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Abstract: An extension to the angular spectrum approach for modelling pressure fields of a 

cylindrically-curved array transducer is described in this paper. The proposed technique is based 

on representing the curved transducer surface as a set of planar elements whose contributions are 

combined at a selected intermediate plane from which the field is further propagated using the 

conventional angular spectrum approach. The accuracy of the proposed technique is validated 

through comparison with Field II simulations.  

 

1. Introduction 

The angular spectrum approach (ASA) has been widely used to model pressure fields 

generated by ultrasonic transducers [1-5]. This method makes use of a two-dimensional Fourier 

transform to propagate the pressure field in-between parallel planes and is known to be highly 

computationally efficient and easy in implementation. For wave propagation in a homogeneous 

media, the ASA has been shown to be equivalent to other simulation methods such as directly 

solving the Rayleigh-Sommerfeld integral or ones based on the spatial impulse response method 

[6-8]. While the Rayleigh-Sommerfeld integral method is relatively time-consuming, the spatial 

impulse response method intrinsically assumes linear wave propagation in an acoustically 

homogeneous medium. In contrast, the ASA can be extended to include nonlinear effects and to 

model pressure fields in layered (i.e. inhomogeneous) media [2-3].  

In order for the ASA to be applied, knowledge of the field distribution on the source plane 

is required. Although this problem is straightforward for planar transducer geometries, it is not for 

curved transducers as used in many medical applications to improve focusing. In this paper, we 

propose an extension of the angular spectrum method to a case of a cylindrically curved array 

transducer as commonly used in medical ultrasound imaging. This technique provides easy means 

for analysis and interpretation of acoustic fields radiated from such transducers and is inspired by 

the method that was recently proposed for a spherically curved transducer [4]. 

The procedure described in Ref. [4] consists of dividing the transducer surface into a set of 

planar concentric rings, each contained within a plane parallel to a selected intermediate plane in 

front of the transducer. The angular spectrum of each ring is calculated separately and propagated 

to this intermediate plane, where the contributions of all rings are added. Subsequently, the 

intermediate plane is used as the source plane for sound field estimation using the conventional 

ASA. 
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The purpose of this paper was therefore to demonstrate the application of a similar strategy 

as the one proposed by Vyas & Christensen in order to compute the spectrum of a cylindrically 

curved array transducer. First, the calculation procedure is described, followed by the comparison 

of the numerical results to those obtained with Field II [7]. 

2. Method 

Herein, a cylindrically curved ultrasonic array was considered with elN  elements ( elN  is 

assumed to be even) of height 𝐻 and width 𝑊, with a zero kerf and a radius of curvature 𝑅. The 

intermediate plane was defined as tangential to the transducer’s aperture and perpendicular to the 

𝑥 − 𝑧 plane (Fig. 1 (a)). Next, all transducer elements were subdivided along the elevation direction 

into (2 1)yN   small sub-elements that can be regarded as planar rectangles of height 
2 1y

H
y

N
 



. It should be noted that given dense sampling and moderate curvature of the transducer aperture, 

the sub-elements can be considered parallel to the 𝑥 − 𝑧 plane. This assumption greatly simplifies 

the calculations, since the angular spectrum of each sub-element can be calculated in the same 

coordinate space.  

The angular spectrum of such sub-element centered at (𝑥𝑚, 𝑦𝑛), where 

2,..., 2el elm N N   and ,...,y yn N N  , is given by: 
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where 𝑘𝑥 and 𝑘𝑦 are the spatial frequencies.  

Substituting mx x
x

W


  and ny y

y
y


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As seen in Fig. 1 (b), the travel distance 𝑧𝑛 from each sub-element to the intermediate plane 

depends on the sub-element’s elevational coordinate. Propagation of each sub-element’s angular 

spectrum to the intermediate plane is modelled using the following transfer function [1]: 

   ,
z njk z

el nH e



 ,  (3) 
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Figure 1. Representation of a cylindrically-curved linear array transducer by a set of planar rectangles: 3-D view (a) and cross-

sectional view (b). 

 

where  2 2 2

z x yk k k k    and k c  is the wave number for the angular frequency   and 

speed of sound c  and ‘*’ indicates the complex conjugate. As can be seen from Fig. 1(b), the travel 

distance is given by: (1 cos )n nz R   . The above transfer function accounts for a phase difference 

due to the difference in horizontal propagation distance for an element with the elevational 

coordinate ny  with respect to the central element.  

Azimuthal focusing is accounted for by introducing a phase factor determined by the 

azimuthal coordinate of the sub-element: 

 , ,mj t

az mH e


   (4) 

where 𝑡𝑚 is the transmit time delay of the mth transducer element, which for a one-dimensional 

array is given by: 
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with 𝑑𝐹 the distance from the center of the aperture to the focal point and 𝑥𝐹 and 𝑧𝐹 – the azimuthal 

and axial coordinates of the focal point. 

Finally, the angular spectrum of the entire transducer aperture on the intermediate plane can 

be calculated by adding the contributions of all sub-elements ( elN  in the azimuthal and 2 1yN   in 

the elevational directions): 
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Substituting Eq. (2), (3) and (4) into Eq. (6), we get: 
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The first summation on the right-hand side can be rewritten as follows: 
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The pressure field distribution in any plane that is parallel to the intermediate plane at 

distance 𝑧 can be determined by multiplying the source angular spectrum in Eq. (7) with the 

following transfer function [1]: 
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and taking the 2-D inverse Fourier transform of the resulting spatial-frequency distribution. 

3. Numerical simulation 

In order to validate the above expressions, a phased array transducer with a cylindrically 

curved aperture was modelled using both the above approach and with Field II (based on the spatial 

impulse response method) [7]. The transducer aperture consisted of 64  elN  elements of 12 mm 

× 0.22 mm (corresponding to 𝐻 and 𝑊), and a kerf of zero between the transducer elements was 

assumed. The radius of the elevation curvature (𝑅) was set to 70 mm and the electronic focus was 

set at  , , 0,0,70F F Fx y z mm    . For the ASA modelling, the number of aperture sub-elements 

along the elevation direction  2 1yN   was set to 55 ( 2 0.22y x      mm, where 0.44 

mm is the wavelength). In Field II, the function “xdc_focused_array” was used to model the 

transducer, and the transducer aperture was subdivided into 55 sub-elements in elevational and 1 

in azimuthal direction (corresponding to the same sub-element size as used for the ASA: 0.22 mm 

× 0.22 mm).  

The pressure field propagation was modelled in a homogeneous medium with a speed of 

sound of 1540 m/s. A Gaussian-modulated sinusoidal pulse of 1.5 periods, 3.5 MHz center 

frequency and 80% relative bandwidth was generated in Field II and was used as the input for the 

angular spectrum simulations. For both simulators, a sampling frequency of 100 MHz was used. 

For the ASA simulations, a 1024-point fast Fourier transform was applied to a time-domain pulse; 

the pressure field was simulated for non-zero frequency components of the spectrum (70 in this 

case). Propagation of the pressure field using the ASA was modelled in the spatial-frequency 

domain and an angular restriction was applied to avoid aliasing effects [5]. 

4.  Results 

Figure 2 compares the azimuthal and elevational transmit beam profiles at the focal depth 

and the axial RMS pressure profiles obtained with both simulators showing very good agreement  
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Figure 2. Comparison of the simulated transmit beam profiles of a focused linear array transducer obtained with ASA and Field II: 

lateral (a), elevational (b) and axial (c). Transducer element size: 0.22 mm x 12 mm, number of elements – 64, center frequency – 

3.5 MHz, elevational focus – 70 mm, azimuthal focus – 70 mm, measurement depth of transverse plots – 70 mm. 

 

between both simulation approaches. The comparison of the (normalized) transmit RMS 

pressure fields is presented in Fig. 3. Overall, the simulated pressure fields look very similar with 

a maximal percentage difference of normalized patterns below 6 %.  

All simulations were performed on a computer with an Intel Core i7 2.7 GHz processor and 

8 GB physical memory. The estimates of the computation time for both simulation methods are 

summarized in the Table. 

 

Figure 3. Comparison of the simulated transmit pressure fields of a focused linear array transducer obtained with ASA and Field 

II: in the azimuthal plane (upper row) and elevational plane (lower row). Transducer element size: 0.22 mm x 12 mm, number of 

elements – 64, center frequency – 3.5 MHz, elevational focus – 70 mm, azimuthal focus – 70 mm, measurement range – 1-150 

mm. 

 

5. Conclusion 

The recently proposed method for modelling spherically curved transducer apertures with 

ASA was reformulated for the case of cylindrically curved arrays. The method divides the 

transducer aperture into a set of planar rectangular sub-elements, the angular spectrum of which is 
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calculated separately and propagated to a preselected intermediate plane in which the contributions 

of all sub-elements are combined. The accuracy of the derived expressions was validated through 

comparison with Field II simulations. As expected, Field II showed faster performance during the 

computation of pulsed acoustic excitation, while the ASA was more efficient during field 

computations in a plane parallel to the transducer surface. It should be noted, that these time 

estimates are purely indicative since the implementation of the proposed ASA approach was done 

in a MATLAB environment (The MathWorks Inc., Natick, MA, USA) while Field II executes its 

core calculations in C. Obviously, the proposed method can thus be further optimized using 

compiled computer languages and effective parallel programming using a multi-core computer or 

a graphical processing unit. Overall, this study demonstrates that the proposed technique provides 

an easy means for modelling pressure fields of commonly used transducers for clinical practice 

that can be extended to consider inhomogeneous media and embedded nonlinear effects. 

 

Table. Computation time required for the simulations in Field II and ASA. 

 
Field II 

(broadband) 

ASA 

(broadband, i.e. 70 

frequency points) 

Centre frequency 

only 

Lateral beam profiles 0.95 s 11.7 s 0.22 s 

Axial beam profile 0.09 s 1948 s 25.6 s 

Field distribution in a 

plane parallel to the 

transducer (70 mm) 

545 s 59 s 2.0 s 
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