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Abstract  9 

The soil organic carbon (SOC) stock is an important indicator in ecosystem service 10 

assessments. Even though a considerable fraction of the total stock is stored in the subsoil, 11 

current assessments often consider the topsoil only. Furthermore, mapping efforts are 12 

hampered by the limited spatial density of these topsoil measurements. The aim of this study 13 

was to assess the SOC stock in the upper 100 cm of soil in 30,556 ha of Low-Input High-14 

Diversity systems, such as nature reserves, in Flanders (Belgium) and compare this estimate 15 

with the stock found in the topsoil (upper 15 cm). To this end, we combined depth 16 

extrapolation of 139 measurements limited to the topsoil with four digital soil mapping 17 

techniques: multiple linear regression, boosted regression trees, artificial neural networks and 18 

least-squares support vector machines. Particular attention was given to vegetation 19 

characteristics as predictors. For both the stock in the upper 15 cm and 100 cm, a boosted 20 

regression trees approach was most informative as it resulted in the lowest cross-validation 21 

errors and provided insights in the relative importance of predictors. The predictors of the 22 

stock in the upper 100 cm were soil type, groundwater level, clay fraction and community 23 

weighted mean (CWM) and variance (CWV) of plant height. These predictors, together with 24 

the CWM of specific leaf area, aboveground biomass production, CWV and CWM of rooting 25 

depth, terrain slope, CWM of mycorrhizal associations and species diversity also explained 26 

the topsoil stock. Our total stock estimates show that focusing on the topsoil (1.63 Tg OC) 27 

only considers 36% of the stock in the upper 100 cm (4.53 Tg OC). Given the magnitude of 28 

subsoil OC and its dependency on typical ecosystem characteristics, it should not be neglected 29 

in regional ecosystem service assessments. 30 

 Keywords: ecosystem services, depth extrapolation, digital soil mapping, regional 31 

assessment  32 



1. Introduction 33 

The effective and potential level of services that ecosystems provide is increasingly inspiring 34 

land use planning (Goldstein et al., 2012; Broekx et al., 2013; Galati et al., 2016). For such 35 

mapping and assessments, the soil organic carbon (SOC) stock is an important indicator 36 

(Maes et al., 2016). Whereas a considerable fraction of the total SOC stock is known to be 37 

stored in the subsoil (Batjes, 1996; Jobbágy and Jackson, 2000) and should not be neglected 38 

in an ecosystem service context (Jandl et al., 2014), routinely available measurement data and 39 

hence stock estimates are often limited to the topsoil, e.g. see Minasny et al. (2013). To 40 

include the subsoil stock, vertical extrapolation of the topsoil measurement is often necessary. 41 

However, the commonly used exponential decline function is not capable to accurately model 42 

the stock in soil types characterised by SOC-rich subsurface horizons, such as spodic and peat 43 

horizons (Sleutel et al., 2003; Aldana Jague et al., 2016). To take these ‘anomalies’ into 44 

account, we have developed an exponential change decline function in earlier research, 45 

assuming that not the OC content but rather the difference between the target (2009-2011) and 46 

the historical (1947-1974) reference topsoil measurement value declines exponentially with 47 

depth (Ottoy et al., 2016). 48 

Another shortcoming of routine soil sampling is its limited and heterogeneous spatial density 49 

which is a weak basis for regional SOC stock assessments (Carré et al., 2007; Ottoy et al., 50 

2015). In many cases, soil profiles have been sampled for the major land units (LUs), but are 51 

lacking for the many minor LUs. To cope with this lack of data, digital soil mapping or 52 

‘SCORPAN’ approaches have been proposed which exploit the covariance of a soil variable 53 

(s) with predictors representing Jenny's (1941) soil forming factors (climate (c), organisms 54 

(o), topography (r), parent material (p), age (a)) extended with geographic position (n) 55 

(McBratney et al., 2003). For the case of SOC stock modelling, numerous techniques have 56 

been proposed, ranging from multiple linear regression (Meersmans et al., 2008) to more 57 



recently developed machine-learning methods like Boosted Regression Trees, Artificial 58 

Neural Networks and Support Vector Machines (Martin et al., 2014; Were et al., 2015; 59 

Taghizadeh-Mehrjardi et al., 2016).  60 

These SCORPAN-methods do not only contribute to more reliable SOC stock assessments, 61 

but also provide insights in the relative importance of the candidate predictors of the SOC 62 

stock and hence in the functioning of the soil system. At the biome level, climate variables 63 

such as mean annual precipitation and temperature and their interaction with vegetation are 64 

important controls of the SOC storage capacity of soils (Jobbágy and Jackson, 2000; 65 

O’Rourke et al., 2015). At the regional scale, physical and chemical soil variables like the 66 

texture fraction, moisture content, pH and soil profile development are typically identified as 67 

variables explaining SOC storage (Meersmans et al., 2008; Wiesmeier et al., 2011; Were et 68 

al., 2015). In addition, land use intensity including manure application was found to explain 69 

regional variations in the SOC stock (van Wesemael et al., 2010; Parras-Alcántara et al., 70 

2015a; Manning et al., 2015). Another important representative of SCORPAN’s ‘organism’ 71 

factor is the vegetation, which can contribute to controlling both soil carbon input and loss 72 

(Chapin, 2003; De Deyn et al., 2008) and hence the resulting SOC stock (Grigulis et al., 2013; 73 

Manning et al., 2015). Similarly, diversity of plant species (Tilman et al., 2006) and 74 

functional groups (Steinbeiss et al., 2008) were found to affect SOC storage.  75 

The aim of this study was to assess the SOC stock in the upper 100 cm of soil of Low-Input 76 

High-Diversity (LIHD) systems in Flanders (Belgium) using available topsoil (upper 15 cm) 77 

measurements. Managed nature reserves are typical LIHD systems characterised by low 78 

levels of inputs (e.g. manure application) and high species diversity. Recently, these systems 79 

have come into the picture due to their high potential to mitigate climate change through the 80 

production of bioenergy (Tilman et al., 2006; Van Meerbeek et al., 2016), but their SOC 81 

storage capacity remained relatively underexplored. To include the subsoil in our regional 82 



assessment and spatially densify the available measurements, we combined depth 83 

extrapolation of topsoil measurements with digital soil mapping. Additionally, this estimate 84 

was compared with the stock found in the topsoil only. Through this process, we aimed at 85 

identifying the main predictors of top- and subsoil stocks, considering various soil properties, 86 

plant functional traits and trait diversity measures.   87 



2. Material and Methods 88 

2.1 Study area 89 

We assessed the SOC stocks in the upper 15 and 100 cm of mineral soil of LIHD systems in 90 

the region of Flanders, N. Belgium. This region of 13,522 km² is characterised by a maritime 91 

temperate climate, with a mean annual temperature of 9.8 – 10.5°C (mean minimum of 6.7°C 92 

and maximum of 13.8°C) and a mean annual precipitation of 733 – 832 mm (Peel et al., 93 

2007). A pronounced gradient of decreasing sand and increasing silt fractions is present from 94 

north to south. 95 

2.2 Soil and environmental data 96 

2.2.1 Soil and vegetation sampling 97 

From 2009 to 2011, 139 sites in nature reserves across different ecoregions were visited and 98 

sampled following the procedure described in Van Meerbeek et al. (2014). At each site, a plot 99 

of 10 x 10 m was positioned in a homogeneous vegetation patch. Therein three subplots of 0.5 100 

x 0.5 m were randomly selected, forming a composite sample. In each subplot, the topsoil was 101 

sampled to a depth of 15 cm. The SOC content (%) was determined using a modified version 102 

of the Walkley and Black (1934) method. A correction factor of 1.14 was applied to account 103 

for incomplete oxidation (Lettens et al., 2005). Also the aboveground biomass was harvested 104 

in each subplot. The SOC content and the dry weight of the harvested biomass were averaged 105 

over the three subplots to obtain one value per plot. Furthermore, the cover (%) of each plant 106 

species was visually estimated for the subplots. 107 

2.2.2 Plant functional traits and trait diversity 108 

Trait-based diversity indices were chosen to represent the two main classes of effects of 109 

biodiversity on ecosystem processes, namely the complementarity effect and the selection 110 

effect (Loreau and Hector, 2001). First, the community weighted mean value (CWM) was 111 

calculated for each trait in each plot. Weighting was done by the relative abundance (cover, 112 



%) of the plant species. CWM corresponds to the selection effect in which dominance by 113 

species with particular traits affects ecosystem processes (Loreau and Hector, 2001). Next, the 114 

functional dispersion (FDis) index is the weighted mean distance of the species to their 115 

centroid in a multivariate trait space (Laliberté and Legendre, 2010), and is an indicator of 116 

variability of the trait values in a community. The third trait-based index considered was the 117 

community weighted variance (CWV) (Sonnier et al., 2010). It is the weighted variance of 118 

trait values with respect to the CWM. Both FDis and CWV are used as proxies for the 119 

complementarity effects, in which niche complementarity leads to higher resource use and 120 

ecosystem functioning (Loreau and Hector, 2001). 121 

To compute the three selected trait-based diversity indices, we selected twelve functional 122 

traits based on their assumed relevance for belowground carbon sequestration (De Deyn et al., 123 

2008; Pérez-Harguindeguy et al., 2013) and extracted corresponding trait values from the 124 

TRY database (Kattge et al., 2011). Because of the high percentage of missing values in the 125 

trait matrix (41%), we estimated the missing values using a phylogeny with the ‘Rphylopars’ 126 

package of R-software (Goolsby et al., 2016). This package can perform missing data 127 

imputation on an estimated evolutionary model, in our case a brownian motion model. The 128 

phylogenetic tree used in this analysis was constructed from the dated phylogeny for higher 129 

plants of Western Europe (Durka and Michalski, 2012) with the ‘Picante’ package of R-130 

software (Kembel et al., 2010). From the pool of twelve traits, we selected five traits that 131 

optimally represented the trait space by means of a PCA. CWM and CWV were calculated for 132 

each of the traits, whereas FDis was derived based on all five traits. FDis and CWM were 133 

calculated using the dbFD function available in the ‘FD’ package of R-software (Laliberté et 134 

al., 2014) and CWV according to Sonnier et al. (2010). 135 

 136 

 137 



2.2.3 Additional environmental data 138 

The soil map unit and corresponding Reference Soil Group (RSG) according to the third 139 

edition of the World Reference Base (WRB) classification system (IUSS Working Group 140 

WRB, 2014) of each of the 139 plots were derived from the soil map of the Flemish region 141 

(source scale 1:20,000) converted to WRB classification (Dondeyne et al., 2014). Apart from 142 

this soil map, Belgium’s national soil survey (1947 – 1974) resulted in an extensive soil 143 

profile dataset (Van Orshoven et al., 1993). The data for the region of Flanders are gathered in 144 

the Aardewerk-Vlaanderen-2010 database comprising the location and descriptive data of 145 

7020 soil profiles and descriptive and analytical data of 42,529 associated horizons. Using this 146 

database, statistical soil profiles were computed at a reference level and at four hierarchical 147 

levels of generalisation (Ottoy et al., 2015). For each soil map unit in which the 139 plots 148 

were positioned, the most detailed statistical profile was selected in the database. For each 149 

horizon in the statistical profile, SOC contents and soil granulometrical fractions were 150 

retrieved. By proportional weighting according to horizon thickness, mean values of the clay, 151 

silt and sand fraction for the upper 100 cm were calculated. These texture fractions were used 152 

for digital soil mapping, while the historical SOC contents of each horizon were used for 153 

depth extrapolation of the topsoil measurements (Figure 1). In line with Sleutel et al. (2003), 154 

we assumed that the soil texture fractions have not changed between 1947-1974 and 2009-155 

2011. 156 

Data of the highest (reduction horizon) and lowest (oxidation horizon) groundwater level 157 

were retrieved from the ECOPLAN database, with a spatial resolution of 5 x 5 m (Staes, 158 

2016). The slope of the terrain was derived from the Digital Elevation Model of Flanders, 159 

resolution 5 x 5 m (AGIV, 2006).  160 

 161 

 162 



2.3 Depth extrapolation and SOC stock calculation 163 

As the measured 2009-2011 SOC contents were limited to the upper 15 cm of soil (  ), depth 164 

extrapolation was necessary to derive estimates for the upper 100 cm (Figure 1). Therefore, 165 

the exponential change decline function presented by Ottoy et al. (2016) was implemented to 166 

estimate the SOC content (%) at depth z (cm): 167 

                           Eq. (1) 168 

                                  
           Eq. (2) 169 

where         and         are the SOC contents of the statistical (historical) soil profile at depth 170 

  and at the surface, respectively. In Eq. (2),   represents the mean depth below the topsoil. 171 

Parameter      describes the shape of the exponential curve; a larger parameter value 172 

corresponds to a more pronounced decrease with depth of the difference in SOC content 173 

recorded for the topsoil. The value of      was estimated based on the measurements for 174 

grassland soil used by Ottoy et al. (2016) with the ‘nlstools’ package of R-software (Baty et 175 

al., 2015). For the sandy agricultural regions,      was found to be 0.10, whereas a value of 176 

0.35 was implemented for the regions characterised by finer soil textures. 177 

After obtaining the SOC content of each horizon     , stocks were calculated using Eq. (3). 178 

Bulk density was not determined during soil sampling, but was estimated for each horizon by 179 

the pedotransfer function of Rawls (1983), Eq. (4).  180 
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,      Eq. (4) 182 

where SOCS (kg OC m
-2

) is the SOC stock in the upper 15 cm resp. 100 cm,   is the total 183 

number of horizons,     (kg m
-3

) is the bulk density of horizon  ,    (m) the thickness of 184 

horizon  ,      (%) the soil organic matter content of horizon   (SOC content × 2, analogous 185 

to Lettens et al. (2004)),       is the bulk density of soil organic matter (0.224 × 10
3
 kg m

-3
) 186 



and      is the bulk density of the mineral fraction, reported by Lettens et al. (2004). The 187 

bulk density of peat soil was set to 0.31 × 10³ kg m
-3

 (Batjes, 1996). 188 

2.4 Digital soil mapping: model training 189 

2.4.1 Exploratory data analysis 190 

To detect collinearity between the predictors, correlations (r) were calculated using R 3.0.2 191 

software (R Core Team, 2013). For two continuous variables, Spearman’s rank correlation (rs) 192 

was calculated, whereas for a continuous and a binary variable, the point-biserial correlation 193 

(rp) was determined. One of each pair of highly correlated variables (|r| > 0.70) was omitted 194 

from further modelling. 195 

2.4.2 Digital soil mapping 196 

Four digital soil mapping techniques, one linear and three non-linear, have been applied to 197 

model the SOC stock in the upper 15 cm and 100 cm. To assess the performance of each 198 

modelling technique, the coefficient of determination (R²), adjusted R² (R²adj), root mean 199 

squared error (RMSE) and relative RMSE (rRMSE) were calculated using 10-fold cross-200 

validation. 201 

Multiple Linear Regression (MLR) 202 

In ecological modelling, MLR models are often selected for their user friendliness and 203 

straightforward interpretability (Aertsen et al., 2010; Van Meerbeek et al., 2014). Model 204 

selection was based on multimodel inference using the ‘MuMIn’ package of R-software 205 

(Barton, 2016). The global model contained all predictor variables listed in Table 1, except 206 

those omitted after the collinearity analysis. The dredge function generates a set of 207 

submodels, nested in the global model, and ranks these according to the Second-order Akaike 208 

Information Criterion (AICc). The so-called best model is the one with the lowest AICc value. 209 

Next, model averaged coefficients were calculated using the submodels with ΔAICc < 2 210 

compared to the best model, as these models are considered to explain variation in the data 211 



substantially (Burnham and Anderson, 2002). The relative variable importance is reflected by 212 

the sum of the Akaike weights over all submodels including the explanatory variable. 213 

Boosted Regression Trees (BRT) 214 

The technique of BRT aims to improve (boost) the performance of a single model (tree) by 215 

fitting many models (trees) and combining them for prediction (Elith et al., 2008). This 216 

method has several advantages, including the capacity of combining predictor variables of 217 

different data types and accommodating missing data. BRT were developed using the ‘dismo’ 218 

package of R-software (Hijmans et al., 2016). Fitting a BRT requires specification of three 219 

meta-parameters: (i) the learning rate which determines the contribution of each tree to the 220 

growing model, (ii) the tree complexity which controls the order of interactions that can be 221 

fitted, and (iii) the number of trees required for optimal prediction, which is determined by (i) 222 

and (ii). The optimal values of the learning rate and tree complexity were derived by 223 

performing a grid search using the train function of R’s ‘caret’ package (Kuhn, 2008). Models 224 

were fitted with the gbm.step function and simplified by reducing the number of predictors 225 

using the gbm.simplify function. The effect of each variable on the SOC stock can be 226 

visualised by partial dependence plots. As these plots account for the average effects of all 227 

other model variables, caution is required when interpreting them in the case of strongly 228 

correlated variables. Furthermore, the relative importance of each variable can be estimated, 229 

taking into account the number of times a variable is selected for splitting and the 230 

improvement of the model’s performance as a result of each split. The relative importance of 231 

each variable is scaled so that the sum adds to 100%. 232 

Artificial Neural Networks: Multi-Layer Perceptron (ANN) 233 

Inspired by the architecture of the human brain, Artificial Neural Networks (ANN) are 234 

interconnected structures of simple, non-linear processing elements called nodes or neurons 235 

(Haykin, 1998). A very popular class of ANN are the multi-layer perceptron networks, in 236 



which the neurons are arranged in layers: an input layer ingesting the value of the predictor 237 

variables, one or more hidden layers and an output layer producing the value of the response 238 

variable. Each neuron is connected to the neurons in the next layer whereby the strength of 239 

this connection is represented by an interconnection weight. By training the ANN with 240 

reference samples, the initial interconnection weights of the network are iteratively adjusted, 241 

hereby minimising the prediction error. During this process, three meta-parameters need to be 242 

specified: (i) the number of neurons in the hidden layer, (ii) the learning algorithm, and (iii) 243 

the number of training iterations. The number of neurons and the learning algorithm were 244 

determined in a grid search by testing multiple combinations and selecting the one with the 245 

lowest prediction error. The tested learning algorithms were gradient descent 246 

backpropagation, Quasi-Newton learning, Levenberg-Marquardt learning and conjugate 247 

gradient learning. The number of training iterations was determined using an early stopping 248 

procedure. This avoids overfitting as the training procedure is stopped as soon as the error on 249 

a separate validation set starts to increase. Overfitting was also avoided by specifying a 250 

regularisation parameter, which describes the trade-off between model complexity and 251 

flexibility. ANN were developed using the ‘Neural Network’ toolbox of Matlab-software 252 

(Beale et al., 2012). 253 

Least-Squares Support Vector Machines (LS-SVM) 254 

Support vector machines use kernel functions to map the input variables in a high-255 

dimensional space, in which a linear regression model is constructed. For Least-squares 256 

Support Vector Machines, inequality constraints are replaced by equality constraints and a 257 

squared loss function is minimised (Suykens et al., 2002). During the training phase, two 258 

meta-parameters need to be specified: (i) the kernel type and associated kernel parameter, 259 

describing the non-linear mapping function to the feature space, and (ii) the regularisation 260 

parameter. The optimal values for the meta-parameters were determined in a cross-validation 261 



approach within each training dataset using the tunelssvm function in the Statistical library for 262 

least squares support vector machines (STATLSSVM) toolbox of Matlab-software (De 263 

Brabanter et al., 2013). 264 

2.5 SOC stock upscaling 265 

The location and spatial extent of the LIHD systems in Flanders were retrieved from the 266 

ECOPLAN land cover and land use geodatasets with a resolution of 5 x 5 m (Vrebos, 2015). 267 

The land cover dataset is based on the Biological valuation map (De Saeger et al., 2010) and 268 

the agricultural parcels map (ALV, 2013) and distinguishes the following land cover classes: 269 

herb-rich vegetation, nutrient-poor grassland, nutrient-rich grassland, dry heath, wet heath, 270 

marsh, reed marsh and salt marsh. The ECOPLAN land use dataset describes the type and 271 

intensity of land management and was used to differentiate low-input from high-input 272 

grasslands. Only grassland with an extensive management regime was retained. 273 

Land units were defined by topological overlay of these land cover and land use datasets with 274 

the soil map converted to WRB classification (Figure 1). This resulted in 129,794 polygons 275 

belonging to 6518 distinct land units. For each polygon, the mean lowest groundwater level 276 

was retrieved from the ECOPLAN dataset. Soil texture fractions of each LU were derived 277 

from the most detailed statistical (historical) soil profile as described above. As there was no 278 

region-wide information available about functional traits, species diversity and biomass 279 

production, the corresponding training data were generalised per land cover class. Finally, the 280 

SOC stock of the land units was estimated by applying the best performing digital soil 281 

mapping method.  282 



3. Results 283 

3.1 Depth extrapolation of topsoil OC 284 

The SOC stock in the upper 15 cm was on average 5.55 kg OC m
-2

, with a minimum of 0.95 285 

kg OC m
-2

 and a maximum of 15.32 kg OC m
-2

 (Table 1). These topsoil OC measurements 286 

were vertically extrapolated using the exponential change decline function (Eqs. 1 & 2), 287 

which was able to model SOC-rich subsoil horizons such as spodic horizons (Figure 2a) and 288 

peat layers (Figure 2b). The resulting SOC stock in the upper 100 cm of the training dataset 289 

was on average 15.75 kg OC m
-2

, with a minimum of 4.65 kg OC m
-2

, a median of 13.30 kg 290 

OC m
-2

 and a maximum of 72.84 kg OC m
-2

 (Table 1). 291 

3.2 Exploratory data analysis 292 

According to the results of the PCA, the following five traits optimally represented the trait 293 

space: specific leaf area (SLA, mm² mg
-1

), leaf nitrogen (LN, mg g
-1

), vegetation height (H, 294 

m), mycorrhizal associations (MA, %) and rooting depth (RD, m). The collinearity analysis 295 

among the candidate predictors (Figure 3 and SI1) resulted in four variables omitted from 296 

further modelling: the silt and sand fraction (rs=0.71 and rs=-0.85, p≤0.01 with the clay 297 

fraction), the highest groundwater level (rs=0.90, p≤0.01 with the lowest groundwater level) 298 

and the CWM of LN (rs=0.70, p≤0.01 with the CWM of SLA). Significant correlation was 299 

observed between SOC stock in the upper 15 cm and the following candidate predictors: clay 300 

fraction (rs=0.21, p≤0.05), lowest groundwater level (rs=-0.25, p≤0.01), biomass production 301 

(rs=0.31, p≤0.01), CWM of H (rs=0.28, p≤0.01) and MA (rs=-0.23, p≤0.01), CWV of H 302 

(rs=0.17, p≤0.01) and soil classification as Histosol (rp=-0.19, p≤0.05), Phaeozem (rp=0.19, 303 

p≤0.05), Retisol (rp=-0.21, p≤0.05) or another WRB reference soil group (rp=-0.19, p≤0.05). 304 

The SOC stock in the upper 100 cm, on the other hand, was significantly correlated with clay 305 

fraction (rs=0.19, p≤0.05), lowest groundwater level (rs=-0.34, p≤0.01), slope (rs=-0.25 306 

p≤0.01), biomass production (rs=0.21, p≤0.05), CWM of SLA (rs=-0.23, p≤0.01) and H 307 



(rs=0.20, p≤0.05) and soil classification as Arenosol (rp=-0.20, p≤0.05), Gleysol (rp=-0.35, 308 

p≤0.01), Histosol (rp=0.20, p≤0.05) or another WRB reference soil group (rp=-0.21, p≤0.05). 309 

3.3 Model training and performance 310 

3.3.1 SOC stock in the upper 15 cm 311 

MLR highlighted the importance of seven variables in predicting the SOC stock in the upper 312 

15 cm: lowest groundwater level, biomass production, CWV of MA and soil classification as 313 

Arenosol, Histosol, Retisol or other WRB RSG (Table 2). When considering all 97 submodels 314 

with a difference in AICc smaller than two compared to the so-called best model, additional 315 

variables affecting the SOC stock were identified: clay fraction, slope, CWM of SLA, H and 316 

MA, CWV of SLA, LN, H and RD and the soil classes Cambisol, Gleysol, Phaeozem and 317 

Podzol. Overall, MLR was outperformed by the other – non-linear, machine-learning – 318 

modelling techniques (Table 3). Of the latter, the BRT model resulted in the best fit of the 319 

training data (R²adj,train = 0.69, RMSEtrain = 1.45 kg m
-2

) and after cross-validation (R²adj,CV = 320 

0.19, RMSECV = 2.22 kg m
-2

). The optimal meta-parameters of the BRT model consisted of a 321 

tree complexity of 4, a learning rate of 0.002 and a bag fraction of 0.5 (SI2). This resulted in 322 

1850 trees in the final BRT model. After simplification, WRB reference soil groups (relative 323 

importance of 25.1 %), CWM of SLA (12.9%), biomass production (8.2%), CWV of H 324 

(7.5%), CWV of RD (7.3%), CWM of H (7.1%), slope (6.6%), clay fraction (5%), CWM of 325 

RD (5.2%), CWM of MA (5.1%), species diversity (4.9%) and lowest groundwater level 326 

(4.6%) were identified as key predictors of the SOC stock in the upper 15 cm (Figure 4). The 327 

corresponding partial dependence plots show the effect of each variable on the SOC stock 328 

when accounting for the average effects of all other variables in the model. Larger SOC 329 

stocks in the upper 15 cm were found in Gleysols, Umbrisols, Phaeozems and Cambisols, 330 

whereas Retisols, other WRB groups and Histosols stored smaller stocks. These plots further 331 

indicate a negative effect of increasing CWM of SLA and MA, slope and depth of the 332 



groundwater level and a positive effect of increasing biomass production, CWV and CWM of 333 

H and RD, clay fraction, and species diversity.  334 

The optimal ANN consisted of one hidden layer with seven neurons trained using the 335 

Levenberg-Marquardt algorithm. An early stopping procedure and a regularisation parameter 336 

of 0.01 prevented overfitting. The optimal kernel function of the LS-SVM was the linear 337 

kernel. 338 

3.3.2 SOC stock in the upper 100 cm 339 

For the SOC stock in the upper 100 cm, the MLR best model consisted of ten variables: clay 340 

fraction, lowest groundwater level, slope, CWM and CWV of SLA, functional dispersion and 341 

soil classification as Gleysol, Histosol, Podzol or Umbrisol (Table 2). When considering all 342 

55 submodels in the multimodel average, additional variables affecting the SOC stock were 343 

aboveground biomass production, CWM of H and MA, CWV of LN, H and RD and soil 344 

classification as ‘other’. Again, MLR was outperformed by the other modelling techniques 345 

(Table 4), of which the BRT model resulted in the best fit after cross-validation (R²adj,CV = 346 

0.44, RMSECV = 6.99 kg m
-2

). An optimal tree complexity of 4, learning rate of 0.05 and bag 347 

fraction of 0.5 (SI3) resulted in a total number of 3500 trees. After simplification, soil type 348 

(relative importance of 39.6 %), lowest groundwater level (21%), clay fraction (15.7%) and 349 

CWV (12.1%) and CWM of H (11.6%) were identified as the main predictors of the SOC 350 

stock in the upper 100 cm (Figure 5). According to the partial dependence plots, larger stocks 351 

were found in Gleysols, Umbrisols and Histosols, whereas Arenosols and other WRB groups 352 

stored smaller stocks. Similar to the results of the topsoil OC, a negative effect of an 353 

increasing depth position of the groundwater level and positive effects of increasing clay 354 

fractions and CWM of H were observed. 355 

The optimal ANN consisted of one hidden layer with five neurons trained using the 356 

Levenberg-Marquardt algorithm in combination with an early stopping procedure and a 357 



regularisation parameter of 0.01. The optimal kernel function of the LS-SVM was the 358 

Gaussian additive kernel. 359 

3.4 Model application and upscaling 360 

Given the best performance of the BRT model, it was applied to the 129,794 polygons 361 

covering 30,556 ha. This resulted in a total SOC stock in the upper 15 cm of 1.63 Tg OC, with 362 

a median and average value of 5.17 kg m
-2

 and 5.34 kg m
-2

, respectively. Considering the 363 

upper 100 cm led to larger estimates: a total of 4.53 Tg OC, with a median and average value 364 

of 13.72 kg m
-2

 and 14.83 kg m
-2

, respectively. Figure 6 shows the regional distribution of the 365 

difference in SOC stock between the 100 cm and 15 cm estimate. LUs which showed the 366 

largest differences, i.e. LUs in which the depth interval [15,100] is relatively carbon-rich, 367 

corresponded to Gleysols and Histosols.  368 



4. Discussion 369 

4.1 Modelling regional subsoil OC stocks 370 

Ecosystem service assessments rely on ecological indicators such as the SOC stock. However, 371 

routine soil sampling is often limited in depth and spatial density, which hampers accurate 372 

assessments of the SOC stock. To increase the vertical extent, several methods have been 373 

proposed including exponential decline (Hilinski, 2001), logarithmic (Jobbágy and Jackson, 374 

2000) and power (Veronesi et al., 2014) functions. Taking full advantage of the presence of a 375 

detailed legacy soil dataset, an exponential change decline function was developed (Ottoy et 376 

al., 2016). Subsoil reference profiles are needed to enable detailed calibration and validation 377 

of this function. As subsoil measurements for LIHD systems are currently lacking, in future 378 

inventories soil should be sampled by pedogenetic horizon down to the parent material 379 

(Wiesmeier et al., 2012; Parras-Alcántara et al., 2015b). Our results (Figure 2) show the added 380 

value of this function to model SOC-rich subsoil horizons such as spodic (in Podzols) and 381 

peat horizons (in Gleysols and Histosols) in LIHD systems. Given the considerable spatial 382 

extent of these LUs (Figure 6), they should not be neglected in regional ecosystem service 383 

assessments. In our case, limiting the assessment to the topsoil (1,63 Tg OC) would result in a 384 

substantially smaller regional stock compared to the estimate of the upper 100 cm (4,53 Tg 385 

OC). Besides incomplete stock estimates, limitation to the topsoil can result in incomplete 386 

understanding of stock changes over time (Chapman et al., 2013; Jandl et al., 2014). Our 387 

average predicted stock in the upper 100 cm of soil under LIHD systems (14.83 kg OC m
-2

) is 388 

larger than those observed in agricultural soils in Flanders: 10.4 kg OC m
-2

 under arable land 389 

and 12.5 kg OC m
-2

 under grassland (Ottoy et al., 2016). Forests, on the other hand, were 390 

found to contain a slightly larger stock (14.8 – 15.5 kg OC m
-2

) in the complete territory of 391 

Belgium (Lettens et al., 2005). These findings show that LIHD systems – apart from their 392 



potential biomass production for bioenergy (Tilman et al., 2006; Van Meerbeek et al., 2016) – 393 

also considerably contribute to climate change mitigation through SOC storage. 394 

Both the regional stock of the upper 15 cm and 100 cm were estimated using BRT models, as 395 

this modelling technique outperformed the other considered techniques (MLR, ANN and LS-396 

SVM). The observed goodness-of-fit indicator values are in line with those reported in earlier 397 

studies (Meersmans et al., 2008; Martin et al., 2014). In contrast to our results, Viscarra 398 

Rossel and Behrens (2010) found that SVM outperformed by BRT in predicting SOC content. 399 

An important advantage of BRT compared to ANN and LS-SVM is its ability to identify 400 

important predictors and visualise their effects through partial dependence plots (Elith et al., 401 

2008). 402 

Upscaling these predictors requires regional coverage of the predictor variables. Such 403 

information is not always available, e.g. plant functional traits are typically sampled at the 404 

(local) plot level. To this end, we aggregated the training data per land cover class. This 405 

approach is, however, limited because it does not account for the within-class variation, which 406 

can be as large as 75% of the total overall variation for some functional traits (Kattge et al., 407 

2011). To take this local variation into account remote sensing techniques can offer an 408 

appropriate solution, e.g. the use of high-resolution LiDAR (Light Detection And Ranging) 409 

information to estimate CWM and CWV of vegetation height (Abelleira Martínez et al., 410 

2016). 411 

4.2 SOC stock predictors 412 

Interesting insights in the soil system can be gained from the partial dependence plots of the 413 

BRT models. These results show that the model explaining the topsoil stock contained all 414 

variables of the model explaining the stock in the upper 100 cm (WRB RSG, LGWL, Clay, 415 

CWV and CWM of height) supplemented by information on CWM of specific leaf area, 416 

biomass production, CWV of rooting depth, slope, CWM of rooting depth, CWM of 417 



mycorrhizal associations, and species diversity. The predictor with the highest relative 418 

importance in both models (25,1% resp. 39,6%) is the WRB reference soil group. For mineral 419 

SOC stocks in European forests, De Vos et al. (2015) also found that WRB RSG was given 420 

the highest relative importance. The effects of each soil group can be explained by their 421 

specific diagnostic characteristics (IUSS Working Group WRB, 2015): the presence of 422 

permanently high groundwater levels (Gleysols), thick organic layers (Histosols), spodic 423 

horizons (Podzols) or the accumulation of OC in the topsoil (Phaeozems and Umbrisols). On 424 

the other hand, sandy soils with limited or no profile development (Arenosols) and acid, 425 

nutrient-poor soils with an interfingered clay illuviation horizon (Retisols) store smaller SOC 426 

stocks (e.g. De Vos et al. (2015)). Remarkably, our results indicate that smaller stocks are 427 

stored in the topsoil of Histosols compared to the other soil groups. As the soil classification 428 

was retrieved from the soil map dating from 1947 – 1974, part of the information might be 429 

outdated. For soils classified as peat on the Dutch national soil map (1962 – 1995), Kempen et 430 

al. (2009) pointed to large-scale changes in land and water management after the national soil 431 

survey, resulting in (i) decreased peat thickness, or (ii) changed (from organic to mineral) soil 432 

type. For (extremely) wet grassland soils in Belgium, Meersmans et al. (2009) explained 433 

carbon losses between 1960 and 2006 by more intensive drainage during the last decades. 434 

These findings indicate that caution is required when using potentially outdated information 435 

on soil classification, especially for Histosols. Additional soil variables such as the clay 436 

fraction and groundwater level have but a minor effect on the topsoil stock, but are key 437 

predictors of the subsoil stock with a relative importance of 15,7% and 21%, respectively. The 438 

positive effect of an increasing clay fraction can be explained by the formation of stable, clay-439 

protected organo-mineral complexes (Six et al., 2002), while the positive effect of a 440 

decreasing depth of the groundwater level is due to the hampering effect of oxygen deficiency 441 

on the decomposition rate of organic matter (Callesen et al., 2003). 442 



The negative relationship between the CWM of specific leaf area and the topsoil stock has 443 

also been observed by Manning et al. (2015) and Grigulis et al. (2013), who found larger 444 

stocks under vegetation with thick and/or dense leaves. The positive effect of increasing 445 

values of biomass production, CWV and CWM of height can be explained by larger carbon 446 

inputs into the soil. Chapin (2003) already stressed the importance of plant traits related to 447 

size and growth rate in the carbon cycle. Additionally, larger CWV and CWM values of 448 

rooting depth can increase belowground carbon inputs and can promote interaction of SOC 449 

with soil minerals to form stable organo-mineral complexes (Lorenz and Lal, 2005; De Deyn 450 

et al., 2008). Furthermore, these variables were found to be positively correlated with the clay 451 

fraction and negatively correlated with the depth of the groundwater table. The effect of 452 

increasing mycorrhizal associations is rather ambiguous. Hodge et al. (2001) found that 453 

arbuscular mycorrhizal symbiosis enhanced decomposition of grass leaves, which can have a 454 

negative effect on the resulting SOC stock. However, mycorrhizal fungi are also found to 455 

reduce carbon losses by slowing down root decomposition (Langley et al., 2006), producing 456 

relatively stable glomalin carbon and promoting the formation of soil aggregates (Zhu and 457 

Miller, 2003). The observation of a negative effect of increasing mycorrhizal associations in 458 

our study is likely to be a result of correlated soil characteristics: larger CWM values are 459 

found on dry (rs=-0.43, p≤0.01), sandy (rs= 0.25, p≤0.01) soils. Similarly, a higher species 460 

diversity was found on nutrient-richer clayey (rs=0.17, p≤0.05) or silty (rs=0.21, p≤0.05) soils, 461 

and is accompanied by larger CWV values of e.g. height (rs=0.34, p≤0.01) and rooting depth 462 

(rs=0.57, p≤0.01).  463 



5. Conclusions 464 

Our study has shown that the topsoil (0-15 cm) of Low-Input High-Diversity systems in 465 

Flanders stored but 36% of the SOC stock found in the upper 100 cm. Apart from soil 466 

variables, vegetation characteristics such as specific leaf area, aboveground biomass 467 

production, plant height, rooting depth, mycorrhizal associations and species diversity 468 

influence the SOC stock. These findings indicate that the subsoil should not be neglected in 469 

ecosystem service assessments. We could obtain these results by combining depth 470 

extrapolation of topsoil OC measurements with digital soil mapping using a boosted 471 

regression trees approach. Legacy soil profile data are key inputs for the vertical exponential 472 

change decline function as they provide reference data about the depth dependence of the 473 

SOC content. This information is especially valuable for soil types in which the subsoil 474 

contributes substantially to the total SOC stock, i.e. by the presence of SOC-rich subsoil 475 

horizons which are typically overlooked by alternative depth extrapolation approaches. 476 

Secondly, legacy data provide soil predictors, such as clay fraction, for spatial upscaling. 477 

Further improvements of the training of the boosted regression trees and of the spatial 478 

upscaling might be gained by updating the soil map to provide actual information on the 479 

distribution of SOC-rich soil types. To capture the local variation in vegetation functional 480 

traits as predictors for upscaling, novel remote sensing techniques like high-resolution Light 481 

Detection And Ranging (LiDAR) are promising. 482 
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Table 1: Descriptive statistics of the different model variables in the training dataset.  736 

Variables Data type [unit] Model training  

n min max mean med 

SOC stock 15 cm Cont. [kg m
-2

] 139 0.95 15.32 5.55 5.30  

SOC stock 100 cm Cont. [kg m
-2

] 139 4.65 72.84 15.75 13.30  

Soil texture fraction Cont. [%]       

Clay  139 0 44.00 12.04 10.32  

Silt  139 1.67 81.09 27.20 17.99  

Sand  139 1.91 96.55 60.26 72.25  

Groundwater level Cont. [cm]       

Highest  139 1.50 738.29 66.56 27.85  

Lowest  139 2.50 760.44 129.89 97.65  

Slope Cont. [%] 139 0.18 41.71 2.56 1.48  

Biomass production Cont. [ton DM ha
-1

] 139 0.19 25.32 5.30 4.21  

Species diversity Cont. [] 139 1.00 33.00 12.58 13.00  

CWM        

Specific leaf area Cont. [mm² mg
-1

] 139 8.08 34.16 23.02 24.17  

Leaf Nitrogen Cont. [mg g
-1

] 139 11.37 38.71 23.97 24.44  

Height Cont. [m] 139 0.26 1.68 0.68 0.60  

Mycorrhizal associations Cont. [%] 139 12.87 78.65 55.26 63.39  

Rooting depth Cont. [m] 139 0.23 1.26 0.49 0.46  

CWV        

Specific leaf area Cont. [mm² mg
-1

] 139 0.00 121.30 31.51 23.45  

Leaf Nitrogen Cont. [mg g
-1

] 139 0.00 378.87 40.63 30.17  

Height Cont. [m] 139 0.00 0.40 0.05 0.03  

Mycorrhizal associations Cont. [%] 139 0.00 1138.28 265.05 182.90  

Rooting depth Cont. [m] 139 0.00 0.29 0.05 0.03  

Functional dispersion Cont. [] 139 0.00 2.17 1.20 1.23  

Soil type Bin. [Presence]       

Arenosols  14      

Cambisols  26      

Gleysols  6      

Histosols  15      

Other  10      

Phaeozems  23      

Podzols  32      

Retisols  7      

Umbrisols  6      
      cont., continuous; bin., binary; CWM, community weighted mean; CWV, community weighted variance.737 



31 
 

Table 2: Results of the multiple linear regression (MLR) models to estimate the SOC stock in 738 

the upper 15 and 100 cm. The relative importance (RI), coefficients (Coef.) and their 95% 739 

confidence interval (95% CI) of the multimodel average (MMA) together with the 740 

coefficients of the best model (BM).   741 

Predictor MLR SOC15cm  MLR SOC100cm 

MMA  BM  MMA  BM 

RI Coef. 95% CI  Coef.  RI Coef. 95% CI  Coef. 

Intercept  4.46 [2.90, 6.02]  5.06   14.15 [5.70, 22.60]  16.32 

Clay 0.41 0.03 [-0.01, 0.08]    1.00 0.42 [0.24, 0.61]  0.45 

LGWL 0.55 -0.003 [-0.006, 0.001]  -0.003  1.00 -0.02 [-0.03, -0.002]  -0.02 

Slope 0.02 0.04 [-0.06, 0.13]    0.81 0.32 [-0.05, 0.68]  0.32 

BP 1.00 0.16 [0.04, 0.28]  0.19  0.21 0.25 [-0.12, 0.62]   

SD       0.01 -0.14 [-0.38, 0.11]   

CWM            

SLA 0.09 -0.03 [-0.1, 0.04]    0.43 -0.19 [-0.44, 0.05]  -0.21 

LN               

H 0.39 1.44 [-0.38, 3.26]    0.03 2.77 [-3.11, 8.65]   

MA <0.01 -0.01 [-0.04, 0.02]    0.15 -0.06 [-0.16, 0.04]   

RD       0.01 -4.29 [-12.91, 4.33]   

CWV            

SLA 0.03 0.01 [-0.01, 0.02]    0.52 0.05 [-0.01, 0.11]  0.05 

LN 0.19 0.01 [-0.004, 0.02]    0.16 -0.02 [-0.06, 0.01]   

H 0.18 4.59 [-2.11, 11.28]    0.17 14.54 [-9.94, 39.02]   

MA 0.93 0.002 [0.0001, 0.003]  0.002       

RD <0.01 3.01 [-4.49, 10.52]    0.15 -17.45 [-47.11, 12.20]   

FDis       1.00 -3.41 [-6.32, -0.51]  -4.02 

WRB RSG            

AR 0.48 -1.00 [-2.29, 0.28]  -1.10  0.03 1.95 [-3.41, 7.31]   

CM 0.03 0.45 [-0.54, 1.44]         

GL 0.48 1.39 [-0.42, 3.20]    1.00 19.92 [13.07, 26.78]  19.98 

HS 1.00 -2.59 [-3.86, -1.32]  -2.66  1.00 5.92 [1.10, 10.74]  5.54 

PH 0.02 -0.54 [-1.72, 0.63]         

PZ 0.03 -0.52 [-1.53, 0.48]    1.00 6.98 [2.78, 11.17]  7.23 

RT 1.00 -2.59 [-4.31, -0.87]  -2.78       

UM       1.00 10.92 [3.97, 17.86]  10.75 

Other 1.00 -1.99 [-3.45, -0.53]  -2.08  0.04 -2.49 [-8.12, 3.14]   
LGWL, lowest groundwater level; BP, biomass production; SD, species diversity; CWM, community weighted 742 
mean; CWV, community weighted variance; SLA, specific leaf area; LN, leaf nitrogen; H, height; MA, 743 
mycorrhizal associations; RD, rooting depth; FDis, functional dispersion; WRB RSG, world reference base 744 
reference soil group; AR, Arenosol; CM, Cambisol; GL, Gleysol; HS, Histosol; PH, Phaeozem; PZ, Podzol; RT, 745 
Retisol; UM; Umbrisol.  746 
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Table 3: Goodness-of-fit measurements of the four digital soil mapping techniques (MLR, 747 

multiple linear regression; BRT, boosted regression trees; ANN, artificial neural networks; 748 

LS-SVM, least-squares support vector machines) in modelling the SOC stock of the upper 15 749 

cm. These indicators were calculated on the complete training dataset (train) and after 10-fold 750 

cross-validation (CV). 751 

Goodness-of-fit 

indicator 

MLR BRT ANN LS-SVM 

MMA BM 

         0.29 0.29 0.72 0.37 0.33 

             

          (kg m
-2

) 

           (%)  

0.17 0.26 0.69 0.28 0.23 

2.16 2.07 1.45 1.96 2.03 

38.98 37.34 26.18 35.30 36.57 

      - 0.18 0.26 0.19 0.27 

          - 0.14 0.19 0.07 0.17 

       (kg m
-2

) - 2.26 2.22 2.58 2.24 

        (%) - 40.62 40.03 45.62 40.56 
 R², coefficient of determination; R²adj, adjusted R²; RMSE, root mean squared error; rRMSE, relative RMSE.  752 
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Table 4: Goodness-of-fit measurements of the four digital soil mapping techniques (MLR, 753 

multiple linear regression; BRT, boosted regression trees; ANN, artificial neural networks; 754 

LS-SVM, least-squares support vector machines) in modelling the SOC stock of the upper 755 

100 cm. These indicators were calculated on the complete training dataset (train) and after 10-756 

fold cross-validation (CV). 757 

Goodness-of-fit 

indicator 

MLR BRT ANN LS-SVM 

MMA BM 

         0.38 0.40 0.99 0.63 0.99 

             

          (kg m
-2

) 

           (%)  

0.28 0.36 0.99 0.61 0.99 

10.14 7.68 0.16 5.88 0.38 

64.38 48.79 1.04 37.39 2.48 

      - 0.17 0.45 0.37 0.43 

          - 0.10 0.44 0.32 0.38 

       (kg m
-2

) - 9.54 6.99 8.59 7.67 

        (%) - 60.58 44.38 53.65 47.82 
R², coefficient of determination; R²adj, adjusted R²; RMSE, root mean squared error; rRMSE, relative RMSE.  758 
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 759 

Figure 1: A schematic overview of the applied procedure. A distinction is made between input 760 

data, data processing and results.  761 
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 762 

Figure 2: The modelled vertical distribution of soil organic carbon (SOC) content (%) using 763 
the exponential change decline function (black line) together with the historical SOC 764 
profile (grey bars) of two land units: (a) Podzol in the Campine region and (b) Gleysol in 765 

the Sandy region.  766 
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 767 

Figure 3: Graphical display of the correlation matrix, using the ‘corrplot’ package of R-768 
software (Wei and Simko, 2016). It comprises Spearman’s rank correlations for two 769 

continuous variables and point-biserial correlations for one continuous and one binary 770 
variable. The corresponding correlation coefficients and p-values can be found in SI1. 771 
HGWL, highest groundwater level; LGWL, lowest groundwater level; BP, biomass 772 

production; SD, species diversity; CWM, community weighted mean; CWV, community 773 

weighted variance; SLA, specific leaf area; LN, leaf nitrogen; H, height; MA, 774 
mycorrhizal associations; RD, rooting depth; FDis, functional dispersion; AR, Arenosol; 775 
CM, Cambisol; GL, Gleysol; HS, Histosol; PH, Phaeozem; PZ, Podzol; RT, Retisol; 776 

UM; Umbrisol.  777 
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 778 

Figure 4: Partial dependence plots of the soil organic carbon stock in the upper 15 cm to the 779 
predictors in the boosted regression trees. The plots indicate the effect of each predictor, 780 

given the average effects of all other predictors in the model. The relative importance 781 
(%) of each predictor is reported above the upper right corner of each plot.  782 
CWM, community weighted mean; CWV, community weighted variance; WRB RSG, 783 
world reference base reference soil group; AR, Arenosol; CM, Cambisol; GL, Gleysol; 784 

HS, Histosol; PH, Phaeozem; PZ, Podzol; RT, Retisol; UM; Umbrisol.  785 
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 786 

Figure 5: Partial dependence plots of the soil organic carbon stock in the upper 100 cm to the 787 
predictors in the boosted regression trees. The plots indicate the effect of each predictor, 788 

given the average effects of all other predictors in the model. The relative importance 789 
(%) of each predictor is reported above the upper right corner of each plot.  790 

CWM, community weighted mean; CWV, community weighted variance; WRB RSG, 791 
world reference base reference soil group; AR, Arenosol; CM, Cambisol; GL, Gleysol; 792 

HS, Histosol; PH, Phaeozem; PZ, Podzol; RT, Retisol; UM; Umbrisol.  793 
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 794 

Figure 6: Geographical distribution of the difference in soil organic carbon stock between the 795 

15 cm and 100 cm estimate by the resulting boosted regression trees for Low-Input 796 
High-Diversity (LIHD) systems in Flanders, Belgium. 797 


