the pairs (Pi, ei). If ei is the set comprehension {σ̄ : ϕ}, the corresponding rule in
concrete syntax is ∀σ̄(P (σ̄)← ϕ).
Due to the substitution closedness of the logic, new abstract rules are allowed. E.g.,
(Reach,G) is an abstract representation that is equivalent to the first rule in the Reach
example, and it is an alternative way to represent the base case of the reachability relation.
Typing rule: if for each i ∈ [1, n], Pi, ei are of the same type τi → BOOL then the
definition expression is of type BOOL. It follows that the value of a definition in a
structure is true or false. Note that defined symbols are predicate symbols.
SemDEF : this operator maps tuples ((P1, . . . , Pn), (i1, . . . , in)) where each ii is an infon
of type τi to an infon i of type BOOL. This operator will be applied to the infons ii of
the expressions ei. To define the infon i from the input, we construct for each I ∈ S(Σ)
the immediate consequence operator ΓI∆.
The operator ΓI∆ is an operator on AssignIDP (∆), the lattice of DP (∆)-assignments in I.
Note that for a rule (P, e) ∈ D, the value eI of e in a structure I is exactly the set that this
rule produces for P in I. The total produced value for P is then obtained by taking the
union of all rules defining P . Formally, for each P ∈ DP (∆), let INFP = {ii | Pi = P}.
That is, INFP is the set of infons amongst i1, . . . , in that correspond to rules with P in
the head. Then ΓI∆ maps an assignment A ∈ AssignIDP to an assignment B such that
for each P ∈ DP :

PB = lub≤({ii(I[A]) | ii ∈ INFP }

That is, PB is the union of what each rule of P produces in the structure I[A].
The operator ΓI∆ is well-defined, and indeed, it is the immediate consequence operator of
∆ in structure I. This is a lattice operator on the lattice of assignments of the defined
symbols DP (∆) in I. Consequently, this operator will have an ultimate well-founded
fixpoint UWF I∆, the well-founded fixpoint of the ultimate approximator dΓI∆e. This
fixpoint may be exact or not. We define the truth value ∆I of ∆ in I as (I = UWF I∆),
that is, ∆I = t if I is the exact ultimate well-founded fixpoint of the operator, and ∆I = f
otherwise. The infon SemL(∆) is the Boolean infon λI ∈ S(Σ) : (I = UWF I∆).

The semantic operator SemL associates with each expression an infon, and with each
theory T a Boolean infon i. This induces a model semantics, in particularM |= T if i(M) = t.

I Theorem 19. The logic FO(ID) equipped with the ultimate well-founded semantics for
definitions is a fragment of L. That is, any theory T of FO(ID) corresponds syntactically to
one T ′ of L and T and T ′ have the same models (taking the ultimate well-founded semantics
for definitions).

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:11

4.4 Applications for Higher Order Definitions
Higher order definitions are natural representations for some complex concepts. A standard
example is a definition of winning positions in two-player games as can be seen in Listing 2.
This definition of win and lose is a monotone second order definition that uses simultaneous
definition and has a two-valued well-founded model.

Listing 2 cur is a winning position in a two-player game.
{
∀cur ∀Move ∀IsWon: win(cur , Move , IsWon) ← IsWon(cur) ∨
∃ nxt : Move(cur ,nxt) ∧ lose(nxt ,Move ,IsWon).

∀cur ∀Move ∀IsWon: lose(cur ,Move , IsWon) ← ¬IsWon(cur) ∧
∀ nxt : Move(cur ,nxt) ⇒ win(nxt ,Move ,IsWon).

}

4.5 Templates
In [5], a subclass of higher order definitions were defined as templates. These templates allow
us to define an abstract concept in an isolation, so that it can be reused multiple times. This
prevents code duplication and results in more readable specifications. In the same context,
we identified applications for nested definitions. An example of this can be seen in Listing 3.
In that example a binary higher order predicate tc is defined, such that tc(P,Q) holds iff Q is
defined as the transitive closure of P.

Listing 3 This template TC expresses that Q is the transitive closure of P.
{
∀Q ∀P: tc(P ,Q) ←

{∀x ∀y: Q(x ,y) ← P(x ,y) ∨(∃ z: Q(x ,z)∧Q(z ,y))}.
}

Note that using this definition of tc, the definition in Listing 1 can simply be replaced
with the atom tc(Reach,G). This demonstrates the abstraction power of these definitions.

4.6 Graph Morphisms
A labeled graph is a tuple of a set of vertices, a set of edges between these vertices, and
a labeling function on these vertices. Many applications work with labeled graphs: one
example is the graph mining problem [12], which requires the notion of homomorphisms
and isomorphisms between graphs. As other applications require these same concepts, these
concepts lend themselves to a definition in isolation.

To achieve this, we first define the graph type as an alias for the higher order type
P(node)×P(node× node)×P(node→ label) , where the components of the triple are called
Vertex, Edge and Label respectively. To define when two graphs are homomorph and isomorph,
we first define a helper predicate homomorphism. This predicate takes a function and two
graphs, and is true when this function represents a homomorphism from the first graph to the
second. We then define homomorph and isomorph in terms of the homomorphism predicate.
In Listing 4, these higher order predicates are defined using higher order definitions. The
higher order arguments of these definitions are either decomposed into the different tuple
elements using matching (Line 2) or accepted as a single entity (Line 6).

ICLP 2016 TCs

14:12 A Compositional Typed Higher-Order Logic with Definitions

Listing 4 Defining homomorph and isomorph.
1 {
2 homomorphism(F, (V1, Edge1, Label1), (V2, Edge2, Label2)) ←
3 (∀ x, y [V1] : Edge1(x, y) =⇒ Edge2(F(x), F(y))) ∧
4 (∀ x : Label1(x) = Label2(F(x)).
5
6 homomorph(G1,G2) ←
7 ∃ F [G1.Vertex:G2.Vertex] : homomorphism(F, G1, G2).
8
9 isomorph(G1, G2) ←

10
(
∃ F [G1.Vertex:G2.Vertex], G [G2.Vertex:G1.Vertex] :

11 (∀ x [G1.Vertex] : G(F(x)) = x) ∧
12 homomorphism(F, G1, G2) ∧ homomorphism(G, G2, G1)

)
.

13 }

5 Conclusion

We defined a logic integrating typed higher order lambda calculus with definitions. The
logic is type closed and substitution closed, allows definitions of higher order predicates and
nested definitions. The logic satisfies a strong form of Frege’s compositionality principle.
The principles that we used allow also to define rules under other semantics (e.g., stable
semantics). For future work, one question is how to define standard well-founded semantics for
definitions in L rather than the ultimate well-founded semantics. It is well-known that both
semantics often coincide, e.g., always when the standard well-founded model is two-valued,
which is frequently the case when rule sets are intended to express definitions of concepts.
Nevertheless, standard well-founded semantics is computationally cheaper and seems easier to
implement. This provides a good motivation. Another question is how to extend definitions
for arbitrary symbols, that is, for functions.

References
1 H. Abramson and H. Rogers. Meta-programming in logic programming. MIT Press, 1989.
2 Jon Barwise and John Etchemendy. Information, infons, and inference. Situation theory

and its applications, 1(22), 1990.
3 Bart Bogaerts. Groundedness in logics with a fixpoint semantics. PhD thesis, Informat-

ics Section, Department of Computer Science, Faculty of Engineering Science, June 2015.
Denecker, Marc (supervisor), Vennekens, Joost and Van den Bussche, Jan (cosupervisors).
URL: https://lirias.kuleuven.be/handle/123456789/496543.

4 Weidong Chen, Michael Kifer, and David S Warren. Hilog: A foundation for higher-order
logic programming. The Journal of Logic Programming, 15(3):187–230, 1993.

5 Ingmar Dasseville, Matthias van der Hallen, Gerda Janssens, and Marc Denecker. Semantics
of templates in a compositional framework for building logics. TPLP, 15(4-5):681–695, 2015.
doi:10.1017/S1471068415000319.

6 Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, stable op-
erators, well-founded fixpoints and applications in nonmonotonic reasoning. In Jack
Minker, editor, Logic-Based Artificial Intelligence, volume 597 of The Springer Interna-
tional Series in Engineering and Computer Science, pages 127–144. Springer US, 2000.
doi:10.1007/978-1-4615-1567-8_6.

7 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log., 9(2):14:1–14:52, April 2008. doi:10.1145/1342991.1342998.

https://lirias.kuleuven.be/handle/123456789/496543
http://dx.doi.org/10.1017/S1471068415000319
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1145/1342991.1342998

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:13

8 Keith Devlin. Logic and information. Cambridge University Press, 1991.
9 Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of recursive

aggregates in answer set programming. Artif. Intell., 175(1):278–298, 2011. doi:10.1016/
j.artint.2010.04.002.

10 Paolo Ferraris. Answer sets for propositional theories. In Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 119–
131, 2005. doi:10.1007/11546207_10.

11 Michael Gelfond and Yuanlin Zhang. Vicious circle principle and logic programs with
aggregates. TPLP, 14(4-5):587–601, 2014. doi:10.1017/S1471068414000222.

12 Tias Guns. Declarative pattern mining using constraint programming. Constraints,
20(4):492–493, 2015.

13 Yuri Gurevich and Itay Neeman. Logic of infons: The propositional case. ACM Trans.
Comput. Log., 12(2):9, 2011. doi:10.1145/1877714.1877715.

14 Jerry R Hobbs and Stanley J Rosenschein. Making computational sense of montague’s
intensional logic. Artificial Intelligence, 9(3):287–306, 1977.

15 David B. Kemp and Peter J. Stuckey. Semantics of logic programs with aggregates. In
Vijay A. Saraswat and Kazunori Ueda, editors, ISLP, pages 387–401. MIT Press, 1991.

16 Javier Leach, Susana Nieva, and Mario Rodríguez-Artalejo. Constraint logic programming
with hereditary harrop formula. CoRR, cs.PL/0404053, 2004.

17 Vladimir Lifschitz. Answer set planning. In Danny De Schreye, editor, Logic Program-
ming: The 1999 International Conference, Las Cruces, New Mexico, USA, November 29 –
December 4, 1999, pages 23–37. MIT Press, 1999.

18 Victor Marek and Mirosław Truszczyński. Stable models and an alternative logic program-
ming paradigm. In Krzysztof R. Apt, Victor Marek, Mirosław Truszczyński, and David S.
Warren, editors, The Logic Programming Paradigm: A 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999. URL: http://arxiv.org/abs/cs.LO/9809032.

19 Gopalan Nadathur and Dale Miller. An overview of LambdaProlog. In Fifth International
Conference and Symposium on Logic Programming. MIT Press, 1988.

20 Ilkka Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999. doi:10.1023/A:
1018930122475.

21 Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and stable se-
mantics of logic programs with aggregates. TPLP, 7(3):301–353, 2007. doi:10.1017/
S1471068406002973.

22 Tran Cao Son, Enrico Pontelli, and Islam Elkabani. An unfolding-based semantics for logic
programming with aggregates. CoRR, abs/cs/0605038, 2006. URL: http://arxiv.org/
abs/cs/0605038.

23 Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-
language modelling of search problems. In Cesare Tinelli and Viorica Sofronie-Stokkermans,
editors, Frontiers of Combining Systems, 8th International Symposium, FroCoS 2011, Saar-
brücken, Germany, October 5-7, 2011. Proceedings, volume 6989 of Lecture Notes in Com-
puter Science, pages 259–274. Springer, 2011. doi:10.1007/978-3-642-24364-6_18.

24 Shahab Tasharrofi and Eugenia Ternovska. Three semantics for modular systems. CoRR,
abs/1405.1229, 2014. URL: http://arxiv.org/abs/1405.1229.

25 Allen Van Gelder. The well-founded semantics of aggregation. In PODS, pages 127–138.
ACM Press, 1992. doi:10.1145/137097.137854.

ICLP 2016 TCs

http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1007/11546207_10
http://dx.doi.org/10.1017/S1471068414000222
http://dx.doi.org/10.1145/1877714.1877715
http://arxiv.org/abs/cs.LO/9809032
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1017/S1471068406002973
http://dx.doi.org/10.1017/S1471068406002973
http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038
http://dx.doi.org/10.1007/978-3-642-24364-6_18
http://arxiv.org/abs/1405.1229
http://dx.doi.org/10.1145/137097.137854

	Introduction
	Related Work
	Logics
	Infons

	Preliminaries
	Cartesian product, powerset, product, pointwise extension and lifting
	(Approximation) Fixpoint Theory

	A typed higher order logic L with (nested) definitions
	Type system
	Language constructs
	Simply typed lambda calculus with infon semantics

	The definition construct DEF for higher order and nested definitions
	Applications for Higher Order Definitions
	Templates
	Graph Morphisms

	Conclusion

