KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Exploiting Symmetry in Model
Expansion for Predicate and
Propositional Logic

Jo Devriendt

Supervisor: Dissertation presented in partial
Prof. dr. M. Denecker fulfillment of the requirements for the
degree of Doctor of Engineering

Science (PhD): Computer Science

February 2017






Exploiting Symmetry in Model Expansion for
Predicate and Propositional Logic

Jo DEVRIENDT

Examination committee: Dissertation presented in partial
Prof. dr. ir. O. Van der Biest, chair fulfillment of the requirements for
Prof. dr. M. Denecker, supervisor the degree of Doctor of Engineering
Prof. dr. ir. M. Bruynooghe Science (PhD): Computer Science

Prof. dr. P. De Causmaecker
Prof. dr. ir. F. Piessens

dr. ir. M. Heule
(University of Texas, Austin, USA)
Prof. dr. T. Schaub
(University of Potsdam, Potsdam, Germany)

February 2017



© 2017 KU Leuven — Faculty of Engineering Science
Uitgegeven in eigen beheer, Jo Devriendt, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



I love deadlines.
I like the whooshing sound they make as they fly by.

— Douglas Adams

I love pigeons.
I like the whooshing sound they make as they fly by.

— Bart Bogaerts






Preface

For four and a half years I had an amazing time exploring and experiencing
the world of academia. To me, it was a place of wonder, and a humbling one at
that. .. Wherever I went, there was always someone helpful who, after a couple
of minutes of explaining the problem I had been struggling with for days, could
figure out a solution on the spot.

I am grateful for all the help I got, and for that I need to thank Marc first,
who proved to be an approachable and inspiring promotor. Without Maurice
and Bart as industrious co-authors I would not stand here today: thanks for
enduring my often chaotic work pace. I also want to thank Gerda, Patrick, and
my colleagues at the KRR, DTAI and CODeS research groups for the many
instructive discussions, and the smooth collaboration on various projects and
teaching duties.

Also, T treasure the many days and evenings spent with friends, be it in
Brugge, Leuven, Gent, Blankenberge, Zedelgem, de Westhoek, Brussel, Kortrijk,
Oordegem, Koolkerke, Tielt, Lubbeek, Paris, Darmstadt or the Ardennes. The
joy and escape they provided were soothing for an often spinning mind.

Of course, I want to thank my family for supporting me through periods that
were more stressful than I could handle on my own. And Veronika, thanks for
your boundless patience.

Finally, I am grateful to the KU Leuven and the Research Foundation Flanders
(FWO) for providing the opportunity to “avoid real life” for all these years ;)

It is astounding that after four and a half years of hard work, the only thing I
leave behind is a small booklet of less than 170 pages. It contains all I know
on symmetry in propositional and predicate logic. I wish you, the reader, an
insightful journey through its chapters.






Abstract

Many combinatorial problems exhibit symmetry, a transformational property
that does not fundamentally alter the nature of a problem. For instance,
renaming a set of identical trucks in a routing problem, mirroring or rotating
a chessboard onto itself, or the automorphisms of an input graph give rise to
symmetry. These symmetry properties often hinder an algorithm solving a
combinatorial problem, as it wastefully investigates different configurations of
essentially the same solution.

In this thesis, we set out to explore symmetry properties in model expansion
problems for both predicate and propositional logic. The goal is to equip
automated systems with the necessary tools to adequately handle symmetry. By
investigating both symmetry detection and symmetry exploitation, we present
symmetry exploitation techniques that rely only on problem specifications as
input, without additional symmetry information. Systems equipped with these
techniques are able to tackle a wider range of problems with less human input —
the eventual goal of any artificial intelligence.

First, we present BREAKID, a novel symmetry breaking preprocessor for
propositional logic. BREAKID’s core idea is to investigate structural properties
of the symmetry group of a problem, and to adjust any generated symmetry
breaking formulas accordingly. Furthermore, we also added usability features
and technical optimizations that allow symmetry detection and subsequent
breaking for a broader range of propositional formulas, both in a Boolean
satisfiability and an answer set programming context. Experimental results
show that BREAKID improves on SHATTER and SBASS, the previous state-of-
the-art static symmetry breaking preprocessors for propositional logic.

Second, we investigate two new dynamic symmetry handling algorithms for
propositional solvers, based on symmetrically deriving logical consequences.

The first algorithm, SP, focuses on propagating literals that are symmetrical
to already propagated literals. SP is based on the notion of weak activity, a
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generalization of the constraint programming notion of activity. Experiments
show that this approach is effective, but can be improved by also performing
symmetrical propagations not based on the weak activity status of a symmetry.
This leads to the second algorithm, SEL, which derives symmetrical explanation
clauses and, as such, is a form of symmetrical learning. Even though SEL is
a straightforward form of symmetry handling, we provide experiments that
indicate it is competitive to BREAKID’s advanced symmetry breaking.

However, working on a propositional level burdens the algorithms that detect
symmetry and derive symmetry group information, as these properties are
more readily available at the predicate level. Hence thirdly, we investigate how
symmetry manifests itself in first-order logic. We propose the notion of local
domain symmetry, a form of symmetry in predicate logic theories that captures
a broad range of symmetry groups occurring in practical problems. Based on
theoretical properties of local domain symmetry, we design efficient ways of
both detecting and breaking it. Our implementation in IDP outperforms other
approaches in symmetry detection time, and in symmetry breaking power for
problems with large row interchangeability groups. Moreover, our approach is
one of the few automated approaches that detects symmetry at the predicate
level. The modest price to pay is that some forms of symmetry are not captured
by the notion of local domain symmetry.

Finally, we establish a promising link between local search algorithms and
symmetries by noting that a local search neighborhood for a problem can be
constructed from its quasisymmetry group. These quasisymmetries can be
automatically detected with previously established techniques, leading to a
novel automated local search approach with good initial performance.

Summarized, our work provides new insights in how symmetry can be detected
and exploited without human interaction. These ideas, rooted in propositional
and predicate logic, are useful for anyone designing automated combinatorial
problem solving systems, be they affiliated with constraint programming,
operations research, Boolean satisfiability solving, answer set programming, or
related fields.



Beknopte samenvatting

Veel combinatorische optimalisatieproblemen vertonen symmetrie, een eigen-
schap die problemen transformeert, maar die de aard van een probleem niet
fundamenteel verandert. Bijvoorbeeld, een poule identieke vrachtwagens
hernoemen in een planningsprobleem, een schaakbord spiegelen of roteren,
of een wiskundige grafe afbeelden op zichzelf, geeft aanleiding tot symmetrie.
Een probleem dat veel symmetrie bevat, stelt een uitdaging aan een algoritme
dat het probleem moet oplossen, aangezien het algoritme dreigt verloren te
lopen in de vele verschillende configuraties van fundamenteel dezelfde oplossing.

In deze thesis onderzoeken we symmetrie in de context van modelexpansie-
problemen in zowel propositionele logica als predikatenlogica. Het doel is om
geautomatiseerde systemen die modelexpansieproblemen oplossen te voorzien
van het nodige gereedschap om met symmetrie om te gaan. Door het bestuderen
van zowel detectie als uitbuiting van symmetrie, ontwikkelen we technieken die
als input enkel een probleemspecficatie krijgen, en geen aanvullende symmetrie-
informatie Systemen die deze technieken implementeren kunnen een groter
aantal problemen aan met minder menselijke hulp — het uiteindelijk doel van
artifici€éle intelligentie.

Ten eerste presenteren we BREAKID, een nieuwe symmetriebrekende preproces-
sor voor propositionele logica. BREAKIDs kernidee is om structuureigenschappen
van de symmetriegroep van een probleem uit te pluizen en om de opgestelde
symmetriebrekingsformules hiermee te verfijnen. Daarnaast voegden we ook
bruikbaarheidsfeatures en technische optimalisaties toe, zodat symmetriedetectie
en -breking nuttig is voor een groter aantal propositionele formules, zowel
in de context van Boolean satisfiability als van answer set programming.
We presenteren experimenten die aangeven dat BREAKID krachtiger is dan
SHATTER en SBASS, de voormalige state-of-the-art preprocessoren voor statische
symmetriebreking in propositionele logica.

Ten tweede onderzoeken we een nieuwe dynamische aanpak van symmetrie
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voor propositionele solvers, gebaseerd op het symmetrisch afleiden van logische
gevolgen. Een eerste idee, SP, propageert literals die symmetrisch zijn aan
reeds gepropageerde literals tijdens het zoekproces. Hiervoor introduceren we
de notie van weak activity, een veralgemening van de constraint programming
notie van activity. Onze experimenten tonen aan dat deze aanpak nuttig is,
maar ook verbeterd kan worden door symmetrische propagaties uit te voeren
onafhankelijk van de activiteitsstatus van een symmetrie. Dit leidt tot een
tweede idee, SEL, dat symmetrische explanation clauses afleidt, en op die
manier een vorm van symmetrisch leren is. Hoewel SEL een relatief simpele
aanpak voor symmetrie is, tonen verdere experimenten aan dat het competitief
is met BREAKIDs geavanceerde symmetriebrekingstechnieken.

Symmetrie enkel aanpakken op een propositioneel niveau maakt het echter
moeilijker om symmetrie te detecteren en specifieke eigenschappen van
symmetriegroepen af te leiden. Deze informatie is duidelijker aanwezig op
een predikaatniveau. Daarom onderzoeken we, ten derde, hoe symmetrie
zich manifesteert in eerste-ordelogica. Hiertoe stellen we de notie van local
domain symmetrie op, een vorm van symmetrie in predikatenlogica die een
brede klasse aan vaak voorkomende symmetriegroepen omvat. Door verdere
theoretische eigenschappen van local domain symmetrie te bewijzen, kunnen we
efficiénte symmetriedetectie- en -brekingsmechanismes opstellen. Deze ideeén
implementeren we in de eerste-ordemodelexpansieroutines van IDP, wat leidt
tot snellere symmetriedetectie en krachtigere symmetriebreking dan alternatieve
technieken. Het belangrijkste nadeel van onze aanpak op predikaatniveau is
dat niet elke vorm van symmetrie als local domain symmetrie kan uitgedrukt
worden.

Ten slotte tonen we aan dat er een veelbelovend verband bestaat tussen lokale
zoekalgoritmes en symmetrie; een neighborhood voor een lokaal zoekalgoritme
kan immers opgebouwd worden uit de quasisymmetriegroep van een probleem.
Zoals in vorige hoofdstukken aangetoond, kunnen deze quasisymmetrieén
automatisch gedetecteerd worden, wat tot een veelbelovende methode om
automatisch neighborhoods op te stellen leidt. Experimenten tonen aan
dat een initiéle implementatie van geautomatiseerd lokaal zoeken in IDP al
performantiewinst geeft.

Samengevat levert ons werk nieuwe inzichten in hoe symmetrie gedetecteerd en
uitgebuit kan worden zonder menselijke inbreng. Deze ideeén in propositionele
logica en predikatenlogica zijn nuttig voor alle systemen die combinatorische
problemen geautomatiseerd oplossen, ook die in het veld van constraint
programming, operations research, Boolean satisfiability solving, answer set
programming, etc.
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Chapter 1

Introduction

1.1 Background

Broadly, the goal of a computer scientist is to study how computing machinery
can help people; how it can solve their problems, manage their data, or connect
them to the world. In this thesis, we focus on the problem solving part, more
particularly, on solving combinatorial problems with computers.

A combinatorial problem is characterized as the problem of picking, from a
typically finite set of candidate solutions, one or more solutions satisfying
certain requirements or constraints. Sometimes, no such satisfying solution
exists. Other times, a lot exist, but one wants to find the optimal one with
regards to an optimization criterion.

A very simple example is the pigeonhole problem. The candidate solutions for
the pigeonhole problem are assignments of a set of pigeons to a set of holes, and
a satisfying solution is one that assigns a hole to each pigeon, such that no two
pigeons share a hole. In essence, the pigeonhole problem asks a solver to derive
Dirichlet’s drawer principle, namely that you need at least as many holes as
you have pigeons.

Over the years, computer scientists have developed many techniques to solve
combinatorial problems with computers. Examples are constraint programming
(CP) [8], Boolean satisfiability solving (SAT) [68], answer set programming
(ASP) [66], satisfiability modulo theories (SMT) [13], metaheuristics [51] and
mathematical programming [93].
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At KU Leuven, the Knowledge Representation and Reasoning group developed
the IDP system [25], a piece of software that — amongst other things — solves
combinatorial problems.

1.2 The IDP system and its language

The IDP system is a knowledge base system [30]. The aim of a knowledge
base system is to state domain knowledge in a radically declarative way, where
domain knowledge is specified once as a knowledge base. Then, a user can solve
multiple problems using builtin inference methods, without any modification to
the knowledge base. As such, a knowledge base system is a radically declarative
system, strictly separating knowledge from computation. Compared to other
declarative approaches, a knowledge base discerns itself by supporting multiple
inference methods acting on the same knowledge base.

The specification language of IDP is an instantiation of FO(-); it is based on
classical first-order logic (“FO”), enriched with extensions (“-”) such as types,
aggregates, arithmetic, inductive definitions and constructed types.

For this thesis, we abstract IDP as a model expansion (and model optimization)
system for untyped first-order logic (FO), as this will greatly simplify matters.
However, the ideas presented in the following chapters are applicable to the
richer language FO(-) as well, exemplified by the fact that our implementations
in IDP of the presented algorithms are still sound for IDP’s extensions to FO.

An FO model expansion system takes as input (i) global constraints in the
form of a logical theory and (ii) instance specific data as an input structure. As
output, it returns a model satisfying the constraints and expanding the input
structure. In the case of model optimization, IDP also aims to optimize a given
objective function. We formalize these notions on a by-need basis in Section 5.2
and 6.2. These are not coincidentally located in the chapters on symmetry in
the predicate logic context.

To calculate models, IDP makes use of a ground-and-solve approach, where, for
a finite domain of relevant objects provided in the input structure, the predicate
level theory and input structure are instantiated (or grounded) to quantor-free,
often propositional formulas. MINISAT (ID) [26], IDP’s back-end solver, then
employs SAT and CP technology to search for a satisfying assignment to the
propositional theory, representing a valid model at the predicate level. This
propositional solving step is a major motivation for the research on symmetry
in a propositional logic context in Chapters 3 and 4.
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A last remark on the IDP system is its support for Prolog-like rules that
adhere to the well-founded semantics. These rules allow convenient modeling of
recursive properties as well as definitional dependencies between symbols. The
well-founded semantics is strongly related to the stable semantics for logical
rules in an ASP specification [28]. As a result, the IDP system is closely related
to ASP systems, not only because both have specification languages based on
predicate logic, but also because of their support for Prolog-like rules.

1.3 Symmetry

As advanced as many combinatorial problem solving systems are, they still show
significant weaknesses.

For instance, many cannot tackle the aforementioned pigeonhole problem. More
specifically, even for small numbers of pigeons and holes, they need huge,
unpractical amounts of computing time to decide that there exists no satisfying
solution to the problem if the number of holes is smaller than the number of
pigeons [54].1 Current solvers essentially cannot bypass the factorial enumeration
of all possible pigeon-to-hole mappings.

This is surprising, as a human agent can easily conclude via a counting argument
that n pigeons do not fit into m < n holes. One way of addressing this weakness
in combinatorial solvers is via symmetry.

Very generally, symmetry is a transformational property of some given
combinatorial problem: it transforms candidate solutions to the problem in other
candidate solutions, preserving the property of whether a candidate solution is
an actual solution satisfying the constraints of the problem. Many problems
exhibit symmetry. Symmetries are, for instance, renaming a set of identical
trucks in a routing problem, mirroring or rotating a chess board onto itself, or
the automorphisms of an input graph. Or permuting the pigeons or holes in a
pigeonhole problem. Symmetry has been extensively studied for languages and
systems that allow to model and solve combinatorial problems [52, 85, 14, 27, 67].

Symmetry is typically defined as a syntactical property of problem specifications,
i.e., a symmetry is a permutation of variables and/or values that preserves
the original specification. Sometimes, a semantic notion of symmetry is given.
In this case, a symmetry is a permutation of a set of candidate solutions to
the combinatorial problem that preserves satisfiability: whether the candidate
solution is an actual solution to the combinatorial problem. The syntactical
notion is useful in a context of symmetry detection, where one wants to derive

LA related, even more problematic problem is the clique coloring problem [20].
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symmetry properties of a given problem specification. The semantical notion
is more general, and allows for stronger theoretical results. In this thesis, we
always use the semantic notion of symmetry, with the theorems useful for
symmetry detection instead specifying useful syntactical properties.

Often, we will talk about symmetry groups, which is the algebraic group formed
by symmetries under the composition relation.

Research on symmetry of combinatorial problems poses itself two basic questions:
how to detect symmetry, and how to exploit it to speed up the solving process.

1.3.1 Symmetry detection

Symmetry detection is typically done by reducing the combinatorial problem
specification to some low-level (ground or Boolean) form, transforming this
specification to a colored graph, and letting specialized tools [71, 60, 58] derive
a set of generators for the automorphism group of this colored graph. By
construction of the colored graph, these generators can be converted back to a
set of generators for a symmetry group of the low-level specification. Though
often effective [4, 41], this approach has the drawback of having to reduce
a high-level specification to a low-level one, often blowing up the size of the
specification. In addition, solving a graph automorphism problem currently
requires running a worst-case exponential algorithm. A third drawback is
that the derived symmetry group generators contain little information on the
structure of the detected symmetry group, while this information often proves
useful in later exploiting the detected symmetry.

There exist symmetry detection approaches that follow another path. Firstly,
one can detect symmetry on small instances of the combinatorial problem, and
use theorem proving techniques to weed out the symmetries that do not hold for
all instances [74]. The drawback of this approach is that the theorem proving
step is very costly, and only a limited range of symmetry can be detected.
Secondly, some predicate logic-based specification languages exhibit trivial
interchangeability of sets of objects, as there is no way to distinguish between
different objects in the specification language. This interchangeability leads to a
particular form of symmetry, which can be detected efficiently [100, 9, 23, 94, 27].
However, this technique is restricted to one particular form of symmetry. Lastly,
one can detect symmetry on a “constraint by constraint” basis, where each
constraint (or formula) has certain symmetry properties, and the conjunction of
two constraints only leaves the intersection of both symmetry groups for each
constraint [97]. This is an interesting approach, which arguably captures some
of the aforementioned notions of symmetry detection. Its biggest drawback is
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that it is not implemented in existing combinatorial solvers, as the symmetry
properties of each language feature supported by the solver need to be formalized.

This thesis improves on existing symmetry detection approaches in several
regards. On the classical, low-level symmetry detection approach, in Chapter 3,
we infer and exploit structure of the symmetry group generated by the symmetry
generators detected by the graph automorphism approach. This results in more
information to exploit symmetry formulas, leading to better performance. In
Chapter 5, we detect symmetry for first-order logic specifications without
grounding them to a low-level, propositional theory. This has the advantage of
more efficient symmetry detection, as well as retaining high-level information
on the structure of the detected symmetry group.

1.3.2 Symmetry exploitation

As exemplified by the performance of combinatorial solvers on the pigeonhole
problem, symmetry poses a challenge to such systems. If left unadressed, for
a problem exhibiting strong symmetry, a combinatorial search engine might
visit each of the (potentially exponentially many) symmetric parts of the search
space, and hence waste valuable time rediscovering already known information.

The most common way to prevent this is static symmetry breaking.
This approach posts a so-called symmetry breaking constraint (or formula)
that eliminates certain candidate solutions, while guaranteeing that for each
eliminated candidate solution, at least one symmetrical candidate solution
satisfies the symmetry breaking constraint [24, 1]. This way, combinatorial
solvers are guided to only visit asymmetrical parts of the search space.

More formally, a symmetry group imposes an equivalence relation on the set
of candidate solutions: two solutions are equivalent if there exists a symmetry
mapping one to the other. Similarly, the set of candidate solutions can be
partitioned into equivalence classes (symmetry classes). Then, a symmetry
breaking constraint is sound if it is satisfied by at least one candidate solution
in each symmetry class. Similarly, it is complete if it is satisfied by at most one
candidate solution in each symmetry class [99]. The goal of static symmetry
breaking then becomes to post small and sound symmetry breaking formulas
that still are complete.

Typically, static symmetry breaking imposes some order on the set of candidate
solutions, and the symmetry breaking constraint then states that a satisfying
solution should not be larger than its symmetrical image under some given
symmetry. As such, this constraint is sound, as the “smallest” candidate solution
in a symmetry class satisfies it. However, it is typically not complete.
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This is one place where knowledge on the type and structure of a symmetry
group is useful: for many important types of symmetry, a small and complete
symmetry breaking constraint has been devised. We take advantage of this
fact in Chapters 3 and 5, where our static symmetry breaking approach can
guarantee symmetry breaking completeness for a particular type of symmetry.

Another way to handle symmetry in combinatorial solvers is by dynamic
symmetry handling. The idea here is to not modify the problem specification,
but adjust the underlying solving algorithm to be aware of symmetry, and exploit
this information. Dynamic symmetry handling is less restrictive than static
symmetry breaking: it does not fundamentally alter the problem by removing
possibly interesting or easy-to-find solutions. A more widely used term is
“dynamic symmetry breaking”, but since some of these techniques (including
the ones we present in Chapter 4) instead “conserve” symmetry during search,
we avoid this misnomer.

Dynamic symmetry handling techniques are diverse. Some immediately interfere
with a solver’s decision heuristic [84], others derive symmetrical information
such as propagations or learned constraints [87, 16, 73], or simply add symmetry
breaking formulas during search [3].

In Chapter 4, we investigate two dynamic symmetry handling techniques which,
at their core, derive logical consequences symmetrical to logical consequences
derived by the underlying search algorithm. We argue that this is a simple and
effective way of dynamic symmetry handling, and link it to existing dynamic
symmetry handling approaches.

Apart from studying symmetry to address the potential combinatorial blowup
of search engines on highly symmetrical problems, in Chapter 6 we identify
a new use case for symmetry: automated local search. The idea is to use
symmetry properties of a problem to construct neighborhoods, which allow an
incomplete search algorithm to “move” from one satisfying solution to another,
aiming to improve some external objective function. To our knowledge, this
is one of few known approaches to automate local search, efficiently solving
combinatorial problems without human interaction.

1.4 Summary

In this thesis, we continue research on symmetry of model expansion problems
for propositional and predicate logic specifications. The reason we use this
context is because it is the natural environment of the knowledge base system
IDP. Also, propositional and predicate logic form the theoretical foundations of
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many languages specifying combinatorial problems, as well as systems solving
them. We focus on providing fully integrated approaches, where the often
separated tasks of detecting symmetry and exploiting it are tuned towards each
other.

The remainder of this text is divided into five chapters. Chapter 2 refreshes
concepts employed throughout the other chapters. Chapter 3 is closest to existing
work, and provides a new preprocessor that detects and breaks symmetry in
propositional theories. Chapter 4 takes a closer look at dynamic symmetry
handling through symmetry propagation and symmetrical learning. Chapter 5
contains the main result of this thesis. Here, we investigate symmetry properties
of first-order logic theories, identify important classes of symmetry and provide
the theoretical foundations to efficiently detect and break the corresponding
symmetry. Chapter 6 investigates a surprising link between local search and
symmetry, employing symmetry detection methods to automatically derive the
necessary input for local search algorithms.






Chapter 2

Preliminaries

Before moving on to the main matter, we give some basic concepts that make a
recurring appearance throughout this thesis.

2.1 Permutation groups

A permutation is a bijection from a set to itself. We write permutations in cycle
notation: (a b ¢)(d e) is the permutation that maps a to b, b to ¢, ¢ to a, swaps
d with e, and maps all other elements to themselves. A swap is a non-trivial
permutation that is its own inverse. In cycle notation, a swap consists only of
cycles of length two. E.g., (a b)(c d) is a swap over {a,b,¢,d, e}, but (a b ¢)(d )
is not.

Permutations form algebraic groups under the composition relation (o). With
7% (k € N) we denote the n-fold composition of 7 with itself. 7—! denotes
m’s inverse. A set of permutations P is a set of generators for a permutation
group G if each permutation in G is a composition of permutations from P.
The group Grp(P) is the permutation group generated by all compositions of
permutations in P.

The orbit Orbg(x) of an element x under a permutation group G is the set
{m(z) | # € G}. The support Supp(w) of a permutation 7 is the set of elements
{z | m(z) # x}. The support Supp(G) of a permutation group G is the union
of the supports of permutations in G.

A permutation group G imposes an equivalence relation on the set of elements S
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being permuted: x,y € S are equivalent if there exists a permutation 7 € G such
that y = w(x). Alternatively, two elements are equivalent if they share the same
orbit. As with any equivalence relation, S can be partitioned into equivalence
classes, with each equivalence class being the orbit of its constituents.

A permutation group G stabilizes an element x if x € Supp(G). The stabilizer
subgroup Stabg(x) of a permutation group G for an element x is the group
{m € G | m(z) = x}, or equivalently, the largest subgroup of G that stabilizes x.

2.2 Graph automorphisms

A colored graph is a tuple G = (V, E, ¢), where V is a set, whose elements we
call nodes, F is a binary relation on V; elements of E are called edges and c is
a mapping V — C for some set C. The elements of C' are called colors.

An automorphism of G is a permutation of its vertices 7: V' — V such that the
following two conditions hold:

e (u,v) € E if and only if (7(u),n(v)) € E for each u,v € V, and

e ¢(v) =c¢(m(v)) for each v € V.

The graph automorphism problem is the task of constructing the graph
automorphism group of a given (colored) graph. The complexity of this problem
is conjectured to be strictly in between P and NP [11]. Several tools are
available to tackle this problem, including SAuCY [60], NAUTY [71] and BLISS
[58].



Chapter 3

Symmetry in Propositional
Logic

Goal of the chapter

Symmetry breaking preprocessors for propositional logic have been around for
quite some time. However, they are not used in the default configurations of
any propositional reasoning engines. This means that, in general, the benefit of
reducing the search space does not outstrip the overhead incurred for detecting
and breaking symmetry. We surmise that this is due to insufficient exploitation
of the structure of a detected symmetry group. By exploiting symmetry group
structure, we could improve the performance of these preprocessors.

This chapter is based on work presented at the Fourth International Workshop on
the Cross-Fertilization Between CSP and SAT — July 2014, Vienna, Austria [36];
the 19th International Conference on Theory and Applications of Satisfiability
Testing — July 2016, Bordeaux, France [37]; the 9th Workshop on Answer Set
Programming and Other Computing Paradigms — October 2016, New York City,
USA [35].

11
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3.1 Introduction

This chapter describes BREAKID,! a preprocessor for propositional theories that
detects symmetry and extends the propositional theory with effective symmetry
breaking formulas. In essence, BREAKID is an improvement to the state-of-the-
art SHATTER [4] — a symmetry breaking preprocessor for propositional theories
in conjunctive normal form (CNF) for Boolean satisfiability solving (SAT) — and
SBASS [41] — a symmetry breaking preprocessor for ground answer set programs

(ASP).

SHATTER and SBASS follow the same workflow: represent a propositional theory
by a colored graph, use the automorphism detection tool SAUCY to derive
generators for the graph’s automorphism group, convert these automorphism
generators to symmetry generators, and for each of these generators construct
a lez-leader symmetry breaking formula [24] based on a lexicographical order
on the set of Boolean assignments for the propositional variables in the theory.
These symmetry breaking formulas can then be added to the propositional
theory, after which an out-of-the-box solver will be hindered less by the symmetry
present in the problem.

Though effective, this approach does not take into account any particular
properties of the detected symmetry group. For instance, the pruning power
of the symmetry formulas depends heavily on the chosen set of symmetry
generators and whether or not compositions of these generators are eliminated
as well [62].

To address this, BREAKID presents two improvements with the common theme
of adjusting the set of symmetry generators for which symmetry is broken, as well
as optimizing the variable order at the heart of the lexicographic assignment
order. The first improvement is to detect row interchangeability symmetry
subgroups, for which a small set of generators exists such that their lex-leader
constraints do break the subgroup completely. The second is to generate binary
symmetry breaking clauses not based on individual generators, but on algebraic
properties of the entire symmetry group. These improvements can be used in
conjunction with each other and with traditional lex-leader symmetry breaking.

Next to this, BREAKID also boosts some technical optimizations that were
known in the literature, but omitted in SHATTER (and SBASS to a lesser extent).
BREAKID uses a more compact encoding of the lex-leader symmetry breaking
constraint, published before but not experimentally investigated [85]. BREAKID
by default limits the size of symmetry breaking formulas, which is shown to
reduce symmetry breaking formula overhead [2]. BREAKID limits the symmetry

IPronounced “Break it!” or “Break Idea”.
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detection time of SAUCY, as it sometimes takes too long to derive all generators
of the colored graph automorphism group.

Together, these improvements and optimizations increase the robustness and
efficacy of symmetry breaking preprocessing, as we show with extensive
experiments.

In this chapter, we first explain BREAKID in the context of SAT, introducing
the ASP particularities later.

More specifically, after some SAT preliminaries in Section 3.2, we explain
BREAKID’s main improvements in Sections 3.3, 3.4 and 3.5 respectively.
Section 3.6 describes how these ideas are combined to form one symmetry
detecting and breaking workflow. Section 3.7 contains an extensive experimental
evaluation of BREAKID on SAT problems.

Section 3.8 and 3.9 continue by establishing a (ground) ASP context for
BREAKID, while Section 3.10 motivates and explains BREAKID’s approach
to (ground) ASP symmetry detection. Section 3.11 provides an experimental
evaluation for ASP problems, and a final discussion on this chapter is given in
Section 3.12.

3.2 SAT preliminaries

Satisfiability problem Let x be a set of Boolean variables and B = {t,f} the
set of Boolean values. For each x € x, there exist two literals; the positive literal
denoted by x and the negative literal denoted by —x. The negation —(—z) of a
negative literal —x is the positive literal x, and vice versa. The set of all literals
over Y is denoted Y. A clause is a finite disjunction of literals, and a formula is
a finite conjunction of clauses (as usual, we assume formulas are in conjunctive
normal form (CNF)). In the context of SAT, we make no distinction between
propositional formulas or theories.

An assignment « is a mapping x — B. We extend « to literals as a(—x) = —a(z),
where -t = f and —f = t. An assignment « satisfies a formula ¢ — a = ¢ — if
at least one literal from each clause is mapped to t by . If « = ¢, we also say
that ¢ holds in «. The Boolean satisfiability (SAT) problem consists of deciding
whether there exists an assignment that satisfies a propositional formula.

Symmetry in SAT Let 7 be a permutation of a set of literals . We extend =
to clauses: (I3 V... Vi,) =x(l1) V...V 7(l,); to formulas: w(c1 A...A¢y) =
m(e1) A ... A7(ep); to assignments: 7(a)(7(l)) = a(l). By extending a literal
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permutation 7 to assignments, we are slightly abusing notation. A symmetry
o of a propositional formula ¢ over x is a permutation over ¥ that preserves
satisfaction to ¢; i.e. a = ¢ iff m(a) | @.

A literal permutation 7 (when extended to assignments) is a symmetry of a
propositional formula ¢ over y if the following sufficient syntactic condition is
met:

o 7 commutes with negation: 7(—l) = - (l) for all [ € , and

o 7 fixes the formula: 7(p) = ¢.

It is easy to see that these two conditions guarantee that = maps assignments
to assignments, preserving satisfaction to ¢. Typically, only this syntactical
type of symmetry is exploited, since it can be detected with relative ease — it is
also the type of symmetry detected by most graph automorphism symmetry
detection methods. The practical techniques presented in this chapter are no
exception, though all presented theorems hold for the more general semantic
notion of symmetry as well.

Symmetry breaking Symmetry breaking aims at eliminating symmetry, either
by statically posting symmetry breaking constraints that invalidate symmetric
assignments, or by altering the search space dynamically to avoid symmetric
search paths. A (static) symmetry breaking formula for SAT is presented in
Section 3.3. If G is a symmetry group, then a symmetry breaking formula v is
sound if for each assignment « there exists at least one symmetry m € G such
that 7(a) satisfies ¢; 9 is complete if for each assignment « there exists at most
one symmetry m € G such that m(«) satisfies ¢ [99].

3.3 Compact CNF encodings of the lex-leader
constraint

A classic approach to static symmetry breaking is to construct lex-leader
constraints.

Definition 3.3.1 (Lex-leader constraint [24]). Let 7 be a symmetry of some
formula over x, <, an order on x and =, the lexicographic order induced by
=, on the set of x-assignments. A formula LL, over X' D x is a lex-leader
constraint for 7 if for each y-assignment «, there exists a x’-extension of o that
satisfies LL, iff a <, 7(a).
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In other words, each assignment whose symmetric image under 7 is smaller,
is eliminated by LL,. It is easy to see that the conjunction of LL, for all =
in some G’ C G is a sound (but not necessarily complete) symmetry breaking
constraint for G.

An efficient encoding of the lex-leader constraint L L, as a conjunction of clauses
is given by Aloul et al. [1], where each variable in Supp(7) leads to 2 clauses of
size 3 and 2 clauses of size 4. Below, we give a derivation of a more compact
encoding of LL, as a conjunction of 3 clauses of size 3 for each variable in
Supp(), which is more compact and hence reduces the overhead introduced by
posting it. A similar encoding is presented by Sakallah [85] but has not been
experimentally evaluated before.

Theorem 3.3.2 (Compact encoding of lex-leader constraint). Let 7 be a
symmetry, let Supp(m) = {x1,...,z,} be ordered such that x; < x; iff i < j
and let {yo,...,yn—1} be a set of auziliary variables disjoint from Supp(m). The
following set of clauses is a lex-leader constraint for w:
Yo Yy Vg1 Voz; 1<j<n
i1 Vo V() 1<i<n y; Vyi—1 Vor(zg) 1<j<n

Proof. Crawford et al. proposed the following lex-leader constraint [24]:

Vi:(Vj<i:z; & n(x;) = —a; V() (3.1)

Assuming f < t, this constraint expresses that the value of a variable x; must
be less than or equal to the value of 7(z;) if, for all smaller variables x;, «; has
the same value as 7(z;). As such, it encodes a valid lex-leader constraint.

Aloul et al. [1] noticed that the antecedent (Vj < i :z; < m(z;)) is recursively
reified by introducing auxiliary variables y;:

Yi & (Yj—1 A (zj & m(z5))) (3.2)

where the base case yy is fixed to be true. In essence, y; holds iff z; and m(zy)
have the same truth value for 1 < k < j. Equation (3.1) then translates to:

Yo (3.3)
yi < (yj—1 A (25 & m(25))) 1<j<n (3.4)
Yie1 = o Vo(xg) 1<i<n (3.5)

Note that by (3.5), if y;_1 holds, then —z; V m(x;) holds. Hence, y;_1 A (z; <
m(x;)) simplifies to y;_1 A (z; V —~m(x;)), and (3.4) simplifies to:

Yi & (Yj—1 A (x5 V -m(z5))) 1<j<n (3.47)
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Lastly, observe that y; only occurs negatively in formula (3.5). Thus, only one
implication in the definition of y; (3.4’) is needed to enforce (3.5). Relaxing the
constraints when y; must be false leads to:

yj <= (yj—1 A (25 V —7(x5))) 1<j<n (3.47)

Working out the implications and applying distributivity of A and V in equations
(3.3,3.4”,3.5) leads to the CNF formula in this theorem and hence, concludes
the proof. O

The relaxation introduced by step (3.4”) does not weaken the symmetry breaking
capacity of the encoding, as it only weakens the constraints on auxiliary variables
not permuted by any original symmetry. However, (3.4”) still is weaker than
(3.4°). In Section 3.7 we give experimental results that compare the presented
relaxed encoding with an “unrelaxed” clausal encoding based on (3.4’), having
an extra binary and ternary clause. It turns out that the relaxation of (3.4”) is
beneficial and leads to slightly less overhead.

Note that the condition y; is satisfied in fewer assignments as j increases, so the
marginal effect of posting the above constraints decreases as j increases. Still,
the marginal cost is stable at three clauses and one auxiliary variable regardless
of 7. Because of this, the size of lex-leader constraints is often limited by putting
an upper bound k on the number of auxiliary variables to be introduced [2],
resulting in a shorter lex-leader constraint LLY. BREAKID also employs this
limit on the size of its lex-leader constraints, by default posting a conservative
LL20 for each generator symmetry 7>

not part of a row interchangeability group.

3.4 Exploiting row interchangeability

An important type of symmetry is row interchangeability, which is present when
a subset of variables can be structured as a two-dimensional matrix such that
each permutation of the rows induces a symmetry. This form of symmetry is
common; often it stems from an interchangeable set of objects in the original
problem domain, with each row of variables expressing certain properties of
one particular object. Examples are intercheangeability of pigeons or holes in a
pigeonhole problem, interchangeability of nurses in a nurse scheduling problem,
fleets of interchangeable trucks in a delivery system etc. Exploiting this type of

2Symmetry breaking formulas for symmetry generators of row interchangeability symmetry
groups are not limited in size, but written out in full. See also Section 3.6.1.



EXPLOITING ROW INTERCHANGEABILITY 17

matrix symmetry with adjusted symmetry breaking techniques can significantly
improve SAT performance [43, 65]. In this section, we present a novel way of
automatically dealing with row interchangeability in SAT.

Example 3.4.1 (Row interchangeability in graph coloring). Let ¢ be a CNF
formula expressing the graph coloring constraint that two directly connected
vertices cannot have the same color. Let x = {x11,...,Znm} be the set of
variables, with intended interpretation that x;; holds iff vertex j has color i.
Given the nature of the graph coloring problem, all colors are interchangeable,
so each color permutation p induces a symmetry m, of . More formally, the
color interchangeability symmetry group consists of all symmetries

Tp i X = X 1 Tig = Tp(i)js Tij = T p(s);

If we structure x as a matrix where x;; occurs on row 7 and column j, then
each permutation of rows corresponds to a permutation of colors, and hence a
symmetry. A

Definition 3.4.2 (Row interchangeability in SAT). A wvariable matriz M is
a bijection M : Ro x Co — ¥’ from two sets of indices Ro and Co to a set of
variables ' C x. We refer to M (r,c) as x,.. The r’th row of M is the sequence
of variables [,1,...,Zmm], the ¢’th column is the sequence [x1c, ..., Tpe]. A
formula ¢ exhibits row interchangeability symmetry if there exists a variable
matrix M such that for each permutation p : Ro — Ro

M . —r —/ .
Ty X 77X P Trc b7 Tp(r)er "Tre 77 T Lp(r)e

is a symmetry of ¢. The row interchangeability symmetry group of a matrix M
is denoted as Rj;.

A useful property of row interchangeability is that it is broken completely by
only a linearly sized symmetry breaking formula [43, 90]. We formalize this
constraint programming (CP) result in a SAT context:

Corollary 3.4.3 (Complete symmetry breaking for row interchangeability).
Let ¢ be a formula and Ry; a row interchangeability symmetry group of @ with
Ro = {1,...,n} and Co = {1,...,m}. Using a total variable order <, on
X, then the conjunction of =X, -based lex-leader constraints for all symmetries
Wéka k1) with 1 < k < n, breaks Mg completely if, x;; <\ xijr iff i < & or
(i=14 and j <j').

Corollary 3.4.3 guarantees that if the variable order on which the lex-leader
constraints are based follows the structure of the matrix, then the lex-leader
constraints for the swap of each two subsequent rows form a complete symmetry
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breaking formula for row interchangeability. The condition that the order
“matches” the variable matrix is important: the theorem no longer holds without
it.

If we are able to detect that a formula exhibits row interchangeability, we can
break it completely by choosing an appropriate variable order and posting the
right lex-leader constraints. In practice, symmetry detection tools for SAT only
present us with a set of generators for the symmetry group, which contains
no information on the structure of this group. The challenge is to derive row
interchangeability subgroups from these generators.

3.4.1 Row interchangeability detection algorithm

Given a set of generators P for a symmetry group G of a formula ¢, the task at
hand is to detect a variable matrix M that represents a row interchangeability
subgroup Rj; € G. We present an algorithm that is sound, but incomplete in
the sense that it does not guarantee that all row interchangeability subgroups
present are detected.

The first step is to find an initial row interchangeable variable matrix M
consisting of three rows. This is done by selecting two swap symmetries m; and
7o that represent two row swaps sharing a row r. More formally, suppose 71,
mo and 7 satisfy the following conditions:

1. m =77 and m =75 !,

2. r = Supp(my) N Supp(ms),

w

. Supp(m) =rUmi(r) and Supp(ms) = r U ma(r), and

N

. r, m(r) and ma(r) are pairwise disjoint.

Then, r, m1(r) and ma(r) form three rows of a row interchangeable variable
matrix, and 7 and 7y are swaps of those rows. Indeed, from 1., 2. and 3. it
follows that 7 and 79 both swap some set of variables r with its images 1 (r)
and ma(r), so r forms the first row. 4. then guarantees that m; and 79 map r
to a different, disjoint set, forming the second and third row.

If, after inspecting all pairs of swaps in P, no initial three-rowed matrix satisfies
the above conditions, the algorithm stops, in which case we do not know whether
a row interchangeability subgroup exists. However, our experiments indicate
that for many problems, an initial three-rowed matrix can be derived from a
detected set of generator symmetries.
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The second step maximally extends the initial variable matrix M with new
rows. The idea is that for each symmetry = € P and each row r of M, w(r) is a
candidate row to add to M. This is the case if 7(r)’s literals are disjoint from
M’s literals and swapping m(r) with 7 is a syntactical symmetry of .

input :CNF formula ¢, set of generator symmetries P for ¢

output : Row interchangeable variable matrix M

identify two swaps 71,72 € P that induce an initial variable matrix M with 3
rOwsS;

repeat
foreach permutation © in P do
foreach row r in M do
if w(r) is disjoint from M and swapping r and 7(r) is a symmetry
of v then
‘ add 7(r) as a new row to M;
end
end
end
until no extra rows are added to M,
return M;

Algorithm 1: Row interchangeability detection

Pseudocode is given in Algorithm 1. This algorithm terminates since both P
and the number of rows in any row interchangeability matrix are finite. The
algorithm is sound: each time a row is added, it is interchangeable with at
least one previously added row and hence, by induction, with all rows in M.
If k is the largest support size of a symmetry in P, then finding an initial row
interchangeable matrix based on two row swap symmetries in P takes O(|P|?k)
time. With an optimized implementation that avoids duplicate combinations of
generators and rows, extending the initial matrix with extra interchangeable
rows has a complexity of O(|P||Ro||¢|k), with Ro the set of row indices of M.
Algorithm 1 then has a complexity of O(|P|?k + |P||Ro||¢|k).

As mentioned before, the algorithm is not complete: it might not be possible to
construct an initial matrix, or even given an initial matrix, there is no guarantee
to detect all possible row extensions, as only the set of generators instead of
the whole symmetry group is used to calculate a new candidate row.

It is straightforward to extend Algorithm 1 to detect multiple row interchange-
ability subgroups. After detecting a first row interchangeability subgroup
Rys, remove any generators from P that also belong to Rj;. This can be
done by standard algebraic group membership tests, which are efficient for
interchangeability groups [89]. Then, repeat Algorithm 1 with the reduced set
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of generator symmetries until no more row interchangeability subgroups are
detected.

Example 3.4.4 (Example 3.4.1 continued.). Let ¢ and the z;; be as in
Example 3.4.1. Suppose we have five colors and three vertices. Vertex 1
is connected to vertex 2 and 3; vertices 2 and 3 are not connected. This
problem has a symmetry group G induced by the interchangeability of the
colors and by a swap on vertex 2 and 3. A set of generators for G is
{71 2), 72 3), T3 4), T(4 5), V2 3}, Where 7(; ;y is the symmetry that swaps colors
i and j (as in the previous example), and o3 is the symmetry obtained by
swapping vertices 2 and 3, i.e.,?

Va3 = ($12 1"13)(5622 $23)(3332 1?33)(3342 1743)(%2 1‘53)-

For these generators, it is obvious that the swaps m(;;) generate a row
interchangeability symmetry group. However, a symmetry detection tool might
return the alternative set of symmetry generators P = {m(y 2),7(2 3), 01,02, 23}
with

01 =T(13)°T(35) = (w11 w31 @51)(T12 T32 T52) (713 33 T53)
02 = T (3 4) OV23 = (Ilz !E13)(I22 1723)(51731 I41)(!E32 143)(1742 I33)(I52 3353)-

The challenge is to detect the color interchangeability subgroup from the
symmetry group generated by P.

The first step of Algorithm 1 searches for two swaps in P that combine to a
3-rowed variable matrix. 7(; ) and w3 3) fit the bill, resulting in a variable
matrix M with rows:

[T11, 212, 213]  [T21, T2, T3] (231, T32, T33]
Applying o7 on the third row results in:
[x51, T52, T53]
which after a syntactical check on ¢ is confirmed to be a new row to add to M.

Unfortunately, the missing row [241, 242, Z42] is not derivable by applying any
generator in P on rows in M, so the algorithm terminates. A

The failure of detecting the missing row in Example 3.4.4 stems from the
fact that the generators o7 and o9 are obtained by complex combinations of

3We omit negative literals from the cycle notation, noting that a symmetry always
commutes with negation.
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symmetries in the interchangeability subgroup and the symmetry 3. This
inspires a small extension of Algorithm 1. As soon as the algorithm reaches
a fixpoint, we call the original symmetry detection tool to search for a set of
generators of the subgroup that stabilizes all but one rows of the matrix M
found so far. This results in “simpler” generators that do not permute the
literals of the excluded rows. Tests on CNF instances show that this simple
extension, although giving no theoretical guarantees, often manages to find new
generators that, when applied on the current set of rows, construct new rows.
After detecting row stabilizing symmetries, Algorithm 1 resumes from line 2,
aiming to extend the matrix further by applying the extended set of generators.
This process ends when even the new generators can no longer derive new rows.

Example 3.4.5 (Example 3.4.4 continued.). The only symmetry of the problem
that stabilizes the variables {1’11, T12,213,221,X22,L23,T31,L32, 1733} is 7T(4 5)
which has the missing row [z41, 42, T42] as image of the fifth row.

The matrix, which now contains all variables, allows one to completely break
the color interchangeability. The symmetry between vertices 2 and 3 is not
expressed in the matrix, but can still be broken by a regular lex-leader constraint,
as described in Section 3.6. A

3.5 Generating binary symmetry breaking clauses

Note that state-of-the-art symmetry breaking preprocessors only post lex-
leader constraints for a set of generators of a symmetry group G, instead of
posting lex-leader constraints for all symmetries in G. The reason is obvious:
G typically contains too many symmetries. However, the price we pay is
weaker symmetry breaking constraints, straying away from the ideal of complete
symmetry breaking.

An alternative we explore in this section is to post only a very short lex-leader
constraint, namely LLY, but do this for a large number of 7 € G instead of only
for generators for G. As already mentioned in Section 3.3, the first parts of the
lex-leader constraint breaks comparatively more symmetry than later parts, so
in that sense, posting LLY is a cost-effective way of breaking .

LLY is the lex-leader constraint with 0 auxiliary variables, which is equivalent
to the binary clause -2 V7 (z) with x the smallest variable in Supp(m) according
to =y. To construct as many of these binary clauses as possible without
enumerating the whole symmetry group G, we use a greedy approach that starts
from the generators of G and exploits the freedom to choose the variable order
=y as well as the fact that one can easily compute the orbit of a literal in G.
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Theorem 3.5.1 (Binary symmetry breaking clauses). Let G be a non-trivial
symmetry group of ¢, =y an ordering of x, and x* the =<, -smallest variable in
Supp(G). For each x € Orbg(z*), the binary clause ~x* V x is entailed by LL,
for some m € G.

Proof. If x = x*, the theorem is trivially true. If x # z*, there exists a
m € G with w(z*) = x since z € Orbg(x*). Since z* is the smallest variable in
Supp(G), it is also the smallest in Supp(w). Theorem 3.3.2 shows that yg and
-y Vx* Vrr(z*) are two clauses in LL,. Resolution on yg leads to ~z* VvV (z*),
where 7(z*) = x. O

Theorem 3.5.1 allows to construct small lex-leader clauses for G without
enumerating individual members of G; it suffices to compute the orbit of
the smallest variable in Supp(G) to derive a set of binary symmetry breaking
clauses. Theorem 3.5.1 holds for all symmetry groups, so also for any subgroup
G’ of G. In particular, if G’ stabilizes the smallest variable in Supp(G), applying
Theorem 3.5.1 to G’ results in different clauses than applying it to G, as G’ has
a different smallest variable in its support.

Example 3.5.2. Let P ={(a b)(cd ef)} and G = Grp(P) = {(a b)(c d e f),
(a b)(c fed),(ce)d f)}.* With order a <, b=, c=,d=e=, f, ais the
=y -smallest variable of Supp(G). Theorem 3.5.1 guarantees that —a V b is
a consequence of the lex-leader constraints for G. Let G' = Stabg(a) =
{(c e)(d f)}, then c is the <, -smallest variable of Supp(G’), hence also —cV e
is entailed by the lex-leader constraints for G.

If we assume a different order j;(, different binary clauses are obtained. For
instance, let ¢ be the < -smallest variable of Supp(G). Then Theorem 3.5.1
allows us to post the clauses —¢V d,—cV e and —cV f as symmetry breaking
clauses. The stabilizer subgroup Stabg(c) is empty, so no further binary clauses
can be derived for this order®. A

A stabilizer chain is a sequence of stabilizer subgroups starting with the full group
G and ending with the trivial group containing only the identity, where each
next subgroup in the chain stabilizes an extra element. Given a variable order
=y, applying Theorem 3.5.1 to each subgroup in a stabilizer chain stabilizing
literals according to =, for a symmetry group G, is equivalent to constructing
all LLY for m € G under <, [57]. This stabilizer chain idea was also used by

4We again omit negative literals in cycle notation.

5Lex-leader formulas based on different variable orders are incompatible, as there is no
guarantee that for each symmetry class, at least one output structure satisfies the conjunction
of these different lex-leader fomrulas. As these binary clauses are still lex-leader clauses, those
originating from different orders can not be combined.
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Puget to efficiently break all-different constraints in a constraint programming
context [83].

However, as shown by Example 3.5.2, the variable order influences the number
of binary symmetry clauses derivable by a stabilizer chain of G. We present an
algorithm that, given a set of generator symmetries P for symmetry group G,
decides a total order on a subset of variables, and constructs binary symmetry
breaking clauses for those variables based on a simultaneously constructed
sequence of subgroups stabilizing those variables. The constructed sequence
of subgroups stabilizing the literals is no actual stabilizer chain, as each of
the subgroups equals Grp(P’) for some subset P C P. The advantage of
this approach is simplicity of the algorithm and low computational complexity,
although it would be interesting future work to compute an actual stabilizer
chain using for instance the Schreier-Sims algorithm [89].

In detail, our algorithm starts with an empty variable order Ord and a copy
Q@ of the given set of generators P. It iteratively chooses a suitable variable
2* as next in the variable order, constructs binary clauses based on Grp(Q),
and removes any permutations 7 € @ for which z* € Supp(w). As a result, at
each iteration, Grp(Q) stabilizes all variables in Ord except the last variable
z*, allowing the construction of binary symmetry breaking clauses —z* V z for
each & € Orbg,p@)(r*), as per Theorem 3.5.1.

A suitable next variable x* is one that induces a high number of binary symmetry
breaking clauses, but removes few symmetries from ) so that the following
iterations of the algorithm still have a reasonably sized symmetry group to
work with. One way to satisfy these requirements is to pick z* such that
Orbarp()(x*) is maximal, and {7 € Q | 7(x*) # 2*)} is minimal compared to
other literals of =*’s orbit.

Pseudocode is given in Algorithm 2. This algorithm terminates, as while Q # (),
x* belongs to a largest orbit of Grp(Q), so x* # w(z*) for at least one w € Q). As
a result, @) shrinks in size during each iteration, eventually becoming the empty
set. The complexity of Algorithm 2 is dominated by finding the largest orbit of
Grp(Q), which is O(|Q||x]), resulting in a total complexity of O(|P|?|x]|).

In the worst case, O(|Supp(G)|?) binary clauses are constructed by Algorithm 2.
In particular, if some subgroup G’ of G represents an interchangeable set of n
variables, n(n — 1)/2 binary clauses are derived. However, in this case G’ also
represents a row interchangeability symmetry group, which is completely broken
by techniques from Section 3.4. Performing row interchangeability detection
and breaking before binary clause generation can avoid quadratic sets of binary
clauses. Section 3.6 shows this is indeed the order by which BREAKID performs
its symmetry breaking.
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input :Set of generator symmetries P

output : Conjunction of binary symmetry breaking clauses LLY", partial
variable order Ord

initialize Q = P, Ord as an empty list, LL""" = ();

while Q # () do

O is a largest orbit of Grp(Q);

x* is a variable in O for which {7 € Q | 7(z*) # 2*)} is minimal,

add z* to Ord as last variable;

foreach = € O do

‘ add —z* V z to LLY";

end

Q={reQ|n(=") =z}

end

return LL"" Ord,
Algorithm 2: Binary symmetry breaking clause generation

3.6 Putting it all together as BreaklD

This section describes how the improvements presented in the previous section
combine with each other and with standard symmetry breaking techniques in
the symmetry breaking preprocessor BREAKID.

BREAKID has been around since 2013, when a preliminary version obtained
the gold medal in the hard combinatorial sat+unsat track of 2013’s SAT
competition [12]. This early version incorporated all of SHATTER’S symmetry
breaking techniques and used a primitive row interchangeability detection
algorithm that enumerated symmetries to detect as many row swap symmetries
as possible [36]. We developed BREAKID?2 in 2015, using the ideas presented in
the previous sections. BREAKID2 entered the main track of 2015’s SAT race
in combination with GLUCOSE 4.0, placing 10th, ahead of all other GLUCOSE
variants. The experiments in the next section are run with a slightly updated
version — BREAKID2.1—- which has more usability features and reduced memory
overhead. BREAKID2.1 also won the gold medal in the no limit track of the 2016
SAT competition [55] in combination with the SAT solver COMINISATPS [81].

For the remainder of this chapter, we use BREAKID to refer to the particular
implementation BREAKID2.1. BREAKID'’s source code is published online [34].
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3.6.1 BreaklD’s high level algorithm

Preprocessing a formula ¢ by symmetry breaking with BREAKID starts by
removing duplicate clauses and duplicate literals in clauses from ¢, as SAUCY
cannot handle duplicate edges. Then, a call to SAUCY constructs an initial
generator set P of the syntactical symmetry group of .

Thirdly, BREAKID detects row interchangeability subgroups Rys of Grp(P) by
Algorithm 1. The program incorporates the variables of the support of all Ry,
in a global variable order Ord such that the conjunction of LLTr;yf under Ord

for all subsequent row swaps 7rl])‘/[ forms a complete symmetry breaking formula
for Ry.% After adding the complete symmetry breaking formula of each Ry to
an initial set of symmetry breaking clauses 1, we also remove all symmetries
in P that belong to some Rj;, since these symmetries are broken completely
already.

Next, using the pruned P, binary clauses for Grp(P) are constructed by
Algorithm 2, which simultaneously decides a set of variables to be smallest
under Ord.”

Finally, Ord is supplemented with leftover variables until it is total, and limited
lex-leader constraints LL5Y are constructed for each 7 left in P. These lex-leader
constraints incorporate two extra refinements also used by SHATTER; one for
phase-shifted variables and one for the largest variable in a symmetry cycle [1].

Algorithm 3 gives pseudocode for BREAKID’s high-level routine described above.

3.7 SAT experiments with BreaklD

In this section, we verify the effectiveness of the proposed techniques separately,
and investigate the feasibility of using BREAKID in the application and hard-
combinatorial track of 2014’s SAT competition. We use eight benchmark sets:

o appl4: the application track of 2014’s SAT competition (300 instances)

e appl4sym: subset of appl4 for which SAuCY detected symmetry (164
instances)

6In case two detected row interchangeability matrices overlap, it is not always possible to
choose the order on the variables so that both are broken completely. In this case, one of the
row interchangeability groups will not be broken completely.

7A small adaptation to Algorithm 2 ensures BREAKID only selects smallest variables that
are not permuted by a previously detected row interchangeability group.
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input :CNF formula ¢
output : Symmetry breaking formula 1)

1 remove duplicate clauses from ¢ and duplicate literals from clauses in ;
2 run Saucy to detect a set of symmetry generators P;

w

© 00 N O ook

10
11
12
13
14

initialize ¥ as the empty formula and Ord as an empty sequence of ordered
variables;
while Algorithm 1(P,p) derives a new row interchangeability group Ry; do
add complete symmetry breaking clauses for Ry to 1;
add Supp(Rpr) to the back of Ord accordingly;
remove P N Ry; from P;
end
Algorithm 2(P) computes binary clauses LL"" to add to 1 and partial order
Ord' to insert at the front of Ord;
add leftover variables to the middle of Ord;
foreach 7 € P do
‘ add LL5Y to ¢, utilizing Shatter’s optimizations;
end
return ;
Algorithm 3: Symmetry breaking by BREAKID

e hard14: the hard-combinatorial track of 2014’s SAT competition (300
instances)

o hardl4sym: subset of hard14 for which SAucy detected symmetry (159
instances)

e pigeon: 8 unsatisfiable pigeonhole instances
e urquhart: 6 unsatisfiable Urquhart instances
e channel: 10 unsatisfiable channel routing instances

¢ color: 10 unsatisfiable graph coloring instances

Pigeonhole and Urquhart problems are provably hard for purely resolution-based
SAT solvers, in the sense that even for very small instances astronomical running
time is needed to decide satisfiability of the problem [54, 96]. The employed
channel routing and graph coloring instances are highly symmetric, exhibiting
strong row interchangeability. They are taken from SYMCHAFF’s benchmark
set [84]. The graph coloring instances were also used in 2005 and 2007’s SAT
competitions.

As SAT-solver, we use GLUCOSE 4.0 [10], which is based on MINISAT [42]. We
include the symmetry breaking preprocessor SHATTER [4] bundled with SAucy
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3.0 [60] in our experiments. The resources available to each experiment were
10GB of memory and 3600s on an Intel® Xeon® E3-1225 cpu. The operating
system was Ubuntu 14.04 with Linux kernel 3.13. Unless noted otherwise, all
results include any preprocessing step, such as deduplicating the input CNF,
symmetry detection by SAUCY and symmetry breaking clause generation by
SHATTER or BREAKID. Resources to reproduce these experiments are available
online [31].

3.7.1 Compact symmetry breaking clauses

We first investigate the influence of the compact lex-leader encoding presented
in Section 3.3. The experiment consists of running BREAKID with the standard
encoding used in SHATTER (four clauses for each variable in a symmetry’s
support), with BREAKID’s default compact encoding (three clauses), and with
an unrelared encoding that does not relax the constraints on the auxiliary
variables (five clauses). To focus on the difference between the encodings, in this
experiment, BREAKID does not exploit row interchangeability, does not generate
binary clauses, and does not limit the size of the lex-leader formulas. The
benchmark sets employed are appl4sym, hard14sym, pigeon, urquhart,
channel and color. The results are presented in Table 3.1.

The theoretical advantage of having a more compact encoding is not translated
into a significant increase in the number of solved instances. We do observe
average runtime and memory consumption correlating with the size of the
encoding, being lowest for the compact encoding and highest for the unrelaxed
encoding. We conclude that none of the clausal encodings strongly outperforms
the others. That said, the compact encoding enjoys a small runtime and memory
advantage over both other encodings.
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3.7.2 Row interchangeability and binary clauses

To assess the influence of exploiting row interchangeability and binary clauses,
we set up an experiment with four versions of BREAKID:

e BREAKID(): without both row interchangeability and binary clauses

(
o BREAKID(r): with row interchangeability and without binary clauses
o BREAKID(b): without row interchangeability and with binary clauses
(

e BREAKID(r,b): with both row interchangeability and binary clauses

Fach of these versions uses the compact encoding, and limits the lex-leader
formula of each symmetry to introduce a maximum 50 auxiliary variables,
irrespective of problem or symmetry size. Lex-leader formulas for swaps used
to completely break row interchangeability are not limited in this regard. The
results are summarized in Table 3.2.

A first observation is that the binary clause improvement shows mixed results.
It performs very well on urquhart, allowing all instances to be solved in less
than a second, but struggles with appl14sym and hard14sym instances. The
main reason is the huge amount of binary clauses derived, amounting over 5
million on some instances. However, activating row interchangeability fixes this
problem by not allowing symmetries from row interchangeability groups to be
used to construct binary clauses.

The row interchangeability improvement is more successful, improving
performance on all benchmark sets except urquhart. Focusing on pigeon, full
row interchangeability is detected for all instances, so each instance became
polynomially solvable given the presence of symmetry breaking clauses. This
is a significant improvement to the preliminary version of BREAKID [36]. A
similar effect is seen for channel, where activating row interchangeability allows
deciding all instances in less than a minute. For the benchmark set as a whole,
row interchangeability was detected in 54% of the instances for which SAuCYy
could detect symmetry.

We conclude that row interchangeability exploitation is a significant improve-
ment, while binary clauses have the potential to improve performance on
certain types of problems. Furthermore, row interchangeability compensates
for weaknesses of the binary clause approach, and the combination of the two
yields the best overall performance.



30

SYMMETRY IN PROPOSITIONAL LOGIC

GLUCOSE SHATTER BREAKID BREAKID(100s)
solved pre-time solved | pre-time solved | pre-time solved
pigeon 2 0.0s 3 0.1s 8 0.1s 8
urquhart 2 0.1s 2 0.2s 6 0.2s 6
channel 2 3.2s 2 9.7s 10 9.7s 10
color 3 2.9s 2 4.1s 6 4.1s 6
appl4 214 6.3s 210 74.9s 209 14.7s 211
hard14 164 159.2s 178 181.3s 183 14.8s 187

Table 3.3: Number of solved instances for GLUCOSE, SHATTER, BREAKID and
BREAKID limiting SAUCY to 100 seconds. Also includes average preprocessing
time in seconds.

3.7.3 Comparison to Shatter and performance on the 2014
SAT competition

This experiment compares BREAKID to state-of-the-art solving configurations.
We use appl14, hard14, pigeon, urquhart, channel and color as benchmark
sets. We effectively run all application and hard-combinatorial instances of
2014’s SAT competition. The solving configurations used are (with GLUCOSE
as SAT engine):

e GLUCOSE: Pure GLUCOSE without symmetry breaking.
e SHATTER: SHATTER is run after first deduplicating the input CNF.

e BREAKID: Compact encoding, row interchangeability and binary clauses
activated.

o BREAKID(100s): same as BREAKID but SAuUCY is forced to stop detecting
symmetry after 100 seconds of preprocessing have elapsed. While for most
problem instances, SAUCY derives symmetry in less than 10s, for a few
large problem instances SAUCY does reach the time limit. This restriction
forces symmetry detection to end gracefully, lets BREAKID continue, and
hopefully leads to fewer timeouts.

We present the number of instances solved within resource limits, as well as
the average time needed to detect symmetry and generate symmetry breaking
clauses in Table 3.3. Figure 3.1 contains a cactus plot representing solving time
needed on appl4 and hard14.

First, the two BREAKID variants are the only configurations that handle
pigeon, urquhart and channel efficiently, as SHATTER constructs lex-leader
constraints for the wrong set of symmetry generators, and GLUCOSE gets lost
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Figure 3.1: Cactus plot of runtimes of various solvers on app14 and hard14.

in the symmetrical search space for non-trivial instances. A similar observation
is made for color instances, though even BREAKID remains unable to solve 4
instances.

On hard14, SHATTER outperforms GLUCOSE, while both BREAKID approaches
outperform SHATTER. So for these instances, symmetry detection and breaking
is worth the incurred overhead. The preprocessing time needed by SHATTER is
almost completely due to SAUCY’s symmetry detection, which exceeds 3600s
for 9 instances. BREAKID(100s) solves this problem by limiting the time
consumed by SAucCY to 100s, resulting in the best performance on hard14,
adding 23 solved instances compared to plain GLUCOSE. Of course, both
BREAKID approaches increase the preprocessing overhead by detecting row
interchangeability and constructing binary clauses.

As far as appl4 is concerned, the benefit of a smaller search space does
not outweigh the overhead of detecting symmetry and introducing symmetry
breaking clauses.

3.8 BreaklID for ASP

Answer set programming (ASP) has always benefited from progress in the
satisfiability solving (SAT) community. In fact, many (if not all) modern ASP
solvers [48, 6, 26] are based on conflict-driven clause learning (CDCL) [69], a
technique first developed for SAT.
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Thus, many techniques that improve SAT solving can be transferred to ASP,
and symmetry breaking preprocessing is no exception. The ASP equivalent
to the CNF preprocessor SHATTER, is SBASS [41]. SBASS’ main contribution
was to develop an alternative for SHATTER’s first step, i.e., to transform a
(ground) ASP program into a colored graph such that the graph automorphisms
correspond to symmetries of the program. For SHATTER’s last step, constructing
symmetry breaking constraint, SBASS constructs the same type of symmetry
breaking formula, but is able to limit the size of the constraint, similarly to
BREAKID (see the end of Section 3.3).

In the following sections, we describe how BREAKID handles (ground) ASP
programs. In essence, BREAKID extends and slightly modifies the automorphism
graph encoding used in SBASS. The extensions serve to support a richer language:
we provide support for so-called weight rules and minimize statements. On the
other hand, the small modification serves to ensure more effective symmetry
detection; we present several simple symmetric examples where BREAKID
detects the symmetry while SBASS does not.

The symmetry breaking constraints BREAKID constructs for a CNF formula are
also valid for ASP programs, so BREAKID posts the same symmetry breaking
constraints as explained in Section 3.3, 3.4, 3.5 and 3.6. As a consequence,
BREAKID posts stronger symmetry breaking constraints than SBASS due to its
row interchangeability subgroup detection and binary clause derivation. This
leads to a significant performance improvement on a number of benchmarks
containing symmetry, compared to SBASS.

The ASP sections of this chapter are structured as follows. In Section 3.9
we recall preliminaries regarding answer set programming. Afterwards, in
Section 3.10 we present BREAKID’s symmetry detection approach for ASP. We
experimentally evaluate the performance of BREAKID and SBASS this tool in
Section 3.11.

3.9 ASP preliminaries

3.9.1 Answer Set Programming

A wvocabulary x is a set of symbols, also called atoms. A literal [ is an atom or
its negation. A (ground) logic program P over vocabulary x is a set of rules r
of form

hiV---Vh < a A Nayg A=by A A=by,, (3.6)
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where h;’s, a;’s, and b;’s are atoms in x. The formula hy V - -V by is called the
head of r, denoted head(r), and the formula a; A -+ Aa, A—by A--- A —=by, the
body of r, denoted body(r). A program is called normal (resp. positive) if | =1
(resp. m = 0) for all rules in P. If n = m = 0, we simply write hy V ---V hy. If
[ =0, we call r a constraint.

The above definition defines ground logic programs, without quantified variables
or predicate symbols. Typically, when a programmer writes an ASP program,
she writes rules at the predicate level, since this is much more convenient. This
“predicate level” is then grounded to a propositional form by instantiating all
variables with appropriate constants, introducing ground rules of the previously
defined form. As this chapter of the thesis is concerned with propositional (or
ground) logic, we omit the fact that we are handling “ground ASP programs”,
and simply refer to them as “ASP programs”.

The satisfaction relation between an ASP program and interpretations are
defined as usual:

An interpretation I of the vocabulary y is a subset of y; alternatively, one can
see an interpretation as an assignment of Boolean values to x. An interpretation
I is a model of a logic program P if, for all rules r in P, whenever body(r) is
satisfied by I, so is head(r). The reduct of P with respect to I, denoted PZ, is
a positive program that consists of rules h; V ---V hy <= a1 A -+ A a,, for all
rules of the form (3.6) in P such that b; ¢ I for all . An interpretation I is a
stable model or an answer set of P if it is a C-minimal model of P! [50].

Deciding whether a logic program has a stable model is an ¥£'-complete task in
general and an NP-complete task for normal programs; hence, logic programs
can be used to encode combinatorial problems. This observation gave birth to
the field of answer set programming [66, 80, 63].

Often, an ASP standard will support certain syntactical extensions. Though
these do not take the form of rules, they can typically be translated to normal
rules [19], and as such, form only syntactic sugar.

The following are such extensions, which we address later in this chapter:

A cardinality atom

(with 14, ..., being literals and f, g,k € N) is satisfied by I if
g< | TEL) <k

A weight atom
g <sum{ly =wj;,...,.lp=ws} <k
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(with Iy, ..., 1y being literals and f, g, k,w; € N) is satisfied if

g < Z w; < k.

{illE=l}

Sometimes, the “g <” or “< k” parts of cardinality or weight atoms are
dropped. In this case, the obvious semantics applies: the atom is satisfied for
any lower/upper bound. For instance, the cardinality atom

g <#{l,....ls}

is satisfied whenever
g<#{i|IEL}

A choice rule is a rule with a cardinality atom in the head, i.e., a rule of the
form
gg#{ll,...,lf}Skeal/\~-~/\an/\—|b1/\-~~/\—\bm.

A constraint is a rule ¢ without head literals (so head(c) = 0). I satisfies a
constraint c if it does not satisfy body(c), or equivalently, if there exists a literal
I € body(c) such that [ ¢ I. Hence, constraints in ASP fulfill the same role as
clauses in a CNF.

3.9.2 Symmetry in ASP

Let 7 be a permutation of x. We extend 7 to literals: 7(—a) = —=(7(a)), to
rules:

w(hiV--Vhi<—a A ANap A=by A+ A=by,) =
w(hy) V- Va(h) < 7m(a) A Am(an) A=m(by) A A=m(b),

to logic programs: w(P) = {n(r) | r € P}, and to interpretations: w(I) =
{m(p) | p € I}. A symmetry of a program P is a permutation 7w of x that
preserves stable models of P; i.e., w(I) is a stable model of P iff I is a stable
model of P.

A sufficient syntactical condition for 7w to be a symmetry is that 7 fixes P
— m(P) = P. Typically, only this syntactical type of symmetry is exploited,
since this type of symmetry can be detected with relative ease. The practical
techniques presented in this chapter are no exception.
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3.10 Colored graph encoding

To employ BREAKID as a symmetry breaking preprocessor for ASP, all that
is needed is to encode an ASP program as a colored graph for which the
automorphism group corresponds to a symmetry group of the ASP program.
The rest of a symmetry breaking preprocessor’s workflow (running a graph
automorphism detection tool and constructing symmetry breaking constraints)
is valid in both a SAT and an ASP context.

As for encoding an ASP program as a colored graph, our approach is very close
to the one introduced by sBaAss [41]. We discuss and justify the differences in
Section 3.10.1.

We use the four colors {1,2,3,4}. Our graph encoding a program P consists of

the following nodes:

e For each atom p € x, two nodes, referred to as p and —p below. Node p is
colored as 1, node —p is colored 2.

o For each rule r € P, two nodes, referred to as head(r) and body(r) below.
Node head(r) is colored 3 and node body(r) is colored 4.

Our graph is undirected and the edges are as follows:

e Each node p is connected to —p.

o For each rule r of the form (3.6) in P:

the node head(r) is connected to body(r),
— each node h; is connected to head(r),
— each node qa; is connected to body(r),

— each node —b; is connected to body(r).

The complete encoding of this type of rule is illustrated in Figure 3.2.

It can be seen that there is a one-to-one correspondence between automorphisms
of this graph and syntactic symmetries of the logic program. Since atoms p are
the only nodes colored in color 1, an automorphism induces a permutation of .
The edge between p and —p guarantee that an automorphism that maps to p
to ¢ also maps —p to —g. Furthermore, the edges between head(r), body(r) and
the various literals occurring in a rule capture the full structure of the rule. As
such, it can be verified that automorphisms of this graph must map rules to
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—b;

h

E}—[head(r)}—[body(r)

Figure 3.2: Encoding of a rule r of the form (3.6).

“syntactically symmetric” rules. Vice versa, each syntactic symmetry preserves
the graph structure defined above.

Additionally, we extend this graph encoding to capture the aforementioned
language extensions. As a result, BREAKID supports ezactly the LPARSE-
SMODELS intermediate format [92], extended with support for disjuctive rules.

This means for instance that in cardinality rules, we assume there is no upper
bound.

For this, we introduce two new colors, extending the set of colors to {1,...,6}.
In programs with these language extensions, integer numbers can occur, either as
bounds of a cardinality or weight constraint or as weights in a weight constraint
or minimize statement (see below). We assume that for each integer n that
occurs in such a program, there is a unique color ¢, ¢ {1,...,6} available and
extend our set of colors to

{1,...,6} U{c, | n occurs as weight or bound in P}.

Cardinality rules Rules of the form

h<+g<#{a1,...,an,b1,...,7bp}

are encoded as follows. The head of the rule is encoded as usual. The
body node of the rule is colored in ¢4, the color associated with the bound
g. The body node is connected to each of the a; and —b; and to the head
node, as usual.

Choice rules Rules of the form
#{hi,. .., —ar A ANag Ambyp Ao A by,

are encoded exactly the same as rules of form (3.6), except that head(r) is
colored 5. This allows to differentiate between standard rules and choice
rules.
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Weight rules Rules of the form

h+ g <sumf{a; = wy,...,0y, = Wy, b] = Wpi1,..., D = Wpim}

(3.7)
are encoded as follows. The node body(r) is colored as for cardinality
rules in ¢4. For each occurrence of an expression l; = w;, we create one
additional node, referred to as l[; = w;. This node is colored in ¢y, the
color associated to the integer w; and is connected to [;. The body of
this rule is connected to all the nodes a; = w; and —b; = wy ;. body(r) is
connected to head(r) and head(r) to h, as usual. A visualisation of this
encoding can be found in Figure 3.3.

Minimize statements Minimize statements are expressions of the form
minimize{a; = w1, ..., 4y = Wp, b1 = Wpy1,-.., by = Wptm (3.8)

They are directions to the solver that the user is only interested in models

such that the term
> >, w
{rules of the form (3.8) that occur in P } {i|I}=l;}

is minimal (among all stable models). Such a statement is encoded
analogously to the body of a weight rule, except that the body node is
replaced by a minimize node with color 6.

3.10.1 Comparison with SBASS

Our graph encoding differs from the one used by SBASS in two respects.

First of all, we added support for minimize statements and weight rules. As a
result, BREAKID supports the full LPARSE-SMODELS intermediate language as
documented in [92] and additionally, the rule type “8” used by GRINGO [49] to
represent disjunctive rules.

Second, BREAKID uses undirected edges for the graph encoding whereas SBASS
uses directed edges. When using directed edges, all head(r) nodes can be
dropped by using edges from literals a; and —b; to body(r) and from body(r) to
h; (the directionality thus distinguishes between head and body literals). We
expect because of this that symmetry detection with BREAKID takes slightly
more time than symmetry detection with SBASS, as automorphism algorithms
are sensitive to the number of nodes in the input graph.

The motivation for using undirected edges in BREAKID is that we experimentally
noticed that SAUCY does not always behave well with directed graphs. On
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Figure 3.3: Encoding of a rule r of the form (3.7). The color of body(r) depends
on the bound g. The color of each /; = w; depends on the value w;.

very small examples already, symmetries are missed when using the directional
encoding, so SBASS seems not always stable in the symmetries it detects. The
following examples show this behavior, and illustrate that BREAKID is more
stable than SBASS with respect to symmetry detection on different encodings.

Example 3.10.1.

_JOo<#{pr <L
Pl_{ 0< i{g) <1, }

It is clear that p and ¢ are interchangeable in P;. By this we mean that the
mapping o: {p,q} = {p,q¢}: p — ¢,q — p is a symmetry of P;. BREAKID
detects this, while SBASS detects (and breaks) no symmetry. A

Example 3.10.2. Consider the logic program

r<pAg.
Py=4q 0<#{p} <1
0<#{q} <1
It is clear that p and q are interchangeable in P,. In this case, both SBASS and
BREAKID detect (and break) this interchangeability. A

Example 3.10.3. Consider the logic program

—pAg.
Ps=4 0<#{p} <L
0<#{q} <1
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It is clear that p and ¢ are interchangeable in P3. BREAKID detects this, while
SBASS detects (and breaks) no symmetry. A

Example 3.10.4. Consider the logic program

pVqg—pAg.

Pi=1{ 0<#{p} <1

0<#{¢} <1.
It is clear that p and ¢ are interchangeable in P,. BREAKID detects this, while
SBASS detects (and breaks) no symmetry. A

Example 3.10.5. Consider the logic program

=il )

It is clear that p and q are interchangeable in P4. BREAKID detects this, while
SBASS detects no symmetry. A

In the last example, the fact that this symmetry is not detected does not have
any practical consequences. Indeed, since these are only interchangeable facts,
exploiting the symmetry will not help the solver. However, in examples such as
Example 3.10.1, the difference is more important. If there are interchangeable
atoms in choice rules, symmetry breaking can cut out exponentially large parts
of the search space.

3.11 ASP experiments with BreaklD

In this section, we experimentally compare SBASS and BREAKID, using CLASP
3.1.4 as solver and GRINGO 4.5.5 as grounder (to convert a predicate level ASP
program into a propositional one). We compare the number of solved instances
for a set of four symmetric decision problems, and a set of two symmetric
optimization problems from 2013’s ASP competition [5].

3.11.1 Setup
The four decision problems in our benchmark set are pigeons, crew, graceful
and 200queens.

pigeons is a set of 16 unsatisfiable pigeonhole instances where n pigeons must
be placed in n — 1 different holes. n takes values from {5,6,...,14,15,20,
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30,50, 70,100}. The pigeons and holes are interchangeable, leading to a large
symmetry group.

crew is a set of 42 unsatisfiable airline crew scheduling instances, where
optimality has to be proven for a minimal crew assignment given a moderately
complex flight plan. The instances are generated by hand, with the number of
crew members ranging from 5 to 25. Crew members have different attributes,
but depending in the instance, multiple crew members exist with the same exact
attribute set, making these crew members interchangeable.

graceful consists of 60 satisfiable and unsatisfiable graceful graph instances,
taken from 2013’s ASP competition [5]. These instances require to label a
graph’s vertices and edges such that all vertices have a different label, all edges
have a different label, and each edge’s label is the difference of the labels of
the vertices it connects. The labels used are {0,1,...,n}, with n the number
of edges. Any symmetry exhibited by the input graph is present, as well as a
symmetry mapping each vertex’ label [ to n — [.

200queens is a set of 4 large satisfiable N-Queens instances trying to fit n
queens on an n by n chessboard so that no queen threatens another. n takes
values from {50,100, 150,200}. The symmetries present in 200queens are the
rotational and reflective symmetries of the chessboard.

The two optimization problems are valves and still. Both problems’ models
and instances are taken from 2013’s ASP competition [5], but manual symmetry
breaking constraints were removed from the ASP specification.

valves models connected pipelines in urban hydraulic networks, and features
interchangeable valves. Our instance set counts 50 instances.

still models a fixpoint connected cell configuration in Conway’s game of life.
The game board exhibits rotational and reflective symmetry. Our instance set
counts 21 instances.

All experiments were run on on an Intel® Xeon® E3-1225 CPU with Ubuntu
14.04 Linux kernel 3.13 as operating system. Resources to reproduce these
experiments are available online [31].

The decision problems had 6GB RAM and 1000s timeout as resource limits,
and the results exclude grounding time, as this is the same for each solving
configuration, but include any time needed to detect symmetry and construct
symmetry breaking constraints. By default, BREAKID limits the size of the
symmetry breaking formula to 50 auxiliary variables for a given symmetry. To
keep the comparison as fair as possible, SBASS was given the same limit.

The optimization problems had 8GB RAM and 50000s timeout as resource
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limits, and the results exclude identical grounding time and negligable symmetry
breaking time. No comparison with SBASS was made as SBASS does not support
optimization statements.

Table 3.4 summarizes the results of the decision problems.

CLASP SBASS BREAKID
‘ # # t 1% T # t \% T 19
pigeons (16) 8 11 51.0 48814 43.5 | 14 12.7 95192 90 2
crew (42) 32 36 0.0 1722 7.8 |41 0.0 2835 101 3.2
graceful (60) 33 28 0.7 127860 5.5 | 32 2.1 250614 103 1
200queens (4) 4 4 33.7 3658002 2.0 | 4 484 7277508 126 1

Table 3.4: Experimental results of (i) CLASP without symmetry breaking
preprocessor, (i) with sBAss, and (iii) with BREAKID. # represents the number
of solved instances, t the average symmetry detection time in seconds, V the
average number of vertices in the automorphism graph encoding, 7 the average
number of symmetry generators detected by SAUCY, and § the average number
of detected row interchangeability symmetry groups.

Analyzing the results on pigeons, CLASP gets lost in symmetric parts of the
search tree, solving only 8 instances (up to 12 pigeons). SBASS can only solve
three more instances (up to 15 pigeons), as the derived symmetry generators
do not suffice to construct strong symmetry breaking constraints. These results
are consistent with the results of Drescher et al. [41]. BREAKID detects more
structure, solving all but two instances (the largest being solved contains
50 pigeons). Note that BREAKID cannot solve pigeons instances in this
benchmark set. The reason is that BREAKID, for these instances, is not able
to detect the full row interchangeability groups present, but only smaller row
interchangeability subgroups.

As far as symmetry preprocessing time goes, both sSBASS and BREAKID spend
a significant time detecting symmetry, especially on the larger instances with
more than 20 pigeons. To our surprise, BREAKID requires only a quarter of
the symmetry preprocessing time SBASS uses. This difference is entirely due
to SAUCY needing much more time to detect automorphisms on the graph
encoding of SBASS than on the graph encoding of BREAKID. This is surprising,
as BREAKID’s encoding graph, due to using undirected edges, has about twice
the number of vertices of SBASS’s encoding graph has. The most plausible
hypothesis to explain the difference in symmetry detection time is simply that
SAUCY is sensitive to differences in graph encodings, which gets magnified by
large problem instances. Nonetheless, even for the largest instance with 100
pigeons, symmetry preprocessing by BREAKID did not reach the timeout limit.

The results on crew are similar to pigeons: BREAKID outperforms SBASS,



42 SYMMETRY IN PROPOSITIONAL LOGIC

which in turn outperforms plain CrLASP. On the other hand, symmetry
preprocessing time is negligible for crew. This is mainly due to the sizes
of the ground programs remaining relatively small: less than 3000 rules for the
largest ground program in the crew instance set.

Continuing with graceful, it is striking that the number of solved instances
is reduced by symmetry breaking. Upon closer inspection, this is only the
case for satisfiable instances. For unsatisfiable graceful instances, SBASS and
BREAKID both solve four instances, two more than CLASP. This discrepancy
is not uncommon, as static symmetry breaking formulas sometimes remove
otherwise easy-to-find solutions, making a satisfiable problem harder to solve.
These results are also consistent with those reported by Drescher et al. [41].
Focusing on symmetry preprocessing time, SBASS is faster than BREAKID. This
is consistent with the results in Section 3.7, where we argued that deriving
better symmetry breaking constraints incurs extra overhead.

Lastly, for 200queens, all approaches solve all four instances easily. Again
SBASS is faster than BREAKID, which is explained by the same reason as for
graceful. However, BREAKID’s preprocessing time remains well within timeout
bounds.

We conclude that on the decision problem benchmark set, BREAKID outperforms
SBASS, especially for problems with interchangeable objects such as pigeons
and crew. The price to be paid is a bit more symmetry preprocessing overhead,
though the size of the symmetry breaking formula remains comparable between
both approaches. This is to be expected, as BREAKID compared similarly to
SHATTER in Section 3.7.

3.11.2 Optimization problem results

Figures 3.4 and 3.5 show the relative objective value of the best solution found
after 50000s of search time for still and valves. Even though BREAKID
detects and breaks significant symmetry for both problems, and often infers
interchangeability in valves, the resulting symmetry breaking constraints do
not seem to vastly improve the final objective value for these two benchmark
families. For still, the resulting objective value is virtually identical. For valves,
the objective value for BREAKID’s run is improved for 11 instances, while it
has worsened for 5 instances. When looking at the number of instances for
which optimality was proven, both approaches were able to prove optimality for
5 still instances and 15 valves instances.

We conclude that for optimization problems still and valves, BREAKID detects
and breaks symmetry, but any resulting speedups are small at best.
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Figure 3.4: Objective value for BREAKID and CLASP after 50000s on still.
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Figure 3.5: Objective value for BREAKID and CLASP after 50000s on valves.
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3.12 Discussion

In this chapter, we presented novel improvements to state-of-the-art symmetry
breaking for SAT. Common themes were to adapt the variable order and the set
of generator symmetries by which to construct lex-leader constraints. BREAKID
implements these ideas and functions as a symmetry breaking preprocessor in
the spirit of SHATTER and SBASS. Our experiments with BREAKID show the
potential for these techniques individually and combined. We observed that
BREAKID outperforms SHATTER, and is a particularly effective preprocessor
for hard-combinatorial SAT-problems. Its symmetry breaking advantages also
carry over into a ground ASP context, improving upon SBASS also by more
reliably detecting symmetry.

The algorithms presented are effective, but also incomplete, e.g., not all row
interchangeability is detected, no maximal set of binary symmetry breaking
clauses is derived etc. Coupling BREAKID to a computational group algebra
system such as GAP [45] has the potential to alleviate these issues.

Alternatively, it might be interesting to compare different methods of graph
automorphism detection, and investigate how hard it is to adjust their internal
search algorithms to put out more useful symmetry generators, stabilizer chains
for binary clauses, or even row interchangeability symmetry groups. Jefferson &
Petrie already started this research in a constraint programming context [57].

3.12.1 Related work

We already mentioned the two symmetry breaking approaches most related to
BREAKID, namely SHATTER [4] and sBASS [41]. Tt is worth mentioning that
other static symmetry breaking approaches than posting lex-leader constraints
exist. For instance, one can use a gray code or snake lex ordering instead of
a lexicographical ordering on the set of candidate solutions [79]. For different
problems, the optimal symmetry breaking order differs, indicating that static
symmetry breaking tools that only provide the option of one ordering (such as
BREAKID, SHATTER and SBASS do) have room to improve.

Chapter goal evaluation

We proposed two ways of inferring symmetry group structure, which, when
derived, allows for clear performance benefits. Combined with technical
improvements concerning symmetry detection and symmetry breaking, our
resulting preprocessor BREAKID improves the state-of-the-art. In this way, our
research hypothesis is confirmed. However, the algorithms currently employed
to infer symmetry group structure are incomplete, and might miss key properties
of the symmetry group.



Chapter 4

Symmetrical Propagation and
Learning

Goal of the chapter

Static symmetry breaking, though effective, fundamentally alters a problem
by adding constraints that are not logical consequences of the initial set of
constraints. Handling symmetry symmetry dynamically can avoid this by adding
symmetrical images of logical consequences that are derived during the search
process. In modern search engines, a valid formula that is a logical consequence
of the theory is derived every time the solver has to backtrack. However, as
potentially there exists an exponential amount of symmetrical images of one
formula under a problem’s symmetry group, a naive approach will be infeasible.
In this chapter, we investigate whether feasible approaches exist.

This chapter is based on work presented at the IEEE 24th International
Conference on Tools with Artificial Intelligence — November 2012, Athens,
Greece [39].

4.1 Introduction

In Chapter 3, we presented a static symmetry breaking approach for
propositional logic. This approach came in the form of a preprocessor for
CNF formulas. Such a preprocessor is conceptually simple and easy-to-use — no

45
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modification of an often times complex search engine is required to deal with
symmetry. Also, static symmetry breaking generally performs very well, as we
showed in Chapters 3 and 5.

A disadvantage of static symmetry breaking is that it pushes the solver to a
particular part of the search space which might not be the most efficient part
for the problem and solver at hand [78]. Actually, the performance of BREAKID
and SBASS on the graceful benchmark set in Section 3.11 is an example of
how static symmetry breaking can influence performance negatively. Another
disadvantage is that the extra constraints can be too large for a solver to
handle, forcing a limit on their size and pruning power. Finally, static symmetry
breaking is not always possible, for instance when symmetries are detected
during search [15].

For a knowledge base system such as IDP, symmetry breaking has the additional
disadvantage of fundamentally altering the knowledge base. It is plausible to
imagine that a user is interested in the logical consequences a search engine has
derived when performing, for instance, model expansion. With static symmetry
breaking, these logical consequences are invalid, and hence potentially useless.

Dynamic symmetry handling deals with symmetry by interacting with the solver
during search, and allows to address symmetry without breaking it.

In this chapter, we present Symmetry Propagation (SP), a dynamic symmetry
handling approach that speeds up search by propagating literals symmetrical
to already propagated literals. Experiments show that SP is most effective if
it is extended to a form of symmetric clause learning, a simple and elegant
dynamic symmetry handling principle. In the wake of SP, we also propose
Symmetric Explanation Learning (SEL), a simple dynamic symmetry handling
algorithm based only on the principle of symmetric clause learning. SEL
experimentally outperforms SP, and performs on par with BREAKID, making
it, to our knowledge, the first succesful symmetric clause learning algorithm.

This chapter starts out with a brief overview of how modern SAT solvers work in
Section 4.2. Section 4.3 delves into run-time properties of symmetry, providing
the notion of weak activity. This section also contains a detailed description
of how SP can be implemented in a SAT solver. An actual implementation in
MINISAT yielded the experimental results given in Section 4.4. Section 4.5
contains a description of SEL, and Section 4.6 contains an experimental
evaluation of SEL, SP, BREAKID and SHATTER. We close this chapter with a
discussion in Section 4.7.
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4.2 Preliminaries

In what follows, we continue the SAT formalism established in Section 3.2.

Apart from t and f denoting standard Boolean values of “true” and “false”, we
also introduce the value u denoting the “unknown” value. A partial assignment
a is a mapping of the variable set y to true, false or unknown, so a: x — {t,f, u}.
A partial assignment « is complete if it maps every variable from x to B = {t,f}.
To remain consistent with Section 3.2, unless specifically mentioned to be partial,
an assignment is presumed to be complete.

A formula 1 is a logical consequence of a formula ¢ — denoted ¢ |= ¢ — if for all
assignments « satisfying ¢, ¥ holds in . Two formulas are logically equivalent
if each is a logical consequence of the other.

For the remainder of this chapter, we abstract a partial assignment « as a set
of literals (o C ) such that o contains at most one literal over each variable in
X. Under this abstraction, a(z) =t if x € a, a(z) =f if -z € o, and a(z) =u
otherwise, for x € x. If a contains exactly one literal over each variable in Y,
then « is a complete assignment.

A clause c is satisfied under partial assignment « if « contains at least one literal
from c. A clause c is a conflict clause (or conflicting) under partial assignment
a if for all literals [ in ¢, =l € a. A clause ¢ is a unit clause under « if for all
but one literal [ in ¢, -l € a.

We extend the notion of a propositional symmetry 7 (see Section 3.2) to sets of
literals: o(a) = {o(l) |l € a}.

Finally, we often consider a formula ¢ in the context of some partial assignment
a. We formalize this as the formula ¢ conjoined with a unit clause (1) for literal
l € a. We denote this formula by ¢ | «, pronounced ¢ “under” . Formally,

| « is the formula
A /\ l.

lea

4.2.1 Conflict Driven Clause Learning SAT solvers

We briefly recall some of the characteristics of Conflict Driven Clause Learning
SAT (CDCL) solvers [101].

A CDCL solver takes as input a formula ¢ over a set of Boolean variables x.
As output, it returns a complete assignment satisfying ¢, or reports that none
exists.
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Internally, a CDCL solver keeps track of a partial assignment o — called the
current assignment — that initially is empty. At each search step, the solver
chooses a variable z for which the current assignment « does not yet contain
a literal, and adds either the positive literal = or the negative literal -z to
«. The added literal is now a choice literal, and may result in some clauses
becoming unit clauses under the refined current assignment. This prompts a unit
propagation phase, where for all unknown literals [ occurring in a unit clause,
the current assignment is extended with [. Such literals are propagated literals;
we refer to the unit clause that initiated [’s unit propagation as l’s explanation
clause. If no more unit clauses remain under the resulting assignment, the unit
propagation phase ends, and a new search step starts by deciding on a next
choice literal.

During unit propagation, a clause ¢ can become conflicting when another clause
propagates the last non-false literal [ of ¢ to false. At this moment, a CDCL
solver will construct a learned clause by investigating the explanation clauses
for the unit propagations leading to the conflict clause. This learned clause c is
a logical consequence of the input formula, and using ¢ for unit propagation
prevents the conflict from occurring again after a backjump.! We refer to the
set of learned clauses of a CDCL solver as the learned clause store .

Formally, we characterize the state of a CDCL solver solving a formula ¢ by a
quadruple («, 7, A, £), where
e « is the current assignment,

e 7 is the set of choice literals — the set of literals a \ v are known as
propagated literals,

e )\ is the learned clause store,

« & isafunction mapping the propagated literals | € o'\ to their explanation
clause £(1), which can be either a clause from the input formula ¢ or from
the learned clause store A.

During the search process, the invariant holds that the current assignment is a
logical consequence of the decision literals, given the input formula. Formally:

plrEela

Secondly, the learned clauses are logical consequences of the input formula:

¢ | ¢ for each ¢ € \.

1 Backjumping is a generalization of the more classical backtracking in combinatorial solvers.
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4.3 Propagation via symmetry

4.3.1 Symmetrical learning

From the definition of symmetry for propositional formulas (see Section 3.2)
follows:

Proposition 4.3.1. Let ¢ be a propositional formula, m a symmetry of ¢, and
¢ a clause. If ¢ = ¢, then also ¢ = 7(c).

Proof. If ¢ |= ¢ then 7(¢) = m(c), as m renames the literals in formulas and
clauses. Symmetries preserve satisfiability, so 7(y) is equivalent to ¢, hence

p Ew(e). O

Since learned clauses are always logical consequences of the input formula, every
time a CDCL solver learns a clause ¢, we may apply Proposition 4.3.1 and add
7(c) as a learned clause for every symmetry 7 of some symmetry group of G.
We will call this symmetrical learning.

Symmetrical learning can be used as a symmetry handling tool for SAT: because
every learned clause prevents the solver from encountering a certain conflict,
the orbit of this clause under the symmetry group will prevent the encounter of
all symmetrical conflicts, resulting in a solver never visiting two symmetrical
parts of the search space.

However, since the size of permutation groups can grow factorial in the number of
permuted elements, this approach will in most cases add too many symmetrical
clauses to the formula to be of practical use. Symmetrical learning approaches
need to limit the amount of symmetrical learned clauses [56].

4.3.2 Active symmetry

Our own investigation to symmetrical learning starts with the observation that
instead of learning symmetrical clauses, we can simulate the propagations they
would entail. The following corollary of Proposition 4.3.1 lies at the base of this
idea:

Corollary 4.3.2. Let ¢ be a formula, a a partial assignment and 1 a literal.

If w is a symmetry of ¢ | a and ¢ | a E 1, then also ¢ | a = 7(1).

Corollary 4.3.2 means that if a CDCL solver has state («,, A, £) where [ can be
propagated, then for every symmetry = of ¢ | a, 7(l) can also be propagated.
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To detect whether symmetries of ¢ are symmetries of ¢ | «, Mears et al.
introduced the notion of activity in their Lightweight Dynamic Symmetry
Breaking algorithm [73].

Definition 4.3.3. A symmetry = is called active under partial assignment « if
(a) = a.

Which leads to the following proposition:

Proposition 4.3.4. Let ¢ be a formula and o a partial assignment. If w is a
symmetry of ¢ that is active under «, then w is also a symmetry of ¢ | a.

Proposition 4.3.4 states that the symmetries of ¢ active under partial assignment
« form a subset of the symmetries of ¢ | a. By Corollary 4.3.2, we can conclude
that if a symmetry 7 of ¢ is active under partial assignment «, and a literal [
is propagated, we are also allowed to propagate 7(l). Since the composition of
two symmetries of ¢ | « is again a symmetry of ¢ | «, we can also propagate
72(1),73(1), ... After doing so, ™ will again be active, so for other propagated
literals I, w(I') can again be propagated, and so on.

These propagations of literals symmetric to other propagated literals ensure a
solver does not visit symmetrical branches of the search space; if  must hold (as
it is propagated), then investigating - will lead to an inconsistent part of the
search space, and by symmetry reasoning, investigating -7 () does so as well.
To avoid this, it is only reasonable to propagate 7 (1) — a symmelry propagation.
In CP, several dynamic symmetry handling methods have the notion of activity
at their core [53, 73].

4.3.3 Weakly active symmetry

We improve this approach by introducing the notion of weakly active symmetries,
which generalizes activity.

Definition 4.3.5. Let ¢ be a formula and («,~, A\, &) the state of a CDCL
solver. A symmetry 7 of ¢ is weakly active for partial assignment o and choice
literals v if 7(y) C «a.

We now show that a literal 7 (1) is a logical consequence of a formula ¢ | o if [ is
a logical consequence of ¢ | a and 7 is a weakly active symmetry of ¢ under «.

Proposition 4.3.6. Let ¢ be a formula, m a symmetry of p, a a partial
assignment, and v a subset of a such that ¢ | v = ¢ | a. If m(v) C « then 7 is
also a symmetry of ¢ | a.
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Proof. To prove that 7 is a symmetry of ¢ | «, we need to prove that it preserves
satisfaction to ¢ | @. We do this by showing that ¢ | a and w(p) | 7(a) are
logically equivalent.

Because 7 is a symmetry of ¢, w(¢) and ¢ are logically equivalent. From the
fact that ¢ | v E ¢ | a it then follows that ¢ | 7(y) E ¢ | 7(«), or, more
generally, o | 7(7) E ¢ | 7%(a) for all k € N. Similarly, as 7 is a permutation
of X, and () C a, it follows that 7%*+1(vy) C 7%(«a) for all k € N. Combined,
this implies that ¢ | 7(a) = ¢ | 751 () for all k € N.

Let n be the smallest positive natural number such that 7" is the identity.? It
follows that

plapelr@Eelr(@E - EFelm (o) EFela
As aresult, ¢ | «, ¢ | m(a) and 7(p) | 7(«) are logically equivalent. O

Note that if (c, v, A\, ) is a solver state where 7 is weakly active, the conditions
in Proposition 4.3.6 are satisfied. Combined with Corollary 4.3.2, this implies
that for every propagated literal [, w(I) can be propagated if 7 is only weakly
active.

Weak activity has two advantages when compared to activity. The first is that
weak activity is more general than activity, which allows for more propagations.
The second is that keeping track of weakly active symmetries is easier than
keeping track of active symmetries, since we only need to check for every choice
literal [ in v whether 7(l) € a. We describe an efficient incremental approach
to keep track of weakly active symmetries in Section 4.3.4.

To conclude this section, we derive from Proposition 4.3.6 a corollary describing
the set of literals that forms a logical consequence from a formula given a set of
weakly active symmetries. It also shows that propagating these literals turns
weakly active symmetries into active ones.

Corollary 4.3.7. Let ¢ be a formula, and (o, v, A, E) a state of a CDCL solver
having ¢ as input. Suppose P is a set consisting of weakly active symmetries
under o and . Furthermore, let Gp be the group generated by P, and B the
partial assignment consisting of the union of the orbits under Gp of all literals
ina. Then (i) o L a =@ | B and (i) all symmetries in Gp are active under 5.

Proof. By Proposition 4.3.6, all 7 € P are symmetries of ¢ | a. Then (i) follows
from the fact that all symmetries of Gp are symmetries of ¢ | a. Statement
(ii) follows from the construction of 5. O

2This number exists for permutations with finite support.
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Corollary 4.3.7 shows that potentially many symmetric literals can be propagated
for weakly active symmetries if, during search, the group generated by the weakly
active symmetries is big.

4.3.4 The symmetry propagation algorithm

In this section, we provide an algorithm that propagates literals symmetric to
other literals in the current assignment of a CDCL solver. We refer to this
algorithm as the symmetry propagation algorithm (SP).

As mentioned before, we characterize the state of a CDCL solver by its current
partial assignment «, a set of choice literals 7y, a set of learned clauses A\, and
an explanation clause function £. Symmetry is represented in the solver by a
set of input symmetries P, given to the solver at the beginning of the search.

At the start of the search, & = (3, so every input symmetry in P is weakly active.
Every time a literal is added to «, all input symmetries containing that literal
are notified using a watched literal scheme, allowing the symmetries to update
their weak activity status accordingly. This updating is implemented by keeping
a counter per symmetry 7, indicating the minimum number of literals to be
added to a to make m weakly active. Initially, the counter is 0, signifying the
corresponding symmetry 7 is weakly active. The counter is increased whenever
a literal [ with [ € v and 7(l) € « is added to «, and decreased whenever a
literal [ is added to a for which 7=1(I) € 4. This way, updating the weak
activity status of a symmetry is a constant time operation.

For every input symmetry 7, SP also keeps track of the first asymmetric literal
for m under partial assignment «. If such a literal exists, the first asymmetric
literal is the oldest? literal | € a for which 7(I) € a. Whenever 7 is weakly active,
according to Proposition 4.3.6 and Corollary 4.3.2, w(l) can be propagated. We
will refer to this type of propagation as symmetry propagation, as opposed to
unit propagation by unit clauses.

Modern CDCL solvers require that for every propagated literal [ an explanation
clause exists, which must contain [, and must be a unit clause when [ is
propagated. Fortunately, creating an explanation clause for a symmetry
propagation is straightforward. A literal w(l) will only be propagated as a
symmetry propagation if [ is the first asymmetric literal for some weakly active
symmetry 7 under a solver state (a,7,A,E). As all false literals I’ in I’s
explanation clause £(1) are older? than [, 7(—~l’) € a. Taking into account that

3In CDCL solvers, literals are ordered based on their addition to the assignment timestamp.
If a literal [ is added before I, [ is “older” than I’.
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m commutes with negation, -7 (l') € a, so w(£(l)) is a unit clause under a, with
m(l) as non-false literal.

Hence, we can use m(£(1)) as an explanation clause for the propagation of w(l).
By Proposition 4.3.1, we also know this clause is a logical consequence of the
original formula, so we can safely add it to the learned clause store to use for
future propagations.

During the propagation phase of the CDCL solver, SP alternates between unit
propagation and symmetry propagation. More precisely: when no more unit
propagations are possible, SP loops over the set of input symmetries in search of
a weakly active symmetry 7 which still has a first asymmetric literal [ under the
current partial assignment. If such a symmetry exists, symmetry propagation
of 7(l) occurs, after which unit propagation is immediately reactivated. This
cycle continues until no more unit and symmetry propagations can be made, or
a conflict occurs.

By switching back to unit propagation after every single symmetry propagation,
SP makes sure all literals propagated by symmetry propagation could not have
been propagated by unit propagation. As a consequence, all explanation clauses
for symmetry propagations did not occur in the original formula or the learned
clauses store, so no time is wasted constructing existing clauses. Also, the total
amount of learned clauses is minimized, which is beneficial since the performance
of CDCL solvers correlates with the number of clauses they have to keep track
of.

Algorithm 4 is a pseudocode representation of the propagation phase of a typical
CDCL solver using SP. Given a formula ¢, a partial assignment « over variables
of ¢ and a set of symmetries P of ¢, a CDCL solver using SP propagates literals
as follows:

Example 4.3.8 presents a typical run of the SP algorithm:

Example 4.3.8. Counsider formula ¢ = (=fVa)A(=fVb)A(-aVd)A(-bVeV
¢) A (—eV —g) A (e V g) and its symmetry m = (a b)(d e). Suppose the CDCL
algorithm chooses a, so @ = v = {a}. During the unit propagation phase, we
can propagate d, so o = {a,d}, v = {a} and £(d) = —a V d. Since no more unit
propagation is possible, a check for symmetry propagation is made. However,
since m(y) = {b} € a, 7 is not weakly active and no symmetry propagation
occurs. Note that at this time, a is the first asymmetric literal for m, since a is
the first literal added to o and 7(a) & a.

Since no more unit or symmetry propagation is possible, the algorithm chooses,
say f, and propagates b during unit propagation. After this, o = {a,d, f,b},
v ={a, f}, £(b) = ~f Vb, and symmetry propagation starts. = is inactive



54 SYMMETRICAL PROPAGATION AND LEARNING

data:a formula ¢, a partial assignment «, a set of symmetries P of ¢
repeat
execute unit propagation until fixpoint;
foreach weakly active symmetry = in P do
if a first asymmetric literal | for m under a exists then
extend a with 7(1);
set m(£(1)) as w(I)’s explanation clause;
add w(E(1)) to the learned clause store A;
break;

end

end
until no new literals have been propagated or a conflict has occurred;
Algorithm 4: propagation phase of a CDCL solver using SP

since 7(d) = e & a, but 7 is weakly active since 7(y) = {b, f} C a. Also,
the first asymmetric literal for 7 now is d, since w(a) € o and 7(d) € a. As
a result, m(d) = e can be propagated during symmetry propagation, so that
a={a,d, f,b,e}, and E(e) = w(E(d)) = -bVe.

Now, unit propagation is immediately reactivated. Since symmetry propagation
did not induce new unit clauses, no further unit propagation happens, and
symmetry propagation is continued. Even though 7 now is (weakly) active, it
has no first asymmetric literal, so it can no longer propagate, ending the unit
and symmetry propagation. The search now continues by choosing a new choice
literal, and so on. A

SP offers some interesting properties. Firstly, the calculations needed to perform
symmetry propagation cannot send the underlying solver in a loop, so SP
preserves the completeness of the underlying solver.

Secondly, since all the literals propagated by symmetry propagation are a logical
consequence of the original formula ¢ and the partial assignment «, and since
all the corresponding explanation clauses added to ¢ are a logical consequence
of o, SP also preserves the soundness of the underlying solver. This also implies
that SP does not prohibit the underlying solver from finding any model. SP
merely avoids visiting branches of the search tree symmetrical to failed branches,
and as such it leaves the underlying solver heuristic free to choose the most
optimal search branch.

Thirdly, during unit and symmetry propagation, the partial assignment o only
grows, while the set of decision literals does not change. Hence, the set of weakly
active symmetries P can only increase in this phase. Also, for all weakly active
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symmetries 7, 7’ € P, after 7(l) is propagated, =’ (7 (l)) will also be propagated
— either by unit propagation or by symmetry propagation. As a consequence, all
propagations allowed by Corollary 4.3.7 will take place.

4.3.5 Optimizations to SP

Having explained the main ideas of SP, this subsection discusses two
optimizations to SP. The general idea is to maximize the number of symmetry
propagations, steering the solver away from useless parts of the search space and
deriving conflict clauses early on. In Section 4.4, we evaluate their performance.

The first optimization is based on the interaction of SP with inverting
symmetries.

Definition 4.3.9. A literal [ is inverting for a symmetry = if 7(l) = —l. A
symmetry 7 is inverting if at least one literal is inverting for .

Whenever an inverting symmetry 7 is weakly active for partial assignment «
and choices 7, and one of its inverting literals [ is propagated, SP will propagate
—l, resulting in a conflict and thus, a backjump in the search. However, if
an inverting literal [ for m would become a choice literal, = would become
weakly inactive and remain so until the solver backtracks over [. By choosing
choice literals in such a way that they are inverting for as few symmetries as
possible, we can keep as many inverting symmetries weakly active as long as
possible. In our implementation, we simply ordered the variables by the number
of symmetries the corresponding literals were inverting for, and used this as the
initial variable ordering by which literals were selected to become choice literals.
Note that this inverting symmetry optimization has no effect if no inverting
symmetries are present in the formula.

A second optimization concerns symmetry propagation when a symmetry w
is not weakly active. In this case, it still is possible that for some propagated
literal I, the clause 7(€(1)) is a unit clause. Since by Proposition 4.3.1 this
clause is always a logical consequence of the original formula, the non-false
literal I’ € w(€(1)) can be propagated using 7(£(1)) as the explanation clause.
We implemented this idea as a last check after unit propagation and (weakly
active) symmetry propagation could propagate no more. More precisely, we
loop over all inactive symmetries 7 and all propagated literals [ € '\ v to check
whether 7(£(1)) is a unit clause. If so, the appropriate propagation is made,
after which unit propagation is immediately reactivated.

The inactive propagation optimization is a special case of symmetric learning,
and since it does not depend on the activity status of a symmetry, it generalizes
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SP. This does not make the notion of weak activity useless: if a symmetry = is
weakly active, by Corollary 4.3.7, we can propagate m(l) for each propagated
literal [ and skip the check of whether 7(£(1)) is a unit clause. Also, the inactive
propagation optimization requires a solver to incorporate an explanation clause
mechanism, which plain SP does not require.

4.4 Experimental evaluation of SP

To test the algorithms outlined in the previous section, we implemented SP in
the CDCL solver MINISAT [42] released on GitHub on March 27th 2011 [33].
The implementation follows the algorithm described in Section 4.3.4, with the
option to use the inverting symmetry optimization or inactive propagation
optimization described in Section 4.3.5. We tested the SP-implementation with
different combinations of these options, of which we will present two here. The
first version has both optimizations deactivated. We refer to this regular version
by MINISAT +SP"9. The second version has both optimizations activated. We
refer to this optimized version by MINISAT +SP°P?. We refer to both versions
by MINISAT +SP. The source code of MINISAT+SP is available on GitHub as
a branch of Niklas Sérensson’s MINISAT solver [33].

We compare the performance of our solvers with SHATTER [2] and plain
MINISAT as reference.

As benchmarks, we used SAT theories modeled in the standard DIMACS CNF
format. Since this format does not contain information about symmetries, we
detect symmetry by using SHATTER’s builtin symmetry detection algorithm
based on the graph automorphism detection tool SAUCY. We use the symmetry
generators returned by SAUCY as input symmetries for all symmetry breaking
algorithms.

We employ two benchmark sets. The first benchmark set was constructed by
running SHATTER on the problems of the SAT 2011 competition benchmark
set [86]. If, within a time limit of 1000 seconds, SHATTER derived that a certain
problem exhibited symmetry, we included this problem in the first benchmark
set. In the end, the first benchmark set contains 96 problems, of which the
results are summarized in Figure 4.1.

The second benchmark set consists of classical SAT symmetry breaking problems:
problems of wire routing in the channels of field-programmable integrated circuits
(chnl and fpga) [77], pigeonhole problems (holes) and Urquhart’s problems
(Urq) [96]. We use a shuffled version of the pigeonhole problem, because we
experienced that using the initial variable ordering resulted in very fast solving
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Figure 4.1: The performance of MINISAT, MINISAT+SP*®¢, MINISAT+SPopPt
and MINISAT+SHATTER on 96 symmetry exhibiting problems of the SAT 2011
competition. For each algorithm, the problems are ordered on solve time.

times for both MINISAT+SP and MINISAT+SHATTER, which might not be
representative for the expected performance of both algorithms. The results of
the second benchmark set are described in Table 4.1.

Two problem families from the first benchmark set (x and battleship) gave
particularly interesting results, so we also included their information in Table 4.1.
Note that all problems in Table 4.1 contain no inverting symmetries, except for
Urq and x, which contain only inverting symmetries.

The total solve time given to each algorithm on each problem was 5000 seconds,
including the time needed to detect symmetry for all algorithms except MINISAT.
The symmetry detection time was typically very low: less than 4 seconds for all
problems in Table 4.1, and less than 100 seconds for all but 12 problems of the
first benchmark set.

When no answer was given in the desired time limit, a “-” is shown in Table 4.1.
The problems were solved using an Intel® Core® i7-2600 processor and 16 GiB of
memory, with Ubuntu 10.04 64 bit as operating system. Resources to reproduce
these experiments are available online [31, 33]. For all problems of the SAT
2011 competition, CNF files are available on the corresponding site [86].

The running times in Figure 4.1 on problems of the first benchmark set show some
interesting patterns. Firstly, on unsatisfiable symmetrical problems, adding
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Table 4.1:  Performance comparison of MINISAT, MINISAT+SPreg,
MINISAT+SP°* and MINISAT+SHATTER. A “*” indicates inverting
symmetries. The last two columns show the amount of symmetry propagations
as a percentage of the total amount of unit and symmetry propagations.

Input Solve Time (s) Decisions Sym. prop. ratio

Problem name syms | MINISAT +SP™ +SP°P'  {SHATTER ‘ MINISAT 48P +Spert +SHATTER ‘ +SPres 4 Spert
fpgal0_8_sat 22 0.0 0.0 0.0 0.0 405 352 320 503 6.7% 12.0%
fpgal0_9_sat 23 0.0 0.0 0.0 0.0 408 348 316 607 6.2% 9.4%
fpgal2 11 sat 29 0.0 0.0 0.0 0.0 467 363 524 474 4.8% 8.1%
fpgal2 8 sat 24 0.0 0.0 0.0 0.0 296 324 472 602 7.0% 8.8%
fpgal2 9 sat 25 0.0 0.0 0.0 0.0 451 378 492 713 5.9% 7.8%
fpgal3_10_sat 28 0.0 0.0 0.0 0.0 278 477 396 591 5.0% 6.1%
fpgal3_12_sat 32 0.0 0.0 0.0 0.0 316 334 365 1112 2.5% 6.1%
fpgal3 9 sat 26 0.0 0.0 0.0 0.0 330 858 696 601 2.4% 4.9%
fpgal0_11_uns_rer 38 715 0.1 0.1 0.2 5985130 17093 6888 15152 2.1% 4.3%
fpgal0_ 12 uns_rer 41 209.8 0.1 0.1 0.2 12881772 12154 5530 14446 2.5% 3.5%
fpgalO_13_uns_rcr 42 955.2 0.2 0.1 0.2 42096627 25671 4938 16921 1.6% 3.6%
fpgal0_15_uns_rc 46 1841.0 0.2 0.2 0.2 60680481 19039 9183 13249 2.3% 3.2%
fpgal0_20_uns_rcr 57 1271.8 0.4 0.2 0.4 29871337 21404 4498 16306 1.8% 4.6%
fpgall 13_uns 44 - 0.3 0.3 0.9 - 25790 19236 56623 2.8% 4.2%
fpgall 14 uns_rci 46 - 0.6 0.2 0.8 - 51389 10843 48327 1.7% 3.3%
fpgall 15_uns_rer 49 - 0.3 0.2 0.6 - 29983 9836 32194 1.9% 3.4%
fpgall 20_uns_rer 59 - 0.8 0.3 1.3 - 45832 9746 54054 1.8% 3.9%
chnl10_11-uns 39 167.2 0.0 0.0 0.0 12437023 46 46 1473 28.5% 28.5%
chnl10_12-uns 41 85.0 0.0 0.0 0.0 6050506 46 46 1682 25.9% 25.9%
chnl10_13-uns 43 94.8 0.0 0.0 0.0 6006811 46 46 1766 23.7% 23.7%
chnll1_12-uns 43 3353.1 0.0 0.0 0.0 127407652 56 56 2017 29.0% 29.0%
chnlll_13-uns 45 3868.6 0.0 0.0 0.0 126818865 56 56 2264 26.4% 26.4%
chnlll_20-uns 59 3405.1 0.1 0.1 0.1 58302347 56 56 3954 16.5% 16.5%
hole010_ shuffled-uns 19 114.3 0.3 0.1 0.1 12675295 33740 10949 17342 1.7% 4.2%
hole011_shuffled-uns 21 3320.3 0.5 0.3 14 193488347 55047 18662 142711 1.8% 3.3%
hole012_ shuffled-uns 23 - 4.1 0.3 10.5 - 313497 30992 729083 2.0% 3.3%
hole013_shuffled-uns 25 - 31.0 0.8 105.2 - 1532124 67184 4531023 1.8% 3.3%
hole014_ shuffled-uns 27 - 311.2 13.3 2821.2 - 9836194 765810 67375809 1.6% 3.5%
hole015_ shuffled-uns 29 - 715.7 201.5 - - 17048418 7299563 - 1.4% 2.7%
hole016_shuffled-uns 31 - - 122.7 - - - 3884224 - - 2.6%
hole017_shuffled-uns 33 - - 2863.2 - - - 54961134 - - 2.1%
hole018_ shuffled-uns 35 - - 994.5 - - - 18031344 - - 2.1%
Urg3_ 5-uns 29* 139.7 0.0 0.0 0.1 73481538 6124 33 91985 7 35.1%
Urgd_5-uns 43* - 0.0 0.0 39.0 - 1200 43 20323094 40.4%
Urg5_ 5-uns 2% - 7.0 0.2 3810.3 - 2963855 72 1428323031 42.0%
Urg6_ 5-uns 109* - - 0.6 - - - 139 - - 27.3%
Urq7_ 5-uns 143* - - 1.3 - - - 145 - - 37.5%
Urg8__5-uns 200* - - 3.3 - - - 205 - - 39.9%
x1_40.shuffled-uns 40* 141.4 0.0 0.0 3.1 72930235 29191 100 1686967 0.9% 7.6%
x1_80.shuffled-uns 80* - 29.8 0.1 1972.4 - 11256887 84 680826737 0.6% 17.4%
battleship-07-13-sat 12 0.0 0.4 0.4 0.4 414 237 517 606 0.4% 1.0%
battleship-08-15-sat 14 0.0 0.0 0.0 0.0 277 268 429 1078 2.1%
battleship-09-17-sat 15 0.0 0.1 0.1 0.1 1395 1773 5148 4203 1.6%
battleship-10-17-sat 12 3.9 1.4 2.2 5.4 368958 142969 143459 211317 1.2%
battleship-10-18-sat 13 0.0 0.0 0.1 0.1 622 659 6360 6348 1.4%
battleship-10-19-; 15 0.0 0.1 0.1 0.1 648 759 462 3293 0.3%
battleship-12-2 t 18 0.0 0.1 0.1 0.1 1252 3049 1034 4429 0.8%
battleship-14-26-sat 17 718.2 1060.2 546.1 14.3 29589334 37732810 17825596 735680 1.1%
battleship-15-29-sat 22 386.0 16.5 296.6 88.1 21961391 744001 10058234 3373200 1.1%
battleship-24-57-sat 41 16.5 2.8 21.9 34.3 1706712 223013 779295 3102966 1.2%
battleship-05-08-uns 8 0.0 0.0 0.0 0.0 9281 1406 463 447 2.1%
battleship-06-09-uns 7 0.1 0.0 0.0 0.0 45893 7947 2358 1105 1.6%
battleship-07-12-uns 10 485.1 17.3 2.0 1.4 61922751 3040267 295311 141734 1.5%
battleship-10-10-uns 8 1.6 11 0.2 0.0 199396 107931 13673 5017 0.1%
battleship-12-12-uns 10 402.3 45.6 0.7 1.3 29000352 2828621 45112 119304 0.1% 0.3%
battleship-14-14-uns 8 - - 1372.2 736.6 - - 61447105 18278571 - 0.0%
battleship-15-15-uns 10 - - 149.0 - - - 7252565 - - 0.0%
battleship-16-16-uns 17 - - 32.9 - - - 1476236 - - 0.2%
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symmetry information and exploiting it significantly improves performance
compared to MINISAT. We also learn that for unsatisfiable symmetrical
problems, MINISAT+SHATTER and MINISAT+SP*# solve about the same
number of problems, with MINISAT+SP*® being a bit faster on average.
The best performing algorithm on the unsatisfiable instances clearly is
MINISAT+SPoPt,

The left part of Figure 4.1 sketches another picture. Firstly, all algorithms are
able to solve almost all satisfiable symmetric problems. This can be explained
by the fact that when a problem is both satisfiable and symmetric, it often
contains many (symmetric) solutions, which as a result are less hard to find.
Secondly, MINISAT+SP™8 and MINISAT+SP°P* both perform similarly to
MINISAT, while MINISAT+SHATTER on the other hand is able to deliver
improved performance. An explanation can be found in the difference between
SP and SHATTER: the symmetry breaking constraints generated by SHATTER
will always exclude some part of the search space, while SP cannot guarantee
that symmetry propagation (and corresponding search space reduction) will
always happen. When symmetries are inactive or have no first asymmetric literal,
they will not propagate. In this sense, SHATTER is a more complete symmetry
breaking tool, still breaking significant symmetry when solving relatively easy
satisfiable symmetrical problems.

The results presented in Table 4.1 concerning the classical SAT symmetry
breaking problems confirm the above observations: the satisfiable instances
of fpga are easily solved, MINISAT+SP*# has performance similar to
MINISAT+SHATTER, and MINISAT+SPP? performs best. Note that MINISAT
is able to solve the satisfiable instances, but has great trouble with the
unsatisfiable ones.

Since MINISAT+SP°P! uses two different optimizations at the same time, the
question remains whether both optimizations have complementary strengths.
Since the inverting symmetry optimization has no effect when no inverting
symmetries are present in the problem, the performance difference between
MINISAT+SP*8 and MINISAT4SP°P! on the unsatisfiable fpga, holes
and battleship problems (which contain no inverting symmetries) is due
to the inactive propagation optimization. Further testing with only the
inactive propagation optimization activated, showed no significant performance
gain on Urq and x (which contain only inverting symmetries) compared to
MINISAT+SP*8. As a result, we can conclude that the performance gain of
MINISAT+SP°Pt on Urq and x is due to the inverting symmetry optimization.



60 SYMMETRICAL PROPAGATION AND LEARNING

4.5 Symmetric explanation learning

The performance of SP, and in particular its optimized variant SP°P!, is
encouraging.

Note that SP°P! can be seen as a symmetrical learning approach, where, for
some symmetry 7 and some propagated literal [, 7(£(1)) is added to the learned
clause store if 7(£(1)) is a unit or conflict clause under the current assignment.
If 7 is active, SP°P* checks whether m(£(1)) is unit or conflict for all literals { in
the current assignment. If 7 is not active, m(£(1)) is checked for only recently
propagated literals [.

This asynchronicity seems arbitrary. Symmetry might be handled even more
effectively if we have the guarantee that m(€(1)) is added to the learned clause
store whenever it is a unit or conflict clause, regardless of whether symmetry m
is weakly active or not, and regardless of whether literal [ is propagated recently
or early on.

For this, we propose the Symmetric Explanation Learning algorithm (SEL), a
symmetric learning variant with theoretical guarantees.

4.5.1 Details on SEL

SEL’s core idea is simple: given a solver state (a,~, A, £), whenever w(€(1)) is
a unit or conflict clause for some propagated literal [ and some input symmetry
7, add it to the learned clause store, and perform the necessary propagation or
conflict resolution.

We give pseudocode for SEL’s behavior during a CDCL solver’s propagation
phase in Algorithm 5. The idea is to keep a set of clauses SC, called the
symmetrical clause store, containing clauses symmetrical to explanations of
currently propagated literals. The symmetrical clause store SC expands when
more propagations [ are made, by adding any not yet satisfied symmetrical
clause m(€(l)) to SC. SC shrinks when the solver backjumps over literal I,
removing ! from the current assignment and removing any 7 (£(1)) from SC.

If, after regular unit propagation reached a fixpoint, a clause 7(£(1)) from SC
becomes a unit or conflict clause, it is upgraded to a full learned clause, allowing
the CDCL solver to avoid a part of the search space symmetrical to the one
closed by £(1). By requiring that unit propagation is at fixpoint, we obtain the
guarantee that w(€(1)) did not yet belong to the learned clause store. After a
symmetrical clause is upgraded, either conflict resolution is initiated or unit
clause propagation is reprised.
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data:a formula ¢, a set of symmetries P of ¢, a partial assignment «, a set of
learned clauses A, an explanation function &, a set of symmetrical
explanation clauses SC
repeat
foreach unit clause ¢ in ¢ or A do
let | be the unassigned literal in ¢;
add [ to «;
foreach symmetry m in P do
if w(E(1)) is not yet satisfied by o then
| add m(£(1)) to SC;

end

end

end

foreach unit clause ¢ in SC do

add c to \;

break;

end

until no new literals have been propagated or a conflict has occurred;
Algorithm 5: propagation phase of a CDCL solver using SEL

Example 4.5.1 presents a unit propagation phase with the SEL technique. It
also gives a situation where SEL derives propagations (and thus search space
reductions) not detected by SP*€ and SP°Pt.

Example 4.5.1. Let a CDCL solver have as input some unsatisfiable formula
©, a learned clause store A = {(a V b),(-cV dVe)}. As ¢ is unsatisfiable,
m = (a ¢)(b d) induces a symmetry. We will assume no clauses in ¢ will matter
for the following exposition, e.g., because they all contain literals over variables
not in {a, b, c,d, e}.

Suppose the CDCL algorithm chooses —a, so the current assignment « equals
the literal set {—a}, which is also the current set of decisions . During unit
propagation, the CDCL algorithm propagates b, so « = {—a, b}, v = {-a} and
E(b) = aVb. By Algorithm 5, SEL adds 7(£(b)) = (¢Vd) to SC, so SC = {c¢Vd}.
No further unit propagation is possible, and ¢V d is not unit or conflicting, so
the solver enters a new decision phase.

We let the solver choose —d, so a = {—a,b,—~d}, v = {—a,—~d}. Still, no unit
propagation on clauses from ¢ or from the empty learned clause store A is
possible. However, ¢V d is unit, so SEL adds ¢V d to A. Now unit propagation
is reinitiated, leading to the propagation of ¢ with reason ¢V d, and e with
reason —cV dV e.



62 SYMMETRICAL PROPAGATION AND LEARNING

Note that 7 is weakly inactive, and that the propagation triggered by the
symmetric explanation clause ¢ V d did not follow some other propagation, but
rather a decision by the solver. Hence, both SP*8 and SP°P* would not have
derived the valid propagation of ¢ with reason ¢V d. A

4.5.2 Properties of SEL

A first useful property of SEL is that in a given solver state, its propagations
are a superset of the ones derived by SP, both in the regular incarnation SP°&
as the optimized version SP°P'. The argument is simple: every propagation
or conflict by these algorithms is backed by a reason clause 7(£(1)), and SEL
guarantees to track all these clauses, ensuring the same propagations are made.
Combined with Example 4.5.1 where SEL derives a propagation that both
SPr¢& and SP°P! would miss, we argue that SEL is a strictly stronger symmetry
handling method that SP. From this, it also follows that SEL will perform all
propagations promised by Corollary 4.3.7.

Secondly, SEL does not rely on a weak activity notion for symmetries, as
opposed to SP°PY. As such, we expect its implementation to be less complex.

Thirdly, SEL’s time and memory overhead seem acceptable for small sets of input
symmetries P. Assuming a two-watched literal implementation for checking the
symmetrical clause store SC on conflict or unit clauses, the computationally
most intensive step for SEL is filling SC with symmetrical explanation clauses
during unit propagation. Worst case, for each propagated literal I, SEL loops
over P to construct 7w(£(l)), with 7 € P. Assuming k to be the size of the
largest clause in ¢ or A, this incurs a polynomial O(|P|k) time overhead each
propagation. As for memory overhead, SEL must maintain a symmetrical clause
store containing O(|P||«|) clauses, with « the solver’s current assignment.

Of course, as with any symmetrical learning approach, SEL might flood
the learned clause store with many symmetrical clauses. In effect, as only
symmetrical explanation clauses are added to the learned clause store if they
propagate (or are conflicting), an upper bound on the number symmetrical
clauses added is the number of propagations performed by the solver, which can
be huge. Aggressive learned clause store cleaning strategies might be required
to maintain efficiency.

Lastly, a symmetrical learning approach such as SEL (or SP) is compatible with
current state-of-the-art formula preprocessing techniques, as long as they adhere
to the property that the preprocessed formula pre(yp) is a logical consequence

of p — ¢ = pre(p).
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In this case, any model of ¢ is also a model of pre(y), and any symmetrical
learned clause derived by SEL will satisfy those models of pre(y) that satisfy
o, since SEL, being a symmetrical learning approach, only derives logical
consequences of ¢. Then, SEL remains sound in combination with such
preprocessing techniques, as, if ¢ was satisfiable, a SEL-implementing SAT
solver will find pre(y) to still be satisfiable. Of course, a symmetry breaking
preprocessing technique does not have the property ¢ = pre(y), so it cannot
be easily combined with SEL (or SP).

4.5.3 Implementing SEL

An implementation of SEL should take care to include efficient data structures
and avoid superfluous method calls. E.g., checking whether a clause in SC is unit
under an extension of the current assignment is efficiently done by a two-watched
literal scheme [76]. Also, when constructing symmetrical explanation clauses
m(E(1)) to add to SC, it is useless to calculate those for which  is not in 7’s
support. If so, m(l) = [, and any symmetrical clause w(E(l)) will be satisfied
under the current assignment « (as | € a after I’s propagation).

Also, we would ideally like SEL to “completely” handle any row interchange-
ability, e.g., those detected by BREAKID. Our current experiments with SEL
and SP°P! indicate that, for a given row interchangeability group Rjs with rows
Ro = {1,...,k}, each row swap 7(; ;) with 4,5 € Ro,i < j is a useful input
symmetry. Leaving out any of these k(k — 1)/2 generators of Ry significantly
lowers performance on problems with much row interchangeability. Providing a
theoretical argument for this experimental observation remains future work.

4.6 Experimental evaluation of SEL

To verify the effectiveness of SEL, we implemented this dynamic symmetry
handling technique in GLUCOSE 4.0 [10]. The source code of our implementation
is available online [32].

We use a large benchmark set consisting of three components:

e collected: a set of highly symmetric instances, the majority being
unsatisfiable. They were collected incrementally for the purpose of this
thesis, and amongst others, comprise pigeonhole, urquhart, graph coloring,
channel routing and number theory instances. (209 instances)
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e hard14: the hard-combinatorial track of 2014’s SAT competition. (300
instances)

o appl4: the application track of 2014’s SAT competition. (300 instances)
Five solver configurations are compared:

¢ GLUCOSE: pure GLUCOSE 4.0 without symmetry breaking.

e SHATTER: SHATTER is used as a symmetry breaking preprocessor, after
first deduplicating the input CNF, using GLUCOSE 4.0 as SAT solver.

e BREAKID: BREAKID’s optimal configuration as symmetry breaking
preprocessor, exploiting the compact encoding, row interchangeability,
and binary clauses. SAUCY is forced to stop detecting symmetry after 100
seconds of preprocessing have elapsed, and GLUCOSE 4.0 is used as SAT
solver.

o SP°P': SP’s optimal configuration, employing both the inverting symmetry
optimization and the weakly inactive propagation optimization. As
SP is implemented in MINISAT, this is the SAT solver used for this
configuration. The input symmetry generators are those returned by
BREAKID’s symmetry detection, with any detected row interchangeability
group represented by all its row swaps (see Section 4.5.3).

e SEL: the implementation of SEL in GLUCOSE 4.0, using the input
symmetry generators returned by BREAKID’s symmetry detection, with
any detected row interchangeability group represented by all its row swaps
(see Section 4.5.3).

The resources available to each experiment were 16GB of memory and 3500s on
an Intel® Xeon® E3-1225 cpu. The operating system was Ubuntu 14.04 with
Linux kernel 3.13. Unless noted otherwise, all results include any preprocessing
step, such as deduplicating the input CNF, symmetry detection by SAuCY and
symmetry breaking clause generation by SHATTER or BREAKID. Resources to
reproduce these experiments are available online [31].

The summarized results are presented in Table 4.2.

As collected contains instances with a lot of (row interchangeability) symmetry,
GLUCOSE performs worst, SHATTER only slightly better, while the three
symmetry breaking approaches using BREAKID as symmetry detection tool
perform similarly, as they all are provided with row interchangeability
information. It is worth noting that BREAKID, SP°P* and SEL all are able
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GLUCOSE | SHATTER | BREAKID | SP°Pt | SEL
collected (209) 109 115 154 155 156
hard14 (300) 163 177 183 165 183
appl4 (300) 213 210 212 179 211
total (809) 485 502 549 499 550

Table 4.2: Number of solved instances for GLUCOSE, SHATTER, BREAKID,
SP°Pt and SEL for three different benchmark sets. A time limit of 3500s and a
memory limit of 16GB was imposed.

to solve all pigeonhole instances in collected, justifying the choice of input
symmetries representing row interchangeability groups (see Section 4.5.3).

On hard14, BREAKID and SEL give the best performance, with SP°P* and
GLUCOSE performing worst, and SHATTER in between. The most striking feature
is SP°PY’s bad performance, where its symmetry exploitation routines hardly
justify the incurred overhead of keeping track of weakly active symmetries.

This behavior is even more apparent in app14, where all configurations perform
similarly, except for SP°P* whose performance is down the drains. One
explanation for SP°PY’s weak performance on appl4 and hard14 is MINISAT
as base solver. Another is that SP°P*’s activity-tracking overhead is simply too
high.

As for SEL, its symmetrical clause tracking overhead is low enough to keep
up with GLUCOSE on appl4, and to perform competitively to BREAKID over
all benchmark sets. As such, we consider it a succesful implementation of
symmetrical learning.

One remark is that both SP°P* and SEL require a lot more memory resources
than the other solver configuration, reaching a memory-out for a total of
24 and 22 instances, respectively. This might be due to a large number of
symmetry generators residing in memory for certain instances. This is an area
of improvement for future implementations.

Finally, we present the performance of the solver configurations on the graph
coloring problem instances present in collected. The data to generate these
graph coloring CNF instances were taken from Michael Trick’s Operations
Research Page [95]. Table 4.3 lists the results.

The picture painted here is strongly in favor of SEL, with static symmetry
breaking by BREAKID and SHATTER performing poorly.
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| GLUCOSE | SHATTER | BREAKID | SP°P' | SEL
graph coloring (57) ‘ 10 ‘ 21 ‘ 26 ‘ 33 ‘ 37

Table 4.3: Number of solved instances for GLUCOSE, SHATTER, BREAKID,
SP°P* and SEL for the graph coloring problem instances present in collected.
A time limit of 3500s and a memory limit of 16GB was imposed.

4.7 Discussion

In this chapter, we presented the notion of weak activity, a dynamic property
of symmetries that allows the derivation of propagations symmetric to already
performed propagations. Weak activity is a generalization of activity, a notion
employed by dynamic symmetry handling techniques in the field of constraint
programming [73].

Based on the notion of weak activity, we presented Symmetry Propagation
(SP), a novel approach to dynamically handle symmetries in SAT problems.
We implemented both a regular and optimized version of SP in MINISAT.
Our experiments indicate that SP outperforms SHATTER on unsatisfiable
symmetrical benchmarks, while the satisfiable symmetrical benchmarks
remained relatively easy to solve. However, SP in its optimized version performs
badly on application instances.

Based on SP ideas, we also presented Symmetric Explanation Learning (SEL),
a second dynamic symmetry handling technique for SAT. SEL is a relatively
simple form of symmetrical learning, that nonetheless performs strictly more
symmetry propagations than SP. The performance of a first implementation is
on par with BREAKID, making it the first symmetrical learning scheme to be a
viable alternative to static symmetry breaking.

4.7.1 Related work

Benhamou et al. proposed a general dynamic symmetry handling approach for
SAT [15], based on Corollary 4.3.2: every time a SAT solver with formula ¢ and
partial assignment o backjumps from a certain choice literal [, a local symmetry
group G of ¢ | a is computed, and the orbit of =/ under G is propagated. The
drawback of this technique is that repeated computation of symmetries of ¢ | «
can be very expensive.

SP avoids this overhead by only considering the symmetry group of ¢ | «
generated by weakly active input symmetries, which, as shown in Section 4.3.4,
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can be implemented without recomputing a symmetry group. Similarly, SEL
does not require recomputation of the symmetry group. Also, SP and SEL
check for symmetry propagations during every propagation phase, not only
when the solver backtracks.

Other dynamic symmetry handling approaches for SAT are based on
Proposition 4.3.1. The simplest one is by Heule et al. [56], where for a learned
clause, all its symmetric images under the input symmetry group are constructed
and retained as extra learned clauses. They only present experiments on graph
coloring problems, and cannot improve on SHATTER. We hypothesize that this
approach simply adds too many symmetrical learned clauses.

A more restrictive form of symmetrical clause learning is the Symmetrical
Learning Scheme [16], which only constructs symmetric images of learned
clauses for a set of input symmetries P instead of for the whole symmetry
group G. A disadvantage of the Symmetrical Learning Scheme is that not
all symmetrical learned clauses are guaranteed to contribute to the search by
propagating a literal. This might result in lots of useless clauses being added
to the solver, without breaking a significant amount of symmetry. It also is
possible that some of the clauses added already belong to the set of learned
clauses. Thirdly, it does not allow to derive compositional images of a learned
clause ¢, e.g., w(7(c)) for 7 € P. Both SP and SEL improve on these three
points.

A completely different dynamic symmetry handling approach in SAT is
SYMCHAFF, a structure-aware SAT solver [84]. SYMCHAFF exploits matrices of
row-interchangeable variables (see Section 3.4). It handles symmetry by keeping
track of the subsets of rows that are still interchangeable under the current
assignment, and by adjusting the search heuristic to branch over subsets of
variables that must have the same truth value simultaneously. As such, it can
handle row interchangeability very efficiently, but it can only be used with this
type of symmetry.

A last dynamic symmetry handling approach for SAT is one based on an
alternative learning scheme for graph coloring problems [87]. The idea is
that after every conflict, a special-purpose clause is learned based on Zykov
contractions, an alternative way of solving graph coloring problems. Though
effective, it is not clear how to extend this approach to non-graph coloring
problems and other forms of symmetry.
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4.7.2 Future work

In Chapter 3 we provided completeness results for symmetry breaking constraints
for row interchangeability symmetry groups. These complete symmetry breaking
constraints, in a sense, ensure that a SAT solver is no longer hindered by the
row interchangeability symmetry group. It would be useful to formalize the
analogous notion of “complete dynamic symmetry handling”, and to provide
(in)completeness guarantees for symmetrical learning approaches. A starting
point could be the last remark of Section 4.5.3.

Also, as the notion of weak activity is a generalization of a concept from
constraint programming, transferring our results back to constraint programming
could improve existing dynamic symmetry handling algorithms.

Finally, it might be worthwhile to combine static symmetry breaking and
symmetric learning. E.g., one could statically break graph coloring symmetry
by finding some large clique of size k, coloring it with %k different colors, and
then break the remaining interchangeability symmetry between unused colors
dynamically.

Chapter goal evaluation

Using the notion of weak activity, we devised Symmetry Propagation (SP),
a dynamic symmetry handling approach based on performing propagations
symmetrical to those already executed. Experiments show that this approach is
most effective if also symmetry propagations for weakly inactive symmetries are
performed. This led to SEL, a second dynamic symmetry handling algorithm
and an instantiation of symmetrical learning. Experiments suggest that SEL
performs competitively with the state-of-the-art BREAKID, making it the first
symmetrical learning scheme to be a viable alternative to static symmetry
breaking.



Chapter 5

Symmetry in First-Order
Logic

Goal of the chapter

Though symmetry breaking preprocessors on a propositional level are convenient,
a ground, propositional representation of a combinatorial problem is often
magnitudes larger than a more high-level, predicate-based representation. Also,
on a higher level, more information on the structure of a symmetry group is
still present, which might be inferred with more precision. We investigate what
symmetry on a first-order level is, how to detect it, and how to exploit special
features of certain symmetry groups.

This chapter is based on work presented at the 32nd International Conference
on Logic Programming — October 2016, New York City, USA [3§].

5.1 Introduction

The goal of this chapter is to introduce a formal framework for exploiting
symmetry arising in first-order logic (FO) theories and model expansion
problems. We firstly provide the necessary formalism (syntax and semantics) of
FO, and then discuss different, increasingly more refined, notions of symmetry
in FO. Next, we show how to detect and exploit these types of symmetry,
and provide an experiment based on an implementation in the knowledge base

69
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system IDP. Finally, we relate our work to existing literature on symmetry in
combinatorial solvers.

5.2 Preliminaries

We briefly provide a syntax and semantics for first-order logic. A vocabulary
Y is a set of predicate symbols P/n of arity n > 0 and function symbols f/n
of arity n > 0. A 0O-arity function symbol is a constant symbol. Often, we
will simply refer to a symbol S/n € ¥, which represents an n-ary predicate or
function symbol. We assume a set of variable symbols x, y, z, etc. Slightly
deviating from the standard presentation of first-order logic, we consider both
variable symbols and constant symbols to be 0O-arity function symbols, as this
simplifies our representation.

5.2.1 Syntax of FO
Given a vocabulary ¥, a term is inductively defined as

e a O-arity function symbol, either from ¥ or a variable symbol
« a function symbol application f(t1,...,t,) where t,...,t, are terms and
f/n € X, with n > 0.

Given a vocabulary X, an atom is defined as

e an equality t; = to where t1,ty are terms
« a predicate symbol application P(ty,...,t,) where t1,...,t, are terms
and P/ne X

Given a vocabulary X, a formula is inductively defined as

e an atom a
e a negation -y where ¢ is a formula
e a conjunction ¢ A ¢’ where ¢, ¢’ are formulas

« a disjunction ¢ V ¢’ where ¢, ¢’ are formulas
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e a universal quantification Vz: ¢ where ¢ is a formula and = a variable
symbol

e an existential quantification Jx: ¢ where ¢ is a formula and x a variable
symbol

The formulas ¢ = ¢’ and ¢ & ¢ are shorthand for —p V ¢’ and (¢ =
@) A (¢ = ¢). The connectives have a priority of application defined as
=< <A<V <= <&, Brackets (...) are used to locally change the order
of connectives or limit the scope of quantifiers.

A quantifier 3x: ¢ or Va: ¢ scopes a variable x within . We say z is bound by
the quantifier. A sentence over vocabulary ¥ is a formula ¢ where all variable
symbols not bound by a quantifier belong to . Without loss of generality,
we assume variables are renamed apart, i.e., each variable symbol occurs in
the scope of at most one quantifier. A theory over a vocabulary X is a set of
sentences over Y.

5.2.2 Semantics of FO

?

A structure over a vocabulary X represents a “possible world” or “state of affairs’
in which sentences over Y. have a “meaning”, or more formally, a semantics. A
structure I consists of a domain D of objects of interest and an interpretation
ST for each symbol S in ¥. An interpretation P! for a predicate symbol
P/n € ¥ is a an n-ary relation over D (so P! C D™). An interpretation f’
for a function symbol f/n € ¥ is an n-ary function over D (so f{: D" — D).
Given Y-structure I, we denote with I[z : d] the ¥ U {z}-structure with the
same domain and interpretations as I, except for the variable symbol = which
is interpreted by the 0-arity function mapping to domain element d.

Given a Y-structure I, a term ¢ containing only symbols from ¥ evaluates to a
domain element ¢! as follows:

e if ¢ is a O-arity function symbol f, then t/ = ()

o if t is a function symbol application f(¢i,...,t,) where ¢,...,t, then
th=f1(t,... t)

Given a Y-structure I, a Y-sentence ¢ evaluates to the Boolean value ¢! as
follows:

o (t; =t2)! is true iff t{ = ¢4
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P(t1,...,tn))! is true iff (¢1,... t1) € P!

is true iff ¢! is false

@1 is true iff ! and 'f both are true

o1 is false iff ¢! and ¢! both are false

Vz: o) is true iff ¢![*9 is true for all d in the domain of T

Jz: )l is false iff p!l#: is false for all d in the domain of T

As such, every Y-sentence ¢ evaluates to true or false under a given Y-structure.
A Y-theory T is satisfied by a M-structure I if for each sentence ¢ € T, ! is
true. If T satisfies T, I is a model for T, denoted by I = T.

5.2.3 Model Expansion (MX)

Many combinatorial problems can be conveniently modeled as a model expansion
problem M X(T,I;,), where T is a X-theory and I, is a ;,-structure with
Yin € X. We refer to X, as the input vocabulary, and X,,; = X\ X;, as the
output vocabulary.

If Y-structure I and X/-structure I’ have the same domain D and X NY' = (),
IUT is the merged X U Y/ -structure over D that interprets all symbols in X
according to I and all symbols in ¥/ according to I’. A solution to a model
expansion problem M X (T, I;,,) with output vocabulary ¥,,; is a X,,¢-structure
Iyt (sharing I;,’s domain) such that I, U I, | T; the merged structure
Lin U Iy is a model to T that expands I;,.

5.2.4 Graph Coloring running example

Throughout the rest of this chapter, we assume a fixed domain D and use I'p
to refer to the set of all structures with domain D.

As a running example, we use a simple graph coloring problem.

Example 5.2.1. Let 3 . be the vocabulary consisting of predicate symbols
V/1, C/1, Edge/2 and a function symbol Color/1. A valid colored graph is
expressed by the theory 7Tgq:

Va1 y1: Edge(x1,y1) = (Color(xz1) # Color(y1))
Vag y2: Edge(xa,y2) = V(x2) AV (y2)
Vaz: C(Color(xs))
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Let Xgein = Xge \ {Color/1}. Input data containing vertices, colors and a graph
is expressed as a Xgein-structure Ige;, with domain D = {t,u,v,w,r, g, b}, and
interpretations

VIQC'”'L = {t7 u7 /07 w} Edgelgcin = {(t7 u)7 (u7 U)’ (v7 w)? (w’ t)} CIQC'”'L = {r7 g7 b}'

The model expansion problem M X (7., ycin) now consists of finding a Xgeour =
{Color/1}-structure Igcous such that Igein U Igeout = Tge. We let Igcou: contain
the interpretation

Colorlseowt =t 1 u s g, v = byw = g, 7+ 1,9+ g, b b

which represents a valid coloring of the input graph. Indeed, Iy = Igcin U
Igcout ): 7;]c~ A

5.3 Symmetries

In this section, we define how symmetry manifests itself in FO. We initially ignore
any input structure, focusing only on the symmetry of a theory in Section 5.3.1.
Using these notions, we identify symmetry for the model expansion formalism in
Section 5.3.2, zooming in on a particular class of (model expansion) symmetry
in Section 5.3.3. Finally, we argue that not all notions of symmetry are captured
by our definitions in Section 5.3.4.

5.3.1 Symmetry of a theory

If the problem at hand is to find models of a theory over some domain, then
the candidate solutions for this problem are the set of possible structures with
that domain over the vocabulary of the theory. In this context, a symmetry is
a transformation of structures that preserves satisfiability:

Definition 5.3.1 (Symmetry for a theory). A mapping o: I'p — I'p is a
structure transformation. A structure transformation o is a symmetry for
Y-theory T if for all ¥-structures I e T'p, IET iff c(I) = T.

From this definition, it follows that the set of symmetries of a theory form an
algebraic group under composition (o). In this thesis, we study symmetry in
order to improve the algorithms that find models of theories, or more general,
that check the satisfiability of theories. For this, we will also have to detect the
symmetry group present in a theory. However, detecting all symmetries of a
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theory is computationally at least as hard as deciding whether the theory is
satisfiable (if not, all structure transformations are symmetries).

Instead, researchers typically focus on syntactical symmetries; those that can
be detected by means of a syntactical analysis of the problem statement. This
work is no exception: we restrict our notion of symmetry to one induced by a
permutation of domain elements. As we show in Section 5.5, there exist efficient
techniques to detect symmetry arising from domain permutations.

Definition 5.3.2 (Domain permutation). A bijection 7: D — D is a domain
permutation. A domain permutation induces a structure transformation o :
for each predicate symbol P/n, (7(d1),...,m(d,)) € P°=U) iff (dy,...,d,) €
P! and for each function symbol f/n, fo~)(n(dy),...,n(d,)) = =(d) iff
fidy, ... d,) =d.

Proposition 5.3.3. Any structure transformation induced by a domain
permutation is a symmetry for any theory.

We call this type of symmetry induced by only a domain permutation global
domain symmetry. Again, the global domain symmetries of a theory form an
algebraic group under composition.

Example 5.3.4 (Example 5.2.1 continued). The domain permutation (v r)
induces a global domain symmetry o, »y of Tye. 0y ry(Ige) gives

D= {Lu,v,w,r,g, b} Veoe T)(IQC) = {ta u,r,w} CU(U 7.)(190) = {’U7g7b}
Edge »nUse) = {(t u), (u,r), (r,w), (w,t)}
Color®@ nse) =t s v, u s g,7 — bw s g,v— v, g+ g,brb

which is still a model of 7Ty, though r now acts as a vertex and v as a color. A

Finite model generators such as Kopkop [94], SEM [100], MACE [70] or
PARADOX [23] focus on the task of generating a model with a given domain
for a given theory. Since every domain permutation induces a global domain
symmetry, these systems have mechanisms to cope with global domain symmetry.

However, a global domain symmetry o, is a rather restrictive concept as it
applies m on every argument of every tuple in every interpretation of a structure.
A larger class of transformations can be described when 7 is only applied locally.
For example, one could apply 7w only on the interpretation of some symbols,
or even more fine-grained, only on some of the arguments in the tuples of an
interpretation. Given a predicate or function symbol S/n, we use S|i with
1 < i < n to denote the it" argument position of S; if S is a function symbol,
we use S|0 for the output argument of S. Note that variables, being treated as
function symbols, also form argument positions.
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Definition 5.3.5 (Structure transformation induced by A, 7). Let 7 be a
domain permutation and A a set of argument positions. The structure
transformation o2 induced by A, 7 is defined by

(Tpp (1), - Tppa(dn)) € P72 D iff (dy, ... dy,) € PT

A .
Fo D (0 (dr), o T (dn) = Tppoldo) iff f7(da, .. dn) = do
where TS|i(d) =mn(d) if Sli € A and TS|i(d) = d otherwise.

Thus, for each domain tuple in the interpretation of a symbol S, the structure
transformation induced by A, 7w only applies 7 to domain elements that occur
at an index ¢ corresponding to an argument position S|i € A. Note that if A
contains argument positions over symbols S not interpreted by I (e.g., variable
symbols), those argument positions are simply ignored by o2

Definition 5.3.6 (Local domain symmetry). Let 7 be a theory. A local domain

symmetry for T is a structure transformation induced by a set of argument
positions A and a domain permutation m, that also is a symmetry for 7.

A global domain symmetry o, for a Y-theory is a local domain symmetry o2
where A includes all argument positions of all symbols in ». As such, local
domain symmetry is a generalization of global domain symmetry, and allows us
to detect and exploit more symmetry. The set of local domain symmetries for
T with the same set of argument positions A forms an algebraic group under
composition.

However, not all A, w-induced structure transformations are symmetries. Below,
we propose a syntactic criterion to identify a set of argument positions A that
guarantees that o2 is a symmetry for a given theory. Intuitively, the criterion
can be formulated as follows: whenever a term f(...) occurs as the i’th argument
in a predicate or function symbol S, then f|0 € A if and only if S|i € A.

Definition 5.3.7. Let T be a theory. Assume f|0 and S|i are argument
positions with S either a predicate or a function symbol. We call f|0 and S|i
directly connected by T if one of the following holds:

e an expression S(t1,...,t;—1, f(f/),tiJrh ..., ty) occurs in T, or

e i =0 and an expression S(f) = f(Z') occurs in T.

Note that if two argument positions are connected, at least one of them is the
output position of a function symbol (hence the f|0). A set A of argument
positions is connectively closed under T if for each S|i € A, each argument
position directly connected to S|i by T, is also in A.
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Example 5.3.8 (Example 5.2.1 continued). According to the first formula in
Tges 1|0 is directly connected to Edge|l and Color|l, while y]0 is directly
connected to Edge|2 and Color|l. Analyzing all formulas, we find the following
two sets are connectively closed under 7g.: A = {C|1,Color|0} and B = {V|1,
Edge|1, Edge|2, Color|1, x1]0, y1|0, x2|0, y2|0, x3|0}.

Applying the induced structure transformation 06‘} ) On Iy gives

D = ‘724 )(Igc) — 024 ~)(Igc) —
—{&u,v,w,r,g,b} V v —{t,u,v,w} C v _{Uag7b}
Edge® »Us) = {(t,u), (u,v), (v,0), (w, 1)}

A
Color®( nUae) =t—v,u—guv—bw—gr—uvg—gb—b

which is also a model of Ty, (here, domain element v serves both as a vertex
and a color). A

We can now formally give a syntactic condition on when a set of argument
positions and a domain permutation induces a local domain symmetry:

Theorem 5.3.9 (Local domain symmetry condition). Let ¥ be a vocabulary,
T a theory over ¥, m a domain permutation and A a set of argument positions.

If A is connectively closed under T, then o2 is a local domain symmetry of T .

We refer to Appendix A.1 for a proof.

This theorem is useful when detecting symmetry for model expansion problems
with an empty input structure, but it will also prove useful for non-empty input
structures.

Example 5.3.10 (Example 5.3.8 continued). The argument position set A
induces local domain symmetries that correspond to permuting the colors of a
graph coloring problem, while B induces symmetry on the vertices and AU B
induces global domain symmetries. A

5.3.2 Symmetry for model expansion

Recall that a model expansion problem M X (T, I;,,) consists of finding structures
Iout such that I, U I, = T. Intuitively, a model expansion problem does not
consider all models to a theory to be a solution, but only those that “contain”
the input structure I;,. We adjust the general notion of symmetry for a theory
(see Definition 5.3.1) to take this into account:

Definition 5.3.11 (Symmetry for MX). Let M X (7, ;) be a model expansion
problem with output vocabulary ¥,,:, and let F%’“" be the set of X,,;-structures
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with domain D. A structure transformation o: F%‘"” — F%”“ is a symmetry
of MX (T, Iip) if for each Iy € T2t Lip U Loy = T iff Ly U o (Iows) = T

Analogous to Definition 5.3.5, a domain permutation 7 and argument position
set A induce a structure transformation o on F%O“t. We call 02 a local domain

symmetry of MX (T, I;,) if o2 is a symmetry of M X (T, I;,,).

Example 5.3.12 (Example 5.2.1 continued). Let A be the argument position
set {V|1, Edge|l, Edge|2, Color|1,z1]|0,y1|0, 2|0, 2|0, 23]|0}. Observe that A is
connectively closed under 74, and that the induced structure transformation
O'é w v w) is a local domain symmetry of M X (Tgc, Igein). However, connectively
closedness under the theory is neither a sufficient nor a necessary condition
for an A, m-induced structure transformation to be a symmetry of a model
expansion problem.

For instance, argument position set B = { Edgel|l, Edge|2, Color|1,z1|0,y1|0, 3|0}
is not connectively closed under 7., though 05 w v w) is still a symmetry of
MX(7—gca Igcin)~

Moreover, since A is connectively closed, Ué} s a local domain symmetry of
Tge, but it is not a symmetry of M X (Tye, Igein). Indeed,

A
Color®@w nacout) — ¢ v, u g, v bw— g r—uvg—gb—b

maps t and r to node v, which is not consistent with Vzg: C(Color(z3)) and
I

Cyein- A
The above example shows that for model expansion, local domain symmetries
are useful, but Theorem 5.3.9 does not suffice to identify them. Below, we give
a sufficient condition for A, m-induced structure transformations to be local
domain symmetries of a model expansion problem. For this, we require the
notion of a decomposition.

Definition 5.3.13. Let M X (7T, I;;,) be a model expansion problem with input
vocabulary ¥;,. Also, let 7 be equal to 7 with each occurrence of a symbol
S € X,y replaced by a unique new copy S;, let X7, be the vocabulary containing
all copy symbols S;, and let I}, be the X7, -structure where for each copy 5,

Silm = SI. We call MX(T*,I},) the decomposition of MX (T, I,).

It is clear that a model expansion problem and its decomposition have the same
solutions, as they have the same output vocabulary and as each occurrence of a
copy S; in 7 imposes the same constraints on models for 7* as S did for T

. I,
(since S;" = SL).
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Example 5.3.14 (Example 5.3.12 continued). Let MX(7,I;.,) be the
decomposition of MX (Tge, Lgcin)- T consists of

Va1 y1: Edgey(x1,y1) = (Color(xy) # Color(yy))
Vag yo: Edges(xa,y2) = Vi(z2) A Va(y2)
Vag: C1(Color(xs))

A

Given this decomposition notion, we finally give a sufficient condition on local
domain symmetry for model expansion:

Theorem 5.3.15 (Local domain symmetry condition for M X). Let M X (T, I;y,)
be a model expansion problem with decomposition MX(T* I%). If A is

r T
connectively closed under T* and o2(I},) = I}, then o2 is a symmetry for
MX(T, Iin).

We refer to Appendix A.2 for a proof.

Example 5.3.16 (Example 5.3.14 continued). Argument position set A =
{Edge1|1, Edge,|2, Color|1,21|0, 1[0, 23]0} is connectively closed under 7,
and aé w w)(I;Cin) =1}, Thus, Ué w v w) is a symmetry of M X (Tgc, Igcin),
representing cyclicity of the input graph. However, O’é w) is not a symmetry
of MX (Tye, Igein), as the input interpretation of Edge; is not preserved by
swapping t and wu. A

Note that if ¥;,, = 0, the conditions of Theorem 5.3.15 simplify into the
conditions of Theorem 5.3.9. Also, for o satisfying Theorem 5.3.15, A typically
contains argument positions over both 3,,: and the decomposed 27, (as well
as over variables). Lastly, the requirement that A is connectively closed under
T* is weaker than being closed under 7. For example, let theory 7 consist
of the sentence P(f)V P(g), with only P interpreted by the input structure.
The only connectively closed set under T is {P|1, f|0, g|0}. However, under the
corresponding decomposition P;(f) V P2(g), there are three connectively closed
sets: {Py|1, |0}, {P:|1,¢|0} and their union.

5.3.3 Subdomain interchangeability

Local domain symmetries for a theory 7 can be identified by computing
argument position sets A that are connectively closed. Then, as mentioned in
Section 5.3.1, any permutation 7 of the domain D gives rise to a local domain
symmetry 2. For model expansion, o2 must preserve the input structure, so
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not all 7 are guaranteed to induce symmetry. However, given a set of argument
positions A, a subdomain § C D might exist for which any permutation of ¢
induces a local domain symmetry of the model expansion problem.

Definition 5.3.17 (A-interchangeable subdomain). Let M X(T,I;,) be a
model expansion problem, A a set of argument positions and J a subset of the
domain. ¢ is an A-interchangeable subdomain if for every permutation 7w over 6,
the structure transformation o2 induced by A, 7 is a local domain symmetry
for MX(T, ;). The subdomain interchangeability group G4 is the group of all
local domain symmetries induced by an A-interchangeable subdomain §.

Example 5.3.18 (Example 5.2.1 continued). Given M X (7g¢, Igein), {r,g,b}
and {t,u,v,w} are A-interchangeable subdomains for A = {C|1, Color|0}.
For B = {V|1, Edge|l, Edge|2, Color|1,z1|0,y1]0, 22|0, y2|0, z3|0}, {r,g,b} is
a B-interchangeable subdomain. However, as 05 w) does not preserve the
interpretation of Edge, {t,u,v, w} is not a B-interchangeable subdomain. A

Many problems, when modeled as a model expansion problem, exhibit
subdomain interchangeability. For instance, a set of nurses in a scheduling
problem, a set of colors in a graph coloring problem, or a set of trucks in a
planning problem often are interchangeable subdomains.

Subdomain interchangeability groups contain a number of symmetries factorial
in the size of the interchangeable subdomain, leading to an exponential slowdown
of many combinatorial search algorithms. However, as we argue in Section 5.4,
many subdomain interchangeability groups can be completely broken with a
number of constraints linear in the size of the subdomain.

5.3.4 More symmetry

Even though local domain symmetry is a useful form of symmetry, it does not
capture all symmetry properties that might be present in a model expansion
problem.

Example 5.3.19 (Example 5.2.1 continued). The graph coloring problem
MX (Tge, Igein) asks to color a circular directed graph of 4 vertices {t,u,v,w}.
Note that given any satisfying coloring for this graph, swapping the colors of
t and v (or u and w) keeps 7, satisfied. This is a clear symmetry property
of the graph coloring instance, but it cannot be captured using the notion
of local domain symmetry as defined in this chapter. For instance, if we
take the argument position set A = {Fdge;1|1, Edge;|2, Color|1} representing
symmetry in the vertices, then the induced structure transformation Ué v I8
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not a symmetry of M X (Tge, Igcin) since it does not preserve the interpretation
of Fdge;.

One way to fix this is based on the observation that argument positions Fdge|l
and Edge|2 are indistinguishable in 7g.: in each sentence of Ty, one could
swap any quantifier over Edge|l with one over Edge|2, ending up with a
sentence equivalent to the original one. In more bold words, argument positions
Edge|l and Edge|2 themselves are symmetric. This symmetry property can be
captured by generalizing the notion of an A, m-induced structure transformation
to allow for swaps or permutations of argument positions in addition to swaps
or permutations of domain elements.

. I
For instance, we could define ai,Edgelll Edgerl2)(t v) ¢ first map Edge,*"™ to

{(e,d) | (d,e) € Edgei;”"} before applying O‘X "), Note that U%Edgelu EBdge1[2)(t v)

would preserve Edge{"”" and I

to T*

ge’

.in, in general, while also preserving satisfaction
making it a symmetry of MX Ty, Iyc)- A

Similarly, problems with spatial properties often have rotational or reflectional
symmetry, which is not covered by the presented notion of local domain
symmetry. One such example is the N-Queens problem, which is experimentally
investigated in Section 5.6.

5.4 Symmetry breaking

It follows from Definition 5.3.11 that a symmetry group G of a model expansion
problem M X (Tgc,Igein) partitions the set of output structures F%““t into
symmetry classes, such that two output structures I, and I! , belong to the
same symmetry class if there exists a symmetry o € G such that o(I,u) = I},
When solving a model expansion problem M X (T, I;;,) with symmetry group
G, it suffices to only check for one output structure I,,; in each symmetry class
whether I, U Ty | T.

Hence, a standard approach of dealing with symmetry extends the theory T
with symmetry breaking formulas (sbf) that falsify as many output structures in
a symmetry class as possible, while guaranteeing at least one output structure
in each symmetry class satisfies the sbf. This way, a solver will avoid visiting
symmetrical parts of the search space, as the sbf guides the search towards only
the satisfying output structures. More formally, a sbf ¢ is sound for a symmetry
group G of a model expansion problem if for each output structure I,,;, there
exists at least one o € G such that o(l,,;) satisfies ¢; it is complete if there
exists at most one such o € G [99].
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Often, symmetry breaking is done by defining a lexicographical order over
the set of output structures [79]. For a given symmetry, so-called lex-leader
constraints then encode that an output structure’s symmetrical image cannot be
strictly smaller under the defined lexicographical order, hence removing “large”
output structures, but retaining “small” ones under the lexicographical order.
As long as the chosen lexicographical order is fixed, the conjunction of lex-leader
constraints for any set of symmetries is a sound sbf.

We construct a lexicographical order <r over a set of output structures 1"%‘”“
from an order <p over the domain D and an order <y, , over the vocabulary
Yout- =r itself is constructed from a lexicographical order j% on the possible
interpretations in I' for a symbol S € Yg,:. We take Slout <% STout to hold iff
there exists some domain element tuple d such that d & S'ewt, d € Slout | and
for all d' <p d it holds that d € STevt < d' € STour. Then, Ipy <p I, iff
there exists some symbol S € ¥,,; where Slout <% Sléut, and for all 8" <y, S
it holds that §%ewt = S§Touwr. In essence, the structure order is built on an
interpretation order, which is built on a tuple order.

Assuming ¥, = {S1,...,5,} and S; =<5, S; iff i < j, the lex-leader
constraint for a symmetry o of a model expansion problem M X (T, I;;,) can be
encoded as the propositional formula:

Sllout j% S‘f(Iout)/\
Slout _ SU(Iout) = Slout {E SU(Iout)/\
1 -~ 2 —D *~2
Sllout _ S;T(Iout) A SQIout _ SQU(Iout) = S3Iout j% Sg(lout)/\
A

Stont = §7Uent) AL p Slot = o Trnt) o Glows <% ga(Towr)
which informally states that an interpretation to S should be lexicographically
smaller than its symmetric o(S), as long as the symmetry is not broken by an
interpretation to a “smaller” symbol S’.

The propositions Sie*t = Sf(l"“‘) and Sfevt <3 S;TU““Z) are then further
encoded in terms of auxiliary propositional variables denoting whether tuples
of domain elements belong to a symbol’s interpretation. We have provided such
an encoding in Section 3.3.

Using subformula chaining techniques similar to those used in Section 3.3,
the lex-leader constraint for any symmetry can be encoded as a propositional
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formula in conjunctive normal form (CNF) of size O(|Sou:||D]¥*1) with k the
highest arity of a symbol in X,;.

For the remainder of this section, we leave the order over X,,; implicit, but
explicitly state the order <p over domain D, as this turns out to be important.
Given a model expansion problem with symmetry ¢ and a lexicographical order
over ['>7* with <p as D-order, we use LL=P () to refer to the logical formula
encoding the lex-leader constraint for o.

Example 5.4.1 (Example 5.2.1 continued). Let A = {C|1,Color|0}, then
06{ 9 is a local domain symmetry for MX (T, Igein). As Color is the

only uninterpreted vocabulary symbol, the set of output structures F%’“’“t

corresponds to the set of interpretations for Color under domain D. Let D be
ordered: t <p u <p v <p w <p r <p g <p b. <p induces an order <IZ) over

the interpretations of the only output symbol C'olor, which in turn induces an

order <r over the set of output structures F%’““t.

Then, local domain symmetry UE?“ 9 is broken by the lex-leader constraint

LLfD(aé g)), which states that each interpretation to Color must be
lexicographically smaller than its symmetrical interpretation. Formally,

A
LLfD(aE‘: g)) enforces Colorlscout j% Color® o Tgeout)

In detail, Colortoeont <3 ColorTscout iff there exists (d,d") € D x D such that
for all (e,e’) <p (d,d’) € D x D holds Color'see"t (¢) = ¢’ & C’olorlgﬂwf(e) =¢
and Color!s=ovt (d) # d' and Colorscout (d) = d'.

Thus, to enforce Colorfseent <3 Color(r o Useout) e state for all (d,d') €

Dx D that if for all (e,¢’) <p (d,d') € Dx D it holds that Color’s=t () = ¢’ <
A A

Color?( oUseout) (¢) = ¢/ then Colors=o«t(d) # d’ or Color®t o Tscou) (q) = (.

By Definition 5.3.5, Color®tr o Tseout) (d) = (r g)(d') iff Colorlscow(d) = d'.
A

Thus, Colortocont j% Color®ir oTacout) [olds if, e.g for domain element pair

(t,r), constraints enforce that

Color's=out (t) # v Colors=t(t) = (r )" (r) =g

if for all (e,e') <p (t,7), Color’s=>*t(e) = €' & Color'so t(e) = (r g)~ ().
Under our current ordering, these constraints cut away >,,:-structures that
color t with r.

Using auxiliary propositional variables Cy4 denoting whether Colortacout (d) =
d', auxiliary chaining variables E4y denoting whether Colortacout (e) =¢ &
Color'seont (e) = (r g)~'(¢') for all (e,e’) <p (d,d’), and employing symmetry
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breaking constraint optimizations mentioned in Section 3.3, the following is the
full propositional symmetry breaking constraint LL=P (aé g)):

Ey,

By = 0 V Cyy

Eir A (Cip V —Ctg) = Eyr
Eyr = 2Cy V Cyy

Eyr A (Cyr V=Cyy) = By
Eyr = 2Cy V Cyy

Eyr N (Cyr V2Cyg) = By
Eyr = 2Cyr V Cyy

Eyr N (Cur V =Cyg) = Epy
Epp = =Cp V Cry

E . N (Crp V—Chy) = Egy
Egr = —Cyr V Cygq

Egy N (Cyr V —Cyq) = Ep,
Epr = =Ch V Chg

Informally, LL=P (a(} g)) enforces that for each vertex v, if all vertices v <pwv
are not colored by r or by g, then v cannot be colored with 7. A

Note that lex-leader constraints are constructed for individual symmetries. In
general, to obtain a complete symmetry breaking constraint for a symmetry
group G, one needs to post LL=P (o) for each 0 € G. As symmetry groups
can contain a factorial amount of symmetries this is infeasible, e.g., in the
case of subdomain interchangeability. Instead, the standard approach is partial
symmetry breaking, where LL=P () is posted for a minimal set of generators o
of G [4]. Partial symmetry breaking is feasible, but does not guarantee that G
is broken completely, leaving symmetrical parts of the search space open to a
search engine.
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For instance, for a subdomain interchangeability group GSA, a minimal set of
generator symmetries is {a{}i stay) | d>5(d) € 0}, where 5(d) is the successor
of d in ¢ according to <p. Other minimal generator sets exist as well, e.g.,
{0&0 o | d €6,d#do} for a fixed dy € 6. However, the choice of the generator
set influences the power of the symmetry breaking formula. For subdomain
interchangeability groups G, choosing the right generator set can guarantee
that the lex-leader constraints used in partial symmetry breaking are actually
complete for G:

Theorem 5.4.2. Let MX(T,I;,) be a model expansion problem, § an A-
interchangeable subdomain, <p a total order on domain D and s(d) the successor
of d in ¢ according to <p. If A contains at most one argument position S|i for
each symbol S € ¥y, then the conjunction of lex-leader constraints

{LL=? (03 y(ap) | d,s(d) € 8}

s a complete symmetry breaking constraint for the subdomain interchangeability
GA
group Gj'.

We refer to Appendix A.3 for a proof.

Intuitively, Theorem 5.4.2 states that local domain interchangeability is
completely broken by a linear number of lex-leader constraints if the set of
argument positions contains at most one argument position for each output
symbol. These lex-leader constraints LL=P (0’& o d))) are based on swaps (d s(d))
of two consecutive domain elements over the chosen domain ordering.

It is worth remarking that Theorem 5.4.2 is in fact the first-order conversion
of Corollary 3.4.3, which stated a completeness result for propositional row
interchangeability symmetry. The requirement that for each symbol at most
one argument position can belong to the argument position set then guarantees
that at ground level, the propositional variables of concern can be structured as
a matrix with interchangeable rows.

A strongly related result is that when constructing a relation R C Dy X ...x D,
for which exactly one dimension D; contains interchangeable values, an efficient
lex-leader constraint exists that completely breaks the resulting symmetry [90].
Theorem 5.4.2 can be seen as a conversion of this result to a model expansion
context with local domain interchangeability.

Example 5.4.3 (Example 5.2.1 continued). Given the graph coloring problem
MX(Tges Igein), let A = {C]1,Color|0} and 7 <p g <p b. Gf{“w)b} is a
subdomain interchangeability group of M X (Tgc, I4cin). Since A contains only
one argument position for the symbol Color, it is completely broken by

LLZP (0} ) NLLZP (0} 1)
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A

Example 5.4.4 (Ramsey number interchangeability). In combinatorial
mathematics, Ramsey’s theorem states that one will find monochromatic cliques
in any edge coloring of a sufficiently large complete graph. Since the graphs
are complete, all vertices are interchangeable. A sensible FO model expansion
representation of a Ramsey number problem could involve the function symbol
edgecolor /2, mapping pairs of vertices to colors. The vertices would then form
an interchangeable subdomain, with the corresponding set of argument positions
A containing both edgecolor|l and edgecolor|2. As A contains two argument
positions for the symbol edgecolor, this subdomain interchangeability group
cannot be completely broken by Theorem 5.4.2. A

The finite model generation system SEM also breaks this type of symmetry
completely, by way of dynamically avoiding symmetrical decisions during
search. [100] The more recent model generator KODKOD [94] breaks symmetry
statically by posting lex-leader constraints from [4] for global domain symmetry.
Although [94] do not mention any completeness result, experiments with
a pigeonhole encoding in KODKOD indicate that it uses the right set of
generator symmetries to completely break all pigeon and hole interchangeability
symmetry.

5.5 Symmetry detection

In this section, we give two local domain symmetry detection algorithms for
model expansion problems. The first detects generators of a local domain
symmetry group, the second derives interchangeable subdomains. Both
approaches work on a first-order level, avoiding the need to ground the
model expansion problem to a propositional counterpart. Both algorithms
are based on Theorem 5.3.15, which conditions argument position set A to be
connectively closed under decomposition theory 7*. To find such A, one simply
constructs a partition of 7*’s argument positions where connected argument
positions belong to the same partition component. Using a disjoint-set data
structure!, the computational cost to find A is linear in the size of 7. In the
following subsections, we assume a set of argument positions A satisfying the
connectedness condition is available, leaving only the concern of finding an
appropriate domain permutation 7 (Section 5.5.1) or interchangeable subdomain
d (Section 5.5.2).

1

en.wikipedia.org/wiki/Disjoint-set_data_structure
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5.5.1 Local domain symmetry detection

Our approach follows other symmetry detection techniques [1, 41] by converting
the symmetry detection problem to a graph automorphism detection problem.
An automorphism of a graph is a permutation 7 of its vertices such that each
vertex pair (v,u) forms an edge iff (7(v),7(u)) forms an edge. If the graph is
colored, then each vertex v must have the same color as 7(v).

This existing work encodes a propositional theory into a graph, which we call
the detection graph. If the detection graph is well-constructed, its automorphism
group corresponds to a symmetry group of the propositional theory. Tools
such as SAUCY [60], NAUTY [71] and BLISS [58] then are employed to derive
generators for the detection graph’s automorphism group, which in turn are
converted to symmetry generators for the propositional theory.

Our approach differs by not encoding a propositional theory into the detection
graph, but an input structure and a set of argument positions, as these are all
we need to detect local domain symmetry. Formally, given a structure I and
an argument position set A, we construct an undirected colored graph whose
automorphisms correspond to domain permutations 7 such that o2 (1) = I —
satisfying the second condition of Theorem 5.3.15.

Definition 5.5.1 (Domain permutation graph). Let I be a X-structure with
domain D and A a set of argument positions. The domain permutation graph
DPG(I,A) for I and A is an undirected colored graph with labeled vertices V/,
edges E and color function ¢ that satisfies the following requirements:

V' is partitioned into three subsets:

e DF (domain element vertices)
e AP (argument position vertices)

o IT (interpretation tuple vertices)

DE contains a vertex labeled d for each d € D. AP contains k + 1 vertices
labeled {d.i | i € [0..k]} for each d € D, with k the maximum arity of symbols
in 3. IT contains a vertex labeled S(d) for each tuple d € ST with ST € I.

E consists only of edges between DFE and AP, and between AP and IT. An
AP vertex labeled d.i is connected to a DE vertex e iff d = e. An IT vertex
labeled S(...,d;,...) is connected to an AP vertex e.j iff d = e, i = j and
Sli € A.

Vertices from different partitions have different colors. All DFE vertices have the
same color. Two AP vertices labeled d.i and e.j have the same color iff ¢ = j.
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Two IT vertices labeled S(dy,...,d,) and R(ey,...,e,) have the same color iff
S = R and d; = ¢; for all i such that S|i ¢ A.

The intuition behind the domain permutation graph DPG(I, A) is that a
permutation of its DE vertices corresponds to a domain permutation 7, a
permutation of its IT vertices corresponds to a permutation of domain element
tuples in interpretations in I, and the AP vertices and vertex coloring serve
to link DE and IT in such a way that Definition 5.3.5 is preserved for
automorphisms.

Theorem 5.5.2. Let I be a X-structure with domain D and A a set of argument
positions. There exists a bijection between the automorphism group of the domain
permutation graph DPG(I, A) and the group of domain permutations m such
that c2(I) = 1. This bijection maps an automorphism T to domain permutation
7w iff 7(d) = w(d) for all DE vertices (equated with domain elements) d.

We refer to Appendix A.4 for a proof.

Example 5.5.3 (Example 5.3.16 continued). Using argument position set A =
{Edge1|1, Edge; |2, Color|1,x1|0,y1]0, 3]0} (which is connectively closed under
T,.) and input structure I ;,, the domain permutation graph DPG( A)

is illustrated in Figure 5.1. The automorphism group of DPG(];C””A)

*
Igcin7

corresponds to the group of induced structure transformations ¢ such that

oI gein) = Lgcin- As a result, its automorphism group corresponds to a local
A

(t u v w)
automorphism that permutes the four left-most groups of five vertices, and O’(Il) 9
to an automorphism that swaps the two right-most groups of four vertices. A

domain symmetry group of M X (Tye, Lycin)- E.g., 0 corresponds to an

Let k£ be the largest arity of a symbol in I for a domain permutation graph
DPG(I, A). The size of DE is |D|, the size of AP is (k+ 1)|D|, and the size of
IT is |I|, which is O(|D|*). Thus, the total number of nodes is O(k|D| + |D|¥).
There are (k + 1)|D| edges between DFE and AP, and, if all argument positions
over some symbol S/k occur in A, then there are O(k|I|) = O(k|D|*) edges
between AP and IT. Thus, the total number of edges is O(k|D|*).

Note that the size of DPG(I, A) does not depend on the size of the theory
of the model expansion problem. This is a major advantage compared to
automorphism-based symmetry detection on ground theories, as the detection
graph grows linearly with the ground theory [41], which is typically much larger
than the input structure.
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Edge;(t,u)| |Edgei(u,v)| |Edgei(v,w)| |Edgei(w,t) @@

Figure 5.1:  Domain permutation graph DPG(I;.,,A) with A =
{Edge1|1, Edge;|2,Color|1,x1]0,y1|0, 23]|0}. Each shape denotes a unique color,
so vertices with the same shape have the same color.

5.5.2 Subdomain interchangeability detection

While Section 5.5.1 detects local domain symmetry generators individually, we
have no information on the structure of the symmetry group represented by the
generators. To optimally construct symmetry breaking constraints for symmetry
groups, we would like to detect subdomain interchangeability symmetry groups
as a whole. Then, by Theorem 5.4.2, we might often be able to break subdomain
interchangeability groups completely with a set of lex-leader constraints linear
in |D|.

Given a model expansion problem M X (T, I;,,) with decomposition M X (7™, I}))
and a set of argument positions A connectively closed under 7*, the task at
hand is to find a subdomain § C D such that for each permutation 7 over
§, oA(I},)) = If,. If so, Theorem 5.3.15 guarantees o' to be a symmetry of
MX(T,I;,), which makes § an A-interchangeable subdomain.

The actual algorithm finds a partition A of D, such that each § € A is A-
interchangeable. The idea is based on the fact that the permutation group of a
set is generated by swaps of two elements of the set. As such, if we know for each
pair dq,ds € D whether Uétl ) Iin) = I, it is straightforward to construct

the partition A. The resulting symmetry detection algorithm is simple: for

each pair of domain elements di,ds € D, check whether U{}h dz)(I;‘n) =1I.

When using a disjoint-set data structure! to keep track of the partition A, the
complexity of this algorithm is O(|D|?|I},|). This algorithm is optimized by
exploiting transitivity, counting the ocurrences of domain elements in the input
structure, or using interpretations of unary symbols to partition the domain.
However, this does not improve the worst-case complexity.
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Example 5.5.4 (Example 5.3.16 continued). Given argument position set
A = {C1]1,Color|0} (which is connectively closed under 7)), we detect A-
interchangeable domains by checking whether the (only) input symbol C; has
the same interpretation in aéll i) (in) as in If, for combinations of dy,ds €
{t,u,v,w,r, g,b}. For (dq,ds) € {(t,u), (u,v), (v,w), (r,g),(g,b)} this is indeed
the case. For (di,d2) = (w,r) this is not the case, so the A-interchangeable sets
are {t,u,v,w} and {r, g, b}. A

An interesting property that is useful to avoid superfluous symmetry detection
is the following:

Theorem 5.5.5. Let MX(T,I;,) be a model expansion problem with
decomposition MX (T*,I%)) and decomposed input vocabulary X7, . Let A be an
arqgument position set connectively closed under T*. If A contains at most one
argument position for each decomposed symbol in ¥, , the permutations m such
that I}, = o7 (I},) always stem from interchangeable subdomains 6 2 Supp().

We refer to Appendix A.5 for a proof.

In other words, If A contains at most one argument position for each decomposed
symbol in X7, the only local domain symmetry we can detect by both methods
presented in the previous sections, is due to local domain interchangeability.
Hence, in this case, it is sufficient to only detect local domain interchangeability
with the technique from this section, and skip the more general symmetry

detection method based on automorphism graphs presented in Section 5.5.1.

5.6 Experiments

Based on the theory and algorithms presented in this chapter, we implemented
symmetry exploitation in the model expansion inference of the IDP system [25].
IDP is a knowledge base system where knowledge about a problem can be
modeled in FO(+), a rich extension of first-order logic [29]. Our implementation
is incorporated in IDP version 3.6.0 and up, which is published online.? Our
implementation makes use of SAUCY version 3 to solve the graph automorphism
component of symmetry detection, and constructs symmetry breaking formulas
based on the lex-leader encoding of Section 3.3. Similarly to BREAKID, for
any symmetry generator m returned by graph automorphism detection, our
implementation limits the size of a symmetry breaking formula for 7 to 50
(see Section 3.3). We do not limit the size of symmetry breaking formulas
for subdomain interchangeability generators. Finally, our implementation also

2dtai.cs.kuleuven.be/software/idp/try
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performs two equivalence preserving transformations on the theory and input
structure, as to maximize the number of symmetries detected. The first is
pushing quantifiers as deeply as possible in formulas, and calculating the
interpretations of fixed output vocabulary symbols.

We compare this implementation with the ASP system CLASP [47] version 3.1.4,
using version 4.5.4 of the ASP grounder GRINGO to generate ground answer set
programs. For CLASP, the symmetry breaking preprocessor SBASS has been
developed [41]. SBAsS takes a ground answer set program, encodes it to a
detection graph, uses SAUCY to solve the automorphism detection problem,
converts SAUCY’s output to permutations of propositional atoms that induce
symmetries, and constructs symmetry breaking constraints following [4]. As
BREAKID also is a ground ASP symmetry breaking preprocessor, we include it
in this experiment.

Our experiment uses five different system configurations: IDP and CLASP
refer to both systems without symmetry breaking, and IDPSYM refers to
IDP extended with the techniques described in this chapter. SBASS refers to
CLASP coupled with the eponymous symmetry breaking preprocessor, as does
BREAKID.

This experiment can only broadly compare the IDP and CLASP configurations,
as both systems use similar but ultimately different techniques to solve the model
expansion problem. Our main interest is to investigate the types of symmetry
detected, the overhead needed to detect those, and the relative speedup gained
when activating symmetry algorithms for both systems.

We expect that IDPsYM, compared to SBASS and BREAKID, has less symmetry
detection overhead, as IDPSYM detects symmetry on the first-order level instead
of on the ground level. E.g., the structure information present in a set of
connectively closed argument positions can be derived with a syntactical check
on the first-order theory, but this information is lost after grounding. As a result,
we expect IDPSYM’s detection graph to be smaller, or even non-existent.?

Also, we expect a larger relative speedup for IDPSyYM than for SBASS on
problems with a lot of subdomain interchangeability, as IDPsyM detects and
often completely breaks this type of symmetry. Recall that BREAKID’s row
interchangeability detection is a form of subdomain interchangeability detection,
so BREAKID’s performance could approach IDPSYM’s in this regard. However,
BREAKID’s row interchangeability detection is approximative, and might miss
some members of an interchangeable subdomain.

Finally, as mentioned in Section 5.3.4, IDPsyM’s detected symmetry group

3IDPsyM does not construct the detection graph if the only generators it will detect are
due to subdomain interchangeability, as per Theorem 5.5.5.
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might be smaller than BREAKID’s or SBASS’s, as not all symmetry properties
of a problem can be captured by our notion of local domain symmetry.

Our benchmark set consists of four problem families also used in the experiments
in Section 3.11: pigeons, crew, graceful and 200queens.

pigeons is a set of 16 unsatisfiable pigeonhole instances where n pigeons must
be placed in n — 1 different holes. n takes values from {5,6,...,14, 15,20,
30,50,70,100}. The pigeons and holes are interchangeable, leading to a large
symmetry group.

crew is a set of 42 unsatisfiable airline crew scheduling instances, where
optimality has to be proven for a minimal crew assignment given a moderately
complex flight plan. The instances are generated by hand, with the number of
crew members ranging from 5 to 25. Crew members have different attributes,
but depending in the instance, multiple crew members exist with the same exact
attribute set, making these crew members interchangeable.

graceful consists of 60 satisfiable and unsatisfiable graceful graph instances,
taken from 2013’s ASP competition [5]. These instances require to label a
graph’s vertices and edges such that all vertices have a different label, all edges
have a different label, and each edge’s label is the difference of the labels of
the vertices it connects. The labels used are {0,1,...,n}, with n the number
of edges. Any symmetry exhibited by the input graph is present, as well as a
symmetry mapping each vertex’ label [ to n — [.

200queens is a set of 4 large satisfiable N-Queens instances trying to fit n
queens on an n by n chessboard so that no queen threatens another. n takes
values from {50,100, 150,200}. The symmetries present in 200queens are the
rotational and reflective symmetries of the chessboard.

The available resources were 6GB RAM and 1000s timeout on an Intel® Core® i5-
3570 CPU with Ubuntu 14.04 Linux kernel 3.13 as operating system. Resources
to reproduce these experiments are available online [31].

Table 5.1 summarizes the results. Note that Table 5.1 is an extension of Table 3.4
with IDP-based results.
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When analyzing the results on pigeons, it is clear that plain CLASP and IDP
get lost in symmetric parts of the search tree, solving only 8 instances (up to
12 pigeons). SBASS can only solve three more instances (up to 15 pigeons), as
the derived symmetry generators do not suffice to construct strong symmetry
breaking constraints. These results are consistent with [41]. BREAKID performs
better due to its row interchangeability detection, but for the larger instances it
cannot detect the full interchangeability group. IDPsyM detects the full pigeon
and hole interchangeable subdomains, and its complete symmetry breaking
constraints allow all 16 instances to be solved (up to 100 pigeons). As far
as symmetry detection time goes, unlike SBASS and BREAKID, IDPSYM has
negligible detection overhead as it infers it does not need to construct an
automorphism detection graph, and as the input structure is trivial to analyze.

The results on crew are similar to pigeons but less outspoken. The reason
is that even though there are more subdomain interchangeability groups, the
subdomains are a lot smaller, incurring less symmetry overhead. As a result,
IDPsYM enjoys a small advantage over SBASS but is at a small disadvantage
compared to BREAKID. Nonetheless, IDPsYM improves IDP’s performance
more than BREAKID or SBASS does CLASP’s. Concerning symmetry detection,
IDPsyM has to analyze a more complex input structure before deriving
any subdomain interchangeability groups, which contrasts with the trivially
interchangeable pigeons and holes in pigeons. Nonetheless, IDPSYM solves
this task in the blink of an eye, as do SBASs and BREAKID.

Continuing with graceful, IDPsYM is the only approach that actually improves
performance through symmetry breaking. This is probably due to CLASP
simply having a stronger search engine than IDP, hence leaving less room for
improvement. However, zooming in on unsatisfiable graceful instances, SBASS
and BREAKID solve four compared to CLASP’s two, and IDPSyM solves four
compared to IDP’s one. For unsatisfiable instances, these static symmetry
breaking approaches remain effective. This discrepancy between satisfiable and
unsatisfiable instances is not uncommon, as static symmetry breaking reduces
the search space by removing possibly easy-to-find solutions. These results are
also consistent with those reported by [41].

Looking at the number of symmetry generators detected, BREAKID’s large
number of symmetry generators is due to auxiliary variables introduced during
grounding, which SBASS seems to ignore. It is more interesting to remark that
sBAss and IDPsyM detect about the same number of symmetry generators for
graceful, indicating that they detect the same symmetry groups. Note that
both IDPsyM and BREAKID detect some subdomain interchangeability groups,
apparently present in the input graph. As far as the size of the automorphism
detection graph goes, IDPSYM’s is an order of magnitude smaller than the ones
constructed by sBASS and BREAKID. We conclude that for graceful, IDPsymMm
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detects the same symmetry group as SBASS and BREAKID, though with a
smaller automorphism detection graph.

Lastly, for 200queens, IDPsyM cannot detect the geometric symmetries of the
chessboard, as this type of symmetry does not fit the definition of local domain
symmetry. For instance, a square (i, j) on the chess board is diagonally reflected
to square (j,4), while square (i, k) is reflected to (k,7). Domain element 4 is
mapped to both j and k at position 0, violating the local domain symmetry
requirement that it stems from a domain permutation. SBASS and BREAKID
can detect this type of symmetry, as they detect permutations of propositional
variables instead of domain elements. However, note the significant overhead
incurred, as the detection graphs employed are huge.

We conclude that our approach has very low symmetry detection overhead, due
to a smaller or non-existent detection graph. Moreover, by completely breaking
subdomain interchangeability, we significantly increase the number of solved
instances. However, not all symmetry present in the problem set is detected by
our approach.

5.7 Discussion

We presented the notion of local domain symmetry for model expansion problems,
which manifests itself on the first-order level. We gave a completeness result
on the strength of symmetry breaking constraints for a special case of local
domain symmetry, and we posted syntactical conditions to efficiently detect
symmetry from a model expansion specification. Our experiment highlights
the strengths and weaknesses of our approach. We have a very low symmetry
detection overhead and we give symmetry breaking completeness guarantees
for local domain interchangeability that are effective in practice. However, we
cannot detect some forms of symmetry.

It is worth mentioning that local domain symmetry is not limited to pure
classical logic; it is straightforward to extend our work to cardinalities, types or
arithmetic. Similarly, logic programs under stable or well-founded semantics
have symmetry properties induced by permutations of the domain (or Herbrand
universe) and sets of argument positions. Our work easily transfers to these
domains. In fact, our implementation in IDP already supports such extensions.

Investigating which types of symmetry fall outside our formalism, and inventing
ways to detect and exploit these types of symmetry is natural future work. An
interesting idea is that not only permutations of the domain lead to symmetry,
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but that permutations on (argument positions of) symbols in the vocabulary
do so as well.

Our detection algorithms can also be used in combination with other types
of symmetry exploitation than avoiding symmetrical overhead during search.
Chapter 6 follows down this road.

5.7.1 Related work

For systems employing predicate logic as a modeling language, much work
concerning symmetry has been done in the context of theorem proving and
finite model generation systems [100, 9, 23, 94]. These systems differ from model
expansion systems by not taking any input interpretations into account. Hence,
by Theorem 5.5.5, all detected symmetry is due to subdomain interchangeability.
We formalized the ideas present in these systems, and extended them to take
input interpretations into account, allowing better symmetry detection.

Other non-ground symmetry detection methods can be found in constraint
programming (CP). One approach is to detect symmetry on small instances of
a problem, fit these symmetries to builtin but common symmetry types, and
use theorem proving technology to check whether the instance symmetries are
also symmetries of the problem specification [74]. Though original, it cannot
detect forms of symmetry outside of the builtin types, and requires a costly
symmetry checking step.

A more elegant approach is to detect symmetry of a conjunction of global
constraints by finding the intersection of the symmetry group of each individual
constraint [97]. This approach has the drawback of not being able to take
instance specific information into account. Furthermore, there is no CP system
implementing this approach, as the set of global constraints supported by current
CP systems is large, with sometimes exotic symmetry groups attached to them.
In this regard, FO is a very simple modeling language, easily allowing symmetry
detection.

Chapter goal evaluation

Indeed, inferring symmetry on the first-order level is feasible, and provides
efficiency advantages in both detecting symmetry as well as breaking it. The
only encountered drawback is that not all forms of symmetry are incorporated
in our formalism yet.






Chapter 6

Automated Local Search via
Symmetry

Goal of the chapter

Given a combinatorial optimization problem, local search algorithms mowve
locally from one (suboptimal) solution to another, hoping to improve a given
objective function by such moves. These algorithms typically guarantee that
after performing a move, the new solution still satisfies a set of hard constraints.
As symmetries are transformations of solutions that preserve satisfiability, there
is a clear but uninvestigated link between local search algorithms and symmetry.
Moreover, very few automated local search approaches exist, while symmetry can
be detected automatically. Symmetry detection algorithms might be employed
to generate the necessary information for a local search algorithm.

This chapter is based on work presented at the Fourteenth International
Workshop on Constraint Modelling and Reformulation — September 2015, Cork,
Treland [40].

6.1 Introduction

Combinatorial optimization problems are a generalization of combinatorial
problems, where not only a satisfying, feasible solution has to be found, but
where this solution should also optimize some given objective function.

97



98 AUTOMATED LOCAL SEARCH VIA SYMMETRY

The approaches used to solve a combinatorial optimization problem can be
divided in two categories: complete and incomplete approaches. Complete
approaches guarantee that, after halting, the full search space has been
investigated, and an optimal solution (or the fact that none exists) will be
returned. Examples of these complete approaches are SAT, ASP, MP, CP, or
even a straightforward brute force search algorithm. Amongst many others,
IDP and CLASP use complete techniques to tackle combinatorial optimization
problems.

However, for problems with huge search spaces with many (suboptimal)
solutions, complete approaches often do not halt within reasonable time.
Instead, incomplete approaches have been devised, which do not guarantee
that an optimal solution will ever be returned. One incomplete technique
is implementing metaheuristics. Roughly, metaheuristics take an initial,
suboptimal solution, and iteratively adjusting this solution to improve the
optimization objective, until a stop-criterion is met and a hopefully optimal
solution is achieved. Examples of metaheuristic approaches are local search,
genetic algorithms, hyperheuristics, swarm-based optimization etc. [51]

In this chapter, we investigate how we can bring both fields of research closer
together by providing an automated way of transforming a combinatorial
optimization problem specification in the language FO(-) (used by IDP) to
input for a local search algorithm. The method is based on symmetry properties
of combinatorial optimization problems that hopefully map suboptimal solutions
to better solutions. Our approach is not limited by the actual specification
language; the only requirement for it to function is to be able to derive or state
symmetry properties of the combinatorial optimization problem.

This chapter is organized as follows. In Section 6.2, we give a formalization of a
combinatorial optimization problem as a model optimization problem, and how
symmetry can be used to derive input neighborhoods for local search algorithms.
Section 6.3 then formalizes local search, and establishes the link between local
search algorithms and symmetry of a model optimization problem. Section 6.4
reports on the nature of local search neighborhoods derived by an implementation
in the IDP system on multiple constraint optimization specifications. We also
give performance experiments, showing that our implementation outperforms
IDP’s complete technology on certain benchmark sets.

6.2 Preliminaries

For the remainder of this chapter, we rely on the formalism established in
Section 5.2 and 5.3.
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6.2.1 Model optimization (MO)

A combinatorial optimization problem can be abstracted as a model optimization
problem. The the IDP system tackles this kind of problem when executing its
model optimization inference.

A model optimization (MO) problem MO(T,I;,,0) is a generalization of a
model expansion problem, where 7 is a X-theory, I;, is a 3;,-structure, and
o is a Y-term representing an objective function (typically to some numerical
domain, say the integer numbers Z).

A feasible solution to a model optimization problem MO(T, I;y,0) is a Xous-
structure I,y (sharing I;;,’s domain) such that I;, U I = T. An (optimal)
solution to a model optimization problem MO(T, I;y,0) is a feasible solution
T such that ofinewt < olinb ot for all feasible solutions I”,,,. In other words,
a model optimization problem aims to find an output structure that, when
merged with the input structure, forms a model to the theory, and it is optimal

with respect to other such output structures.

Without loss of generality, we assume models with a smaller objective function
value to be better, so minimal objective values are optimal.

As a running example, we use the Traveling Salesman Problem (TSP), a classical
combinatorial optimization problem.

Example 6.2.1 (TSP). Let X, be the vocabulary consisting of predicate
symbols City/1, and function symbols d/2 (representing distance), nat/1
(representing a cyclic order) and p/1 (representing a permutation of cities). We
assume City/1, d/2 and nzt/1 are part of the input vocabulary. In particular,
nzt/1’s interpretation represents a cyclic order over cities, mapping each city
to a next one.

A valid TSP tour is expressed by the theory Tisp over Xigp:

Vo y: City(z) A City(y) Nz #y = p(x) # p(y)
Vz: City(p(z))

The first formula states that p/1 maps two different cities to a different object,
hence p/1 is injective for cities. The second formula states that p/1 is a surjective
to the set of cities. Together, Ty, states p/1 is a permutation of cities, which is
a valid abstraction of a TSP tour.

Next, the total length of the TSP tour is represented by the term o, over Ygp:

Otsp = Z d(p(x),p(nxt(m)))

{z|City(x)}
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Note that we assume that d/2 maps pairs of cities to some numeric domain
(e.g., N), and that o4, can make use of some builtin summation function.*

Let Zispin = Zisp \ {p/1}. Input data containing cities, a cyclic order, and a
distance matrix are expressed as a Yispinp-structure ligp:, with domain D =
{a,b,¢,0,1,2,3}, and interpretations

City'tsrin = {a,b, c}

natltsrin = q +5 b, b c,c+ a, ... — 0 otherwise

dltsrin = (a,b) + 3, (b,a) + 2, (b, c) 2, (c,b) = 1, (a,c) = 3,
(¢,a) — 1,...+— 0 otherwise.

Model optimization problem MO(Tisp, Lispin, Otsp) then represents a simple
TSP instance, with as optimal solution the output structure Irspout

pltspout = a5 a,b— c,c+— b,... — a otherwise.

representing the optimal tour a — ¢ — b — a. Note that Iispin U tspour = Tesp-

Also, the objective function value otI;;p""uI“’”"”t for this touris 3+14+2=6. A

6.2.2 Symmetry for model optimization

A symmetry for a model optimization problem is a permutation of the output
structures that preserves both satisfaction to the theory, as well as the value of
the objective function (for feasible solutions):

Definition 6.2.2 (Symmetry for MO). Let MO(T,I;n,0) be a model
optimization problem with output vocabulary 3., and let F%”“t be the set of
Yout-structures with domain D. A structure transformation o: F%’“f — F%m”
is a symmetry of MO(T, L, 0) if for each I, € I‘%’“‘: (i) LinUlpy E T iff
ILin Uo(Iw) = T, and (ii) if I;y, U Iy = T then ofintlowt = glinto(Tout),

A permutation of the output structures that only preserves satisfaction to
the theory, but potentially not the value of the objective function is called a
quasisymmetry:

Definition 6.2.3 (quasisymmetry for MO). Let MO(T, I;,,0) be a model
optimization problem with output vocabulary X,.;, and let F%”“ be the set of

1Strictly speaking, this requires extensions to the first-order logic formalism we employ in
this thesis. The input language of IDP supports such extensions. For brevity and clarity’s
sake, we make abstraction of this issue in this text, so we will not provide a formal description
of these extensions.
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Yout-structures with domain D. A structure transformation o: I‘%“f — F%‘””
is a quasisymmetry of MO(T, I;y,0) if for each I, € F%""”, L, Ul E T iff
Iin L J(Iout) ): T

So each symmetry for a model optimization problem is also a quasisymmetry, and
each symmetry for a model expansion problem M X (T, I;,) is a quasisymmetry
for the extended MO(T, I;n,0). A quasisymmetry that is not a symmetry is
called a strict quasisymmetry.

It is easy to extend the notions of local domain symmetry and interchangeable
subdomains presented in Section 5.3 to the model optimization context by
requiring these types of symmetry to also preserve the objective function
(for feasible solutions). In the case they might not, we can still refer to
them as local domain quasisymmetries and quasi-interchangeable subdomains.
Similarly, a quasisymmetry group G partitions the set of feasible solutions into
quasisymmetry classes such that two feasible solutions I,,; and I}, belong to
the same quasisymmetry class if there exists a quasisymmetry o € G such that
o(Tout) = Ious-

Example 6.2.4 (Chromatic number problem). The chromatic number problem
(CNP) is the optimization generalization of the graph coloring problem, aiming
to find the lowest amount of colors with which a graph can be colored so that no
two adjacent vertices have the same color. As was the case for the graph coloring
problem (see Example 5.3.18), all colors form an interchangeable subdomain —
preserving the objective function. A

Example 6.2.5 (Example 6.2.1 continued). § = {a,b,c} forms a quasi-
interchangeable subdomain for both argument position set A = {City|1, p|1}
as well as B = {Clity|1,p|0}. This represent a form of interchangeability of the
cities in a tour, though it does not preserve the length of a tour. A

As with model expansion problems, it is useful to break symmetry for an
optimization problem when trying to solve it with a complete solver. However,

in the context of local search — the rest of this chapter — we are particularly
interested in quasisymmetries.

6.3 Local search and neighborhoods

6.3.1 Local search

Local search algorithms use the concept of a neighborhood to perform a heuristic
walk through the feasible solution space of a combinatorial optimization problem.
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We formalize this notion in the context of model optimization.

Firstly, the feasible solution space of a model optimization problem is its set of
feasible solutions:

Definition 6.3.1 (Solution space). The feasible solution space Soly;o of a
model optimization problem MO(T,I;,,0) is the set of output structures
I € F%"“t such that I, Uy = T.

Then, we formalize a neighborhood as a mapping from the feasible solution
space to the powerset of the feasible solution space:

Definition 6.3.2 (Neighborhood). A neighborhood N for a model optimization
problem MO(T,I;n,0) is a mapping N: Solyo — P(Solyo). N(lowt) is
referred to as the set of neighbors under N of a feasible solution I,,; € Soly0.

Local search approaches such as those based on simulated annealing or tabu
search require as input a neighborhood N and some initial feasible solution
Ioyut- Given these, a typical local search algorithm explores the feasible solution
space by enumerating the neighbors of I,,; under N. When some neighbor
I! .+ € N(Iyt) satisfies an acceptance criterion (typically based on the objective
function evaluation in I/, ,), it is accepted and becomes the starting point of a
new iteration of the algorithm. Search continues by exploring the neighbors of
I’ .., until a new neighbor is accepted, leading to another iteration, and so on.

This loop ends when some stop criterion is met, and the feasible solution with
the best objective value encountered during the search is returned.

In a sense, local search moves from Iy to I),,, € N(Ipyu:), with the execution
of one iteration of the algorithm being called a mowe.

The above notion of local search is in a way restrictive, since it does not
capture optimization approaches such as genetic programming or swarm-based
optimization. Also, sometimes a local search algorithm is allowed to ignore
some hard constraints, in which case a neighborhood to a feasible solution
may contain infeasible solutions. We encounter some examples in Section 6.4.6
and 6.4.7. Nonetheless, many implementations of metaheuristic methods such
as tabu search, simulated annealing, variable neighborhood search or greedy
optimization, can be characterized by moving from feasible solution to feasible
solution using the above notion of neighborhoods.

Example 6.3.3 (Example 6.2.1 continued). For the TSP problem, a typical
neighborhood is the so-called 2-opt neighborhood [64]. This neighborhood maps
each TSP tour to a set of new tours by removing a pair of edges, say between
cities ¢1,co and cs, ¢y, and reconnecting the resulting two TSP subpaths by
introducing an edge between c1,c4 and an edge between cs, c3. A
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6.3.2 Symmetries induce a neighborhood

Note that the 2-opt neighborhood of Example 6.3.3 is based on a particular
set of permutations of cities in the TSP tour. It is no coincidence that these
permutations also induce quasisymmetries for TSP. We formalize this connection:

Definition 6.3.4. Given a set of quasisymmetries P for a model optimization
problem MO(T, I;n,0), the quasisymmetry-induced neighborhood Np maps
each feasible solution I,,; € Solpyo to its image under P. More formally,
NPZ Iout — {J(Iout) | o< P}

By the definition of quasisymmetry (Definition 6.2.3), any feasible solution has
only feasible solutions as quasisymmetry-induced neighbors, which ensures
Definition 6.3.4 for a quasisymmetry-induced neighborhood is a sound
neighborhood definition.

Note however that Definition 6.3.4 requires some set P of quasisymmetries
as input. Since P generates a group Gp under composition, the number of
possible quasisymmetry sets to form neighborhoods with often is astronomical.
In general, we have no definitive answer on what sets of quasisymmetries one
should use to construct neighborhoods, but it seems plausible to use a small set
‘P that generates the detected quasisymmetry group Gp. This way, each move
possible under the maximal neighborhood Ng, can be simulated by a series of
moves under Np, while Np still maps a feasible solution to a relatively small
set of neighbors.

Example 6.3.5 (Example 6.2.5 continued). Recall the presence of the
subdomain interchangeability group Gfa,b,c} with A = {perm|1} or A =
{perm|0} in the TSP model optimization specification. A set of generators

for this group is P = {Ué b),aé C),Jé c)}. The quasisymmetry-induced
neighborhood Np maps a feasible solution to the feasible solutions obtained by
all possible city swaps. A

Note that a quasisymmetry-induced neighborhood Np only contains neighbors
N (I,y:) that belong to the same quasisymmetry class under Grp(P) as Lyy:.
As such, a local search approach employing only the neighborhood Np is
not capable of crossing a quasisymmetry class border and cannot guarantee
connectedness of the local search space. However, this is a frequent issue in
the local search community; many proposed neighborhoods do not guarantee
connectedness of the local search space either. [51]
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6.3.3 Quasisymmetry-induced neighborhood detection in IDP

Using the notion of a quasisymmetry-induced neighborhood, we can automati-
cally compile a model optimization problem specification to input for a local
search algorithm.

However, we put forward that symmetries that preserve the objective function
are bad candidates for neighborhood generation 2. Such symmetries cannot
transform a feasible solution into a reasonably different one, for the purpose of
traversing the feasible solution space. Of course, sometimes a move in a local
search algorithm transforms the current feasible solution into one with the same
objective value, but having a neighborhood that only leads to such moves seems
like a waste of resources.

Instead, we focus on strict quasisymmetries; quasisymmetries that are not
symmetries of the model optimization problem.

We can detect local domain quasisymmetries by simply ignoring the objective
function, and check afterwards whether they are strict quasisymmetries by
taking the objective function into account.?> As such, IDP’s symmetry
detection techniques presented in Chapter 5 can be reused for the detection of
quasisymmetry, by ignoring the objective function, or strict quasisymmetry, by
checking whether a quasisymmetry preserves the objective function.

This leads to a simple workflow to generate input for a local search algorithm
solving a model optimization problem MO(T, I;y,0):
1. Generate an initial feasible solution I,;.

2. Detect a quasisymmetry group G of MO(T, I;,, 0) that contains (mainly)
strict quasisymmetries.

3. Estimate a set P generating G.

4. Use P to construct a quasisymmetry-induced neighborhood Np

The only question that remains is what set of quasisymmetries should be used
to induce neighborhoods, as was mentioned at the end of Section 6.3.2. IDP has
two (quasi)symmetry detection methods, where one returns a set of generators
P’ for some local domain quasisymmetry group (see Section 5.5.1), and the other
returns a set of interchangeable subdomains ¢ over some argument position set

2Though such symmetries should be exploited to reduce the search time of a complete
solving algorithm.

3«taking the objective function into account” requires to specify the notion of connectedness
(see Definition 5.3.7) for terms instead of theories. This is straightforward.
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A (see Section 5.5.2). The former quasisymmetry group already is conveniently
represented by the small set of generators P’. For the latter, we restrict the set
of neighborhood-inducing quasisymmetries to the set {Jé ) | d,d'" €46} In
words, we employ all local domain quasisymmetries induced by swaps of two
A-interchangeable domain elements. This set contains O(|6]?) quasisymmetries,
and generates the subdomain quasi-interchangeability group.

Arguably, it is also possible to construct a set of symmetries {0& i) | ded},
where d; 1 is the subsequent domain element in § according to some chosen
total order on the domain elements. Even though this choice would lead to
smaller neighborhoods, it also skews any local search algorithm according to the
chosen order, putting a possibly unwarranted bias on the direction of the search
over the solution space. For this reason, we stick with the quadratic set of
symmetries {J(}i ay |4, d' € §} to induce a neighborhood for an interchangeable
subdomain 4.

6.3.4 A simple local search implementation

Given that systems such as IDP can automatically construct quasisymmetry-
induced neighborhoods, we also devised a very simple hill-climbing local search
algorithm that utilizes these constructed neighborhoods.

In its default complete search configuration, IDP solves a model optimization
problem by repeated model expansion calls, iteratively searching for a new
feasible solution that improves the best-so-far. If none can be found, the current
best-so-far has been proven optimal with regard to the objective function. Also,
IDP currently only supports integer domains as objective function codomain.

To add local search on the constructed neighborhoods into the mix, every time
an improvement to the best-so-far is found, the system performs a hill-climbing
local optimization step. In the ideal case, the hill-climbing algorithm improves
the current feasible solution, after which complete search is again requested to
find a better feasible solution or to prove that none exists, closing a complete
search <> local search loop. Figure 6.1 visualizes this local search workflow.

The local search hill-climbing phase is characterized by some model I, I 1,,; and
a quasisymmetry-induced neighborhood Np. Given the detected quasisymmetry
generator set P’ and local domain quasi-interchangeability groups Gg‘:, P

consists of the quasisymmetry generators Ui{o{}i" ) | d,d €d;} U P.

When selecting a neighbor from Np, the quasisymmetry generators o € P are
enumerated in a pseudorandom order, and the first ¢ for which the objective
function improves — ofinHoUout) < plinUlowt — Jeads to the selected neighbor
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Figure 6.1: Experimental local search workflow in a system such as IDP

Iin Uo(Iout). When no such generator o exists, the hill-climbing phase ends,
and control is passed to the complete search phase (see Figure 6.1).

6.4 Experiments

We implemented the neighborhood detection scheme described in the previous
section in IDP, as well as the hill climbing local search workflow.

In this section we experimentally investigate this implementation for seven
combinatorial optimization problems. These are typical operations research
problems, often not easily solved by an artificial intelligence system such as
1IDP.

We focus mainly on a qualitative evaluation of the type of neighborhoods
automatically constructed, comparing them to local search neighborhoods
proposed in literature. However, we also give quantitative results comparing
IDP’s standard complete search with the hill climbing workflow, referred to as
IDP-hill. This serves as an illustration of the feasibility of combining local and
complete search in an automated way.

This quantitative comparison was done by running both IDP’s standard
complete search and IDP’s hill climbing workflow for 200 seconds. Once
this timeout was reached, the values of the objective function were compared,
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with a lower value denoting a more optimal solution. The available machine
had 8GB RAM and an Intel® Xeon® E3-1225 CPU with Ubuntu 14.04 Linux
kernel 3.13 as operating system. All timing results include grounding and
symmetry detection time expended by IDP. The experiments were run with an
early version of IDP’s symmetry detection algorithm, which could only detect
subdomain quasi-interchangeability. Resources to reproduce these experiments
are available online [31].

6.4.1 Traveling Salesman Problem

Let us first investigate the TSP problem, since this was our running example.

As mentioned in Example 6.3.5, two quasi-interchangeable subdomains represent
interchangeability of the cities; one with argument position set {City|l,p|1}
and one with argument position set {City|1,p|0}. Though both induce valid
neighborhoods, both induce an identical neighborhood.* This is a drawback of
our approach.

However, there exist other reasonable FO(-) specifications of TSP other than
the one in Example 6.2.1.

Example 6.4.1. Let 3, be the vocabulary consisting of predicate symbols
City/1, Following/2 and Reachable/1, function symbol d/2, and constant
symbol start/0.

A valid TSP tour is expressed by the following theory over isp:

Va y: Following(z,y) = City(z) A City(y)
Va: City(z) = Ily: Following(x,y) A Jlz: Following(z, x)
{ Vz: Reachable(x) +
City(z) A (x = start V (Jy: Reachable(y) A Following(y,x))). }
Vz: City(z) = Reachable(x)
City(start)

The formula between curly brackets is an inductive definition [29], constraining
the Reachable predicate to only be true for cities reachable from a city start
using the Following relation. By next stating that all cities must be reachable,
we effectively posted a subtour elimination constraint.

4The reason for this is that they employ the same city swaps {(a b), (b c),(c a)} on the
input or output of p. As p represents a bijection on the cities, they alter p in a similar way,
hence, the identical neighborhood.
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The objective function ogp:

> d(z,y)

{z,y | Following(z,y)}

The output vocabulary then is X;spour = {Following/2, Reachable/1, start/0}.

In this case, the input interpretation of City/1 will form an interchangeable sub-
domain for argument position set { Reachable|l, Following|1, Following|2, start|0}.
This again represents the interchangeability of cities, but in this case there is
only one quasi-interchangeable subdomain doing so instead of two. A

In this alternative TSP specification, IDP-hill indeed constructs a city-swapping
neighborhood-based on the quasi-interchangeable cities.

This alternative specification experiment shows that our proposed neighborhood
construction method exhibits robustness: different specifications of the same
problem still lead to comparable neighborhoods. This of course only holds as
long as symmetry detection® properties of different specifications are similar.

In literature, many local search neighborhoods have been proposed for TSP, the
most famous one being the k-opt neighborhood [64]. We briefly touched the
2-opt neighborhood in Example 6.3.3, where a path represented by a selection
of edges has as neighbors those paths containing exactly two different edges.
The more general k-opt neighborhood allows the reconfiguration of any & edges
instead of only two.

In both our specifications the quasisymmetry-induced neighborhood was not a
k-opt neighborhood, meaning our automated neighborhood detection algorithm
is not yet powerful enough to derive a state-of-the-art neighborhood.%

The quantitative evaluation of the hill climber workflow on TSP is presented in
Figure 6.2. It is made with a model optimization specification akin to the one
given in Example 6.4.1. The results are positive: IDP-hill beats standard IDP
hands-down. As much as this is an encouraging result, it is also a testament to
how unsatisfactorily IDP solves TSP in its standard configuration. As such, it
would be interesting future work to compare the performance of a k-opt local
search neighborhood for TSP to our automatically generated one.

5As symmetry is a semantic notion, it is an intrinsic property of the problem at hand, not
its specification. However, detecting symmetry from a problem specification does depend on
the particular specification at hand.

6«state-of-the-art” is used in a broad sense, as the k-opt neighborhoods have been improved
upon.
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Figure 6.2: Objective value for TSP obtained by IDP’s automated hill climbing
implementation relative to standard IDP. Lower is better.

6.4.2 Traveling Tournament Problem

The Traveling Tournament Problem (TTP) is a combinatorial optimization
problem that combines features from the traveling salesman problem and the
tournament scheduling problem. The task at hand is to schedule a round-robin
tournament where each team has to play against each other team twice, once
at their home location, and once at the other’s. A round in the tournament
consists of all teams playing against an opponent at the same day. The objective
function measures the total sum of all distances traveled by all teams, assuming
each team moves from playing location to playing location in between rounds.
Some extra constraints require that teams do not stay at home or away from
home for too long, and the same teams cannot play each other in subsequent
rounds of the tournament.

As with the TSP, several well-performing local search neighborhoods have been
proposed [46, 7]. One neighborhood swaps the opponents of two teams for a
given round, another swaps the opponents of a team in two given rounds. Both
these moves require some repair mechanism called a recover chain to ensure the
hard constraints of the TTP remain satisfied after performing the swaps.

IDP-hill constructs only one quasisymmetry-induced neighborhood, based
on the quasi-interchangeability of teams. Again, this simple team-swapping
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Figure 6.3: Objective value for TTP obtained by IDP’s automated hill climbing
implementation relative to standard IDP. Lower is better.

neighborhood does not correspond to the most important neighborhoods for
TTP proposed in literature, and might perform worse.

A performance comparison of IDP-hill with standard IDP is given in Figure 6.3.
Though it is not clear from Figure 6.3, the number of instances for which
IDP-hill performs strictly better than IDP is eight, and the number of instances
for which IDP-hill performs strictly worse than IDP is one.

The observed behavior of the combined search method was that IDP-hill’s
complete search had a hard time detecting an (objective improving) model, after
which IDP-hill’s local search slightly optimized the objective value, quickly
passing control back to the complete search component of IDP-hill. This small
improvement can be explained either by the greedy nature of our hill-climbing
local search phase, or by the possibility that IDP-hill’s detected neighborhood
is not powerful enough. It is worth noting that relaxing the extra constraints
restricting which teams play against each other each round allows IDP-hill
to derive the quasi-interchangeability of the rounds themselves, leading to an
additional quasisymmetry-induced neighborhood. A similar observation was
made in Section 6.4.2.
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6.4.3 Knapsack Problem

The knapsack problem consists of filling up some knapsack with objects, such
that the volume of the objects fits the knapsack, but the weight of the objects
in the knapsack is minimized.

A neighborhood-based local search approach is not often employed to tackle
the classical knapsack problem.

Also, since swapping any two objects in and out of the knapsack might violate
the volume constraint, there is no a priori local domain (quasi)symmetry present
in the knapsack problem. Hence, we expect IDP-hill’s neighborhood detection
algorithm to return empty handed.

However, IDP’s quasisymmetry detection is sufficiently fine-grained to identify
that for some instances, some objects had the same volume but a different
weight. These objects could safely be swapped in and out of the knapsack,
leading to an unexpected neighborhood where, for a given knapsack, small
variations on the filling of the knapsack could be explored. In practice, this
meant that the local search algorithm automatically filled the knapsack with
the objects with smallest weight relative to other objects of the same volume.

The quantitative evaluation of the hill climber workflow on the knapsack problem
is presented in Figure 6.4. The results give a small edge to the simple hill climbing
implementation, since for some instances it was able to quickly prioritize objects
with lower weight but equal volume to belong to the knapsack. These results
are similar to those for TTP, as the automatically constructed neighborhoods
allow for a quick objective function improvement after finding a new model.

6.4.4 Shortest Path Problem

This problem consists of finding the shortest path between a start and end
vertex in a weighted graph. Its specification in FO(-) is very similar to the
TSP specification of the previous subsection, and centers on finding a minimal
interpretation to some Following/2 predicate. The shortest path problem
resides in complexity class P. The most widely known algorithm to solve the
shortest path problem is Dijkstra’s algorithm; typically other approaches than
local search are used to tackle this problem.

IDP-hill’s neighborhood detection mechanism detects that all two cities except
the start and end city are interchangeable. The resulting quasisymmetry group
leads to a large induced neighborhood.
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Figure 6.4: Objective value for the knapsack problem obtained by IDP’s
automated hill climbing implementation relative to standard IDP. Lower is
better.

The quantitative evaluation of the hill climber workflow on the shortest path
problem is presented in Figure 6.5. The results are similar to those for TSP:
the simple hill climbing implementation beats standard IDP hands-down.

6.4.5 Assignment Problem

For the assignment problem, a bijection between a set of agents and a set of
tasks must be found that minimizes the sum of the costs of assigning a certain
task to a certain agent. It is a specialization of the maz-flow problem, and is
typically solved by the Hungarian algorithm or the simplex algorithm [61]. The
assignment problem resides in complexity class P.

IDP detects that both the set of agents as well as tasks form two quasi-
interchangeable subdomains, but not regular interchangeable subdomains,
leading to two quasisymmetry-induced neighborhoods.

The quantitative evaluation of the hill climber workflow on the assignment
problem is presented in Figure 6.6. As with the shortest path problem, we
observe that IDP-hill is able to exploit the assignment problem’s tractability
significantly better than IDP’s complete search.
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Figure 6.5: Objective value for the shortest path problem obtained by IDP’s
automated hill climbing implementation relative to standard IDP. Lower is
better.
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Figure 6.6: Objective value for the assignment problem obtained by IDP’s
automated hill climbing implementation relative to standard IDP. Lower is
better.
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6.4.6 Max Clique

The task of a max clique problem is to identify the largest clique in a graph.
We modeled this problem in such a way that each feasible solution represents a
set of vertices forming a clique in the input graph, while the objective function
counts the number of vertices not part of the clique.”

In literature, an effective local search neighborhood is based on sequences of
vertex addition and removal from a candidate clique [59].

However, in a model optimization context, the only domain elements in this
problem are the vertices of the graph, and for typical graphs, vertices are not
interchangeable. And even if the graph itself contains some symmetry properties,
these will preserve the objective function, since a simple permutation of vertices
has no influence on the size of any detected clique. Hence, IDP-hill does not
construct a quasisymmetry-induced local search neighborhood for this problem.
This makes sense, since there is no obvious way of transforming a clique in the
graph in one move to some other clique in the graph.

This can potentially be adressed by relaxing the clique constraint, making any
set of vertices a feasible solution, regardless of whether it forms a clique in the
input graph. The lesson we take from this problem is that our neighborhood
detection scheme would be aided by a form of constraint relaxation to allow for
a larger set of potential neighborhoods.

As no neighborhoods are constructed, a quantitative evaluation of the hill
climbing workflow would be rather useless: both approaches would simply rely
on IDP’s complete search mechanism.

6.4.7 Chromatic Number Problem

The chromatic number problem aims at establishing a graph’s chromatic number,
being the smallest number of colors needed to color the vertices of the graph
such that all pairs of connected vertices have a different color.

In literature, a plethora of local search neighborhoods for graph coloring have
been proposed [44]. A recurring theme is to move to alternative candidate
solutions by recoloring (chains of) individual vertices.

As mentioned in Example 6.2.4, for the chromatic number problem, all colors
form an interchangeable subdomain. As a result, this quasisymmetry group
on its own is useless to induce local search neighborhoods with, as it preserves

"Hence minimizing this number maximizes the clique size.
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the objective function — the number of colors needed to color the graph.
IDP-hill detects this information, and constructs no quasisymmetry-induced
neighborhood from color interchangeability.

However, as adjusting colors in a colored graph in general does not preserve the
graph coloring constraints, IDP-hill detects no other quasisymmetry to induce
neighborhoods with. To detect the neighborhoods proposed by literature, we
would again need to relax some of the problem constraints.

As IDP-hill does not construct any neighborhoods, we again skip its quantitative
evaluation.

6.4.8 Experimental conclusions

Testing the quasisymmetry-based automated neighborhood detection algorithm
of IDP on the above problems yielded interesting insights. Firstly, the approach
is robust in changes to the specification as long as the quasisymmetry properties
are not disturbed. Secondly, IDP-hill, even in its current simple form, is able
to improve IDP’s performance on several problems. Thirdly, the automated
local search implementation was able to construct a neighborhood where a
human would not have expected one. This was due to unexpected symmetry
properties of input data in problem instances. And finally, to detect more
quasisymmetry-induced neighborhoods, it might be needed to relax certain
constraints.

6.5 Discussion

6.5.1 Related Work

In the previous sections we described how a model optimization system such as
IDP can exploit symmetry properties of combinatorial optimization problems
to derive local search neighborhoods for those problems.

The constraint programming system COMET allows a user to easily specify
neighborhood-based local search algorithms in a constraint-centered way [75, 98].
However, COMET does not provide any automatic neighborhood detection
algorithm.

Stochastic SAT solvers such as WALKSAT [88] allow a propositional logic
problem to be solved by local search. In WALKSAT, every assignment to the
Boolean variables is a feasible solution, and neighborhoods are defined in terms
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of “flips” on the truth value of a variable. In our view, this is an extreme
approach, since all original constraints might be violated by any move. Note
that in a context where all constraints are relaxed, any permutation on the
feasible solution space is a quasisymmetry suitable for quasisymmetry-induced
neighborhoods. However, these neighborhoods are not the kind a human
programmer would devise for most combinatorial optimization problems.

To our knowledge, the only system that allows automatic derivation of
local search neighborhoods from an input specification is LOCALSOLVER [17].
LOCALSOLVER allows a user to write down constraints in a mathematical
modeling language centered on Boolean variables, and uses flips on those
variables as well as satisfiability preserving moves based on “ejection chains
applied to the hypergraph induced by boolean variables and constraints”. We
conjecture that these feasibility preserving moves can be seen as symmetries of
the propositional problem, but further study is needed on this topic.

One weakness of LOCALSOLVER is that the initial feasible solution is found by
a basic randomized greedy algorithm, and that it is not designed for solving
hardly-constrainted optimization problems. This is opposed to the local search
approach described in this chapter, which can always fall back on the solving
capabilities of a state-of-the-art complete search engine.

To put our work in a broader perspective, it is worth mentioning that much
research has been done on the relationship between symmetry breaking and
local search (e.g. [82]). An important result is that adding symmetry breaking
constraints has a negative impact on the efficiency of local search algorithms.
In our work, we do not break any symmetry, but exploit quasisymmetries
to traverse the local search space. Moreover, breaking quasisymmetry this
would risk removing an optimal solution from the search space. In this light,
symmetry breaking for optimization problems and exploiting quasisymmetry
properties to construct local search neighborhoods are two orthogonal uses of
(quasi)symmetry.

Neighborhood inducing quasisymmetries share the fact that they do not preserve
objective function values with dominance relations used in dominance breaking.
Dominance breaking is a generalization of symmetry breaking for complete
search algorithms where extra constraints remove dominated solutions with a
worse objective value from the search space [22]. These dominance relations
seem to also induce neighborhoods in the same way quasisymmetries do, and
they can be detected automatically [72]. Currently, we do not know if dominance
relations are fundamentally different to quasisymmetries.

Finally, in recent years the metaheuristic community is actively investigating
how to formalize and automate local search algorithms [91]. Our work can be
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seen as an effort in that direction, opening up unexplored research avenues by
linking local search neighborhoods to quasisymmetry properties of problems.

6.5.2 Conclusion and future work

In this chapter, we propose a link between local search neighborhoods and
(quasi)symmetry. To our knowledge, this is the first time such a link is
established. We used this link to design an automated local search workflow for
model optimization problems.

We conducted an experimental investigation of the type of quasisymmetry-
induced neighborhoods detected by our implementation in IDP, as well as an
evaluation of the performance of this hybrid technique. These first experiments
are promising, and show the potential of this approach.

As future work, it remains to be seen how well quasisymmetry-induced
neighborhood search algorithms perform on larger, more complex problems,
with potentially more constraints breaking any quasisymmetry. Allowing the
relaxation of certain constraints might prove crucial in detecting sufficiently
large neighborhoods.

Second, to gauge the performance of quasisymmetry-induced neighborhoods,
it would be useful to run experiments comparing these to state-of-the-art
neighborhoods proposed in literature.

Third, it would be interesting to couple the detected neighborhoods and input
feasible solutions to a highly optimized local search engine, and experimentally
verify their performance. The challenge here lies in being able to quickly move
from one feasible solution to another, and to incrementally update the value of
an objective function. The IDP system is currently unoptimized in this regard.

Fourth, for some problems, there exist complex neighborhoods involving smart
perturbation and repair steps. Whether or not these can be linked to an easily
detectable form of quasisymmetry remains unstudied.

Lastly, the link with techniques for dominance breaking is definitely worth
investigating.

Chapter goal evaluation

The link between local search and symmetries proved useful: a new avenue
for automating local search has opened up. Initial experiments are promising,
though it remains to be seen whether all important neighborhood types can be
conveniently linked to some type of symmetry.






Chapter 7

Conclusion

In this thesis, we set out to explore symmetry properties in model expansion
problems for both predicate and propositional logic. A crucial motivation was
that systems solving model expansion problems should not be hindered by
symmetry, so that a wider range of problems can be solved with less human
input. This required the study of both symmetry detection and symmetry
exploitation, and forced us to develop integrated techniques only relying on
input specifications containing no specific symmetry information.

In Chapter 3, we developed BREAKID, a new symmetry breaking preprocessor
for propositional logic. Its core idea is to investigate structural properties
of the symmetry group of a problem, and to adjust any generated symmetry
breaking formulas accordingly. Besides this, we also added usability features and
technical optimizations, allowing symmetry detection and subsequent breaking
for a broader range of propositional formulas, both in a SAT and an ASP
context. Experimental results show that BREAKID improves on SHATTER and
SBASS, the previous state-of-the-art preprocessors for static symmetry breaking
for propositional logic.

Though effective and easy-to-use, the static symmetry breaking approaches
from Chapter 3 and 5 have the disadvantage that they fundamentally alter the
input specification. Instead, Chapter 4 investigates two new dynamic symmetry
handling algorithms, based on symmetrically deriving logical consequences. The
first, SP, focuses on propagating literals symmetrical to already propagated
literals. For this, we introduce the notion of weak activity, a generalization of
the constraint programming notion of activity. Experiments show that this
approach is effective, but can be improved by also performing symmetrical
propagations not based on the weak activity status of a symmetry. This led
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to the second approach, SEL, which derives symmetrical explanation clauses,
and as such, is a form of symmetrical learning. The experimental performance
of a first implementation of SEL is on par with BREAKID, making it the first
symmetrical learning scheme to be a viable alternative to static symmetry
breaking.

Working on a propositional level impedes the algorithms detecting symmetry
and deriving symmetry group information, as this is more readily available at the
predicate level. For this, we studied how symmetry manifests itself in first-order
logic in Chapter 5. We proposed the notion of local domain symmetry, a form of
symmetry in predicate logic theories that captures a broad range of symmetry
groups occurring in practical problems. Based on theoretical properties of local
domain symmetry, we designed efficient ways of both detecting and breaking
it. Our implementation in IDP outperforms both BREAKID and SBASS in
symmetry detection time, and in symmetry breaking power for problems with
large row interchangeability groups. Besides, our approach is one of the few
automated approaches that detects symmetry at the predicate level. The
modest price we paid was that some forms of symmetry are not captured by the
notion of local domain symmetry, though future generalizations of local domain
symmetry might eliminate this drawback.

As our main interest lies in improving model expansion systems to require less
human input, Chapter 6 links a local search solving algorithm with an input
specification containing no information on neighborhoods — a crucial concept
for local search. The central idea is that a quasisymmetry, a symmetry of the
“hard” constraints of an optimization problem, but not of its “soft” objective
function leads to a sensible neighborhood for a local search algorithm solving the
optimization problem. These quasisymmetries can be automatically detected
with techniques from Chapter 5, leading to a novel automated local search
approach. Our experiments indicate that this approach is feasible, though
we doubt it can already beat a human programmer devising a local search
algorithm.

Together, these four chapters provide new insights in how symmetry can be
detected and exploited without human interaction. These ideas, rooted in
propositional and predicate logic, are useful for anyone designing automated
combinatorial problem solving systems, be they affiliated with constraint
programming, operations research, Boolean satisfiability solving, answer set
programming or related fields.
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A.1 Proof for Theorem 5.3.9

Let ¥ be a vocabulary, 7 a theory over ¥, m a domain permutation and A a set
of argument positions. If A is connectively closed under T, then ¢ is a local
domain symmetry of 7.

Proof. To prove this theorem, we prove the following consecutive claims for
each Y-structure I. Without loss of generalization, we assume I interprets the
neccessary variables.

1. For each term f(f) that occurs in 7T, it holds that f(f)"f(f) =
R(f@®Y) i o€ A
f@o! otherwise

2. For each atom a of the form P(ty,...,t,) or of the form t; = t5 that
occurs in 7, it holds that a®= () = gl

p—_—

3. For each formula ¢ that occurs in T, 90”: (
The first claim is proven by induction on the subterm relation. The induction
step follows from the fact that A is connectively closed. The second claim
follows from the first, also using the fact that A is connectively closed. Consider
for instance the case of atom f(f) = g(f) occurring in T, with f|0 € A.
Then g0 € A (since A is connectively closed), so f(£)7= D = g(¥)7~ D) iff

121
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m(f(O)F) = w(g@)) iff f(©)T = g(f')! (since 7 is a permutation). The other
cases are analogous.

The last claim follows by induction on the subformula relation since the value of
a first-order formula is entirely determined by the value of the atoms occuring
in it. Consider for instance the case of formula Jz: ¢ occurring in T with
z|0 € A. (3z: ) holds iff there exists a d € D such that ![*4 holds. By
the induction hypothesis, ¢![*d = cp”?(l[m:d]) = @”fm[ﬂ”(d” (since z|0 € A).
(Fz: go)"f(l) holds iff there exists a d’ € D such that go”f(l)[””:d/] holds. Without
loss of generalization, let d’ = 7(d), then (3x: p)! = (x: cp)"ﬁ(l). The other
cases are analogous. O

A.2 Proof for Theorem 5.3.15

Let MX(T, Ii,) be a model expansion problem with decomposition M X (7%, I}).
If A is connectively closed under 7* and o2(I,) = I, then o2 is a symmetry

for MX (T, Lin).

Proof. Since MX (T, I;,) and MX(T*, I} ) have the same set of solutions, it

T

suffices to prove that o2 is a symmetry of M X (7*,I},). Firstly, due to the

T n

connectively closed condition, o2 is a symmetry of 7*, so I Ul =TF

iff o2(I7, U L) = T*. Secondly, since o2(I%,) = If,, I, Ul = T iff
X, Ul (Iu) E T, so 02 is a symmetry for MX (T, I}). O

rTan

A.3 Proof for Theorem 5.4.2

Let MX(T,I;;,) be a model expansion problem, ¢ an A-interchangeable
subdomain, <p a total order on domain D and s(d) the successor of d in
0 according to <p. If A contains at most one argument position S|i for each
symbol S € ¥+, then the conjunction of lex-leader constraints

<p( A
{LL="(0{4 s(ay)) | d € 6}
is a complete symmetry breaking constraint for the subdomain interchangeability

group G4

Proof. To prove this theorem, we (1) convert the task of finding a solution
to a model expansion problem to a constraint programming problem, where
an assignment over a set of Boolean variables V' has to be found. Further,
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we show that (2) a subset of these Boolean variables can be organized as a
matrix My, where each permutation over the rows of Mjs corresponds to a
permutation over . The interchangeability group Gg‘ then corresponds to a
row interchangeability symmetry group induced by permuting M;s’s rows. Using
a result from constraint programming, such row interchangeability symmetry
groups are broken completely by posting a lex-leader constraint (based on
the appropriate row ordering) for each symmetry induced by the swap of two
consecutive rows [43, 36]. This corresponds to posting { LL=P (aél sqay) | d €6},
ending the proof.

(1) Given a vocabulary X,,; and a domain D, finding a X,,¢-structure consists of
deciding for each d € D™ whether d € S%evt for each symbol S /n € Yoyt Hence,
a model expansion problem M X (T, I;,) can be seen as finding an assignment
to a set of Boolean variables V' = {S(d) | S/n € You,d € D"} such that
Lin U Iy = T. Alocal domain symmetry o for M X (T, I;,) now corresponds
to a wariable symmetry [43] mapping

S(dy,....dn) to  S(rg(dr)s--. Tgn(dn))
where 7, (d) = 7(d) if S|i € A and 74,(d) = d otherwise.

(2) The variables in V that are not fixed by some o2 € G§ are those
S(...,dj—1,0;,dj11,...) where 0; € ¢ is the jth domain element of an S-
tuple with S|j € A. We can partition this subset into “rows” Rs;, =
{S8(...,dj=1,0i,dj41,...) | Slj € A, dy € D} where §; is fixed. It is clear
that 04(Rs,) = Ry (5,), s0 a permutation of the set of rows corresponds to a
symmetry of Gg‘. Since A contains at most one argument position for each
S € Yout, these rows are pairwise disjoint, and under some column organization

form the requested matrix M. O

A.4 Proof for Theorem 5.5.2

Let I be a ¥-structure with domain D and A a set of argument positions. There
exists a bijection between the automorphism group of the domain permutation
graph DPG(I, A) and the group of domain permutations 7 such that o (I) = I.
This bijection maps an automorphism 7 to domain permutation 7 iff 7(d) = 7(d)
for all DE vertices (equated with domain elements) d.

Proof. We prove the bijection by showing that all induced structure transforma-
tions o2 with ¢2(I;,) = Iy, correspond to an automorphism of DPG(I;,, A)
(=) and vice versa (<).
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First, some preliminaries. For a given symbol S, let each tuple (dy, ..., d,) € Si,
be split as two tuples djd; such that dj = {d; | S|i € A} and d; = {d | Sli &
A}. Let 7 naturally extend to tuples: 7r((d1, coydy)) = (w(dy),...,m(dy)). The

symmetrical interpretation o (I;,) can then be described as {ﬂ'(d A)d o ldid; €
SI, so 02(Lin) = Iy iff for all symbols S, did, € Si, iff #(d})d, € SL,.
Also, without loss of generalization, let an IT vertex’s label be S(d}d}) for
symbol S. Lastly, (v,w) € E denotes that graph E has an (undirected) edge
between vertices v and w.

(=) If 02(1;,) = ILin, 02 corresponds to a permutation a of the vertices
of DPG(Iin,A): a(d) = w(d) (for DE vertices), a(d.i) = w(d).i (for AP
vertices), a(S(dfd;)) = S(w(d})dy) (for IT vertices). We show that « is
an automorphism of DPG(I;,, A).

By the definition of DPG(l;,, A), « preserves the colors. To show that «
preserves the edges, we need to show that (v,w) € DPG(I;y, A) iff (v,w) €
a(DPG(I;y, A)). Firstly, remark that o maps each vertex in a layer to another
vertex in that layer, so we only need to check whether the edges between (1)
DE-AP and (2) AP-IT are conserved.

(1) The following statements are equivalent
(a(d), a(e.i)) € a(DPG(Iin, A))
(d,e.i) € DPG(Iin, A) (o is a permutation of vertices)
= e (definition of domain permutation graph)

(

(
7(d) = w(e) (7 is a permutation)
(m(d),m(e).i) € DPG(Iin, A) (definition of domain permutation graph)
(

(a(d),a(e.i)) € DPG(I;y, A) (definition of «)
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(2) Similarly, the following statements are equivalent
(a(d.i),a(S(d}dy)) € a(DPG(Iin, A))
(d.i,S(d%dy)) € DPG(I;n, A) (« is a permutation of vertices)
d; € d; (definition of domain permutation graph)
7(d;) € w(d}) (7 is a permutation)
(m(d).i, S(w(d})dy)) € DPG(I;y, A) (definition of domain permutation graph)

(a(d.i),a(S(d}dy)) € DPG (I, A) (definition of o)

(<) We must show that an automorphism « of DPG(I;,, A) corresponds to an
A, m-induced structure transformation o2 such that o2(I;,) = L.

Notice that, since « is an automorphism of a three-layered graph with different
colors for each layer DE, AP and IT, we can write it as a composition of three
permutations apg o ap o ayr. As there exists a bijection between DE and the
domain D of I;,, we assume apg = w, with 7 a permutation of D.

We now show that (1) a(d.i) = m(d).i and (2) a(S(d}d3)) = S(n(d})d). From
this, it follows that « represents a structure transformation ¢ mapping tuples
djd;l to W(dﬁ)dz, and hence, 02 (I;,,) = L.

(1) Since d.i and e.j have the same color iff i = j, a(d.i) = e.i for some
domain element e. As each vertex d.i is connected to exactly one vertex d,
a(d.i) = 7(d).i.

(2) Since S(d}d,) and R(efe;) have the same color iff S = R and d; = e},
a(S(dhdy)) = S(eld,) for some tuple domain elements e. All that is left to
show is that el = 7(d}). For this, note that S(d}d}) is connected only to
d.i for each d on index ¢ in dj. As « is an automorphism that maps d.i to
7(d).i, a(S(d}d;) must be connected only to all 7(d).i. The only vertex doing
so (taking colors into account) is S(m(d})dy). O

A.5 Proof for Theorem 5.5.5

Let M X (T, I;,) be a model expansion problem with decomposition M X (T*, %)

rTn
and decomposed input vocabulary 37, . Let A be an argument position set

connectively closed under 7*. If A contains at most one argument position for
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*

each decomposed symbol in X7, , the permutations 7 such that I} = o7 (I7,)
always arise from interchangeable subdomains § 2 Supp(7).

Proof. We show that for each permutation m such that I, = o7 (I},), each
permutation mg = (d w(d)) with d € D also induces a local domain symmetry
that preserves the decomposed input structure — I}, = o3*(I7,). If so, Supp(r)
forms an interchangeable subdomain of the domain D, as interchangeable
subdomains are generated by local domain symmetries induced by swaps of
elements of the interchangeable subdomain. Any interchangeable subdomain is
a subset of one, e.g., of itself.

Without loss of generality, we assume the argument position set A concerns
at most the first argument of a symbol S* € X7 . Then, each local domain
symmetry o7 maps domain element tuples (d,...,d") € S *Iin t0 domain element
tuples (m(d), ..., d") € §*9aln)  [* — o7 (I* ) holds iff §*1in = §*7aUin) for
each §* € ©¥, meaning (d, ..., d') € S*Iin iff (x(d),...,d") € S*1in. As a result,
(d 7(d)) would also preserve each interpretation S*!in, so I, = o’ff Tr(d))(lj‘n)
holds as well. O
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