
The Use of Mercury for the Implementation of a

Finite Domain Solver

Henk Vandecasteele, Bart Demoen, Joachim Van Der Auwera

fhenk.vandecasteele, bart.demoeng@cs.kuleuven.ac.be

Katholieke Universiteit Leuven, department computerwetenschappen,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Keywords: Logic Programming, Constraint Logic Programming.

Abstract. Mercury [SHC94]is a recent phenomenon in the �eld of logic

programming: it is faster than other logic language implementations (e.g.

Prolog) and better suited for the development of large applications be-

cause of its compile-time error-detection capabilities. The concepts and

technology used in the implementation of Mercury are rather new and

not yet evaluated thoroughly outside its implementors group. This paper

reports on an evaluation of Mercury, by describing the porting from the

medium-sized constraint solving tool ROPE written originally in Prolog,

to Mercury. At �rst our aim and hope, was only to arrive at a faster

implementation of the constraint solving tool, but in the course of the

porting, it became clear that the main feature necessary for e�ciency and

missing from the current implementation of Mercury, is e�cient back-

trackable destructive assignment, at least for our application. We report

on a naive port of the Prolog implementation of ROPE in Mercury, a re-

designed version using more e�cient data-structures and �nally a version

which uses our own hacked together implementation of backtrackable de-

structive assignment: a future version of Mercury will hopefully support

this functionality through user-declarations or analysis.

1 Motivation

In the past years, we have developed a prototype �nite domain solver ROPE

on top of Prolog [VDS94]. This implementation will further we referred to as

ROPE. This prototype lacks e�ciency because its implementation doesn't rely

on any non-standard support of the Prolog implementation. On the other hand,

this helped the development of the ideas of ROPE quite a bit. We believe that

the reason for this ine�ciency is partly the generality of Prolog (reversible,

non-typed predicates) and partly the lack of support for data structures that

can be updated at constant cost. When the new logic programming Mercury

emerged, it looked very promising to port our prototype to this new system. One

of the advantages of Mercury is faster execution: type, mode and determinacy

declarations allow to generate more e�cient code. On the other hand, exactly

because of these declarations the port was non-trivial. For example the mode-

declarations do not allow some partially instantiated structures. As a result

open-ended data structures are not possible. The prototype of ROPE in Prolog

heavily depends on such partially instantiated data structures. Still, we were

encouraged to make the experiment as the designers of Mercury claim there

exists alternative methods to cure these problems. In the next section we report

on the Prolog-implementation of ROPE. This is followed by a description of

the initial, pure Mercury implementation of the �nite domain solver ROPE. The

implementation of the �nite domain solver on Mercury will be called mrope in the

rest of the paper. This �rst pure version of mrope did not ful�l our performance

expectations and we have experimented with di�erent data-structures. Finally we

added backtrackable destructive assignment to the Mercury-system and report

on this in section 4. We end with some conclusions.

2 The �nite domain solver ROPE

2.1 Finite domain solvers in general

The �nite domain solver ROPE [VDS94] is a system within the paradigm of

constraint logic programming, an extension of logic programming. In constraint

logic programming languages uni�cation is substituted with a more general con-

straint solving method. This way connections other than sharing can be build

between variables where the involved variables do not have to be instantiated.

This allows the solver to prune the search space before choices are made. Typical

for a �nite domain CLP-language is that the possible instantiations of a variable

is restricted to a �nite set of values.

The working method of such a solver is usually by consistency techniques.

Other names for these techniques are a-priori pruning and constraint propaga-

tion. This consist in keeping with each variable a set of values which are still

candidates for assignment and which are still consistent with the constraints.

These sets are usually called the domains. The use of a constraint consists in

removing inconsistent values from these domains. A value is inconsistent if there

exist a constraint (or in general a set of constraints) such that given the domains

of the involved variables, assignment of this value to the corresponding variable

violates the constraint (or set of constraints). The removal of inconsistent values

from a domain can lead to new inconsistent values for other variables. A �xpoint

algorithm like AC3 [Mac77] can be used to accomplish this task.

2.2 Features of ROPE

The �nite domain solver ROPE allows the user to express a wide range of dif-

ferent pruning strategies for each constraint. These pruning strategies include

forward checking, partial lookahead and full lookahead [Hen89], but also contain

many other pruning behaviours in between forward checking and lookahead. The

existence of such pruning strategies was suggested in [Nad89]. In [VDS94] these

pruning strategies were presented and discussed.

Another feature of the �nite domain language is a powerful enumeration

primitive [Van94]: consistency techniques (removal of inconsistent values) are not

enough to solve a �nite domain problem. Most problems also need sophisticated

enumeration. This means that a variable is chosen from the list of uninstanti-

ated �nite domain variables and that this variable is assigned a value from it's

corresponding domain. If such an assignment fails, or if the algorithm searches

another solution, this assignment is undone and another assignment is tried. The

enumeration strategy (choice of the variable and the value from its domain) is de-

cisive for the e�ciency of the search. ROPE contains a primitive which allows to

direct the enumeration with three parameters. The �rst parameter determines a

heuristic to select a variable among a list of uninstantiated variables. The second

parameter determines which value from the domain is selected for assignment,

while the last parameter concerns the backtrack behaviour. This last parameter

could express for example that on backtracking a new variable must be chosen

for assignment, while in classical methods the same variable is assigned another

value.

The language also contains a version of the cardinality constraint [HD91] and

the possibility to express an optimization function.

2.3 Implementation of ROPE on top of Prolog

Data representation A domain in ROPE is a �nite set of natural numbers

which is represented as an union of disjunct intervals. For example the set

f1,2,3,8,9,12g is represented as 1..3:8..9:12..12 . The operator ../2 denotes an

interval, the operator :/2 denotes the union of the two operands.

A constraint is usually transformed to a set of \in"-constraints, as done in

[HSD93]. Each constraint can lead to a di�erent set of \in"-constraints depending

on the desired pruning behaviour. For example the constraint X = Y + 1 could

result in the set of constraints f X in dom(Y) + 1, Y in dom(X) -1g, fX in int(Y)

+ 1, Y in int(X) - 1g or f ask(ground(X), Y in X - 1), ask(ground(Y), X in Y + 1)

g. The functor dom/1 takes the domain of its argument. The functor int/1 results

in approximating the domain of its argument to the smallest interval containing

the domain. The construction ask(ground(X), Constraint) leads to the delay of

the constraint until the variable X becomes instantiated. As the reader may

have noticed the �rst set of constraints expresses lookahead. The second set of

constraints leads to partial lookahead behaviour and the last set of constraints

results into forward checking. Cardinality constraints and optimization functions

lead to other primitives but we will not discuss these here.

Since our implementation of ROPE does not use any extension to Prolog,

the domains and constraints have to be represented as ordinary Prolog data

structures. Such data structures must be very easily accessible and also very easy

to update. One alternative is to add to every clause an extra input and output

parameter. The data-structure in these extra parameters contains information on

the domains and the constraints connected to the variables. Every �nite domain

variable then refers to this global data-structure with a unique number. When

information is changed concerning a �nite domain variable, a smaller domain for

example, then the out parameter re
ects these changes where it still contains

the old information on the other variables. Such a working method results in

e�ciency problems as updates to this global store are dependent on the number

of �nite domain variables in the system. An example of such a data-structure is a

at term where each argument contains information on one �nite domain variable

(in the sequel, we refer to this representation as "functor"). The unique number

connected to each �nite domain variable is the position of this argument in the

functor. If the information on one variable changes then a new functor must be

created where all arguments but one must be copied from the old functor. Time

and place complexity of this operation is O(N), where N is the number of �nite

domain variables in the program. A better alternative is a tree-structure. In this

case the complexity of copying in case of changes is logarithmic in the number of

existing �nite domain variables. Unfortunately, also access without modi�cation

becomes logarithmic in the number of �nite domain variables.

Therefore we choose to instantiate each �nite domain variable to a structure

that contains both the domain of the variable and the constraints in which this

variable is involved. There exist several references to one �nite domain variable,

namely each constraint in which the variable occurs. As a result we cannot re-

place the variable with a new variable when the domain changes. We have to

change the domain of the variable by further instantiating it. For this an open-

ended data structure is used with logarithmic access depending on the number of

updates to this domain. Updating shows the same complexity behaviour. Con-

cerning the constraints, four pieces of information are attached to a constrained

variable: a list of constraints to be activated when the variable becomes instan-

tiated, a list of constraints to be activated when the lower-bound of the domain

changes, a list of constraints to be activated when the upper-bound of the vari-

ables changes and �nally a list of constraints to be activated with every change

to the domain of the variables. For some types of constraints, for example cardi-

nality, we have to be able to remove constraints from these lists. For this purpose

we keep a free variable with each constraint. To remove a constraint from a list,

this variable is instantiated.

A �nal data structure concerns the queue of constraints which were activated,

but not used yet. This is an open ended list where new constraints are added

at the end of the list. A desirable feature of such a queue is that a constraint

can only appear once in the queue. For this purpose an unbalanced binary tree

is used in the pure Prolog version. In an impure version, we have used a record

database. Every constraint contains a unique number. For every constraint in

the queue this number is stored in the tree/database.

Algorithm Given these data structures, the main loop of the solver algorithm

performs the following actions: (1) take a constraint from the queue, (2) use the

constraint for removal of inconsistent values, (3) if the domain of a constrained

variable changed, take the constraint(s) to be checked from the constraint store

and add them to the queue, (4) if the queue is not empty restart with (1)

otherwise stop. If a domain becomes empty in step (2) then the algorithm fails.

The solver is incremental. Whenever a new constraint is added to the system,

the constraint is transformed to internal constraints. These new constraints are

added to the constraint store and to the queue of the �xpoint algorithm. Subse-

quently the �xpoint algorithm described above is activated.

After all constraints are added to the constraint store and the queue is empty

enumeration is usually started by the user program.

Enumeration consist of assigning a value to a variable and then activate

the propagation mechanism explained above. When the propagation �nishes the

process is restarted with another variable. On failure the program returns to the

most recent choice-point and takes the appropriate actions.

Besides this �xpoint and enumeration code there are some Prolog clauses

that compute the intersection, union, addition, multiplication, ... of domains.

Also subset properties are computed.

3 A pure implementation of ROPE in Mercury

In this �rst experiment we restricted the language to \in"-constraints. This im-

plementation allowed to experiment with some small examples. From this we

could draw some �rst conclusions.

3.1 Data-representation

Concerning the representations of the domain only some small changes were

needed for the typing system:

:- type mrope_srange ---> ..(int, int).

:- type mrope_range ---> simple(mrope_srange)

; :(mrope_srange, mrope_range).

The example-set f1,2,3,8,9,12g is then represented as :(..(1,3), :(..(8,9), sim-

ple(..(12,12)))) instead of 1..3:8..9:12..12 .

Also for the \in"-constraints similar constructs were used as in ROPE. X in

int(Y) + 1 is now represented as in(X, int(Y) + val(1)) . The reason for the

val/1 functor, is that Mercury does not support subtypes. The type of such

constraints look as follows:

:- type mrope_bound ---> val(int)

; lo(mrope_var)

; up(mrope_var)

; mrope_bound * mrope_bound

; mrope_bound / mrope_bound

; mrope_bound // mrope_bound

; mrope_bound + mrope_bound

; mrope_bound - mrope_bound.

:- type mrope_domain ---> :(mrope_domain,mrope_domain)

; ..(mrope_bound,mrope_bound)

; int(mrope_var)

; dom(mrope_var)

; val(int)

; compl(mrope_domain)

; mrope_domain * mrope_domain

; mrope_domain / mrope_domain

; mrope_domain + mrope_domain

; mrope_domain - mrope_domain.

% Each constraint contains a unique number as first element.

% The maximum number used so far is stored in the mrope_system.

:- type mrope_constraint ---> in(int,mrope_var,mrope_domain)

; askgroundin(int,mrope_var,mrope_var,mrope_domain).

In Prolog to connect a domain to a variable we instantiated the �nite domain

variable to a structure with an open end. By further instantiating this structure

the domain could be changed. Such a data structure is not possible in Mercury.

The only possibility left is to use an extra in and out argument in the clauses of

the program and most of the clauses of the solver. This arguments then contain

a global data-structure with information on all �nite domain variables in the

user-program at hand. As argued in the previous section, updating such a data

structure is usually very time consuming and dependent on the number of �nite

domain variables in the user-program. In case the update time is logarithmic in

the number of �nite domain variables, also the access to the domains becomes

dependent on the number of �nite domain variables. In a �rst attempt, this

global data structure was implemented with the array-library in Mercury. The

implementation of this array is based on a balanced tree. Here are the type

de�nition of these extra arguments together with the type-de�nition of the �nite

domain variables:

:- import_module array.

:- import_module int.

:- import_module queue.

:- type mrope_queues --->

mrope_queues(queue(mrope_constraint),queue(mrope_constraint),

queue(mrope_constraint),queue(mrope_constraint)).

:- type finitevar --->

finitevar(mrope_range,mrope_queues).

:- type variables == array(finitevar).

% mrope_system/3 takes two numbers as input, each being the

% highest unique number used so far for mrope_constraint objects

% and mrope_var objects.

:- type mrope_system ---> mrope_system(int,int,variables).

:- type mrope_var==int.

This subject on representation of constraint-store and changing domains is

further elaborated in the subsection on results.

Also the constraints connected to a �nite domain variable are represented

in this global data structure. As we want the �nite domain system to be incre-

mental, also these data structures are subject to change when new constraints

are added to the constraint store. One list of constraints connected with a �nite

domain variable is represented with the queue data type in the Mercury library.

Also the queue of constraints still to be consumed in the �xpoint algorithm uses

this queue data type from the library.

3.2 Primitives in this �rst version

Because Mercury is a moded system it is not possible to initialise a �nite domain

variable implicitly at its �rst occurrence. As a result every �nite domain vari-

able has to be initialised explicitly before use. For these purposes the following

primitive can be used:

:- pred domain(mrope_var,mrope_domain,mrope_system,mrope_system).

:- mode domain(out,in,in,out) is semidet.

Then the \in"-constraints can be formulated with the following primitive:

:- pred in(mrope_var,mrope_domain,mrope_system,mrope_system).

:- mode in(in,in,in,out) is semidet.

These primitives are used in a small example:

% there is a field with both feazants and rabbits

% there are 9 animals and 24 legs

% how many feazants and rabbits are there ?

mrope_main -->

% initialise the variables.

domain(F, ..(val(0),val(100))),

domain(R, ..(val(0),val(100))),

% constraint : F+R=9

in(F, val(9)-int(R)),

in(R, val(9)-int(F)),

% constraint : 2*F + 4*R = 24

in(F, (val(24)-val(4)*int(R))/val(2)),

in(R, (val(24)-val(2)*int(F))/val(4)),

% display result

output([F,R]).

In general a problem cannot be solved with constraint propagation only, so a

simple enumeration primitive was added to the implementation for experimental

purposes. It concerns a predicate that enumerates one variable, with a limited

number of heuristics to select a value from the domain of a variable. Also a

limited number of backtrack behaviours can be speci�ed

:- type selectvalue ---> up ; down ; middle ; split.

:- type backtrackmethod ---> standard ; standard_ex.

:- pred enum(mrope_var, selectvalue, backtrackmethod,

mrope_system, mrope_system).

:- mode enum(in,in,in,in,out) is nondet.

3.3 Results

A �rst observation concerns the order in which solutions are generated. As it

happens, the Mercury version of ROPE generates solutions in the opposite order

as the Prolog version. Since Mercury is intended as a pure logic language and

logic makes abstraction of the order in which solutions are found, Mercury does

not care which solutions are generated �rst. We do, especially in the enumeration

phase.

The �rst results show that this �rst pure implementation in Mercury is slower

than the implementation on top of Prolog using proLog by BIM. Two versions

were tried, one with garbage collection and one without. Mercury uses garbage

collection at the level of C [BW88]. Timing is given for �nding all solutions.

test mrope ROPE

queens(10), with gc 95s 39s

queens(10), without gc 47s

The main di�erence between the Prolog version and the Mercury version is the

di�erent data structure for the domains of the variables and the constraint store.

As Mercury is known to be faster than Prolog, for Mercury programs that Prolog

can execute, the reason for this slow-down must be because of this di�erent

data structure. First we wanted to measure the speedup we got in the parts

of the program where the code did not change. A small program was written

which computed intersections of random generated domains. Both programs

were run on Mercury and ProLog by BIM on a Sparccenter-1000. About 40.000

intersections were computed.

proLog by BIM Mercury

40.000 intersections 3.7s 0.36s

This shows that it is reasonable to expect a 10-fold speedup when going from

Prolog to Mercury, on the assumption that Mercury o�ers e�cient pure alter-

natives for the tricks in the Prolog program.

In another experiment we wanted to measure the results of changes to the

representation of the data in the extra input and output arguments. The original

data-structure was an array from the Mercury library.

:- import_module array.

:- type variables == array(finitevar).

:- type mrope_system ---> mrope_system(int,int,variables).

Every element of this array corresponds with information on a �nite domain vari-

able. This array is implemented as a 234-tree. For testing purposes a simpli�ed

special purpose balanced tree was written.

:- type mybintree(V) ---> empty

; tree(int, V, mybintree(V), mybintree(V)).

:- type variables == mybintree(finitevar).

:- type mrope_system ---> mrope_system(int,int,variables).

The last representation concerns the functor. In the last case every argument

of the functor is information on one variable. If the information of a variable

changes a new functor is created where all arguments but one, the one that

changed, are copied. Then the changed information is put in the corresponding

argument.

:- type variables --->

array(finitevar,finitevar,finitevar,finitevar,finitevar,

finitevar,finitevar,finitevar,finitevar,finitevar,

finitevar,finitevar,finitevar,finitevar,finitevar,

finitevar,finitevar,finitevar,finitevar,finitevar).

:- type mrope_system ---> mrope_system(int,int,variables).

This test was again on the queens(10) program. The Mercury program was

compiled without garbage collection. For the �rst time we got timings better

than the version in Prolog.

queens(10)

Mercury array 47s

mybintree 25s

functor /20 21s

From this we can see clearly that a di�erent data structure has a large e�ect on

the e�ciency of the program.

In another version of the Mercury program checking for duplicates in the con-

straint-queue was added. This was implemented with the help of the same binary

tree used in the previous experiment. Also another example was added to the

test-examples. It concerns the bridge problem described in [Hen89].

mrope ROPE

queens(10) 65s 39s

bridge1(200) 5s 27s

With the checking for duplicates the queens program is slowed down again, while

with the new example we get an interesting speedup. So, it is possible that some

examples run 5 times faster in this pure implementation of Mercury. As we will

see in the next section better results can be obtained when using backtrackable

destructive assignment.

4 Mercury with backtrackable destructive assignment

The previous section reports on the results of a straightforward port from ROPE

to Mercury : the results were not so positive for Mercury. The main reason for

this seems the absence of appropriate data representations because there is no

good alternative to an open-ended data structure in pure Mercury. This section

describes the addition of backtrackable destructive assignment to Mercury, and

the e�ect on the e�ciency of our constraint solver. In the pure version of the pre-

vious section only \in"-constraints were implemented. It was also very di�cult

to implement for example the cardinality constraint [HD91]. Such a constraint

causes the need to remove constraints from the dependency lists connected to

a variable. In Prolog this is realized by including a free variable with each con-

straint. To remove a constraint from a list this variable is instantiated. This is

not possible in Mercury. We did not see any good and e�cient alternative in

Mercury than backtrackable destructive assignment to implement this feature.

4.1 Preview on the gains of backtrackable destructive assignment

Backtrackable destructive assignment is currently not part of the Mercury sys-

tem. In version v0.5 the modes unique and almost unique were implemented, but

this can only be used at the top-node of a data structure. Allthough the modes

are there, destructive assignment is not yet there, so we had to do it ourself.

Before jumping into the experiment we wanted to have an idea of the e�ciency

gain we could get. For this purpose we used SICStus Prolog v2.1 which con-

tains a variant of backtrackable destructive assignment in the from of the builtin

predicate setarg/3. The Mercury code for mrope was with some minor changes

ported to SICStus v2.1 Prolog. We then again ran the queens(10) problem using

di�erent data-representations for the constraint-store and the domains of the

variables. Still all variants use two extra arguments, an in and out argument.

But in case setarg is used, the in and out arguments are always uni�ed and the

update is done locally. We used the same two data structures as before: a functor

and a binary tree. Also in both representations a number of arti�cial variables

were introduced. This should indicate how speed scales when larger examples

are tackled.

Queens(10) problem in SICStus Prolog normal with setarg

functor/20 120s 94s

functor/100 1000s 94s

mybintree 152s 120s

mybintree with more variables 247s 163s

We concluded that it was worthwhile to try to implement a variant of setarg in

Mercury. As the aim is to store the information on a �nite domain variable in

the variable itself we can assume constant access and update. This was the case

in the 94s timing.

4.2 Implementation issues

To insert the code in C that implements backtrackable destructive assignment

we introduced a dummy module which contains the interface for the code. The

C-�le generated by Mercury is then replaced with a �le which contains the actual

code for the backtrackable destructive assignment.

% dummy module to generate template for support routines

% to allow backtrackable destructive update in Mercury

:- module mrope_du.

:- interface.

:- import_module std_util.

% announce a backtrack-point

% places a marker on the trail

:- pred du__backtrackpoint_anounce is det.

% untrail all the changes after the last backtrack-point

:- pred du__backtrack is det.

% remove a backtrack-point - will remove marker from trail

% du__backtrack has to be called beforehand to make

% sure that the marker is the last element on the trail

:- pred du__backtrackpoint_remove is det.

% set argument (1), of predicate (2) to given value (3)

% this can be restored by du__backtrack when needed

:- pred du__setarg(int::in, TP::in, TV::in) is det.

:- implementation.

du__backtrackpoint_anounce.

du__backtrackpoint_remove.

du__backtrack.

du__setarg(_,_,_).

4.3 Results

Given backtrackable destructive assignment also the cardinality constraint

[HD91] was added to the system. With the additional cardinality constraints a

wider range of examples was possible. A new version of the bridge problem was

added. In this version all disjunctions are added to the system before any choices

are made. The old version of the bridge problem is called \bridge1", the new

version \bridge2". A variant of the perfect square [AB92] was added with small

dimensions. Also a Japanese puzzle called suudoku.

For comparison the same code was executed in SICStus v2.1 using setarg be-

cause the ROPE system on ProLog by BIM and the implementation in Mercury

now use totally di�erent data structures.

mrope(Mercury) mrope(SICS) ROPE(BIM) pure mrope

queens 21s 109s 39s 65s

bridge1 1.9s 10s 27s 5s

bridge2 1.7s 11s 14s

perfect 23s 125s 126s

suudoku 1.2s 5.5s 6.8s

This table shows a bad result for the queens problem. In the version of ROPE

in Prolog the di�erent from constraint is handled at a higher level, which allows

some optimization: a constraint X <> Y can be removed from the constraint

store as soon as one variable is instantiated. This is still not done in the Mercury

version.

So we should not take into account the queens results; then we can deduce

a speed-up ranging from a factor 5 to almost 15 from the table compared to

ROPE in Prolog.

5 Conclusions and Future work

This work reports on the use of Mercury for the implementation of a �nite do-

main solver. This implementation is based on an implementation of such a solver

in Prolog. Not all features of the original �nite domain solver were implemented.

For example transformation of high-level constraints to low-level constraints was

not included in the new system. This resulted in the absence of some optimisa-

tions which are based on the high level constraints. This explains the bad results

for queens. For a usable �nite domain solving package these missing parts are

essential but they will not change much the obtained results and conclusions.

The main result of the experiment concerns data representation: our experi-

ment suggests at least that a straightforward port from Prolog code to Mercury

code, will not always lead to a high performance gain. The use of alternative

data structures can help, but it seems paramount that because of the lack of

open ended data structures, data structures can be locally updated without be-

ing completely copied. This seems to be the intention of the Mercury team, with

the introduction of support for the modes unique and mostly unique in release

0.5 (we started this work at the time of release 0.4). However, currently this

information is checked, but not yet used and the occurrence of these modes is

still restricted to the top-level of data structures. It is not clear whether the in-

tended support is enough for our purposes neither whether in general automatic

support is possible within the context of our needs.

References

[AB92] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to

solve complex scheduling and placement problems. JFPL, pages 51{66, 1992.

[BW88] H. Boehm and M. Weiser. Garbage collection in an uncooperative environ-

ment. Software Practice and Experience, 18:807{820, 1988.

[HD91] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new

logical connective for constraint logic programming. In proceedings of ICLP,

1991.

[Hen89] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. The

MIT press, 1989.

[HSD93] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, imple-

mentation and evaluation of the constraint language cc(fd). Technical report,

Brown University, 1993.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Arti�cial Intelli-

gence, 8:99{118, 1977.

[Nad89] Bernard A. Nadel. Constraint satisfaction algorithms. Computational Intel-

ligence, 5(4):188{224, November 1989.

[SHC94] Zoltan Somogy, Fergus Henderson, and Thomas Conway. The implemenata-

tion of mercury: an e�cient declarative logic programming language. In Pro-

ceedings of the ILPS'p4 Postconference Workshop on Implementation Tech-

niques for Logic Programming Languages, 1994.

[Van94] Henk Vandecasteele. On backtracking in �nite domain problems. In Pro-

ceedings of the Fifth Benelux Workshop on Logic Programming, September

1994.

[VDS94] Henk Vandecasteele and Danny De Schreye. Implementing a �nite-domain

CLP-language on top of Polog : a transformational approach. In Frank Pfen-

ning, editor, Proceedings of Logic Programming and Automated Reasoning,

number 822 in Lecture Notes in Arti�cial Intelligence, pages 84{98. Springer-

Verlag, 1994.

This article was processed using the L

A

T

E

X macro package with LLNCS style

