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B and B-n decay of the neutron-rich *Ge nucleus
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The pB-decay properties of the very neutron-rich #Ge nucleus were studied at the Holifield Radioactive Ion
Beam Facility at Oak Ridge National Laboratory. Several new y-transitions and levels were added to its decay
scheme and the order of the two lowest-lying levels in the daughter ® As was corrected. For the first time y
radiation following f-delayed neutron emission was observed. The shell-model calculations and apparent
transition intensities were used to guide the spin assignment to the 3 As levels, in particular for the low-energy
part of the level scheme. The new spin-parity (2~) proposed for the ground state of * As is supported also by the

systematics of N = 51 isotones.
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I. INTRODUCTION

Spectroscopic studies of nuclei around "8Ni are informing
nuclear models about the structure of ground and excited states,
reflecting the evolution of proton and neutron single-particle
orbitals far from stable nuclei. Extensive investigations of
neutron-rich nuclei across the energy gaps at N =50 and
Z =28 have been carried out in recent years (see, e.g.,
[1-13]) and demonstrate significant progress in experimental
and theoretical capabilities. In particular, the investigation of
nuclei with just one valence neutron outside the N = 50 shell
helps to define the sequence of single-neutron states [14,15].
One of the effective ways to investigate the structure of N = 51
nuclei above "®Ni is to populate them in the 8~ decay of the
respective N = 52 and N = 53 precursors.

The only information available to date on 3*Ge decay was
limited to its half-life (7}, = 942(17) ms) [9,16] and three
B-delayed y transitions at 43, 100, and 242 keV observed in
a measurement performed at the OSIRIS facility in Studsvik
[16]. In a later measurement at the ALTO facility of Orsay,
84Ge was produced as decay daughter of %*Ga and a partial
level scheme of ® As based on the same two transitions was
proposed [17]. In our previous experiment at the Holifield
Radioactive Ion Beam Facility (HRIBF), 84Ge was also
produced as the decay daughter of **Ga and two transitions,
E, =347.1keV and E,, = 608.8 keV and two levels at 589.4
and 1198.2 keV were added to the decay scheme [18].

In this work, the low-energy structure of 3¢ Ass; was studied
by means of B decay of 3*Ges, and compared to shell-model
calculation to guide spin assignments of observed states.

II. EXPERIMENTAL SETUP

The experiment was performed at HRIBF, Oak Ridge
National Laboratory (ORNL) [19]. Details of the experimental
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technique are given in Refs. [9,10]. Briefly, fission fragments
were produced by proton-induced fission of a 2*%UC, target
and ionized in the IRIS2 ion source. The 3*Ge ions were
extracted from the ion source in molecular form as 3*GeS™.
Two-stage mass separation in conjunction with molecular
breakup and charge exchange in a Cs-vapor cell allowed for
an almost pure 8Ge negative ion beam [9,20]. The beam was
implanted into the tape of the moving tape collector (MTC) in
the center of the detection setup at the Low-Energy Radioactive
Ton Beam Spectroscopy Station (LeRIBSS) [21]. The MTC
was surrounded by four HPGe clover y-ray detectors (6%
efficiency at 1.3 MeV) and two plastic scintillation counters for
B-particle detection around the deposition point. Trigger-free
data from all detectors were collected by a fully digital
acquisition system [22—24], both during the implantation of the
activity (beam on, 3 s) and when the beam was deflected away
(beam off, 3 s), by an electrostatic deflector. After this period,
the tape was moved for 0.36 s, transporting the implanted
long-lived isobaric contaminants and daughter activities away
from the measuring position, and a new cycle was started. The
measurement lasted 40 min.

III. RESULTS

The B-gated y-ray spectrum at mass 84 is presented in
Fig. 1. The strongest transitions belong to the 8-delayed y (8y)
decay of #Ge and of its daughter ® As. Transitions belonging
to the known B-delayed neutron (8n) decay of 3*Ge can be
also identified. On the basis of 8-y -y coincidences (Fig. 2) a
partial decay scheme of *Ge could be constructed; see Fig. 3.

With respect to the previous works, we have added several
new transitions and states to the level scheme of 3¢As. On the
basis of B-y-y coincidences (see Table I) we have inverted
the order of the known 100- and 43-keV transitions and we
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FIG. 1. Portions of the 8-gated y -ray spectrum at mass 84: 0—800
(a), 800-2400 (b), and 2400-3200 keV (c).

could not confirm the 609-keV line [18] as belonging to 3Ge
decay. As far as the 8-delayed neutron branch is concerned,
population of the first excited state in ®*As [28] was observed
for the first time; see Table 1. All the identified and assigned
transitions, with the respective relative intensities, including
tentative assignments on the basis of weak coincidences, are
summarized in Table 1.
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FIG. 2. The B-gated y-ray spectra in coincidence with the 100-
(a), 242- (b), and 347-keV (c) transitions.

For tentative spin-parity (/™) assignments for the low-lying
excited states in *As we considered that no positive-parity
state can be expected at low excitation energies and that
multipolarities larger than 1 will give rise to measurable
lifetimes (~1 us or larger) for transitions with low energy
(<100 keV) [29]. Even considering the correction factors to
the lifetimes from systematics [30,31], the / > 1 multipolarity
would make the lifetime long enough to be isomeric and
observed in our experiment. Since no isomers were observed
in our data, this points towards M1 character for the two
lowest-lying transitions at 43 and 100 keV.

064324-2



B AND gB-n DECAY OF THE NEUTRON-RICH ...

0" T,,=942(17) ms
84
12665,

5

Qy=7705(4) keV

+

471 195) ()
5.1(1)  6.8(2.2)

2722

2921
fe-f-d-=---1-dF------"=""~c |- - -1 - - 2833

2964
2876

2634

2481
1349

5.3(3) 4.9(2.9) 2723

2422
2322
2034
1975

482) 22(12) 1) 2565

1231

6.2(5) 2.1(2.1) 1374

6.03) 6@) (17)
62(2) 4Q2) (07.1%)
6.4(3) 2(1) N
6.62) 14(5)

589.5
568.8
529.6
463.3

e e oL - - 2681

589.4
5467
347.0

5264

4259

3263
386.4

320.3

2425

6.3(1) 3.5(11)

6.2(2) 4.5(23)(07)
57(2) 14(6) (17)

@)
logft %P

242.5
5 143.0

42.8

*®
I
<+

]

0.0
E [keV]

84
33485

FIG. 3. Partial decay scheme of **Ge as obtained in this work.
Dashed transitions were tentatively assigned on the basis of very
weak B-y coincidence with 43 keV. The Qg energy and T/, are
taken from Refs. [25] and [9], respectively.

Since high-resolution y-ray detectors (like HPGe) have
low detection efficiency, in particular for high-energy di-
rect transitions de-exciting high-lying states in the daughter
nucleus, and since the total y intensity is usually highly
fragmented, a portion of the g strength will go undetected. It
will therefore be assigned to lower-lying states (the so-called
pandemonium effect [32]) and only apparent 8 feeding, and
consequently log(ft), can be calculated. Apparent § feedings
were calculated by normalizing the relative y intensities to
the sum of all intensities feeding the ground state (43, 242,
and 589 keV) and considering the 10% branching for B-
delayed neutron emission [33]. Apparent log( ft) values were
estimated, see Fig. 3, and used for guidance in the tentative
spin-parity assignment. For this we considered only those
levels with apparent B-feeding larger than 4%. At excitation
energies above 2.5 MeV, positive-parity states can be expected
and feeding by Gamow-Teller transitions becomes possible.
Considering the larger apparent 8 feeding for the 2565- and
2964-keV states and lower apparent log(ft), /* = (17) can be

PHYSICAL REVIEW C 93, 064324 (2016)

TABLE I. Relative y-ray intensities (/) for the gy and pBn-
decays of **Ge normalized to the 42.8-keV transition.

Eevel E, Ll Coincidence 8Ge
(keV) (keV) (keV) decay channel

42.8(2) 42.8(2) 100(9)* 100.2, 320.3, 326.3, By
347.0, 386.4, 425.9, By

526.4,546.7, 1231, By

1349, 1975, 2034, By

2322, 2422, 2481, By

2634, 2681°, 2722, By

2833b, 2921 By

143.02) 100.2(2) 41(3)° 42.8,320.3, 326.3, By
347.0, 386.4, 425.9, By

1231, 1349, 1975, By

2034, 2322, 2422, By

2481, 2634, 2722 By

242.5(2) 242.02) 55(4) 326.3,347.0, 1975, By
2322, 2481, 2634, By

2722 By

463.3(2)  320.3(2) 2.5(6) 42.8, 100.2 By
529.6(2) 386.4(2) 12(1) 42.8,100.2,2034 By
568.8(2) 326.3(2) 3.0(6) 242.0 By
42592) 1.14) 42.8, 100.2 By

526.42) 2.7(3) 42.8 By

589.5(2) 347.02) 14(1) 242.5, 1975 By
546.7(2) 5.4(6) 42.8, 1975 By

589.4(2) 4.2(7) 1975 By

1374(1) 1231(1) 5.3(7) 42.8,100.2, 1349 By
2565(1) 1975(1) 13(2) 42.8,242.5, 347.0, By
546.7, 589.4 By

2034(1) 8.7(10) 42.8,100.2, 386.4 By

2322(1)  5(2) 242.5 By

2422(1)  12(1) 42.8,100.2 By

2723(1) 1349(1) 1.6(7) 42.8,100.2, 1231 By
2481(1) 4.8(9) 242.5 By

2681(1) 2.2(7) 42.8° By

2876(1) 2634(1) 5.1(7) 242.5 By
2833(1)  7(1) 42.8° By

2964(1) 2722(1)  16(2) 242.5 By
2921(1)  17(2) 42.8 By

306.4(5) 306.4(5) 5(1) Bny

oo (M 1) = 0.96 [26,27] is included in [ calculation.
Tentative assignment on the basis of weak coincidences.
Syt (M 1) = 0.08 [26,27] is included in [, calculation.

assumed, suggesting the observed B transitions as 0t — 17
GT transformations; see Fig. 3.

The 42.8- and 143.0-keV levels appear to be fed by first
forbidden transitions, suggesting /™ = (0~,17); see apparent
log(ft) in Fig. 3. The I™ values can be further restricted by
considering also the M1 character of the 100.2-keV transition.
No cross-over transition was observed from the 143-keV
level to the ground state. If such a transition had an M1
character, it would be observed in the present dataset, since
its lifetime would be a factor of 2 faster than the observed
100-keV transition. If it were E2, it would be isomeric with
a half-life of about half microsecond. This points towards a
spin difference of 2 between the 143-keV level and the ground
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FIG. 4. Systematics of low-spin excited states in N = 51 isotones [11,34,37]. Energies are given in keV. Two energy scales are used for

below and above 1 MeV.

state. In addition, the decay of the (17) states at 2565 and
2964 keV populates the 43- and 143-keV levels, respectively,
while they do not decay directly to the ground state. Such
behavior suggests a maximum spin change of 1. The calculated
lifetimes for these transitions also suggest a dominant E'l
character for them. The ground state of 3*As feeds the first
(2%) excited state in % Se with large apparent intensity [34,35].
Since the 1™ = (17) 42.8-keV level in ¥As decays to the
ground state directly through an M1 transition, we therefore
propose I™ = (27), (17), and (0™) for the ground state, 43- and
143-keV levels in 34 As, respectively. This is consistent with the
systematics of /™ for the N = 51 isotones; see Fig. 4. The (17)
assignment for the ¥Br ground state is supported by recent
86Br decay data obtained using a total absorption spectroscopy
technique [36]. Larger 0" ground-state B feeding was detected,
with a smaller B intensity for the direct 8 population to the 2+
state in 3Kr. However, the respective 2~ state is located only
5 keV above the (17) ground state [37] [both the 1~ ground
state and 2~ first excited state in 3 Br have mixed configuration

(7wp3/2vds a, 7 f52vds2)].

IV. DISCUSSION

Shell model (SM) calculations for 3*As were performed
in order to interpret its low-energy structure. The NUSHELLX
code [38] was used with a model space containing all the active
orbitals outside the "®Ni core and single-particle energies ds 2
(—=11.3 MeV), g72 (=7.6 MeV), 2d3,, (—10.2 MeV), s1,»
(—10.5 MeV), and hy(/2 (—6.3 MeV) for neutrons and f5,,
(—25.3 MCV), P32 (—248 MGV), P12 (—236 MGV), and
89,2 (—20.3 MeV) for protons. The N3LO residual interaction
based on nucleon-nucleon forces in Refs. [39,40] was used. In

Fig. 5 the results of the calculation for the lowest-lying excited
states are plotted in comparison with the experimental level
scheme as obtained from this work.

The level densities at low-excitation energies all are well
reproduced by calculations, considering that only low spins
are observed in the experiment. All low-energy states are
dominated by one neutron in the ds; or s, orbital coupled to
protons in the f5,, and ps, orbitals in different proportions.
Below 500 keV, three groups of levels are predicted by the SM
in the ranges 0—150, 220-250, and 400-500 keV. The first and
second group of levels are dominated by one neutron in the
orbital ds,, (about 90% of the neutron component of the wave
function), while for the third group the s1,, component starts to
be equal to the ds/,. This is consistent with the results obtained
for 8Ge, which has a 5/2% ground state and 1/2*" first excited
state calculated at ~400 keV (measured at 248 keV) [11]. In
the case of *Ge low-excitation-energy states are dominated
by protons in f5,, and neutrons in ds;, and sy, orbitals. The
investigation of the wave function from our calculations for
$3Ass; shows that the addition of one proton to $3Ges; renders
the proton p3,, orbital important.

As far as positive-parity states are concerned, the same
calculations predict that the lowest-lying ones are at just above
3 MeV in excitation energy. The high excitation energy of the
first 1 states has been verified in the present data, as discussed
in Sec. III.

V. SUMMARY

In an experiment at the HRIBF we have measured the -
decay properties of %*Ge. Several new transitions were added
to its decay scheme and the order of the two lowest-energy
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levels in the daughter 3*As was corrected. The B-delayed
neutron emission to the excited state in **As followed by
y emission was detected for the first time. Gamow-Teller 8
transitions to the (1) excited states above 2.5 MeV were
identified for the first time, while the lower-energy section
of ¥ As level scheme is fed mostly by first forbidden A
transitions. The spin-parity (27) was assigned as a ground-
state configuration based on the observed y intensities, S-
feeding pattern, and level systematic in N = 51 isotones.
The shell-model calculations for the lowest-lying excited
states in the N = 51 daughter nucleus 3#As showed that their
wave function is given predominantly by [vds»,(7w f5/2, p3/2)]
below 250 keV and [(vds)2,51/2),(7 f5/2, p3/2)] above. It also
showed that adding one proton to the Z = 32, N = 51 3Ge
increases the relevance of the ps3;, orbital with respect to
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