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ABSTRACT
Virtual sensors provide measurements for variables and parameters which are difficult to measure, based on a
small number of (preferably pragmatic) measurements in combination with a numerical model of the observed
system. This work presents a global virtual sensor to extract the full state of a mechatronic drivetrain based on a
system-level model and a Kalman filter. Sensor selection is performed based on an observability analysis and the
Kalman filter settings are based on a Monte-Carlo simulation. The virtual sensor is validated experimentally on a
mechatronic powertrain test setup.
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1. INTRODUCTION

In mechatronic applications, the measurement of all operational quantities of interest is practically unfeasible.
Virtual sensing combines a small number of preferably non-intrusive and cheap measurements to determine the
complete state of a numerical model describing the observed system [1].
Problem specific applications of virtual sensing or state estimation are discussed in a range of works. [2] applies an
extended Luenberger observer and [3] applies Kalman filtering with a range of different models, as discussed by
[3, 4, 5]. The observability of these models are in many cases investigated [2], [6]. Classically, virtual sensors have
been applied in applications with relatively large time constants, like bio reactors, and have more recently found
entry in the field of mecha(tro)nics which operate at much higher frequencies.
This work discusses the design and validation of a virtual sensor for a mechatronic drivetrain. The proposed ap-
proach exploits a multi-physical system-level model of the drivetrain which allows the integration of information
coming from electrical and mechanical sensors. Due to it’s low computational load, a nonlinear Kalman filtering
approach is used to combine the model and sensor information. A detailed observability analysis is performed to
not only determine the necessary sensors, but also the best sensors from a given set of possible sensors. Experi-
mental results are provided to investigate the accuracy of the resulting virtual sensor.

2. MECHATRONIC POWERTRAIN OVERVIEW

The global layout of the mechatronic powertrains considered in this work is shown in Fig. 1. This architecture was
proposed by [7] for a test-setup to validate virtual sensor approaches.
The powertrain consists of two induction motors interconnected by a cardanic shaft with nonlinear kinematics.
Since one motor can act as a variable load, the setup represents the global layout of many real-world machines.



Figure 1 – CAD-design and photo of mechatronic powertrain proposed by [7].

3. NON-LINEAR POWERTRAIN MODEL

The multiphysical system-level mechatronic drivetrain model consists of a mechanical and electric model which
are combined. Both models are discussed in the following sections.

3.1. Mechanical model
The cardan shaft consists of two Hooke’s joints, which are able to connect two non-coaxial shafts. The kinematic
relation between the rotation angle θ of the in- and outgoing axles (respectively a and b) for a shaft under a
deflection angle β is:

θb = arctan
(

tan(θa)

cos(β )

)
= fθ (θa(t),β ) . (1)

The kinematics of a cardan shaft with coplanar yokes is given by:

tanθ2 =
cosβ1tanθ1

cosβ2
. (2)

Consequently, the equality of the deflection angles β1 = β2 is a sufficient condition for a synchronous movement
at both ends of the cardan shaft, as discussed by [8].
A lumped parameter model (Fig. 2) is used to describe the dynamic torsional behavior of the mechanical transmis-
sion. The model considers lossless Hooke’s joints:

θ̇iTθi + θ̇ciTci = 0. (3)

Figure 2 – Basic lumped parameter, dynamic model of the mechanical part of the drivetrain.

The intermediate shaft of the dynamic model is flexible which results in loss of the synchronization. This is mod-
eled through a simple mass-spring relation, as shown in Fig. 2. The equations of motion for the flexible shaft model
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(
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(
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(
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)
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) cos(β2)

1− sin2(β2)cos2(θ2)
, (6)

with state vector x =
{

θm1 , θ̇m1 ,θ1, θ̇1,θ2, θ̇2,θm2 , θ̇m2

}T .
The non-linear behavior of the dynamic model is analyzed by exciting the system at input Tm1 with an odd-odd
multisine. Which excites the system at the frequency lines fl = 4k + 1 with k ∈ Z. Then it is possible to show
the odd and even nonlinearities as explained by amongst others [9]. Fig. 3 shows that the level of nonlinearity
increases with an increasing deflection angle β . Therefore, nonlinear behavior is expected to have an important
impact during the state estimations.
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Figure 3 – Measure of even ( ) and odd (· · · · · · ) nonlinearities together with the FRF with also odd nonlinearities
( ) for different deflection angles β of model 1. (4 β1 = β2 = 0°, ◦β1 = β2 = 10, + β1 = β2 = 20°)

3.2. Model induction motor
The induction motor is considered symmetric and without non-linear magnetic material behaviour. Furthermore,
higher order harmonics of the magnetomotive force and possible sloped bars are excluded from the model given
and elaborated by [10]. This results in the model equation:

ẋe = A(ωr)xe +Bu, (7)

where ωr equals the angular velocity of the rotor. The state vector xe of the electric motor equals {isd , isq, isrd , i
s
rq}T .

Furthermore, the equations of the induction motor are described in an arbitrary reference frame qd which rotates
at ω = 100π rad/s. Table 1 summarizes the parameters of the induction motor from the test rig.

3.3. Electro-mechanical system level model
The electric and mechanical models are coupled by concatenation of both sub-model states. The link between both
models is made by:



1. the electromagnetic torque Tem that drives the mechanical model:

Tem =
3
2

pLm
(
isqisrd− isd isrq

)
, (8)

with p the number of pole-pairs, Lm the main inductance and i the stator and rotor currents in a qd decom-
position1.

2. the angular velocity θ̇m2 from the mechanical model which equals the rotor speed ωr of the electric model.
This model can be employed in a system-level state-estimator which can act as a virtual sensor.

4. MODEL BASED ESTIMATOR

An estimator gives a stochastic estimate of the full state x of an observed system ΣO:{
ẋ(t) = f(x(t),u(t), t)
y(t) = h(x(t),u(t), t)

, (9)

given the inputs u and outputs y of this system. The equivalent discrete-time system of ΣO is given by{
x[k+1] = fd(x[k],u[k],k)
y[k] = hd(x[k],u[k],k)

. (10)

The virtual sensor in this work exploits the Unscented Kalman filter (UKF). This nonlinear Kalman filter propa-
gates the estimated state x̂, which is a random variable, through the (non-linear) system fd and measurement hd
equation of the system model by an unscented transformation (UT). The UT uses a set of 2n+ 1 sigma-points
Xi ∈ Rn: 

X0 = x̂
Xi = x̂+ξ

(√
P
)

:i
, i = 1, · · · ,n

Xi = x̂−ξ

(√
P
)

:i
, i = n+1, · · · ,2n

, (11)

where
(√

P
)

:i
is the ith column of the Cholesky decomposition of the dispersion matrix of the random variable.

The factor ξ is a scaling factor matching with the weighting factors. The sigma-points describe the argument (a
random variable) of a non-linear transformation. Each sigma-point is propagated through the (non-linear) system
in the UT and the image of all the sigma-points describes the image of a propagated random variable. The UKF
with the UT is discussed in detail in by [11], [12] and [13].
An optimal trade-off between the predictive model covariance (process noise) and the measurement covariance
(measurement noise) is key in Kalman-based estimator techniques. The true process noise, which consists of struc-
tural and parametric uncertainties for this mechatronic powertrain, is often not normally distributed [14]. Different
techniques exist to determine a good approximation of the process noise. The technique developed by [15] is
applied in a simplified form here.
The process noise w[k] is assumed to be symmetric, time invariant and fully resulting from parametric uncertainties
(even though input uncertainties will also have an influence in this application). A Monte Carlo simulation is
performed to approximate the covariance of the process noise Q. First of all, an arbitrary chosen normal distribution
with a variance of 1% of the parameter value is assigned to each parameter p j. Fifty random parameter sets are
constructed based on this distribution. One realization i for each parameter p j forms pi.

1·s represent a quantity transformed to the stator

Table 1 – Electrical parameters for the induction motor.

Stator •s Rotor •r
r [Ω] 0.250 0.341
Lσ [mH] 5.0 6.8
Lm [H] 0.2 0.2
p [/] 1 1



The process noise w[k] is determined at some time steps of a reference simulation by (12). The distribution of the
i values for an element of the vector w[k] is approximated with a normal distribution.

wi[k] = fd
(
x̂[k],u[k],pi)− fd (x̂[k],u[k],pnom) (12)

The variance of each element of w[k] for all the parameter cases i are the diagonal elements of Q[k], which are
shown in figure 4(a). Since the magnitude of Qii is relatively constant in function of time, the assumption of a time
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Figure 4 – Calculation of Q for an constantly loaded drivetrain
which changes the direction of motion.

invariant process noise covariance will not lead to large errors in this working condition. Other operating conditions
have been tested with similar results. Figure 4(b) shows the mean of Qii[k] and shows that states of the same type
of quantity (current, angular position or angular velocity) have a Qii of the same order of magnitude. Therefore
Qii is subdivided into three groups with the same process noise covariance, namely Qi = 10−6, Qθ = 10−5 and
Q

θ̇
= 10−14. It should be noted that these values depend on the arbitrary assumed variance of the parameters.

However, this analysis provides insight in the mutual relationship between the process noise of the different state.
Experimental tests have moreover shown that the UKF is much more robust with respect to the exact choice of
these covariances that the extended Kalman filter and performs well with these precomputed values.
Measurement noise values are obtained from the measured noise without excitation on the different sensors.

5. OBSERVABILITY

A given system described by Eq. (9) is observable if the initial state x0 can be reconstructed from the available
outputs y. Many definitions have been discussed in literature , e.g. by [16]. A system should be observable to allow
for the state estimator to converge to the state of the observed system.

5.1. Observability rank condition
A system is short time, locally observable (see [16]) if the rank of the observability matrix O ∈ R(k+1)m×n:

O (Σ) =


∂h(x)

∂x
...

∂Lk
f (h)(x)
∂x

 , (13)

equals the order of the system n [17] for m sensors. The Lie derivatives Lk
f (h)(x), which are the time derivatives of

the outputs as described by [18], are:

Lf(h)(x) =
∂h(x)

∂x
f(x) (14)

Lk
f (h)(x) =

∂Lk−1
f (h)(x)

∂x
f(x) (15)

The in general undetermined value k ∈ N to prove unobservability makes this method a sufficient condition for
observability, as discussed by [17], [19], [20].



5.2. Popov-Belevitch-Hautus criterium
The Popov-Belevitch-Hautus (PBH) criterion calculates the observability for every mode of the system. The system
is observable if the rank of the PBH matrix OPBH :

OPBH =

[
sI−A

C

]
, (16)

equals the order of the system n for every eigenfrequency. The matrices A and C are calculated by linearization of
the system in the examined state:

A =
∂ f(x,u)

∂x
C =

∂h(x)
∂x

(17)

The PBH analysis quantifies the observability by calculating the condition κ of OPBH . The influence of each
measured state is analysed by starting with a sensor set S0 = x and quantifying the observability for each deleted
state measurement. The measured state with the smallest negative effect on the observability upon removal is
excluded from the next sensor set. This procedure is applied recursively, and leads to a better quantitative evaluation
of the selected sensor set, as also discussed by [21] and [22].
The measure ϒ is defined by:

• The n condition numbers κ [OPBH(λi, t)] for the n system poles at one time step are reduced to one number
by the RMS value.

• This measure is inverted to express the observability instead of the unobservability.
• Subsequently, the obtained time signal is reduced to one number ϒ by RMS. Furthermore ϒ and ϒ̄ are the

minimal and maximal value of this obtained time signal.
The “smallest negative effect on the observability upon removal” is specified as the largest ϒ upon one-by-one
removal of all sensors.

5.3. Mechatronic powertrain observability
The observability of the mechatronic powertrain model is first analysed with the rank condition for following five
sensor sets:

S1 = {i(1)sq , i(1)sd ,θm1 , θ̇m1 ,θm2 , θ̇m2 , i
(2)
sq , i(2)sd } (18)

S2 = {i(1)sq , i(1)sd ,θm1 , θ̇m1 , i
(2)
sq , i(2)sd } (19)

S3 = {i(1)sq , i(1)sd ,θm1 ,θm2 , i
(2)
sq , i(2)sd } (20)

S4 = {i(1)sq , i(1)sd , θ̇m1 , θ̇m2 , i
(2)
sq , i(2)sd } (21)

S5 = {i
(1)
sq , i(1)sd ,θm1 , θ̇m1} (22)

Table 2 shows that all sensor sets make the complete system observable.

Table 2 – Observability rank for different sensor sets for increasing Lie-derivatives k.

k S1 S2 S3 S4 S5

0 8 6 6 6 6
1 14 11 12 12 10
2 16 14 14 14 12
3 16 16 16 14
4 16

However, a quantitative PBH observability analysis shows that some of these sets lead to very poor observability
properties, which will in turn lead to very poor noise attenuation. The removal of four sensors from the full state
measurement S0 is motivated by the analysis of ϒ for the removal of different sensors, given in Fig. 5.
This figure shows the redundancy in multiple angle measurements. It follows from other PBH analyses that the
location of the single necessary angle measurement is not significant. The pragmatic location is at the rotor of the
induction motor. In the same manner, it can be shown that the rotor currents should not be measured to obtain
observability. After the removal of the rotor currents, three angular velocity sensors can also be removed from the
set. At this point, the observability ϒ lowers several orders of magnitude. The location of the remaining angular
velocity sensor is again not significant.
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Figure 5 – ϒ [OPBH ] in a loaded standstill condition of the drivetrain. ϒ, ϒ and ϒ̄ are shown as respectively a bar, the lower and
upper marking.



The sensor sets from Eq. (18)-(22) are all observable according to the rank criterion. However, the quantified
observability becomes very low if all current measurements from one induction motor are missing. The influence
of the sensor set can be further examined based on the estimation error.
The influence of the sensor sets S1 to S5 on the predictive estimation error2 E is also analyzed. The estimation
errors x̃i(t)− x̂i(t) are reduced to one relative error at each time step by introducing E . The error E is the RMS
value of the relative error x̃i− x̂i with respect to the RMS value of x̂i. The estimation errors for the states of which
the measurements are not used, is shown in figure 6. This figure clearly shows that the predicitive error is relatively
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Figure 6 – Predictive estimation error E for different sensor sets at a nominal speed of 1200 rpm and an approximately constant
load.

good for all measurement sets except for the S5 set.
It is now also interesting to consider the actual error (without the normalisation of E ). The absolute errors on the
angular position and velocity of the second induction motor are shown in Fig. 7.
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Figure 7 – Estimation error ε [θm2 ] and ε
[
θ̇m2

]
with the same conditions and settings of figure 6.

Even though the velocity is estimated very well for S4, this is not a good measurement set as the error for the
angular position becomes relatively large. From this analysis measurement set S2 would be selected as it provides
similar accuracy as S1 but with one less sensor. A virtual sensor with the presented system level model and
measurement set S2 is therefore concluded to provide accurate results for real-world applications.

2The predictive error is obtained by comparing the estimates with measurements •̃, which were not used for the estimator.



6. CONCLUSION

This work presents the development and validation of a virtual sensor for mechatronic powertrains. This work
discusses the multiphysical model for this system and how this integrates with nonlinear Kalman filters. A Monte
Carlo simulation is used in order to determine the Kalman filter settings. This approach works well on the experi-
mental tests performed by the authors. For practical virtual sensors, a minimal instrumentation is highly desirable.
We therefore performed a detailed observability study to analyze the necessary and preferable sensorization. The
accuracy for the resulting virtual sensor is tested by considering the predictive error, which is the difference be-
tween the estimated states and the unused sensors on a test setup. This show good accuracy for the proposed
approach. Further research will focus on the exploitation of commercial system level modeling tools, like LMS
Imagine.Lab Amesim, in order to set up more general mechatronic models for virtual sensors.
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