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Abstract 

Cone-beam computed tomography (CT) with circular scanning trajectory is known to suffer from so called cone-beam 

artifacts. Cone-beam artifacts are errors in the reconstructed volume due to incomplete radon data. These artifacts increase with 

increasing distance of the reconstructed plane from the midplane, i.e. the plane containing the X-ray source. Theoretically, the 

midplane represents the ideal data set for tomographic reconstruction as the entire set of line integrals, i.e. the X-ray 

attenuation trajectories, are parallel to the plane they are used to reconstruct. The angle between the reconstructed plane and the 

line integrals used to reconstruct it increases with increasing distance from the midplane. Cone-beam artifacts generally result 

in a degradation of tomographically reconstructed edges, subsequently affecting dimensional measurements. Appearance of 

cone-beam artifacts depends on the position and orientation of the object under investigation in the measurement volume.  

 

In this paper we propose an algorithm that takes as an input the triangulated surface, e.g. a CAD model, of a scanned object 

and predicts where the object's surface cannot be reconstructed properly due to cone-beam artifacts. We apply Tuy's data 

sufficiency condition to define the analytical relationship between each surface triangle in the object model and the ability to 

reconstruct it using circular scan CT. The output of the proposed algorithm is the object position and orientation that reduces 

the effects of cone beam artifacts. The proposed algorithm is highly parallelizable and provides computational benefits when 

compared to conventional CT simulation methods. Operators of CT can use the proposed algorithm to reduce the influence of 

cone-beam artifacts on measurement results. 
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1  Introduction 

Acquisition of CT data with a cone-shaped X-ray beam and a 2D detector is generally faster when compared to, for example, a 

fan-shaped beam and a 1D detector. For industrial CT systems, the object is placed between the X-ray source and the detector 

on the computer-controlled rotation stage and 2D radiographs are acquired for various rotation positions, typically covering a 

full 360º revolution, of the object. The set of 2D radiographs and the corresponding object orientation are used to 

tomographically reconstruct the object as a 3D attenuation map. A common algorithm used for tomographic reconstruction 

from 2D radiographs is the Feldkamp-Davis-Kress (FDK) method. Image segmentation based on the difference in the 

attenuation values is used to extract surfaces, i.e. object boundaries, and perform dimensional quality control of the object 

under investigation. From a dimensional metrology point of view, an object’s dimensions can be fully defined by its surface. 

Consequently, the accurate reconstruction of an object’s surface is critical for performing accurate dimensional measurements.  

 

Cone-beam artifacts are inherent to the scanning geometry of cone-beam CT with circular trajectory due to violation of the 

data sufficiency condition formulated by Tuy in [1]. According to Tuy's condition, accurate reconstruction of a plane requires 

that the plane contains the X-ray focal spot point. Tuy's condition can be illustrated as follows. Let 𝒙  be a point in the cone-

beam CT measurement volume and 𝒔 be the X-ray focal spot at a given rotation position 𝛼 of the object. Depending on the 

position of the point in the volume, there will be a set of planes which cannot be measured with the circular scanning geometry 

(figure 1a). Non-measurable planes are defined by the set of normals contained within 𝚮.  

 
(a)       (b) 

Figure 1. (a) Schematic illustration of geometrical restrictions in reconstructing certain surfaces using circular cone-beam CT resulting in 

cone-beam artifacts. For better visualization, the illustration is restricted to one plane. The non-measurable plane is shown as a dashed red 

line. A set of non-measurable plane normals for point 𝒙 is shown in shaded region  𝚮. Figure is adapted from reference [2]. (b) Illustration 

of the influence of cone-beam artifacts on the 3D imaging of a sphere. Sphere silhouettes are shown in grey. Surfaces that cannot be 

accurately reconstructed are shown in red at the top and bottom of the sphere. 
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2  Method 

2.1  Model 

Let us start by considering a single-material object 𝑓(𝒃), which is a collection of all points 𝒃 = (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑧) contained within a 

surface 𝒮, such that 𝑓(𝒃) = 1 if point 𝒃 is inside 𝒮and 𝑓(𝒃) = 0 otherwise. For a given rotation position 𝛼, the ideal projection 

of the object will provide us with a contour 𝒞 that encloses all non-background points on the projection, i.e. the projection 

support. The contour 𝒞 is built by the set of cone-beam X-rays that are tangent to object's surface. Consequently, knowledge of 

this contour is equivalent to knowledge of the object’s silhouette 𝒟 at this rotation position, i.e. the cross-sectional edge traced 

by a tangent cone, the vertex of which is the X-ray focal spot (figure 1b). Tomographic reconstruction of the surface 𝒮 can be 

understood as the collection of silhouettes 𝒟𝛼 from all rotation angles 𝛼 ∈ [0,360°]. Accurate surface reconstruction requires 

that, for every surface point 𝒑 ∈ 𝒮, there is a corresponding contour point 𝒖 ∈ 𝒞; otherwise, the surface in 𝒑 ∉ 𝒟𝛼 , ∀𝛼 and the 

surface in 𝒑 cannot be accurately reconstructed. Point 𝒑 will have a corresponding contour point 𝒖 if the surface normal 𝒏𝒑  ∉

𝚮, i.e. if there is any rotation position 𝛼 for which the X-ray originating from source 𝒔 is tangent to the surface at 𝒑. Let us 

denote the position of the X-ray focal spot as 𝒔 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) , source-to-rotation axis distance as 𝐿, and the surface point 

as 𝒑 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) with corresponding surface normal 𝒏 = (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧, ). A rotation of 𝛼 about the rotation axis 𝑌 is given by 

the following matrix: 

 

𝑹𝜶 =  [
cos 𝛼 0 − sin 𝛼

0 1 0
sin 𝛼 0 cos 𝛼

]. (1) 

 

The rotation matrix in equation (1) is left multiplied into 𝒑 to produce a new rotated coordinate position 𝒑𝜶 as follows. 

 

𝒑𝜶 =  𝑹𝜶𝒑. (2) 

 

The normal vector 𝒏𝜶 at point 𝒑𝜶 in the rotated surface point is then given by equation (3). 

 

𝒏𝜶 =  𝑹𝜶𝒏. (3) 

 

The tangent planes passing through point 𝒑𝜶 and focal point 𝒔 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) can be parameterized as follows. 

 

𝑛𝑥 (𝑝𝑥 −  𝑠𝑥)  +  𝑛𝑦 (𝑝𝑦 − 𝑠𝑦)  + 𝑛𝑧 (𝑝𝑧 − 𝑠𝑧)  =  0. (4) 

 
Substituting equations (2) and (3) into equation (4), we deduce the parameterized tangent plane for 𝒑𝜶 as follows: 

 

(𝑛𝑥 cos 𝛼 + 𝑛𝑧 sin 𝛼)(𝑝𝑥 cos 𝛼 + 𝑝𝑧 sin 𝛼 − 𝑠𝑥) + 𝑛𝑦(𝑝𝑦 − 𝑠𝑦) + 

+(−𝑛𝑥 sin 𝛼 + 𝑛𝑧 cos 𝛼)(−𝑝𝑥 sin 𝛼 + 𝑝𝑧 cos 𝛼 + 𝐿 − 𝑠𝑧) = 0. 
(5) 

 

Rearranging the terms of equation (5) provides the following expression. 

 

𝑝𝑥  𝑛𝑥 (sin2 𝛼 + cos2 𝛼) + 𝑝𝑧  𝑛𝑧 (sin2 𝛼 + cos2 𝛼) − 𝑠𝑥  𝑛𝑥 cos 𝛼 − 𝑠𝑥  𝑛𝑧 sin 𝛼 + 𝑛𝑦 (𝑝𝑦 − 𝑠𝑦) + 

+𝑠𝑧  𝑛𝑥 sin 𝛼 − 𝑠𝑧  𝑛𝑧 cos 𝛼 − 𝐿 𝑛𝑥 sin 𝛼 + 𝐿 𝑛𝑧 cos 𝛼 = 0. 
(6) 

 
Using trigonometric relation (sin2 𝛼 + cos2 𝛼) = 1, equation (6) reduces to equation (7). 

 

𝑝𝑥  𝑛𝑥 + 𝑝𝑧 𝑛𝑧  − 𝑠𝑥  𝑛𝑥 cos 𝛼 − 𝑠𝑥  𝑛𝑧 sin 𝛼 + 𝑛𝑦 (𝑝𝑦 − 𝑠𝑦) + 𝑠𝑧  𝑛𝑥 sin 𝛼 − 𝑠𝑧 𝑛𝑧 cos 𝛼 − 𝐿 𝑛𝑥 sin 𝛼 + 𝐿 𝑛𝑧 cos 𝛼 = 0. (7) 

 

We can rewrite equation (7) as: 

 

𝑎 sin 𝛼 + 𝑏 cos 𝛼 = 𝑐, (8) 

 

where 

 

𝑎 = 𝑠𝑥  𝑛𝑧 − 𝑠𝑧 𝑛𝑥 + 𝐿 𝑛𝑥, 
𝑏 = 𝑠𝑥  𝑛𝑥 + 𝑠𝑧 𝑛𝑧 − 𝐿 𝑛𝑧, 

𝑐 = 𝑝𝑥  𝑛𝑥 + 𝑛𝑦 (𝑝𝑦 − 𝑠𝑦) + 𝑝𝑧  𝑛𝑧 . 
(9) 

 

Solving equation (8) for 𝛼 gives us: 
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𝛼 =  ± cos−1
𝑐

√𝑎2 + 𝑏2
+ tan−1

𝑏

𝑎
 (10) 

 

The cos−1 term is restricted to the domain [−1,1]. Consequently, equation (10) has a solution only if: 

 

−1 ≤
𝑐

√𝑎2 + 𝑏2
≤ 1, (11) 

 

which simplifies to: 

 

𝑎2 + 𝑏2 ≥ 𝑐2. (12) 

 

Hence, point 𝒑 with normal 𝒏 will have the corresponding contour point 𝒖 at rotation position 𝛼 only if equation (13) is 

satisfied: 

 

(𝑠𝑥  𝑛𝑧 − 𝑠𝑧 𝑛𝑥 + 𝐿 𝑛𝑥)2 + (𝑠𝑥  𝑛𝑧 − 𝑠𝑧 𝑛𝑥 + 𝐿 𝑛𝑥)2 ≥ (𝑝𝑥  𝑛𝑥 + 𝑛𝑦 (𝑝𝑦 − 𝑠𝑦) + 𝑝𝑧 𝑛𝑧 )
2
 (13) 

 

2.2  Implementation 

We developed a simulation tool that takes as input an STL file and, based on the method described in previous section, 

determines which triangles in the STL mesh satisfy equation (13) for a given rotation position 𝛼. The triangles that do not 

satisfy condition (13) are identified and the surface area that cannot be properly reconstructed is calculated. We use color 

mapping to show which triangles cannot be reconstructed. In the general case, there exist multiple object orientations where 

cone-beam artifacts will have insignificant influence. The simulation tool allows the CT system operator to specify an initial 

object orientation by way of exact Euler angles or a range of these angles. From these initial values, the simulation tool finds 

the set of object orientations that minimize the surface area that cannot be properly reconstructed.  

 

3  Results 

In this section we demonstrate some capabilities of developed simulation tool with a case study.To evaluate proposed method, 

we simulated several CT scans of the part shown in figure 2 in different orientations. High resolution mesh of 4300748 was 

used for simulations and subsequent calculations. We selected 12 orientations of the test object (figure 3). For simplicity, the 

object was rotated about one axis (horizontal axis parallel to the detector) with 10° steps; the other two other rotation angles 

were fixed. 

 

    
Figure 2. Test object. 
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a) 0° b) 10° c) 20° 

 
 

 

d) 30° e) 40° f) 50° 

   
g) 60° h) 70° i) 80° 

   
j) 90° k) 100° l) 110° 

Figure 3. Orientations of test object. Surface triangles that can be properly reconstructed are shown in green, while the surfaces that cannot 

be properly reconstructed are shown in red.  
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For each orientation, a set of radiographs was generated using in-house simulation software with following parameters: 

 Source-to detector distance 1060 mm, 

 Magnification 11, 

 Detector pixel size 0.2 𝜇𝑚, 

 Detector size 2000 x 2000 pixels, 

 Angular step 0.1°, 

 Monochromatic point-like X-ray source. 

 No noise or blur was added to simulated radiographs. 

Reconstruction was performed in Nikon CT PRO software. No additional corrections were applied to the datasets. Surface 

determination with sub-voxel resolution, visualization, and measurements were performed in VGStudio MAX 

(VolumeGraphics GmbH, Germany).  

 

3.1 Nominal-actual comparison 

Different orientations of the object in the measurement volume are illustrated in figure 3. Surface triangles that can be properly 

reconstructed are shown in green, while the surfaces that cannot be properly reconstructed are shown in red. For views c-l 

percentage of surface affected by cone-beam artifact is quite low. CT system operator can rotate and zoom-in to check which 

features are affected by artifact. Coarse mesh was used for visualization only. 

 

For each orientation, we compared output of full CT simulation (extracted surface) against the STL file. In figure 4 we show 

results of nominal-actual comparison for some orientations of the test object. In figure 4a, top row, results of nominal-actual 

comparison for the initial orientation (0°) of the object are shown. One can see that, all planes suffer significantly from cone-

beam artifacts; in particular, the top and bottom planes appear to be incomplete. Cone-beam artifacts are also evident on the 

inside of the top and bottom shafts (shown as thin blue stripes on the right side of figure 4a), which are captured by the output 

of our proposed method (figure 4a, bottom row). In figure 4b we show the 12
th

 orientation of the object, which corresponds to 

the 110° rotation. On the left side of figure 4b, only holes C5 - C7 are affected by cone-beam artifacts; this observation is 

consistent with the output of proposed method (figure 4b, right).  

 

It is generally stated that uncertainty in surface determination with sub-voxel resolution is within 1/10 of voxel value [3]. In 

table 1, we compare the results of the nominal-actual comparison and the output of proposed method. The cumulative 

‘corrupted’ surface area in the nominal-actual comparison is shown for deviations of more than 1/10 of the voxel size. Our 

proposed method tends to slightly underestimate the percentage of corrupted surface. Authors believe that cone-beam artifacts 

are correlated with other error sources such as partial volume effects and limited precision in CT simulation. 

 

Orientation 

Output of proposed method, 

number of corrupted 

triangles 

Output of proposed method, 

% of total surface area 

corrupted by cone-beam 

artifact 

Results of nominal-actual 

comparison in VGStudio 

MAX, % of total surface area 

with deviations more than 

1/10 of voxel 

0° 608354 23.24 25 

10° 375799 15.15 19 

20° 10815 0.03 2 

30° 7567 0.02 2 

40° 262 0.00 2 

50° 128 0.00 1 

60° 50 0.00 1 

70° 9 0.00 1 

80° 0 0.00 1 

90° 20 0.00 2 

100° 1222 0.01 2 

110° 20138 0.26 95 

 
Table 1. Comparison of results of nominal/ actual comparison and output of proposed method. 
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a) 0° 

   
b) 110° 

Figure 4. Results of nominal-actual comparison. 
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3.2  Dimensional measurements 

For each orientation of the object, form errors of the following features (shown in figure 2) were measured using the minimum-

zone method [4]:  

 8 holes numbered C1 – C8; holes C1-C4 have nominal radius 2.125 mm, while holes C5-C8 have 2 mm radius, 

 16 holes H1 – H16 with nominal radius 0.475 mm, 

 8 parallel planes P1 – P8.  

 

Figure 5 shows form error for the measured features expressed as percent of voxel size. For orientations 0° − 20°, where cone-

beam artifact is most pronounced, form error is very high (up to several voxels). For orientations  30° − 100°, form error stays 

within 20% of voxel size for the holes and 25% for the planes. In the 110° orientation, only holes C5 - C8 are affected (figure 

5a), which also agrees with output of proposed method (figure 4b). 

 

Cone-beam artifacts increase with increasing distance from the mid-plane, i.e. with bigger cone opening angle. Consequently, 

in the initial orientation of the object (0°), the top and bottom holes will be affected more than the holes located closer to the 

center of the object  e. In figure 6, we show absolute error in hole radius for the holes C1-C8 and H1-H16. Error in radius 

strongly correlates to the amount of surface corrupted in the specific feature. That is, for the top and bottom holes (C1, C4, C5 

and C8), where cone-beam artifacts are more pronounced, error is very high for the first two object orientations. For the holes 

closer to the object center (C2, C3, C6 and C7), the error in the first two object orientations does not exceed errors observed in 

the other orientations. Similar observations were made for holes H1-H16. However, since holes H1-H16 are not as distributed 

along the vertical direction as C1-C8, i.e. the holes H1-H16 occupy smaller cone opening angles, the magnitude of observed 

errors is smaller. 

 
a) Form error for holes C1 - C8 

 

 
b) Form error for holes H1 - H8 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100 110

%
 o

f 
vo

xe
l s

iz
e

 

Orientation 

C1

C2

C3

C4

C5

C6

C7

C8

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100 110

%
 o

f 
vo

xe
l s

iz
e

 

Orientation 

H1

H2

H3

H4

H5

H6

H7

H8



7th Conference on Industrial Computed Tomography, Leuven, Belgium (iCT 2017) 

www.iCT2017.org 

 
c) Form error for holes H9 - H16 

 

 
d) Form error for planes P1 - P8 

Figure 5. Form error measurement results. 

 

 
a) Absolute error in radius for holes C1-C8 
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b) Absolute error in radius for holes H1-H8. 

 

 
c) Absolute error in radius for holes H9-H16 

Figure 6. Radius measurement results 

4  Conclusions 

Cone-beam artifacts can significantly affect the quality of CT reconstructed surfaces. Since appearance of these artifacts 

depends on the object itself, general correction procedure cannot be applied. However, the influence of the cone-beam artifacts 

can be significantly reduced if the object is appropriately oriented. In this paper, we present a method to evaluate the influence 

of cone-beam artifacts on segmentation results. The method can be used for visualization of cone-beam artifacts on surface 

reconstruction and for determining the optimal orientation of the object to minimize the presence of such artifacts. Since the 

algorithm used to implement method evaluates every triangle separately, it is well suited for parallel processing. 
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