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Abstract—This paper focuses on the mapping of natural lan-4
guage sentences in written stories to a structured knowledge repre-5
sentation. This process yields an exponential explosion of instance6
combinations since each sentence may contain a set of ambigu-7
ous terms, each one giving place to a set of instance candidates.8
The selection of the best combination of instances is a structured9
classification problem that yields a high-demanding combinatorial10
optimization problem which, in this paper, is approached by a novel11
and efficient formulation of a genetic algorithm, which is able to ex-12
ploit the conditional independence among variables, while improv-13
ing the parallel scalability. The automatic rating of the resulting14
set of instance combinations, i.e., possible text interpretations, de-15
mands an exhaustive exploitation of the state-of-the-art resources16
in natural language processing to feed the system with pieces of17
evidence to be fused by the proposed framework. In this sense, a18
mapping framework able to reason with uncertainty, to integrate19
supervision and evidence from external sources, was adopted. To20
improve the generalization capacity while learning from a limited21
amount of annotated data, a new constrained learning algorithm22
for Bayesian networks is introduced. This algorithm bounds the23
search space through a set of constraints which encode informa-24
tion on mutually exclusive values. The mapping of natural language25
utterances to a structured knowledge representation is important26
in the context of game construction, e.g., in an RPG setting, as it27
alleviates the manual knowledge acquisition bottleneck. The effec-28
tiveness of the proposed algorithm is evaluated on a set of three29
stories, yielding nine experiments. Our mapping framework yields30
performance gains in predicting the most likely structured repre-31
sentations of sentences when compared with a baseline algorithm.32

Index Terms—Constrained learning, intelligent narrative, natu-33
ral language processing (NLP), structured prediction.34

I. INTRODUCTION35

THE narrative provides a model for communicating ex-36

perience and culture. Automatically extracting structured37

information from the narrative text is a challenging task, since38

the structured representation of connected events and behaviors39

Manuscript received July 2, 2014; revised April 29, 2015, September 7,
2015, March 13, 2016, and July 12, 2016; accepted January 16, 2017. This
work was supported by the EU ICT FP7 FET Project Machine Understanding
for Interactive StorytElling (http://www.muse-project.eu/).

O. Ludwig, Q. N. T. Do, and M.-F. Moens are with the Department of Com-
puter Science, Katholieke Universiteit Leuven, Leuven 3001, Belgium (e-mail:
oswaldoludwig@gmail.com; quynhngocthi.do@cs.kuleuven.be; sien.moens@
cs.kuleuven.be).

C. Smith is with the School of Computing, Teesside University, Teesside TS1
3BX, U.K. (e-mail: C.G.Smith@tees.ac.uk).

M. Cavazza is with the School of Engineering and Digital Arts, University of
Kent, Canterbury CT2 7NZ, U.K. (e-mail: M.O.Cavazza@kent.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2017.2657690

may involve common sense inferences based on background 40

knowledge, such as the semantic representation of objects, their 41

properties and behavior, the motivations and goals behind the 42

actions of characters, their emotional outcomes, and the actions 43

they can undertake in the environment. 44

The main research question of this paper is whether it is possi- 45

ble to provide a specific structured representation for narratives 46

by fusing information from different sources and bounding the 47

domain to a finite set of actions within the context of the current 48

narrative. In this sense, this paper reports the results of our work 49

on the knowledge representation (KR) for virtual worlds to an- 50

swer the question “Who did What to Whom, and How, When 51

and Where?”, similar to the current semantic role labeling (SRL) 52

algorithms [1]. However, the SRL aims at a general purpose 53

semantic representation, i.e., it aims at providing a semantic 54

representation at a higher level of abstraction, while our work 55

aims at instantiating semantic frame elements at a lower level of 56

abstraction, in an annotation style tailored for the narrative text. 57

Therefore, we model the problem as a structured prediction task 58

within a framework able to incorporate other sources of infor- 59

mation, besides the text and the language model, to deal with 60

the challenging task of instantiating semantic frame elements at 61

the lower level of abstraction. The statistical reasoning is car- 62

ried out by a special formulation of a genetic algorithm, which 63

exploits the conditional independence between variables. 64

This paper is organized as follows. Section II presents the 65

state of the art. Section III contextualizes the instantiation prob- 66

lem resulting from the translation. To ease the understanding 67

of the proposed framework, Section IV introduces the basic 68

ideas and a high-level diagram of the proposed approach with 69

its different constituent parts. Once the context and details of 70

the proposed framework have been explained, Section V pro- 71

vides the motivation for our approach. The adopted statistical 72

model and features are described in Sections VI and VII, respec- 73

tively, while the statistical reasoning and the learning method 74

are described in Sections VIII and IX, respectively. The natural 75

language processing (NLP) pipeline is evaluated in Section X. 76

Finally, Section XI presents the conclusions. 77

II. STATE OF THE ART 78

There have been efforts in information extraction from textual 79

sources, where the goal is to identify specific semantic compo- 80

nents, such as people, objects, and actions, whose types are 81

known ahead of time. Typically in information extraction [2], 82

semantic labels are defined beforehand, and data are collected 83
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to train machine learning classifiers. On the sentence level, there84

are several schemes for recognizing the basic semantic roles of85

the sentence constituents, i.e., the who, does what, where, when86

constituents, the most popular approaches being based on Prop-87

Bank [3] and FrameNet [4] labels and their associated annotated88

corpora [5]. This entails work on finding the arguments of a se-89

mantic frame that is verb-centered, i.e., where the action or state90

is expressed by a verb in the sentence, and noun-centered. Some91

works, such as [6], aim at determining the character intentions92

to provide the motivations for the actions performed. In the first93

instance, this information can be useful in supporting the narra-94

tive interpretation, but in a second instance it can also improve95

the accuracy in predicting the correct action [7]. Our current96

framework does not model the character intentions; however,97

it makes possible to model these intentions, besides complex98

temporal, spatial or causal relationships in its Bayesian network99

based modeling.100

On the discourse level, two recent tasks are the identification101

of events and entities that have a temporal or spatial impact and102

the linking of such events and entities with temporal or spa-103

tial relations. Researchers have been interested in building such104

models for decades [8], but recent progress has been encour-105

aged by the construction of corpora like the TimeBank, [9], and106

corpora with spatial information [10], which provide events and107

times beyond temporal and spatial relations, annotated on En-108

glish data. Researchers have also investigated methods for mod-109

eling sequences of events using recurrent neural networks [11].110

Another important task is assigning narrative roles to charac-111

ters in stories, since it can help in improving the accuracy of the112

structured representation of the narrative, e.g., by modeling the113

relationship between the characters through graphical models114

encoding latent variables representing the character role in the115

narrative. Valls-Vargas et al. [12] propose to combine NLP tech-116

niques with narrative domain knowledge in order to automati-117

cally identify characters and their roles in the story according to118

Propp’s theory [13], in which the character role is categorized119

into broad categories, such as hero, villain, dispatcher, donor,120

magical helper, prize, and false hero. In this sense, it is also121

important to identify mental affect states. The work [14] intro-122

duced the plot units as a structured KR for narrative stories. Plot123

units focus on the affect states of characters and the tensions be-124

tween them. To automatically produce plot unit representations125

for narrative text, some works use affect projection rules to map126

the affect states onto the characters in the story [15]. To do so,127

they create a lexicon consisting of patient polarity verbs that128

reflect world knowledge about desirable/undesirable states for129

animate beings. A large corpus of narratives deeply annotated130

according to Vladimir Propp’s theory was made available as a131

result of the work of Finlayson [16].132

The machine learning method adopted in this paper,133

i.e., Bayesian network, has yielded reliable results in mod-134

eling narrative reasoning. For instance, Lee et al. [17] intro-135

duce a framework for machine learning director agent strategies136

from observations of human-to-human interactions in an edu-137

cational interactive narrative. The work utilized a Wizard-of-Oz138

paradigm where human wizards directed participants through139

Crystal Island’s mystery storyline by dynamically controlling140

narrative events in the game. Interaction logs yielded train- 141

ing data to model the conditional probabilities of a dynamic 142

Bayesian network model of the human wizards’ directorial ac- 143

tions, achieving higher performance than naive Bayes and bi- 144

gram model techniques. 145

Text understanding also involves coreference resolution, i.e., 146

to identify when two mentions of an entity refer to the same 147

thing or person in the real world [18], for instance, recognizing 148

the entity to which him and it refer in the discourse, which is 149

context-dependent, so many different interpretations of a text 150

are possible. 151

III. OVERVIEW ON THE INSTANTIATION 152

The mapping framework focuses on the problem of low- 153

level concept instantiation, as required by the game engine that 154

generates the animations. The low-level concept instantiation 155

yields an exponential explosion of instance combinations, usu- 156

ally related to a large uncertainty, demanding a large amount 157

of information to select the optimal combination. Therefore, 158

the mapping framework bounds the search space according to 159

the story context, in order to decrease the number of feasible 160

combinations, and so the required amount of information. 161

In order to illustrate the problem, let us consider the sentence, 162

“Tuk helped his father take care of his hunting tools,” from the 163

story “The Day Tuk Became a Hunter” [19], which is placed in 164

an Eskimo community. By applying a current SRL algorithm, it 165

is possible to recognize the events, to help and to take care, and 166

their participants, Tuk and his father; however, to take care is a 167

high-level representation of action; it must be instantiated by a 168

low-level representation before providing it to the game engine 169

that generates the animation. 170

Assuming that the hunting tools of the Eskimos have blades, 171

the action/predicate “to take care” could be instantiated as to 172

sharpen, which combined with the action “to help” brings to 173

mind a scene in which Tuk and his father, named Nanuk, are 174

sharpening the tools together. Therefore, an acceptable transla- 175

tion could be the set of concurrent events, S = {SharpenItem 176

(Tuk, knife), SharpenItem(Nanuk, knife)}. 177

The above translation assumes that the system has informa- 178

tion about the social network, father (Nanuk, Tuk), the rela- 179

tionship among objects, kind of (knife, hunting tool), and the 180

relationship among actions, kind of (to sharpen, to take care). 181

Part of that background information is entered directly into the 182

system, such as the social network and the sets of characters, 183

objects, locations, and actions belonging to the narrative. The 184

kind of relationship among objects in different levels of KR are 185

currently given by a language model based on neural networks 186

[20]; the same approach was adopted for actions in different 187

levels of the KR. The relationship of pertinence between the ac- 188

tions and their arguments is encoded in a lookup table, in order 189

to set to zero the conditional probability of the unfeasible argu- 190

ments, saving processing time and improving the performance 191

on unseen data. 192

Successfully comprehending stories involves gathering a 193

much larger amount of background knowledge [21], which is 194

not within the scope of this paper. We are currently researching 195
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TABLE I
DIFFERENT HYPOTHESES FOR A SENTENCE INTERPRETATION

# sets of low-level actions and arguments

1 {SharpenItem(Tuk, knife), SharpenItem(Nanuk, knife)}
2 {SharpenItem(Tuk, knife), SharpenItem(Nanuk, spear)}
3 {SharpenItem(Tuk, spear), SharpenItem(Nanuk, knife)}
4 {SharpenItem(Tuk, spear), SharpenItem(Nanuk, spear)}
5 {CarryItem(Tuk, spear), SharpenItem(Nanuk, knife)}
6 {CarryItem(Tuk, spear), SharpenItem(Nanuk, spear)}
7 {CarryItem(Tuk, knife), SharpenItem(Nanuk, knife)}
8 {CarryItem(Tuk, knife), SharpenItem(Nanuk, spear)}
9 {SharpenItem(Tuk, knife), CarryItem(Nanuk, knife)}
10 {SharpenItem(Tuk, knife), CarryItem(Nanuk, spear)}
11 {SharpenItem(Tuk, spear), CarryItem(Nanuk, knife)}
12 {SharpenItem(Tuk, spear), CarryItem(Nanuk, spear)}
13 {CarryItem(Tuk, knife), CarryItem(Nanuk, knife)}
14 {CarryItem(Tuk, knife), CarryItem(Nanuk, spear)}
15 {CarryItem(Tuk, spear), CarryItem(Nanuk, knife)}
16 {CarryItem(Tuk, spear), CarryItem(Nanuk, spear)}
17 {SharpenItem(Tuk, knife)}
18 {SharpenItem(Tuk, spear)}
19 {CarryItem(Tuk, knife)}
20 {CarryItem(Tuk, spear)}

a semisupervised cross-modal knowledge extraction method in-196

volving visual and textual sources [22]; however, there are other197

approaches, such as the one proposed in [23], where the authors198

describe a method for acquiring background knowledge through199

crowdsourcing, demonstrating how games with a purpose can200

be used to acquire background knowledge.201

Even assuming that the system has all the information re-202

quired by the mapping process, the high computational cost,203

derived from the exponential explosion of combinations of en-204

tities and actions, is still a problem. For instance, let us assume205

that the system has only two instances of hunting tools and two206

instances of the action “to take care,” more specifically, assum-207

ing that the system has the information: kind of (knife, hunting208

tool), kind of (spear, hunting tool), kind of (to sharpen, to take209

care), and kind of (to carry, to take care), the sentence in question210

would yield 20 feasible hypotheses, as shown in Table I.211

According to the context, one of those hypotheses is likely to212

be more in accordance with the reasoning of the author of the213

story than the others. Therefore, the algorithm proposed here214

adopts a joint probability function for the actions and their ar-215

guments, in order to select the optimal hypothesis. The adopted216

joint probability function accepts features about the social net-217

work, the relationship among the arguments, which can be sum-218

marized by the set R = {A-Kind-Of, Is-A, Part-Of, Has-A},219

and the relationship among actions, which can be bounded to220

the subset Ra = {A-Kind-Of, Is-A}.221

IV. TOOL PIPELINE222

This section provides a top–down description of the tool223

pipeline and a functional description of the inputs and outputs224

of each stage.225

As an overview of our tool, the system receives as input the226

narrative text in addition to the narrative domain, i.e., the sets227

of allowable slot values for the variables representing the ac-228

tion and its arguments, i.e., characters/avatars, items/objects,229

Fig. 1. Pipeline of the narrative processing, showing the NLP preprocessing,
the mapping to KR, and animation rendering.

tools, and movement directions, in accordance with the ele- 230

ments defined in the graphical framework. The output is a three- 231

dimensional (3-D) animation of the provided text. The proposed 232

framework starts by extracting a set of cues from the text by us- 233

ing state-of-the-art algorithms for NLP (see the blocks Syntactic 234

Processing, SRL, and Coreference Resolution in Fig. 1). This set 235

of cues, henceforward represented by f , is composed by tokens 236

corresponding to syntactic and semantic labels, such as subject, 237

verb, and PropBank roles. This information is encoded in an 238

XML file that is provided to the Mapping to KR module, which 239

also receives the allowable variable values, i.e., the domain. 240

The Mapping to KR module extracts vector representations 241

from the set of cues, i.e., the labeled tokens, by using a recurrent 242

neural network based language model [20]. Having such vector 243

representations, features can be extracted from candidate values 244

of each discrete variable, as explained in Section VII. The set 245

of features is applied in modeling the probability distribution of 246

the output variables, which are arranged in a Bayesian network 247

(see Section VI), composing a structure, i.e., a semantic frame. 248

After training (see Section IX), the Bayesian network is used as 249

an objective function of a combinatorial optimization algorithm 250

that chooses the best combination of allowable variable values, 251

i.e., the best interpretation of the text, by maximizing the joint a 252

posteriori probability provided by such a Bayesian model (see 253

Section VIII). Therefore, the Mapping to KR module performs 254

statistical reasoning and outputs a set of instantiated semantic 255

frames, i.e., a structured KR of the narrative, as well as the 256

respective values of the joint a posteriori probability, which 257

are used by the next processing module to filter the irrelevant 258

semantic frames by thresholding. 259

The produced semantic frames are postprocessed by a simple 260

rule-based inference engine that applies a set of deterministic 261

rules encoding common sense information, such as “if X is 262

listening Y , then Y is talking.” Although this rule seems evident 263

for humans, it is challenging for machines. 264

V. MOTIVATION FOR OUR APPROACH 265

The instantiation problem posed here is a structured classifi- 266

cation problem, which can be carried out by two main groups 267
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of algorithms, generative and discriminative. Among the gen-268

erative methods, we highlight a probabilistic graphical model,269

i.e., Bayesian networks, while from the discriminative methods,270

we can highlight structured SVM (SSVM) and Markov random271

fields (MRF) [24].272

In the case of the generative approach, a joint probabilis-273

tic model over the set of variables is defined, learned, and274

inferred/instantiated by using a probabilistic inference algo-275

rithm, in our case a combinatorial optimization based on GA,276

in order to classify the most likely joint assignment to all277

of the labels simultaneously, exploiting the correlations between278

them and encoding prior knowledge into the model. Regarding279

the MRF, it is important to highlight some advantages of this280

model over the Bayesian network, such as the possibility of281

representing cyclic dependencies; however, Bayesian networks282

can represent induced dependencies, which are more relevant283

for our application and cannot be modeled by MRF.284

From the above options, a generative model was chosen, more285

specifically Bayesian Networks, since we have few annotated286

data, which demands the encoding of prior knowledge into the287

model, such as the causal relationship among variables. Re-288

garding the training method, this paper proposes a new training289

method for Bayesian networks that bounds the search space by290

using human knowledge, as detailed in Section IX, which is291

an alternative approach to the margin-maximizing properties of292

SSVM. However, the proposed training method is lighter than293

the SSVM training, which is highly computationally demanding294

in the context of our application, since each training example295

yields a combinatorial optimization problem on an exponen-296

tially large search space. Notice that even applying the cutting297

plane algorithm [25] to determine the most violated constraint,298

the SSVM training yields a hard combinatorial optimization299

problem per training sample per iteration.300

Regarding the inference, in the case of Bayesian networks the301

decoding algorithm can exploit the sparsity of the model, i.e.,302

it can exploit the conditional independence between variables,303

as will be shown in Section VIII. The same is not possible for304

SSVM, in which there is no sparsity to be exploited, yielding305

a higher computational cost. Moreover, the combinatorial op-306

timization by GA, proposed here, plays an important role in307

giving parallel scalability to the inference system of any struc-308

tured classification algorithm. Note that the most computational309

demanding task is the calculation of the fitness value of the310

GA individuals, which can be carried out independently of each311

other, enabling the parallelization of the code by sharing tasks312

even among hundreds of processors.313

VI. STATISTICAL MODEL314

From the machine learning point of view, the proposed map-315

ping is the structured output prediction problem of learning a316

function317

h : F → X (1)

where F is the space of inputs, in our case the set of cues f318

extracted from the text through state-of-the-art NLP algorithms,319

and X is a space of multivariate and structured outputs, whose320

Fig. 2. Graphical model of the adopted mapping framework, in which X−1
represents the action of the previous semantic frame, X0 the action of the current
frame, and X1 , . . . , XN i

their arguments.

elements are semantic frames of which the arguments depend on 321

the predicate/action, which in turn depends on the predicate of 322

the previous frame, to improve the consistency in the course of 323

actions predicted by the mapping. Fig. 2 illustrates the adopted 324

graphical model. 325

The proposed mapping framework is based on log-linear 326

models of the conditional probabilities of the actions/predicates 327

and their arguments, where the variable X−1 represents the ac- 328

tion of the previous semantic frame, X0 the action of the cur- 329

rent frame, and X1 . . . XNi
their arguments, as can be seen 330

in Fig. 2. The variable values are represented here as x(q ,i) , 331

where q = −1, . . . , Ni is the index of the variable and i is 332

the index of its discrete value into the finite set of values Sq , 333

(q = −1, . . . , Ni). In this sense, the conditional probability of 334

the ith discrete value x(q ,i) of the qth variable Xq ∈ Sq , given 335

the state of its parents Paq , the set of cues f , and the adjustable 336

parameter vector θq , is modeled as follows: 337

P
(
Xq = x(q ,i) | Paq , f ; θq

)
=

eθq φq (x( q , i ) ,P aq ,f )
∑|Sq |

h=1 eθq φq (x( q , h ) ,P aq ,f )
(2)

where φq (·) is an m-dimensional feature function that extracts 338

features from the set of cues f , given the state of the variable 339

Xq and the state of its parents Paq , as detailed in Section VII. 340

Alternatively, φq (·) can be thought of as a compatibility function 341

that measures how compatible the set of cues f , the variable 342

value x(q ,i) , and the set of discrete values of its parents Paq 343

are. From a linear algebra point of view, φq (·) can also be 344

understood as a basis function parametrized by θq . 345

The variables are related by a Bayesian network; therefore, 346

it is possible to calculate the joint probability of the variables, 347

given the set of cues f and the set of adjustable parameters as 348

follows: 349

P (X−1 . . . XNi
| f ; θ−1 . . . θNi

)

=
Ni∏

q=−1

P (Xq | Paq , f ; θ−1 , . . . , θNi
) . (3)

VII. FEATURE EXTRACTION 350

The mapping algorithm extracts features by using cues pro- 351

vided by algorithms for SRL, part-of-speech tagging (POS), 352
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TABLE II
MOST LIKELY MEANING OF THE PROPBANK SEMANTIC ROLES

role description

A0 agent
A1 patient, theme
A2 indirect object, beneficiary, instrument, attribute, end state
A3 start point, beneficiary, instrument, attribute
A4 end point

coreference resolution, and a lookup table encoding word repre-353

sentations, extracted from a previously trained recurrent neural354

network based language model [20]. The lookup table, hence-355

forth, represented by g : D �→W maps each word w, defined356

in a dictionary D, which contains 82 390 words, to an 80-357

dimensional space W ⊂ R80 , where similar words tend to be358

close to each other, making it possible to perform analogical359

reasoning using simple vector arithmetic [20]. For example, it is360

possible to answer a question, such as “What is the word that is361

similar to small in the same sense as biggest is similar to big?”,362

by computing the vector w = g(biggest)− g(big) + g(small),363

and searching for the word with the smallest cosine distance to364

w, which, if the model was well trained, is smallest. In this365

section, we describe the SRL and coreference resolution tools366

used in this paper.367

A. Semantic Role Labeling368

We use the semantic parser from Lund university to detect369

semantic frames and their semantic roles under the PropBank370

formalism [26]. The algorithm assigns roles (from which the371

most frequent are A0–4, as can be seen in Table II) to sets of372

words, which are understood as arguments of the verb, assumed373

as the predicate; therefore, PropBank is a verb-oriented resource.374

That formalism also adopts modifier tags such as AM-LOC,375

about the location, and AM-DIR, about the direction, which are376

relevant for our mapping algorithm.377

B. Coreference Resolution378

We use the coreference resolution tool from the LIIR lab of379

KU Leuven [18] to extract the links between the characters and380

the pronouns in the text. That tool detects entities and entity381

mentions, creating links between them. For example, given the382

text “This is the story of a boy named Tuk who lived in the383

Arctic. He wanted to show that he could be brave by hunting for384

big animals like his father who was a great hunter,” the mentions385

“boy,” “tuk,” and the three pronoun mentions (He, he, his) are386

clustered as one entity, and the mentions “father” and “hunter”387

as the second entity.388

C. Features of the Current Action (X0)389

Let S be the set of the words belonging to the sentence,390

A0− 4 ⊂ D, AM− LOC ⊂ D, and AM− DIR ⊂ D be sets of391

words representing the respective SRL roles, S1 be the set of392

low-level instances of characters, S3–S5 be the sets of low-level393

instances objects/items, tools, and locations, respectively, all of394

TABLE III
DESCRIPTION OF THE FEATURES OF THE CURRENT ACTION (X0 )

# Description of the elements of φ
(
f , x( 0 , i )

)

φ1 z
(
g

(
x( 0 , i )

)
, g(v )

)
, where v is the verb given by SRL;

φ2 z
(
g

(
x(−1 , j )

)
, g

(
x( 0 , i )

))
, where x(−1 , j ) is the previous action;

φ3 and
(
transitive

(
x( 0 , i )

)
, A1 �= �)

, where A1 is given by SRL;
φ4 maxj

(
z

(
g

(
x( 0 , i )

)
, g (wj )

))
, where wj is the j th nonverb word;

φ5 z
(
g

(
x( 0 , i )

)
, g (v1 ) + g (v2 )

)
, where v1 and v2 are successive verbs

which are bounded by the story context. A 5-D feature function 395

φ(f, x(0,i)) is applied to model the probability of the current ac- 396

tion. That feature function receives the instances of the current 397

and previous actions and the set of cues f , which is composed 398

by the words of the sentence, the set A1 ∈ D, and the verbs 399

given by the PropBank-SRL. The action features are calculated 400

as summarized in Table III, where transitive(x(0,i)) = 1 if x(0,i) 401

is a transitive verb; otherwise, transitive(x(0,i)) = 0. The logi- 402

cal operator and(·, ·) = 1, if both arguments are true, otherwise 403

and(·, ·) = 0, and 404

z(a, b) =
aT b

‖a‖ ‖b‖ (4)

is the cosine similarity between two vectors a and b. 405

The first feature is the cosine similarity between the low-level 406

instance of action x(0,i) and the verb detected by the SRL, while 407

the second feature is the cosine similarity between x(0,i) and the 408

previous action x(−1,j ) to give consistency in the course of ac- 409

tions predicted by the mapping. The third feature returns the 410

consistency between the SRL labeling and the instance candi- 411

date, x(0,i) . More specifically, if the low-level action x(0,i) is 412

transitive, the SRL must detect an A1 role. The fourth feature 413

is the consistency between the instance candidate x(0,i) and the 414

context; more specifically, it is the similarity between the in- 415

stance x(0,i) and its most similar nonverb word in the sentence, 416

in the cosine sense. The last feature was included to aid the algo- 417

rithm in dealing with semantic frames in which the verb phrase 418

is presented as such, “Tuk takes care of his hunting tools.” In this 419

case, the algorithm adds the vector representations of the words 420

“takes” and “care,” in order to get the vector representation of 421

“takes care,” and compares the resulting vector with g
(
x(0,i)

)
422

[20]. 423

Let p : W �→ Γ ⊂ R2 be a function that outputs the 2-D prin- 424

cipal component analysis (PCA) projections, i.e., only the two 425

components with largest variance, for the set of word repre- 426

sentations W , given by the language model based on neural 427

networks g : D �→W , composing the mapping p ◦ g : D �→ Γ. 428

Therefore, to illustrate the idea behind the last action fea- 429

ture, Fig. 3 demonstrates the 2-D PCA representation, in Γ, 430

of the words “take” and “care,” beyond some verbs in a low- 431

level KR, and the vector composition p ◦ g (take care) = 432

p ◦ g (take) + p ◦ g (care). In an Euclidean sense, the near- 433

est low-level instances for “take care” are “sharp” and “carry,” 434

while the chosen instance would be “sharp,” since it has the 435

largest cosine similarity in relation to “take care.” 436
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Fig. 3. 2-D PCA projection for the vector representation of the words “take”
and “care,” beyond some low-level action instances, in red, and the vector
composition p ◦ g (take care) = p ◦ g (take) + p ◦ g (care) in blue.

TABLE IV
DESCRIPTION OF THE FEATURES OF THE PREVIOUS ACTION (X−1 )

# Description of the elements of φ
(
f , x(−1 , i )

)

φ1 z
(
g

(
x(−1 , i )

)
, g(v )

)
, where v is the action given by SRL;

φ2 and
(

transitive
(
x(−1 , i )

)
, A1 �= �)

, where A1 is given by SRL;
φ3 maxj

(
z

(
g

(
x(−1 , i )

)
, g (wj )

))
, where wj is the j th nonverb word;

φ4 z
(
g

(
x(−1 , i )

)
, g (v1 ) + g (v2 )

)
, where v1 and v2 are successive verbs

D. Features of the Previous Action (X−1)437

As can be seen in Table IV, the features of the model of the438

previous action are the same as the features of the current action,439

except for the feature φ2 of Table III.440

E. Argument Features441

This paper adopts a KR scheme in which each action can have442

the following arguments: character subject x(1,l) ∈ S1 , charac-443

ter object x(2,l) ∈ S1 , object/item x(3,l) ∈ S3 , tool x(4,l) ∈ S4 ,444

and direction x(5,l) ∈ S5 .445

1) Character-Subject Features: Let T be a set containing all446

the tenses and persons of the verb to be, eq(·, ·) : D ×D �→447

{0, 1} be a binary function which returns 1 if its arguments are448

equal to each other, and 0, otherwise, and pos(·) : S0 �→ N+ be a449

function which returns the position, in the sentence, of the verb450

which was instantiated by the current low-level action x(0,i) .451

Therefore, the character-subject features can be summarized as452

found in Table V.453

The first feature returns a value larger than zero if the current454

instance, index l, belongs to the set A0, given by the SRL,455

i.e., it gives information about whether the instance is likely456

to be an agent. The second feature is about the consistency457

between the SRL labeling and the instance x(1,l) . This feature458

is particularly important when the SRL fails in detecting the459

A0, i.e., when A0 = �. Since the action demands a subject, the460

second feature was included to distinguish characters present in461

the sentence which are not present in A1 or A2, which are likely462

to be the character subject. The third feature returns how many463

TABLE V
DESCRIPTION OF THE CHARACTER-SUBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 1 , l )

)

φ́1
∑ |A0|

n = 1 eq
(
x( 1 , l ) , wn

)
, where wn ∈ A0;

φ́2 −∑ |A1∪A2|
n = 1 eq

(
x( 1 , l ) , wn

)
, where wn ∈ (A1 ∪ A2);

φ́3
∑ |S |

n = 1 eq
(
x( 1 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 n − k , where k = pos
(
x( 0 , i )

)
and n is the position of x( 1 , l ) ;

φ́5
∑ |S |

n = 1
∑ |T |

j = 1 eq (wn , tj ), where wn ∈ S , tj ∈ T ;

φ́6

(
1 − 2φ́5

)
φ́4 , a cross term.

TABLE VI
DESCRIPTION OF THE CHARACTER-OBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 2 , l )

)

φ́1
∑ |A1∪A2|

n = 1 eq
(
x( 2 , l ) , wn

)
, where wn ∈ (A1 ∪ A2);

φ́2 −∑ |A0|
n = 1 eq

(
x( 2 , l ) , wn

)
, where wn ∈ A0;

φ́3
∑ |S |

n = 1 eq
(
x( 2 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 2 , l ) ;

φ́5
∑ |S |

n = 1
∑ |T |

j = 1 eq (wn , tj ), where wn ∈ S , tj ∈ T ;

φ́6

(
1 − 2φ́5

)
φ́4 , a cross term.

TABLE VII
DESCRIPTION OF THE ITEM/OBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 3 , l )

)

φ́1
∑ |A2|

n = 1 eq
(
x( 3 , l ) , wn

)
, where wn ∈ A2;

φ́2 −∑ |A3|
n = 1 eq

(
x( 3 , l ) , wn

)
, where wn ∈ A3;

φ́3
∑ |S |

n = 1 eq
(
x( 3 , l ) , wn

)
, where wn ∈ S is the n th sentence word;

φ́4 z
(
g

(
x( 0 , i )

)
, g

(
x( 3 , l )

))
, where x( 0 , i ) is the current action;

φ́5 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 3 , l ) .

times the instance x(1,l) is present in the sentence, thus if its 464

output is zero, then x(1,l) is not the correct instance. The fourth 465

feature is about the position of the instance x(1,l) in relation 466

to the verb in question, i.e. ,the verb which corresponds to the 467

current low-level action instance x(0,i) . The fifth feature is a 468

cue of the passive voice usage, a situation in which the relative 469

positions of the subject and the verb may be inverted. The last 470

feature is a cross term between the fourth and fifth features, the 471

idea is to invert the sign of the distance φ́4 between x(1,l) and 472

the verb in the case of passive voice usage. The cross term is 473

required because the adopted log-linear model cannot compute 474

such nonlinear composition. 475

2) Character-Object Features: Table VI summarizes the 476

features extracted in modeling the probability function of the 477

character-object, which are similar to the ones extracted for the 478

character-subject, except for the inversion of the position of the 479

first two features and the inversion of the sign of the features φ́1 , 480

φ́2 , and φ́4 , which are adopted only for the sake of clarity, since 481

those changes make no difference for the training algorithm. 482

3) Item/Object Features: As can be seen in Table VII, the 483

first item/object feature is about the labeling of x(3,l) as be- 484

longing to A2 by the SRL, i.e., whether x(3,l) was labeled as 485

an indirect object or beneficiary. The second feature is about 486
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TABLE VIII
DESCRIPTION OF THE TOOL FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 4 , l )

)

φ́1
∑ |A2|

n = 1 eq
(
x( 4 , l ) , wn

)
, where wn ∈ A2;

φ́2 −∑ |A3|
n = 1 eq

(
x( 4 , l ) , wn

)
, where wn ∈ A3;

φ́3
∑ |S |

n = 1 eq
(
x( 4 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 z
(
g

(
x( 0 , i )

)
, g

(
x( 4 , l )

))
, where x( 0 , i ) is the current action;

φ́5 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 4 , l ) .

TABLE IX
DESCRIPTION OF THE DIRECTION FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 5 , l )

)

φ́1
∑ |A4|

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ A4;

φ́2
∑ |AM−DIR|

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ AM− DIR;

φ́3 −∑ |A2∪A3|
n = 1 eq

(
x( 5 , l ) , wn

)
, where wn ∈ (A2 ∪ A3);

φ́4
∑ |S |

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́5 z
(
g

(
x( 0 , i )

)
, g

(
x( 5 , l )

))
, where x( 0 , i ) is the current action;

φ́6 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 5 , l ) .

the consistency between the SRL labeling and the assumption487

of x(3,l) . The third feature is about the presence of the current488

instance in the sentence. The fourth feature is about the con-489

sistency between the instance candidate x(3,l) and the context;490

more specifically, it is the similarity between the action x(0,i)491

and the current instance, in the cosine sense. The last feature is492

about the position of the instance x(3,l) in relation to the verb.493

4) Tool Features: As summarized in Table VIII, the features494

for the tool model are the same as the item/object features;495

however, the domain set is S4 despite S3 .496

5) Direction Features: The features adopted for the direction497

are similar to the location features; the first two features are498

about the SRL labeling, i.e., whether the instance is likely to be499

an end point or a direction (AM− DIR), while the third feature is500

useful when the SRL outputs a false negative of A4, i.e., when501

the information about the destination is present in the text, but502

the SRL returns A4 = �; therefore, if the instance is not a start503

point or an indirect object, it is likely to be a direction. The three504

last features are the same as those of the tool, as can be seen in505

Table IX.506

VIII. MAXIMUM A POSTERIORI (MAP) INFERENCE507

Given the graphical model, the problem of low-level concept508

instantiation can be understood as the task of finding the most509

likely configuration of its variables, known as the MAP problem.510

In this paper, this NP-hard problem [27] is formulated as a511

combinatorial optimization problem whose objective function512

is in mathematical form as follows:513

arg max
X−1 ,X 0 ,...,XN i

P (X−1 ,X0 , . . . , XNi
| f ; θ−1 , . . . , θNi

) (5)

where P (X−1 ,X0 , . . . , XNi
| f ; θ−1 , . . . , θNi

) is given by (3).514

This problem demands the evaluation of a large amount of hy-515

potheses; more specifically, taking into account the adopted log-516

linear distribution function, the computational time complexity517

of an exhaustive search would be O (nf × nm ), where nf is 518

the number of features of the log-linear distribution, n is the 519

average number of instances per variable, and m is the number 520

of variables. 521

The MAP problem has been approached using many meth- 522

ods, see [28] and [29]. We have approached this problem by 523

using a GA [30]. Similar to other algorithms for metaheuristic 524

optimization, the GA does not provide certificates of optimality; 525

however, in our case, a near optimal solution can be obtained in 526

a short time, since the GA provides parallel scalability because 527

the fitness of the GA individuals can be calculated indepen- 528

dently of one another. Moreover, our special GA formulation 529

exploits the sparsity of the Bayesian networks, i.e., the condi- 530

tional independence between the variables. 531

Resuming our notation, as we defined Paq as the set of 532

parents of the node q, modeled by its conditional distribu- 533

tion P (Xq |Paq ), similarly we define Chq as the set of chil- 534

dren of Xq . Our GA formulation exploits a BN property 535

that arises when Chq = ∅. In this case, the state of Xq does 536

not affect the conditional distribution of the other nodes, and 537

the optimization for the node q can be carried out indepen- 538

dently from the others, excepting the nodes belonging to the 539

set Paq , which affects the conditional distribution of node 540

q. Therefore, the GA formulation can be adapted to exploit 541

a smaller search space. To do so, we split our set of vari- 542

ables {X0 , . . . , XNi
} into two subsets: Ω = {X̃1 , . . . , X̃M̃

}, 543

where X̃i ∈ S̃i , i = 1, . . . , M̃ , are the variables whose sets 544

of children are empty, and Ψ = {X̄1 , . . . , X̄M̄ }, where X̄i ∈ 545

S̄i , i = 1, . . . , M̄ , are the variables that have, at least, one 546

child. 547

The combinatorial optimization by GA assumes as fitness 548

function the a posteriori probability (3), given by a Bayesian 549

network previously trained on annotated data. The GA has a 550

chromosome vector of dimension M̄ , in which each gene en- 551

codes the index of a state candidate of one of the variables 552

belonging to the set Ψ. The chromosomes of the initial popu- 553

lation are loaded in a uniform distribution, where the feasible 554

values of the ith gene are natural numbers bounded into the 555

interval [1, |Si |]. The evaluation of the fitness of each GA in- 556

dividual carries out a subsearching process to find the state of 557

the set of variables belonging to Ω that maximizes the fitness 558

function. This subsearching process can be carried out for each 559

variable individually, requiring less processing power. Details 560

on our formulation for this combinatorial optimization problem 561

can be found in Appendix A, see (16)–(19), which are solved 562

by Algorithm 1. 563

During the loop over generations, the fitness value Φind of each 564

individual ind is evaluated according to (17) and (18). Then, the 565

individuals are ranked according to their fitness values and the 566

crossover operator is applied to generate new individuals by 567

randomly selecting the parents by their ranks, according to the 568

random variable proposed in our previous work [31], in which 569

it is possible to set the selective pressure p. In our algorithm, 570

the usual crossover operation was modified in order to deal 571

with combinatorial optimization problems, namely, each gene 572

of a new individual is randomly taken from one of the parents. 573

This combinatorial optimization algorithm was adapted from 574
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Algorithm 1: Combinatorial Optimization by GA.
1: Input: p, S, D, W , f , Ω, Ψ, Npop: The selective

pressure p, the sentence S, the dictionary D, and its
respective word representations W , SRL and syntactic
features f , the sets of discrete variable values Ω, and
the number of GA individuals Npop, respectively.

2: Output: X∗, Φ∗: A vector with the indices of the
optimal states of the variables and the optimal value of
the fitness function (for frame filtering by thresholding),
respectively.

3: Generate a set with Npop chromosomes {Cr} of
dimension M̄ for the initial population, in which each
gene encodes the index of a state candidate of one of the
variables belonging to the set Ψ, randomly generated in
a uniform distribution, where the feasible values of the
ith gene are natural numbers bounded into the interval
[1, |Si |];

4: for generation = 1 : maxgener do
5: // Evaluating the population: //
6: for ind = 1 : Npop do
7: [x̄1 , . . . , x̄M̄ ]← Crind: load the variables X̄q ,

q = 1, . . . , M̄ , with the indices stored in the
chromosome of the current individual;

8: for j = 1 : M̃ do
9: Exhaustive search for x̃∗j according to (19);

10: end for
11: Substitute x̃∗1 , . . . , x̃

∗
M̃

and x̄1 , . . . , x̄M̄ into
(17) and (18) to have the current values of Π1
and Π2 ;

12: Φind ← Π1 + Π2 : storing the fitness of individual
ind;

13: end for
14: Rank the individuals according to their fitness Φind;
15: Store/update the genes of the best individual in Cr∗

and the last values of x̃∗1 , . . . , x̃
∗
M̃

into the output
vector X∗;

16: Store/update the best fitness value Φ∗;
17: // Performing the crossover: //
18: for k = 1 : Npop do
19: // Randomly selecting the indices of parents

by using the asymmetric distribution
proposed in [31]: //

20: ϑj ← random number ∈ [0, 1] with uniform
distribution, j = 1, 2;

21: parentj ← round
(
(Npop − 1) ep ϑ j −1

ep −1 + 1
)

,

j = 1, 2;
22: // Assembling the chromosome Crson

k : //
23: for m = 1 : M̄ do
24: Randomly select a parent (i.e., between

parent1 and parent2) to give the mth gene for
the kth individual of the new generation:

25: Crson
(k,m ) ← Cr(parent1 o r 2 ,m ) ;

26: end for
27: end for
28: end for

an algorithm for feature selection1 developed for our previous 575

work [32]. 576

Algorithm 1 returns the variable values that yield the largest 577

value of the fitness function, i.e., the most likely structured 578

representation of the current semantic frame, bounded by the 579

given domain. 580

This paper also contributes with a preprocessing method that 581

decreases the computational cost of the MAP estimation. Let 582

us consider a variable Xq whose set of parents is empty, i.e., 583

Paq = ∅, in the case of our model represented by the variable 584

X−1 (see Fig. 2). Since this paper adopts a threshold on the 585

joint a posteriori probability for rejecting semantic frames that 586

are unlikely to be represented by the adopted KR schema, it is 587

possible to speed up the combinatorial optimization by reducing, 588

in advance, the cardinality of the set of discrete values |Sq | of 589

Xq by exploiting the following property: 590

P
(
x(q ,i) |f ; θq

)

≥ P
(
x(1,i) , . . . x(q ,i) . . . , x(Ni ,k) | f ; θ1 , . . . θq . . . θNi

)
.

(6)

Notice that if P
(
x(q ,i) |f ; θq

)
is smaller than the adopted thresh- 591

old, the joint a posteriori probability, represented by the right- 592

hand side of (6), also is. Therefore, given the set of cues f , it 593

is possible to reject in advance all discrete values belonging to 594

the set Sq that yields P
(
x(q ,i) |f ; θq

)
smaller than the adopted 595

threshold, thus saving processing time during the combinatorial 596

optimization. 597

IX. MODEL TRAINING 598

This section introduces a new constrained learning algorithm 599

for Bayesian networks that yields a convex optimization prob- 600

lem. This algorithm makes it possible to include human knowl- 601

edge in the training, thus helping in dealing with the limited 602

amount of annotated data. 603

One of the ideas behind the mapping is to fuse information 604

within a constrained domain, by training the mapping on anno- 605

tated datasets of small cardinalities, only to adapt the algorithm 606

to a given context. Therefore, beyond having few features, and 607

so a small number of related parameters to be adjusted, the 608

constraining of the search space is a key issue in keeping the 609

generalization capacity. 610

Despite the popularity of the maximum margin principle [33] 611

and its problem-independent geometric constraints, the mapping 612

framework bounds the search space through a set of constraints 613

encoding information on mutually exclusive values, i.e., infor- 614

mation about the unlikeliness of some conjunctions of variable 615

states, or set of states, which are defined by the expert knowledge 616

of the user, such as animals cannot talk or use tools, generat- 617

ing several constraints resulting from the combination of all the 618

animals belonging to the domain and actions that they cannot 619

perform. Therefore, the mapping framework makes available a 620

friendly user interface to input information on mutually exclu- 621

sive values, henceforth called exclusivity constraints. These con- 622

straints are modeled in a statistical manner, i.e., for an ordered 623

1The original MATLAB code is available for download at MAT-
LAB Central, http://www.mathworks.com/matlabcentral/fileexchange/29553-
feature-selector-based-on-genetic-algorithms-and-information-theory.
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pair of variables, (Xm ,Xn ) having the values (x(m,i) , x(n,j ))624

and subject to the exclusivity constraint, the following constraint625

is assumed for each training example k:626

P
(
x(m,i) |pa(m,k) , fk ; θm

)
P

(
x(n,j ) | pa(n,k) , fk ; θn

) ≤ ξ

(7)

where pa(m,k) represents the state of the parents of Xm in627

the observation k, fk is the set of cues extracted from the same628

observation, and ξ is an upper bound on the probability of above629

conjunction that is set by the user. Notice that this constraint630

assumes that the larger the likelihood of x(m,i) , the smaller the631

likelihood of x(n,j ) . The user interface allows defining subsets632

of exclusivity constraints at once. To do so, the user only has633

to provide two sets of slot values, one for variable Xm and the634

other of the variable Xn . The system automatically generates635

the constraints by giving all the pairwise combinations of the636

values per training example, i.e., one constraint per pairwise637

combination per training example.638

The mathematical formulation of our new constrained learn-639

ing method is detailed in Appendix B.640

X. EXPERIMENTS641

In this section, the mapping algorithm is evaluated on three642

stories: “The Day Tuk Became a Hunter” [19], “The Bear and643

the Travelers,”2 and “The First Tears,”3 henceforth referred to644

as story#1, story#2, and story#3, respectively. The idea is to645

have nine experiments, by training and evaluating on different646

stories, in order to assess the generalization capacity of the647

mapping framework, besides its capacity in fitting the training648

data, i.e., by evaluating also in the same story in which the649

algorithm was trained, in order to have information about the650

bias error, enabling the analysis of the bias-variance tradeoff,651

avoiding data overfitting. Therefore, the procedure is guided by652

the following four steps:653

1) to input the domain of the training story (the set of char-654

acters, objects, tools and directions);655

2) to train the Bayesian network, i.e., to adjust the parameters656

of the log-linear distributions on the training story;657

3) to change from the domain of the training story to that of658

the testing story (inputting the set of characters, objects,659

tools, and directions belonging to the testing story);660

4) to evaluate the algorithm on the testing story with the661

parameters of the log-linear distributions previously ad-662

justed on the training story.663

Regarding the domain, story#1 yields a set S0 composed of664

88 possible actions, i.e., actions processable by the graphical665

framework, while story#2 yields |S0 | = 28 and story#3 yields666

|S0 | = 34. The adopted evaluation metrics were precision, re-667

call, and F1. Since we introduced a new annotation scheme668

directly related with the task of animation rendering, it was669

not possible to compare our work with existing works based670

on other annotation schemes [34]; however, this section reports671

comparative experiments with our special formulation of GA672

2http://fairytalesoftheworld.com/quick-reads/the-bear-and-the-travellers/.
3http://americanfolklore.net/folklore/2010/09/the_first_tears.html.

TABLE X
EXAMPLE OF THE SRL AND COREFERENCE RESOLUTION OUTPUTS

“He practiced using a spear and even knew how to cut up animals”

SRL output

Frame#1 pred:practiced; A0:He; A1:using a spear
Frame#2 pred:using; A0:He; A1:a spear
Frame#3 pred:knew; A0:He; A1:how to cut up animals; AM-ADV:even
Frame#4 pred:cut; A1:different animals

Coref. output

Frame #1 A0:Tuk
Frame #2 A0:Tuk

TABLE XI
EXAMPLE OF THE MAPPING OUTPUT

“He practiced using a spear and even knew how to cut up animals”

semantic frame #1

action char–subj char–obj obj/ item tool direction
to practice tuk none none spear none

semantic frame #4

action char–subj char–obj obj/ item tool direction
to cut tuk none animals knife none

for MAP reasoning against two baseline algorithms: the usual 673

GA and random-restart hill climbing (RRHC). 674

To contextualize the experiments, this section starts by 675

exemplifying the mapping output. According to our KR 676

scheme, the mapping output is a set of low-level instances of 677

actions/predicates and their respective instance-arguments per 678

semantic frame. Let us consider the sentence “he practiced using 679

a spear and even knew how to cut up animals.” From the SRL 680

and the coreference resolution for the pronouns, see Table X, 681

the mapping module recognizes two semantic frames which are 682

relevant, the first frame is ruled by the predicate “practiced” and 683

the second by the predicate “cut.” For each relevant semantic 684

frame, the system outputs the value of the predicate/action and 685

the set of argument values, as can be seen in the output example 686

of Table XI. 687

The information of Table XI is encoded in an XML file, 688

according to the XSD schema of Listing 2. 689

Notice that the mapping is able to infer some information 690

which is not present in the text, such as the tool used to cut 691

animals (see Table XI), due to the feature φ́4 of Table VIII 692

that exploits the language model, encoded in the lookup table 693

g : D →W , when computing the cosine similarity between the 694

action “to cut” and the tool “knife.” 695

To better evaluate the mapping results, we first evaluate the 696

outcome of the NLP algorithms. The performance of our coref- 697

erence tool [18] was assessed by using the measure defined 698

in the CoNLL 2011 coreference task, which is the average of 699

three widespread measures (MUC, B3 and CEAFe ). The re- 700

sult of the application of our coreference tool on the three sto- 701

ries was MUC = 0.918, B3 = 0.744, CEAFe = 0.516, and 702

Avg = 0.726. The results per role of the semantic role classifi- 703

cation are given in Table XII. 704
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Listing 1: The XSD schema definition of the output of
mapping to KR.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”mapping”>
<xs:complexType>
<xs:sequence>
<xs:element name=”sentence”>
<xs:complexType>
<xs:sequence>
<xs:element name=”action”>
<xs:complexType>
<xs:element name=”char-subj” type=”xs:string”/>
<xs:element name=”char-obj” type=”xs:string”/>
<xs:element name=”item” type=”xs:string”/>
<xs:element name=”tool” type=”xs:string”/>
<xs:element name=”direction” type=”xs:string”/>
<xs:element name=”JointProb” type=”xs:decimal”/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

TABLE XII
PERFORMANCE INDICES OF THE SEMANTIC ROLE CLASSIFICATION

Role precision recall F1

A0 0.78 0.72 0.75
A1 0.71 0.77 0.74
A2 0.48 0.50 0.49
AM-LOC 0.47 0.41 0.44
AM-TMP 0.65 0.63 0.64
AM-MNR 0.56 0.50 0.53
AM-DIR 0.75 0.47 0.58

Regarding the mapping trained with exclusivity constraints,705

Table XIII reports the experimental results obtained by combin-706

ing training and evaluation in different stories, while Table XIV707

summarizes the statistics on the F1 values reported in Table XIII708

for two situations: when the model is evaluated on the same story709

than the one on which it was trained, i.e., the ground truth, and710

when the model is evaluated in other stories. The results of Ta-711

ble XIV can be compared with the results obtained by using712

the mapping trained by the usual maximum likelihood method,713

summarized in Table XV.714

As can be seen in Table XIV, even the prediction of the715

action/predicate yields mistakes, due to the issues in associat-716

ing the verb(s) in the sentence with the actions belonging to717

the set of actions S0 ; moreover, predicting the best instance for718

comprehensive actions, such as “to take care,” which can be719

instantiated as “to sharpen” or “to carry,” is also a problem, as720

can be seen in the example of Table I. To deal with these issues,721

the mapping makes use of information from the context (see722

TABLE XIII
PERFORMANCE MAPPING TRAINED WITH EXCLUSIVITY CONSTRAINTS

frame elem. perf. index t r a in \ test story#1 story#2 story#3

action/predicate precision story#1 0.93 0.92 1.00
story#2 0.78 1.00 0.93
story#3 0.85 0.85 1.00

recall story#1 0.86 0.80 0.74
story#2 0.72 0.87 0.68
story#3 0.79 0.73 0.79

F1 story#1 0.89 0.86 0.85
story#2 0.75 0.93 0.79
story#3 0.82 0.79 0.88

character subject story#1 precision 0.96 0.85 0.93
story#2 0.80 0.92 0.87
story#3 0.84 0.85 1.00

recall story#1 0.86 0.73 0.68
story#2 0.71 0.80 0.68
story#3 0.75 0.73 0.74

F1 story#1 0.91 0.79 0.79
story#2 0.75 0.86 0.76
story#3 0.79 0.79 0.85

character object precision story#1 0.83 0.67 1.00
story#2 0.50 1.00 1.00
story#3 0.67 0.67 1.00

recall story#1 0.71 0.67 0.50
story#2 0.43 1.00 0.50
story#3 0.57 0.50 0.50

F1 story#1 0.77 0.67 0.67
story#2 0.46 1.00 0.67
story#3 0.62 0.57 0.67

item/object precision story#1 0.80 1.00 0.88
story#2 0.60 1.00 0.63
story#3 0.70 0.40 0.88

recall story#1 0.67 0.50 0.78
story#2 0.46 0.67 0.56
story#3 0.58 0.67 0.88

F1 story#1 0.73 0.67 0.83
story#2 0.52 0.80 0.59
story#3 0.63 0.50 0.88

tool precision story#1 1.00 – 1.00
story#2 0.44 – 0.50
story#3 0.78 – 1.00

recall story#1 0.90 – 1.00
story#2 0.40 – 0.33
story#3 0.70 – 1.00

F1 story#1 0.95 – 1.00
story#2 0.42 – 0.40
story#3 0.74 – 1.00

direction precision story#1 0.83 0.50 1.00
story#2 0.50 1.00 0.50
story#3 0.67 0.50 1.00

recall story#1 0.63 0.33 0.20
story#2 0.38 0.67 0.20
story#3 0.50 0.33 0.40

F1 story#1 0.72 0.40 0.33
story#2 0.43 0.80 0.29
story#3 0.57 0.40 0.57

feature φ4 of Table III) beyond information from the language 723

model, as illustrated in Fig. 3. Moreover, there are action in- 724

stances belonging to S0 , such as “to give,” which can be easily 725

represented in some occurrences, such as in the sentence “Tuk’s 726

father gave him a new knife,” but is unrepresentable in the case 727

of the sentence “Tuk’s father gave him many hunting tips.” 728

By taking into account the tight relationship between the role 729

A0 and the character subject, see Table II, and comparing the 730

F1 value of the role A0 in Table XII with the mean value of 731

F1 for the character subject (see the second line of Table XIV), 732
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TABLE XIV
F1 STATISTICS OF MAPPING TRAINED WITH EXCLUSIVITY CONSTRAINTS

(MEAN ± STANDARD DEVIATION)

Frame element Ground truth Train and test in different stories

action/predicate 0.90 ± 0.03 0.81 ± 0.04
character subject 0.87 ± 0.03 0.78 ± 0.02
character object 0.81 ± 0.17 0.61 ± 0.08
item/object 0.80 ± 0.08 0.62 ± 0.12
tool 0.98 ± 0.04 0.64 ± 0.29
direction 0.70 ± 0.12 0.40 ± 0.10

TABLE XV
F1 STATISTICS OF MAPPING TRAINED BY MAXIMUM LIKELIHOOD

(MEAN ± STANDARD DEVIATION)

Frame element Ground truth Train and test in different stories

action/predicate 0.91 ± 0.03 0.79 ± 0.05
character subject 0.87 ± 0.03 0.76 ± 0.02
character object 0.83 ± 0.15 0.57 ± 0.09
item/object 0.81 ± 0.08 0.59 ± 0.12
tool 0.99 ± 0.02 0.60 ± 0.29
direction 0.70 ± 0.13 0.39 ± 0.09

TABLE XVI
CPU TIME IN SECONDS (MEAN ± STANDARD DEVIATION), AVERAGE NUMBER

OF GA INDIVIDUALS, GA GENERATIONS, RRHC RESTARTING LOOPS, AND

CHANGE ATTEMPTS/VARIABLE/LOOP

SGA GA RRHC

CPU time 14.28 ± 0.39 44.70 ± 0.37 42.51 ± 8.66
# GA individuals 40 100 –
# GA generations 14.83 19.50 –
# RRHC restarting loops – – 50
# change attempts/variable/loop – – 38.74

it is possible to realize that the mapping has produced a slight733

improvement in recognizing the character subject, even when734

the model is trained and evaluated in different stories. It might735

be due to the limited domain and the fusion of information from736

different sources, e.g., information from the language model,737

information encoded in the feature extraction (see Tables III–738

IX), and information encoded in the Bayesian model and in the739

constrained training. However, it is not possible to compare the740

performance of the other SRL rules with the mapping perfor-741

mance, since the PropBank annotation style is less specific than742

the annotation style assumed for the mapping.743

Regarding the processing time during the prediction stage,744

the exploitation of the properties (6) and (15) enables a quick745

mapping through GA. Moreover, our MAP algorithm seems746

consistent, in the sense that it presents a small standard devi-747

ation on the CPU time, as can be seen in Table XVI, which748

summarizes the mean and standard deviation values of the CPU749

time demanded to solve the MAP problem for the chosen sto-750

ries, running on the quadcore processor, by using our special751

formulation of GA, henceforward called SGA, and two base-752

line algorithms: the usual GA [without exploiting the properties753

given by (6) and (15)] and RRHC. In this experiment, the num-754

ber of GA individuals and the number of restarting loops (in755

the case of RRHC algorithm) were chosen aiming at overcom- 756

ing local minima, in such a way that the choice of the MAP 757

algorithm has no impact on the performance indices. However, 758

the choosing of the algorithm for MAP reasoning can strongly 759

affect the CPU time, which is the subject of our evaluation. 760

The advantage of SGA over the usual GA could be theoreti- 761

cally predicted by comparing (14) and (20). Regarding RRHC, 762

the major drawback seems to be the lack of an efficient meta- 763

heuristic. This issue implies a large standard deviation on the 764

distribution of the CPU time in experiments with repeated mea- 765

sures. The stop criterion of our RRHC implementation is based 766

on a tolerance value, i.e., a threshold on the number of change 767

attempts per variable without resulting improvement on the ob- 768

jective function; therefore, the CPU time can vary. It was also 769

observed that the hill climbing algorithm demands several at- 770

tempts to find a variable value that improves the objective func- 771

tion when the algorithm approaches a local optimum. 772

XI. CONCLUSION 773

In this paper, we introduced a framework to map text from 774

written stories to a specific low-level KR. This new framework 775

is able to reason with uncertainty, to integrate training from an- 776

notated data and constraints encoding information on mutually 777

exclusive values, beyond evidence from external sources, such 778

as information from the language model [20]. Similar to other 779

methods for structured prediction, the mapping aims at predict- 780

ing the most likely structure by searching in the large search 781

space derived from the exponential explosion of instance com- 782

binations, i.e., MAP inference. Therefore, an algorithm based on 783

GA, able to exploit some properties of the Bayesian network, see 784

(6) and (15), was developed for the statistical inference, requir- 785

ing less CPU time than the state-of-the-art tools while provid- 786

ing parallel scalability to deal with larger domains. Moreover, 787

the new constrained learning algorithm for Bayesian networks 788

yielded performance gains in predicting the most likely structure 789

given new sentences (unseen during the training). 790

APPENDIX A 791

This appendix details our special formulation for the MAP 792

optimization problem, whose fitness function is given by the 793

joint probability 794

P
(
x(−1,i) , x(0,j ) , . . . , x(Ni ,k) | f ; θ−1 , . . . , θNi

)

=

∏Ni

q=−1 eθq φq (x( q , i ) ,P aq ,f )
∏Ni

q=−1
∑|Sq |

h=1 eθq φq (x( q , h ) ,P aq ,f )
(8)

where x(q ,i) is the ith discrete value of the variable Xq and 795

Paq represents the state of the parents of node q. Therefore, 796

since log (·) is a monotonically increasing function on R+ , the 797

optimization task can be written as 798

{
x∗−1 , x

∗
0 , . . . , x

∗
Ni

}
= arg max

X−1 ,X 0 ,...,XN i

Π (9)
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where799

Π =
Ni∑

q=−1

θqφq (Xq , Paq , f)

−
Ni∑

q=−1

log
|Sq |∑

h=1

eθq φq (x( q , h ) ,P aq ,f ). (10)

The above optimization problem yields a search space, whose800

cardinality is
∏Ni

q=−1 |Sq |. Notice that it is possible to rewrite801

(9) and (10) as802
{
x̄∗1 , . . . , x̄

∗̄
M , x̃∗1 , . . . , x̃

∗
M̃

}
= arg max

X̄ 1 ,...,X̄ M̄ ,X̃ 1 ,...,X̃
M̃

Π1 + Π2

(11)
where803

Π1 =
M̄∑

q=1

θ̄q φ̄q

(
X̄q , Paq , f

)

−
M̄∑

q=1

log
|S̄q |∑

h=1

eθ̄q φ̄q (x̄( q , h ) ,P aq ,f ) (12)

and804

Π2 =
M̃∑

j=1

θ̃j φ̃j

(
X̃j , Paj , f

)

−
M̃∑

j=1

log
|S̃j |∑

h=1

eθ̃j φ̃j (x̃( j , h ) ,P aj ,f ). (13)

The search space of (11)–(13) has the same cardinality as (9)805

and (10), which can be rewritten as806

M̄∏

q=1

∣
∣S̄q

∣
∣

M̃∏

j=1

∣
∣
∣S̃j

∣
∣
∣ . (14)

Also note that Π2 is affected by the optimization of Π1 , since its807

parent nodes Paj belong to the set
{
X̄1 , . . . , X̄M̄

}
. However,808

it is possible to exploit the conditional independence property809

of the Bayesian network, since the variables X̃1 , . . . , X̃M̃
are810

conditionally independent given the values of X̄1 , . . . , X̄M̄ . For811

instance, in the case of our model, it is possible to state that812

Xi ⊥⊥ Xj |X0 ∀i, j ∈ {1, . . . , Ni} , i �= j (15)

as can be seen in Fig. 2. The conditional independence enables813

the system to reduce the search space by carrying out the equiv-814

alent optimization problem815
{
x̄∗1 , . . . , x̄

∗̄
M

}
= arg max

X̄ 1 ,...,X̄ M̄

Π1 + Π2 (16)

where816

Π1 =
M̄∑

q=1

θ̄q φ̄q

(
X̄q , Paq , f

)

−
M̄∑

q=1

log
|S̄q |∑

h=1

eθ̄q φ̄q (x̄( q , h ) ,P aq ,f ) (17)

and 817

Π2 =
M̃∑

j=1

θ̃j φ̃j

(
x̃∗j , Paj , f

)

−
M̃∑

j=1

log
|S̃j |∑

h=1

eθ̃j φ̃j (x̃( j , h ) ,P aj ,f ) (18)

and x̃∗j is found by solving the following subproblem for j = 818

1, . . . , M̃ : 819

x̃∗j = arg max
X̃ j

θ̃j φ̃j

(
X̃j , Paj , f

)
(19)

The problem (16)–(19) exploits a small subspace of (9) and (10) 820

of cardinality given by 821

M̄∏

q=1

∣
∣S̄q

∣
∣

M̃∑

j=1

∣
∣
∣S̃j

∣
∣
∣ . (20)

Although the optimization problem (16) only explicitly repre- 822

sents the variables X̄1 , . . . X̄M̄ at each iteration, the algorithm 823

stores the optimal values of X̃1 , . . . , X̃M̃
, resulting from the 824

maximization (19), in order to provide the optimal instances of 825

the whole set of variables. 826

APPENDIX B 827

This appendix details our new constrained learning method 828

for Bayesian networks. Assuming that the training examples are 829

independent and identically distributed, it is possible to model 830

the training of the statistical model (3) as the maximization of 831

the joint probability 832

max
θ−1 ...θN i

Ne∏

k=1

P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)

(21)
where Ne is the cardinality of the training dataset, x(j,k) is the 833

target state of the jth variable in the kth semantic frame. 834

Since log (·) is a monotonically increasing function on R+ , 835

the optimization task (21) is equivalent to 836

max
θ−1 ,...,θN i

Ne∑

k=1

log P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)
.

(22)
Our constrained learning formulation replaces the usual train- 837

ing approach (22) by the constrained optimization problem 838

min
θ0 ...θM

−
Ne∑

k=1

log P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)

s.t. ξ ≥ P
(
x(n,i) | pa(n,k) , fk ; θn

)

×P
(
x(m,j ) | pa(m,k) , fk ; θm

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

(23)

where k is the index of the training example and I × J is a 839

set of exclusivity constraints, in the form (7), defined by the 840

user with the support of a user interface that makes it possible to 841

define subsets of constraints at once for all the training examples 842
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k = 1, . . . , Ne . Substituting the expression of the adopted log-843

linear model into (23) and applying the logarithm on both sides844

of the constraint yields845

min
θ−1 ...θN i

− ρ (θ−1 , . . . , θNi
)

s.t. log ξ ≥ θm φm

(
x(m,j ) , pa(m,k) , fk

)

− log
|Sn |∑

h=1

exp
(
θnφn

(
x(n,h) , pa(n,k) , fk

))

− log
|Sm |∑

h=1

exp
(
θm φm

(
x(m,h) , pa(m,k) , fk

))

+ θnφn

(
x(n,i) , pa(n,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

(24)
where846

ρ (θ−1 , . . . , θNi
) =

Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

−
Ne∑

k=1

Ni∑

q=−1

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

))
(25)

and Sn is the domain of the variable Xn , from which x(n,h) ∈847

Sn is the hth value belonging to the set Sn . Notice that (24)848

has a log-sum-exp term originated from the normalization of849

the probability distributions, which is repeated in the objective850

function (25) and constraints. Therefore, to save computational851

effort, the above problem can be formulated in a more compact852

form as853

min
θ−1 ,...,θN i

−
Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

s.t. log β ≥ θnφn

(
x(n,i) , pa(n,k) , fk

)

+ θm φm

(
x(m,j ) , pa(m,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

))
= 0 {∀k∀q

(26)
where β ∈ (0, 1] is an upper bound, provided by the user, for the854

exclusivity constraints. The second constraint of (26) encodes855

the normalization, i.e., the denominator, of the log-linear model856

of the probability distribution, valid for both the objective func-857

tion and exclusivity constraints. Notice that this constraint keeps858

the second term of (25) constant, while the objective function of859

(26) aims at increasing the first term of (25) (remembering that860

a minimization of a function multiplied by −1 is equivalent to861

its maximization). Therefore, both formulations maximize (25).862

Unfortunately, (26) is not a convex problem, since an equality863

defines a convex domain if, and only if, it is an affine function,864

which is not the case of the second constraint of (26). However,865

it is also possible to maximize (25) by maximizing its first term,866

while bounding its second term, instead to keep it constant, as867

in (26). To do so, one can replace the equality of the second868

constraint of (26) by an inequality while keeping the properties869

of a Bayesian model, since the likelihood given by (2) is nor- 870

malized, obtaining a convex subnormalized approximation of 871

(26) as follows: 872

min
θ−1 ,...,θN i

−
Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

s.t. 0 ≥ − log β + θnφn

(
x(n,i) , pa(n,k) , fk

)

+ θm φm

(
x(m,j ) , pa(m,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

)) ≤ 0 {∀k∀q .

(27)
The optimization problem (27) differs from (26) only by the 873

equality constraint, which was replaced by an inequality, turn- 874

ing (26) into a convex optimization problem, since both the 875

objective functions and the first constraint of (27) are com- 876

positions of affine functions, being convex, while the second 877

constraint is a log-sum-exp function, better known as a con- 878

vex function. However, the second constraint of (27) makes the 879

model subnormalized, which is not a problem, since the likeli- 880

hood given by the log-linear model has a normalization term in 881

the denominator. 882

Our framework offers two algorithms to solve (27), the inte- 883

rior point and the active set algorithms. To improve the precision 884

and speed up the optimization, it is provided the partial deriva- 885

tives of the objective function, henceforward called F , given 886

by 887

δF

δθq
= −

Ne∑

k=1

φq

(
x(q ,k) , pa(q ,k) , fk

)
(28)

for q = −1, . . . , Ni . Since the objective function is linear, the 888

derivatives are constant for any θ, so they are calculated only 889

once, before calling the optimization algorithm. 890

REFERENCES 891

[1] M. Palmer, D. Gildea, and N. Xue, “Semantic role labeling,” Synth. Lec- 892
tures Hum. Lang. Technol., vol. 3, no. 1, pp. 1–103, 2010. 893

[2] C. C. Aggarwal and C. X. Zhai, Mining Text Data. New York, NY, USA: 894
Springer Science & Business Media, 2012. 895

[3] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An anno- 896
tated corpus of semantic roles,” Comput. Linguist., vol. 31, no. 1, pp. 71– 897
106, 2005. 898

[4] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The berkeley framenet 899
project,” in Proc. 17th Int. Conf. Comput. Linguist., 1998, vol. 1, 900
pp. 86–90. 901
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Learning to Extract Action Descriptions
From Narrative Text

1

2

Oswaldo Ludwig, Quynh Ngoc Thi Do, Cameron Smith, Marc Cavazza, and Marie-Francine Moens3

Abstract—This paper focuses on the mapping of natural lan-4
guage sentences in written stories to a structured knowledge repre-5
sentation. This process yields an exponential explosion of instance6
combinations since each sentence may contain a set of ambigu-7
ous terms, each one giving place to a set of instance candidates.8
The selection of the best combination of instances is a structured9
classification problem that yields a high-demanding combinatorial10
optimization problem which, in this paper, is approached by a novel11
and efficient formulation of a genetic algorithm, which is able to ex-12
ploit the conditional independence among variables, while improv-13
ing the parallel scalability. The automatic rating of the resulting14
set of instance combinations, i.e., possible text interpretations, de-15
mands an exhaustive exploitation of the state-of-the-art resources16
in natural language processing to feed the system with pieces of17
evidence to be fused by the proposed framework. In this sense, a18
mapping framework able to reason with uncertainty, to integrate19
supervision and evidence from external sources, was adopted. To20
improve the generalization capacity while learning from a limited21
amount of annotated data, a new constrained learning algorithm22
for Bayesian networks is introduced. This algorithm bounds the23
search space through a set of constraints which encode informa-24
tion on mutually exclusive values. The mapping of natural language25
utterances to a structured knowledge representation is important26
in the context of game construction, e.g., in an RPG setting, as it27
alleviates the manual knowledge acquisition bottleneck. The effec-28
tiveness of the proposed algorithm is evaluated on a set of three29
stories, yielding nine experiments. Our mapping framework yields30
performance gains in predicting the most likely structured repre-31
sentations of sentences when compared with a baseline algorithm.32

Index Terms—Constrained learning, intelligent narrative, natu-33
ral language processing (NLP), structured prediction.34

I. INTRODUCTION35

THE narrative provides a model for communicating ex-36

perience and culture. Automatically extracting structured37

information from the narrative text is a challenging task, since38

the structured representation of connected events and behaviors39
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may involve common sense inferences based on background 40

knowledge, such as the semantic representation of objects, their 41

properties and behavior, the motivations and goals behind the 42

actions of characters, their emotional outcomes, and the actions 43

they can undertake in the environment. 44

The main research question of this paper is whether it is possi- 45

ble to provide a specific structured representation for narratives 46

by fusing information from different sources and bounding the 47

domain to a finite set of actions within the context of the current 48

narrative. In this sense, this paper reports the results of our work 49

on the knowledge representation (KR) for virtual worlds to an- 50

swer the question “Who did What to Whom, and How, When 51

and Where?”, similar to the current semantic role labeling (SRL) 52

algorithms [1]. However, the SRL aims at a general purpose 53

semantic representation, i.e., it aims at providing a semantic 54

representation at a higher level of abstraction, while our work 55

aims at instantiating semantic frame elements at a lower level of 56

abstraction, in an annotation style tailored for the narrative text. 57

Therefore, we model the problem as a structured prediction task 58

within a framework able to incorporate other sources of infor- 59

mation, besides the text and the language model, to deal with 60

the challenging task of instantiating semantic frame elements at 61

the lower level of abstraction. The statistical reasoning is car- 62

ried out by a special formulation of a genetic algorithm, which 63

exploits the conditional independence between variables. 64

This paper is organized as follows. Section II presents the 65

state of the art. Section III contextualizes the instantiation prob- 66

lem resulting from the translation. To ease the understanding 67

of the proposed framework, Section IV introduces the basic 68

ideas and a high-level diagram of the proposed approach with 69

its different constituent parts. Once the context and details of 70

the proposed framework have been explained, Section V pro- 71

vides the motivation for our approach. The adopted statistical 72

model and features are described in Sections VI and VII, respec- 73

tively, while the statistical reasoning and the learning method 74

are described in Sections VIII and IX, respectively. The natural 75

language processing (NLP) pipeline is evaluated in Section X. 76

Finally, Section XI presents the conclusions. 77

II. STATE OF THE ART 78

There have been efforts in information extraction from textual 79

sources, where the goal is to identify specific semantic compo- 80

nents, such as people, objects, and actions, whose types are 81

known ahead of time. Typically in information extraction [2], 82

semantic labels are defined beforehand, and data are collected 83

1943-068X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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to train machine learning classifiers. On the sentence level, there84

are several schemes for recognizing the basic semantic roles of85

the sentence constituents, i.e., the who, does what, where, when86

constituents, the most popular approaches being based on Prop-87

Bank [3] and FrameNet [4] labels and their associated annotated88

corpora [5]. This entails work on finding the arguments of a se-89

mantic frame that is verb-centered, i.e., where the action or state90

is expressed by a verb in the sentence, and noun-centered. Some91

works, such as [6], aim at determining the character intentions92

to provide the motivations for the actions performed. In the first93

instance, this information can be useful in supporting the narra-94

tive interpretation, but in a second instance it can also improve95

the accuracy in predicting the correct action [7]. Our current96

framework does not model the character intentions; however,97

it makes possible to model these intentions, besides complex98

temporal, spatial or causal relationships in its Bayesian network99

based modeling.100

On the discourse level, two recent tasks are the identification101

of events and entities that have a temporal or spatial impact and102

the linking of such events and entities with temporal or spa-103

tial relations. Researchers have been interested in building such104

models for decades [8], but recent progress has been encour-105

aged by the construction of corpora like the TimeBank, [9], and106

corpora with spatial information [10], which provide events and107

times beyond temporal and spatial relations, annotated on En-108

glish data. Researchers have also investigated methods for mod-109

eling sequences of events using recurrent neural networks [11].110

Another important task is assigning narrative roles to charac-111

ters in stories, since it can help in improving the accuracy of the112

structured representation of the narrative, e.g., by modeling the113

relationship between the characters through graphical models114

encoding latent variables representing the character role in the115

narrative. Valls-Vargas et al. [12] propose to combine NLP tech-116

niques with narrative domain knowledge in order to automati-117

cally identify characters and their roles in the story according to118

Propp’s theory [13], in which the character role is categorized119

into broad categories, such as hero, villain, dispatcher, donor,120

magical helper, prize, and false hero. In this sense, it is also121

important to identify mental affect states. The work [14] intro-122

duced the plot units as a structured KR for narrative stories. Plot123

units focus on the affect states of characters and the tensions be-124

tween them. To automatically produce plot unit representations125

for narrative text, some works use affect projection rules to map126

the affect states onto the characters in the story [15]. To do so,127

they create a lexicon consisting of patient polarity verbs that128

reflect world knowledge about desirable/undesirable states for129

animate beings. A large corpus of narratives deeply annotated130

according to Vladimir Propp’s theory was made available as a131

result of the work of Finlayson [16].132

The machine learning method adopted in this paper,133

i.e., Bayesian network, has yielded reliable results in mod-134

eling narrative reasoning. For instance, Lee et al. [17] intro-135

duce a framework for machine learning director agent strategies136

from observations of human-to-human interactions in an edu-137

cational interactive narrative. The work utilized a Wizard-of-Oz138

paradigm where human wizards directed participants through139

Crystal Island’s mystery storyline by dynamically controlling140

narrative events in the game. Interaction logs yielded train- 141

ing data to model the conditional probabilities of a dynamic 142

Bayesian network model of the human wizards’ directorial ac- 143

tions, achieving higher performance than naive Bayes and bi- 144

gram model techniques. 145

Text understanding also involves coreference resolution, i.e., 146

to identify when two mentions of an entity refer to the same 147

thing or person in the real world [18], for instance, recognizing 148

the entity to which him and it refer in the discourse, which is 149

context-dependent, so many different interpretations of a text 150

are possible. 151

III. OVERVIEW ON THE INSTANTIATION 152

The mapping framework focuses on the problem of low- 153

level concept instantiation, as required by the game engine that 154

generates the animations. The low-level concept instantiation 155

yields an exponential explosion of instance combinations, usu- 156

ally related to a large uncertainty, demanding a large amount 157

of information to select the optimal combination. Therefore, 158

the mapping framework bounds the search space according to 159

the story context, in order to decrease the number of feasible 160

combinations, and so the required amount of information. 161

In order to illustrate the problem, let us consider the sentence, 162

“Tuk helped his father take care of his hunting tools,” from the 163

story “The Day Tuk Became a Hunter” [19], which is placed in 164

an Eskimo community. By applying a current SRL algorithm, it 165

is possible to recognize the events, to help and to take care, and 166

their participants, Tuk and his father; however, to take care is a 167

high-level representation of action; it must be instantiated by a 168

low-level representation before providing it to the game engine 169

that generates the animation. 170

Assuming that the hunting tools of the Eskimos have blades, 171

the action/predicate “to take care” could be instantiated as to 172

sharpen, which combined with the action “to help” brings to 173

mind a scene in which Tuk and his father, named Nanuk, are 174

sharpening the tools together. Therefore, an acceptable transla- 175

tion could be the set of concurrent events, S = {SharpenItem 176

(Tuk, knife), SharpenItem(Nanuk, knife)}. 177

The above translation assumes that the system has informa- 178

tion about the social network, father (Nanuk, Tuk), the rela- 179

tionship among objects, kind of (knife, hunting tool), and the 180

relationship among actions, kind of (to sharpen, to take care). 181

Part of that background information is entered directly into the 182

system, such as the social network and the sets of characters, 183

objects, locations, and actions belonging to the narrative. The 184

kind of relationship among objects in different levels of KR are 185

currently given by a language model based on neural networks 186

[20]; the same approach was adopted for actions in different 187

levels of the KR. The relationship of pertinence between the ac- 188

tions and their arguments is encoded in a lookup table, in order 189

to set to zero the conditional probability of the unfeasible argu- 190

ments, saving processing time and improving the performance 191

on unseen data. 192

Successfully comprehending stories involves gathering a 193

much larger amount of background knowledge [21], which is 194

not within the scope of this paper. We are currently researching 195
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TABLE I
DIFFERENT HYPOTHESES FOR A SENTENCE INTERPRETATION

# sets of low-level actions and arguments

1 {SharpenItem(Tuk, knife), SharpenItem(Nanuk, knife)}
2 {SharpenItem(Tuk, knife), SharpenItem(Nanuk, spear)}
3 {SharpenItem(Tuk, spear), SharpenItem(Nanuk, knife)}
4 {SharpenItem(Tuk, spear), SharpenItem(Nanuk, spear)}
5 {CarryItem(Tuk, spear), SharpenItem(Nanuk, knife)}
6 {CarryItem(Tuk, spear), SharpenItem(Nanuk, spear)}
7 {CarryItem(Tuk, knife), SharpenItem(Nanuk, knife)}
8 {CarryItem(Tuk, knife), SharpenItem(Nanuk, spear)}
9 {SharpenItem(Tuk, knife), CarryItem(Nanuk, knife)}
10 {SharpenItem(Tuk, knife), CarryItem(Nanuk, spear)}
11 {SharpenItem(Tuk, spear), CarryItem(Nanuk, knife)}
12 {SharpenItem(Tuk, spear), CarryItem(Nanuk, spear)}
13 {CarryItem(Tuk, knife), CarryItem(Nanuk, knife)}
14 {CarryItem(Tuk, knife), CarryItem(Nanuk, spear)}
15 {CarryItem(Tuk, spear), CarryItem(Nanuk, knife)}
16 {CarryItem(Tuk, spear), CarryItem(Nanuk, spear)}
17 {SharpenItem(Tuk, knife)}
18 {SharpenItem(Tuk, spear)}
19 {CarryItem(Tuk, knife)}
20 {CarryItem(Tuk, spear)}

a semisupervised cross-modal knowledge extraction method in-196

volving visual and textual sources [22]; however, there are other197

approaches, such as the one proposed in [23], where the authors198

describe a method for acquiring background knowledge through199

crowdsourcing, demonstrating how games with a purpose can200

be used to acquire background knowledge.201

Even assuming that the system has all the information re-202

quired by the mapping process, the high computational cost,203

derived from the exponential explosion of combinations of en-204

tities and actions, is still a problem. For instance, let us assume205

that the system has only two instances of hunting tools and two206

instances of the action “to take care,” more specifically, assum-207

ing that the system has the information: kind of (knife, hunting208

tool), kind of (spear, hunting tool), kind of (to sharpen, to take209

care), and kind of (to carry, to take care), the sentence in question210

would yield 20 feasible hypotheses, as shown in Table I.211

According to the context, one of those hypotheses is likely to212

be more in accordance with the reasoning of the author of the213

story than the others. Therefore, the algorithm proposed here214

adopts a joint probability function for the actions and their ar-215

guments, in order to select the optimal hypothesis. The adopted216

joint probability function accepts features about the social net-217

work, the relationship among the arguments, which can be sum-218

marized by the set R = {A-Kind-Of, Is-A, Part-Of, Has-A},219

and the relationship among actions, which can be bounded to220

the subset Ra = {A-Kind-Of, Is-A}.221

IV. TOOL PIPELINE222

This section provides a top–down description of the tool223

pipeline and a functional description of the inputs and outputs224

of each stage.225

As an overview of our tool, the system receives as input the226

narrative text in addition to the narrative domain, i.e., the sets227

of allowable slot values for the variables representing the ac-228

tion and its arguments, i.e., characters/avatars, items/objects,229

Fig. 1. Pipeline of the narrative processing, showing the NLP preprocessing,
the mapping to KR, and animation rendering.

tools, and movement directions, in accordance with the ele- 230

ments defined in the graphical framework. The output is a three- 231

dimensional (3-D) animation of the provided text. The proposed 232

framework starts by extracting a set of cues from the text by us- 233

ing state-of-the-art algorithms for NLP (see the blocks Syntactic 234

Processing, SRL, and Coreference Resolution in Fig. 1). This set 235

of cues, henceforward represented by f , is composed by tokens 236

corresponding to syntactic and semantic labels, such as subject, 237

verb, and PropBank roles. This information is encoded in an 238

XML file that is provided to the Mapping to KR module, which 239

also receives the allowable variable values, i.e., the domain. 240

The Mapping to KR module extracts vector representations 241

from the set of cues, i.e., the labeled tokens, by using a recurrent 242

neural network based language model [20]. Having such vector 243

representations, features can be extracted from candidate values 244

of each discrete variable, as explained in Section VII. The set 245

of features is applied in modeling the probability distribution of 246

the output variables, which are arranged in a Bayesian network 247

(see Section VI), composing a structure, i.e., a semantic frame. 248

After training (see Section IX), the Bayesian network is used as 249

an objective function of a combinatorial optimization algorithm 250

that chooses the best combination of allowable variable values, 251

i.e., the best interpretation of the text, by maximizing the joint a 252

posteriori probability provided by such a Bayesian model (see 253

Section VIII). Therefore, the Mapping to KR module performs 254

statistical reasoning and outputs a set of instantiated semantic 255

frames, i.e., a structured KR of the narrative, as well as the 256

respective values of the joint a posteriori probability, which 257

are used by the next processing module to filter the irrelevant 258

semantic frames by thresholding. 259

The produced semantic frames are postprocessed by a simple 260

rule-based inference engine that applies a set of deterministic 261

rules encoding common sense information, such as “if X is 262

listening Y , then Y is talking.” Although this rule seems evident 263

for humans, it is challenging for machines. 264

V. MOTIVATION FOR OUR APPROACH 265

The instantiation problem posed here is a structured classifi- 266

cation problem, which can be carried out by two main groups 267
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of algorithms, generative and discriminative. Among the gen-268

erative methods, we highlight a probabilistic graphical model,269

i.e., Bayesian networks, while from the discriminative methods,270

we can highlight structured SVM (SSVM) and Markov random271

fields (MRF) [24].272

In the case of the generative approach, a joint probabilis-273

tic model over the set of variables is defined, learned, and274

inferred/instantiated by using a probabilistic inference algo-275

rithm, in our case a combinatorial optimization based on GA,276

in order to classify the most likely joint assignment to all277

of the labels simultaneously, exploiting the correlations between278

them and encoding prior knowledge into the model. Regarding279

the MRF, it is important to highlight some advantages of this280

model over the Bayesian network, such as the possibility of281

representing cyclic dependencies; however, Bayesian networks282

can represent induced dependencies, which are more relevant283

for our application and cannot be modeled by MRF.284

From the above options, a generative model was chosen, more285

specifically Bayesian Networks, since we have few annotated286

data, which demands the encoding of prior knowledge into the287

model, such as the causal relationship among variables. Re-288

garding the training method, this paper proposes a new training289

method for Bayesian networks that bounds the search space by290

using human knowledge, as detailed in Section IX, which is291

an alternative approach to the margin-maximizing properties of292

SSVM. However, the proposed training method is lighter than293

the SSVM training, which is highly computationally demanding294

in the context of our application, since each training example295

yields a combinatorial optimization problem on an exponen-296

tially large search space. Notice that even applying the cutting297

plane algorithm [25] to determine the most violated constraint,298

the SSVM training yields a hard combinatorial optimization299

problem per training sample per iteration.300

Regarding the inference, in the case of Bayesian networks the301

decoding algorithm can exploit the sparsity of the model, i.e.,302

it can exploit the conditional independence between variables,303

as will be shown in Section VIII. The same is not possible for304

SSVM, in which there is no sparsity to be exploited, yielding305

a higher computational cost. Moreover, the combinatorial op-306

timization by GA, proposed here, plays an important role in307

giving parallel scalability to the inference system of any struc-308

tured classification algorithm. Note that the most computational309

demanding task is the calculation of the fitness value of the310

GA individuals, which can be carried out independently of each311

other, enabling the parallelization of the code by sharing tasks312

even among hundreds of processors.313

VI. STATISTICAL MODEL314

From the machine learning point of view, the proposed map-315

ping is the structured output prediction problem of learning a316

function317

h : F → X (1)

where F is the space of inputs, in our case the set of cues f318

extracted from the text through state-of-the-art NLP algorithms,319

and X is a space of multivariate and structured outputs, whose320

Fig. 2. Graphical model of the adopted mapping framework, in which X−1
represents the action of the previous semantic frame, X0 the action of the current
frame, and X1 , . . . , XN i

their arguments.

elements are semantic frames of which the arguments depend on 321

the predicate/action, which in turn depends on the predicate of 322

the previous frame, to improve the consistency in the course of 323

actions predicted by the mapping. Fig. 2 illustrates the adopted 324

graphical model. 325

The proposed mapping framework is based on log-linear 326

models of the conditional probabilities of the actions/predicates 327

and their arguments, where the variable X−1 represents the ac- 328

tion of the previous semantic frame, X0 the action of the cur- 329

rent frame, and X1 . . . XNi
their arguments, as can be seen 330

in Fig. 2. The variable values are represented here as x(q ,i) , 331

where q = −1, . . . , Ni is the index of the variable and i is 332

the index of its discrete value into the finite set of values Sq , 333

(q = −1, . . . , Ni). In this sense, the conditional probability of 334

the ith discrete value x(q ,i) of the qth variable Xq ∈ Sq , given 335

the state of its parents Paq , the set of cues f , and the adjustable 336

parameter vector θq , is modeled as follows: 337

P
(
Xq = x(q ,i) | Paq , f ; θq

)
=

eθq φq (x( q , i ) ,P aq ,f )
∑|Sq |

h=1 eθq φq (x( q , h ) ,P aq ,f )
(2)

where φq (·) is an m-dimensional feature function that extracts 338

features from the set of cues f , given the state of the variable 339

Xq and the state of its parents Paq , as detailed in Section VII. 340

Alternatively, φq (·) can be thought of as a compatibility function 341

that measures how compatible the set of cues f , the variable 342

value x(q ,i) , and the set of discrete values of its parents Paq 343

are. From a linear algebra point of view, φq (·) can also be 344

understood as a basis function parametrized by θq . 345

The variables are related by a Bayesian network; therefore, 346

it is possible to calculate the joint probability of the variables, 347

given the set of cues f and the set of adjustable parameters as 348

follows: 349

P (X−1 . . . XNi
| f ; θ−1 . . . θNi

)

=
Ni∏

q=−1

P (Xq | Paq , f ; θ−1 , . . . , θNi
) . (3)

VII. FEATURE EXTRACTION 350

The mapping algorithm extracts features by using cues pro- 351

vided by algorithms for SRL, part-of-speech tagging (POS), 352
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TABLE II
MOST LIKELY MEANING OF THE PROPBANK SEMANTIC ROLES

role description

A0 agent
A1 patient, theme
A2 indirect object, beneficiary, instrument, attribute, end state
A3 start point, beneficiary, instrument, attribute
A4 end point

coreference resolution, and a lookup table encoding word repre-353

sentations, extracted from a previously trained recurrent neural354

network based language model [20]. The lookup table, hence-355

forth, represented by g : D �→W maps each word w, defined356

in a dictionary D, which contains 82 390 words, to an 80-357

dimensional space W ⊂ R80 , where similar words tend to be358

close to each other, making it possible to perform analogical359

reasoning using simple vector arithmetic [20]. For example, it is360

possible to answer a question, such as “What is the word that is361

similar to small in the same sense as biggest is similar to big?”,362

by computing the vector w = g(biggest)− g(big) + g(small),363

and searching for the word with the smallest cosine distance to364

w, which, if the model was well trained, is smallest. In this365

section, we describe the SRL and coreference resolution tools366

used in this paper.367

A. Semantic Role Labeling368

We use the semantic parser from Lund university to detect369

semantic frames and their semantic roles under the PropBank370

formalism [26]. The algorithm assigns roles (from which the371

most frequent are A0–4, as can be seen in Table II) to sets of372

words, which are understood as arguments of the verb, assumed373

as the predicate; therefore, PropBank is a verb-oriented resource.374

That formalism also adopts modifier tags such as AM-LOC,375

about the location, and AM-DIR, about the direction, which are376

relevant for our mapping algorithm.377

B. Coreference Resolution378

We use the coreference resolution tool from the LIIR lab of379

KU Leuven [18] to extract the links between the characters and380

the pronouns in the text. That tool detects entities and entity381

mentions, creating links between them. For example, given the382

text “This is the story of a boy named Tuk who lived in the383

Arctic. He wanted to show that he could be brave by hunting for384

big animals like his father who was a great hunter,” the mentions385

“boy,” “tuk,” and the three pronoun mentions (He, he, his) are386

clustered as one entity, and the mentions “father” and “hunter”387

as the second entity.388

C. Features of the Current Action (X0)389

Let S be the set of the words belonging to the sentence,390

A0− 4 ⊂ D, AM− LOC ⊂ D, and AM− DIR ⊂ D be sets of391

words representing the respective SRL roles, S1 be the set of392

low-level instances of characters, S3–S5 be the sets of low-level393

instances objects/items, tools, and locations, respectively, all of394

TABLE III
DESCRIPTION OF THE FEATURES OF THE CURRENT ACTION (X0 )

# Description of the elements of φ
(
f , x( 0 , i )

)

φ1 z
(
g

(
x( 0 , i )

)
, g(v )

)
, where v is the verb given by SRL;

φ2 z
(
g

(
x(−1 , j )

)
, g

(
x( 0 , i )

))
, where x(−1 , j ) is the previous action;

φ3 and
(
transitive

(
x( 0 , i )

)
, A1 �= �)

, where A1 is given by SRL;
φ4 maxj

(
z

(
g

(
x( 0 , i )

)
, g (wj )

))
, where wj is the j th nonverb word;

φ5 z
(
g

(
x( 0 , i )

)
, g (v1 ) + g (v2 )

)
, where v1 and v2 are successive verbs

which are bounded by the story context. A 5-D feature function 395

φ(f, x(0,i)) is applied to model the probability of the current ac- 396

tion. That feature function receives the instances of the current 397

and previous actions and the set of cues f , which is composed 398

by the words of the sentence, the set A1 ∈ D, and the verbs 399

given by the PropBank-SRL. The action features are calculated 400

as summarized in Table III, where transitive(x(0,i)) = 1 if x(0,i) 401

is a transitive verb; otherwise, transitive(x(0,i)) = 0. The logi- 402

cal operator and(·, ·) = 1, if both arguments are true, otherwise 403

and(·, ·) = 0, and 404

z(a, b) =
aT b

‖a‖ ‖b‖ (4)

is the cosine similarity between two vectors a and b. 405

The first feature is the cosine similarity between the low-level 406

instance of action x(0,i) and the verb detected by the SRL, while 407

the second feature is the cosine similarity between x(0,i) and the 408

previous action x(−1,j ) to give consistency in the course of ac- 409

tions predicted by the mapping. The third feature returns the 410

consistency between the SRL labeling and the instance candi- 411

date, x(0,i) . More specifically, if the low-level action x(0,i) is 412

transitive, the SRL must detect an A1 role. The fourth feature 413

is the consistency between the instance candidate x(0,i) and the 414

context; more specifically, it is the similarity between the in- 415

stance x(0,i) and its most similar nonverb word in the sentence, 416

in the cosine sense. The last feature was included to aid the algo- 417

rithm in dealing with semantic frames in which the verb phrase 418

is presented as such, “Tuk takes care of his hunting tools.” In this 419

case, the algorithm adds the vector representations of the words 420

“takes” and “care,” in order to get the vector representation of 421

“takes care,” and compares the resulting vector with g
(
x(0,i)

)
422

[20]. 423

Let p : W �→ Γ ⊂ R2 be a function that outputs the 2-D prin- 424

cipal component analysis (PCA) projections, i.e., only the two 425

components with largest variance, for the set of word repre- 426

sentations W , given by the language model based on neural 427

networks g : D �→W , composing the mapping p ◦ g : D �→ Γ. 428

Therefore, to illustrate the idea behind the last action fea- 429

ture, Fig. 3 demonstrates the 2-D PCA representation, in Γ, 430

of the words “take” and “care,” beyond some verbs in a low- 431

level KR, and the vector composition p ◦ g (take care) = 432

p ◦ g (take) + p ◦ g (care). In an Euclidean sense, the near- 433

est low-level instances for “take care” are “sharp” and “carry,” 434

while the chosen instance would be “sharp,” since it has the 435

largest cosine similarity in relation to “take care.” 436



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

Fig. 3. 2-D PCA projection for the vector representation of the words “take”
and “care,” beyond some low-level action instances, in red, and the vector
composition p ◦ g (take care) = p ◦ g (take) + p ◦ g (care) in blue.

TABLE IV
DESCRIPTION OF THE FEATURES OF THE PREVIOUS ACTION (X−1 )

# Description of the elements of φ
(
f , x(−1 , i )

)

φ1 z
(
g

(
x(−1 , i )

)
, g(v )

)
, where v is the action given by SRL;

φ2 and
(

transitive
(
x(−1 , i )

)
, A1 �= �)

, where A1 is given by SRL;
φ3 maxj

(
z

(
g

(
x(−1 , i )

)
, g (wj )

))
, where wj is the j th nonverb word;

φ4 z
(
g

(
x(−1 , i )

)
, g (v1 ) + g (v2 )

)
, where v1 and v2 are successive verbs

D. Features of the Previous Action (X−1)437

As can be seen in Table IV, the features of the model of the438

previous action are the same as the features of the current action,439

except for the feature φ2 of Table III.440

E. Argument Features441

This paper adopts a KR scheme in which each action can have442

the following arguments: character subject x(1,l) ∈ S1 , charac-443

ter object x(2,l) ∈ S1 , object/item x(3,l) ∈ S3 , tool x(4,l) ∈ S4 ,444

and direction x(5,l) ∈ S5 .445

1) Character-Subject Features: Let T be a set containing all446

the tenses and persons of the verb to be, eq(·, ·) : D ×D �→447

{0, 1} be a binary function which returns 1 if its arguments are448

equal to each other, and 0, otherwise, and pos(·) : S0 �→ N+ be a449

function which returns the position, in the sentence, of the verb450

which was instantiated by the current low-level action x(0,i) .451

Therefore, the character-subject features can be summarized as452

found in Table V.453

The first feature returns a value larger than zero if the current454

instance, index l, belongs to the set A0, given by the SRL,455

i.e., it gives information about whether the instance is likely456

to be an agent. The second feature is about the consistency457

between the SRL labeling and the instance x(1,l) . This feature458

is particularly important when the SRL fails in detecting the459

A0, i.e., when A0 = �. Since the action demands a subject, the460

second feature was included to distinguish characters present in461

the sentence which are not present in A1 or A2, which are likely462

to be the character subject. The third feature returns how many463

TABLE V
DESCRIPTION OF THE CHARACTER-SUBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 1 , l )

)

φ́1
∑ |A0|

n = 1 eq
(
x( 1 , l ) , wn

)
, where wn ∈ A0;

φ́2 −∑ |A1∪A2|
n = 1 eq

(
x( 1 , l ) , wn

)
, where wn ∈ (A1 ∪ A2);

φ́3
∑ |S |

n = 1 eq
(
x( 1 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 n − k , where k = pos
(
x( 0 , i )

)
and n is the position of x( 1 , l ) ;

φ́5
∑ |S |

n = 1
∑ |T |

j = 1 eq (wn , tj ), where wn ∈ S , tj ∈ T ;

φ́6

(
1 − 2φ́5

)
φ́4 , a cross term.

TABLE VI
DESCRIPTION OF THE CHARACTER-OBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 2 , l )

)

φ́1
∑ |A1∪A2|

n = 1 eq
(
x( 2 , l ) , wn

)
, where wn ∈ (A1 ∪ A2);

φ́2 −∑ |A0|
n = 1 eq

(
x( 2 , l ) , wn

)
, where wn ∈ A0;

φ́3
∑ |S |

n = 1 eq
(
x( 2 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 2 , l ) ;

φ́5
∑ |S |

n = 1
∑ |T |

j = 1 eq (wn , tj ), where wn ∈ S , tj ∈ T ;

φ́6

(
1 − 2φ́5

)
φ́4 , a cross term.

TABLE VII
DESCRIPTION OF THE ITEM/OBJECT FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 3 , l )

)

φ́1
∑ |A2|

n = 1 eq
(
x( 3 , l ) , wn

)
, where wn ∈ A2;

φ́2 −∑ |A3|
n = 1 eq

(
x( 3 , l ) , wn

)
, where wn ∈ A3;

φ́3
∑ |S |

n = 1 eq
(
x( 3 , l ) , wn

)
, where wn ∈ S is the n th sentence word;

φ́4 z
(
g

(
x( 0 , i )

)
, g

(
x( 3 , l )

))
, where x( 0 , i ) is the current action;

φ́5 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 3 , l ) .

times the instance x(1,l) is present in the sentence, thus if its 464

output is zero, then x(1,l) is not the correct instance. The fourth 465

feature is about the position of the instance x(1,l) in relation 466

to the verb in question, i.e. ,the verb which corresponds to the 467

current low-level action instance x(0,i) . The fifth feature is a 468

cue of the passive voice usage, a situation in which the relative 469

positions of the subject and the verb may be inverted. The last 470

feature is a cross term between the fourth and fifth features, the 471

idea is to invert the sign of the distance φ́4 between x(1,l) and 472

the verb in the case of passive voice usage. The cross term is 473

required because the adopted log-linear model cannot compute 474

such nonlinear composition. 475

2) Character-Object Features: Table VI summarizes the 476

features extracted in modeling the probability function of the 477

character-object, which are similar to the ones extracted for the 478

character-subject, except for the inversion of the position of the 479

first two features and the inversion of the sign of the features φ́1 , 480

φ́2 , and φ́4 , which are adopted only for the sake of clarity, since 481

those changes make no difference for the training algorithm. 482

3) Item/Object Features: As can be seen in Table VII, the 483

first item/object feature is about the labeling of x(3,l) as be- 484

longing to A2 by the SRL, i.e., whether x(3,l) was labeled as 485

an indirect object or beneficiary. The second feature is about 486



IEE
E P

ro
of

LUDWIG et al.: LEARNING TO EXTRACT ACTION DESCRIPTIONS FROM NARRATIVE TEXT 7

TABLE VIII
DESCRIPTION OF THE TOOL FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 4 , l )

)

φ́1
∑ |A2|

n = 1 eq
(
x( 4 , l ) , wn

)
, where wn ∈ A2;

φ́2 −∑ |A3|
n = 1 eq

(
x( 4 , l ) , wn

)
, where wn ∈ A3;

φ́3
∑ |S |

n = 1 eq
(
x( 4 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́4 z
(
g

(
x( 0 , i )

)
, g

(
x( 4 , l )

))
, where x( 0 , i ) is the current action;

φ́5 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 4 , l ) .

TABLE IX
DESCRIPTION OF THE DIRECTION FEATURES

# Description of the elements of φ́
(
x( 0 , i ) , f , x( 5 , l )

)

φ́1
∑ |A4|

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ A4;

φ́2
∑ |AM−DIR|

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ AM− DIR;

φ́3 −∑ |A2∪A3|
n = 1 eq

(
x( 5 , l ) , wn

)
, where wn ∈ (A2 ∪ A3);

φ́4
∑ |S |

n = 1 eq
(
x( 5 , l ) , wn

)
, where wn ∈ S is the n th word;

φ́5 z
(
g

(
x( 0 , i )

)
, g

(
x( 5 , l )

))
, where x( 0 , i ) is the current action;

φ́6 k − n , where k = pos
(
x( 0 , i )

)
and n is the position of x( 5 , l ) .

the consistency between the SRL labeling and the assumption487

of x(3,l) . The third feature is about the presence of the current488

instance in the sentence. The fourth feature is about the con-489

sistency between the instance candidate x(3,l) and the context;490

more specifically, it is the similarity between the action x(0,i)491

and the current instance, in the cosine sense. The last feature is492

about the position of the instance x(3,l) in relation to the verb.493

4) Tool Features: As summarized in Table VIII, the features494

for the tool model are the same as the item/object features;495

however, the domain set is S4 despite S3 .496

5) Direction Features: The features adopted for the direction497

are similar to the location features; the first two features are498

about the SRL labeling, i.e., whether the instance is likely to be499

an end point or a direction (AM− DIR), while the third feature is500

useful when the SRL outputs a false negative of A4, i.e., when501

the information about the destination is present in the text, but502

the SRL returns A4 = �; therefore, if the instance is not a start503

point or an indirect object, it is likely to be a direction. The three504

last features are the same as those of the tool, as can be seen in505

Table IX.506

VIII. MAXIMUM A POSTERIORI (MAP) INFERENCE507

Given the graphical model, the problem of low-level concept508

instantiation can be understood as the task of finding the most509

likely configuration of its variables, known as the MAP problem.510

In this paper, this NP-hard problem [27] is formulated as a511

combinatorial optimization problem whose objective function512

is in mathematical form as follows:513

arg max
X−1 ,X 0 ,...,XN i

P (X−1 ,X0 , . . . , XNi
| f ; θ−1 , . . . , θNi

) (5)

where P (X−1 ,X0 , . . . , XNi
| f ; θ−1 , . . . , θNi

) is given by (3).514

This problem demands the evaluation of a large amount of hy-515

potheses; more specifically, taking into account the adopted log-516

linear distribution function, the computational time complexity517

of an exhaustive search would be O (nf × nm ), where nf is 518

the number of features of the log-linear distribution, n is the 519

average number of instances per variable, and m is the number 520

of variables. 521

The MAP problem has been approached using many meth- 522

ods, see [28] and [29]. We have approached this problem by 523

using a GA [30]. Similar to other algorithms for metaheuristic 524

optimization, the GA does not provide certificates of optimality; 525

however, in our case, a near optimal solution can be obtained in 526

a short time, since the GA provides parallel scalability because 527

the fitness of the GA individuals can be calculated indepen- 528

dently of one another. Moreover, our special GA formulation 529

exploits the sparsity of the Bayesian networks, i.e., the condi- 530

tional independence between the variables. 531

Resuming our notation, as we defined Paq as the set of 532

parents of the node q, modeled by its conditional distribu- 533

tion P (Xq |Paq ), similarly we define Chq as the set of chil- 534

dren of Xq . Our GA formulation exploits a BN property 535

that arises when Chq = ∅. In this case, the state of Xq does 536

not affect the conditional distribution of the other nodes, and 537

the optimization for the node q can be carried out indepen- 538

dently from the others, excepting the nodes belonging to the 539

set Paq , which affects the conditional distribution of node 540

q. Therefore, the GA formulation can be adapted to exploit 541

a smaller search space. To do so, we split our set of vari- 542

ables {X0 , . . . , XNi
} into two subsets: Ω = {X̃1 , . . . , X̃M̃

}, 543

where X̃i ∈ S̃i , i = 1, . . . , M̃ , are the variables whose sets 544

of children are empty, and Ψ = {X̄1 , . . . , X̄M̄ }, where X̄i ∈ 545

S̄i , i = 1, . . . , M̄ , are the variables that have, at least, one 546

child. 547

The combinatorial optimization by GA assumes as fitness 548

function the a posteriori probability (3), given by a Bayesian 549

network previously trained on annotated data. The GA has a 550

chromosome vector of dimension M̄ , in which each gene en- 551

codes the index of a state candidate of one of the variables 552

belonging to the set Ψ. The chromosomes of the initial popu- 553

lation are loaded in a uniform distribution, where the feasible 554

values of the ith gene are natural numbers bounded into the 555

interval [1, |Si |]. The evaluation of the fitness of each GA in- 556

dividual carries out a subsearching process to find the state of 557

the set of variables belonging to Ω that maximizes the fitness 558

function. This subsearching process can be carried out for each 559

variable individually, requiring less processing power. Details 560

on our formulation for this combinatorial optimization problem 561

can be found in Appendix A, see (16)–(19), which are solved 562

by Algorithm 1. 563

During the loop over generations, the fitness value Φind of each 564

individual ind is evaluated according to (17) and (18). Then, the 565

individuals are ranked according to their fitness values and the 566

crossover operator is applied to generate new individuals by 567

randomly selecting the parents by their ranks, according to the 568

random variable proposed in our previous work [31], in which 569

it is possible to set the selective pressure p. In our algorithm, 570

the usual crossover operation was modified in order to deal 571

with combinatorial optimization problems, namely, each gene 572

of a new individual is randomly taken from one of the parents. 573

This combinatorial optimization algorithm was adapted from 574
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Algorithm 1: Combinatorial Optimization by GA.
1: Input: p, S, D, W , f , Ω, Ψ, Npop: The selective

pressure p, the sentence S, the dictionary D, and its
respective word representations W , SRL and syntactic
features f , the sets of discrete variable values Ω, and
the number of GA individuals Npop, respectively.

2: Output: X∗, Φ∗: A vector with the indices of the
optimal states of the variables and the optimal value of
the fitness function (for frame filtering by thresholding),
respectively.

3: Generate a set with Npop chromosomes {Cr} of
dimension M̄ for the initial population, in which each
gene encodes the index of a state candidate of one of the
variables belonging to the set Ψ, randomly generated in
a uniform distribution, where the feasible values of the
ith gene are natural numbers bounded into the interval
[1, |Si |];

4: for generation = 1 : maxgener do
5: // Evaluating the population: //
6: for ind = 1 : Npop do
7: [x̄1 , . . . , x̄M̄ ]← Crind: load the variables X̄q ,

q = 1, . . . , M̄ , with the indices stored in the
chromosome of the current individual;

8: for j = 1 : M̃ do
9: Exhaustive search for x̃∗j according to (19);

10: end for
11: Substitute x̃∗1 , . . . , x̃

∗
M̃

and x̄1 , . . . , x̄M̄ into
(17) and (18) to have the current values of Π1
and Π2 ;

12: Φind ← Π1 + Π2 : storing the fitness of individual
ind;

13: end for
14: Rank the individuals according to their fitness Φind;
15: Store/update the genes of the best individual in Cr∗

and the last values of x̃∗1 , . . . , x̃
∗
M̃

into the output
vector X∗;

16: Store/update the best fitness value Φ∗;
17: // Performing the crossover: //
18: for k = 1 : Npop do
19: // Randomly selecting the indices of parents

by using the asymmetric distribution
proposed in [31]: //

20: ϑj ← random number ∈ [0, 1] with uniform
distribution, j = 1, 2;

21: parentj ← round
(
(Npop − 1) ep ϑ j −1

ep −1 + 1
)

,

j = 1, 2;
22: // Assembling the chromosome Crson

k : //
23: for m = 1 : M̄ do
24: Randomly select a parent (i.e., between

parent1 and parent2) to give the mth gene for
the kth individual of the new generation:

25: Crson
(k,m ) ← Cr(parent1 o r 2 ,m ) ;

26: end for
27: end for
28: end for

an algorithm for feature selection1 developed for our previous 575

work [32]. 576

Algorithm 1 returns the variable values that yield the largest 577

value of the fitness function, i.e., the most likely structured 578

representation of the current semantic frame, bounded by the 579

given domain. 580

This paper also contributes with a preprocessing method that 581

decreases the computational cost of the MAP estimation. Let 582

us consider a variable Xq whose set of parents is empty, i.e., 583

Paq = ∅, in the case of our model represented by the variable 584

X−1 (see Fig. 2). Since this paper adopts a threshold on the 585

joint a posteriori probability for rejecting semantic frames that 586

are unlikely to be represented by the adopted KR schema, it is 587

possible to speed up the combinatorial optimization by reducing, 588

in advance, the cardinality of the set of discrete values |Sq | of 589

Xq by exploiting the following property: 590

P
(
x(q ,i) |f ; θq

)

≥ P
(
x(1,i) , . . . x(q ,i) . . . , x(Ni ,k) | f ; θ1 , . . . θq . . . θNi

)
.

(6)

Notice that if P
(
x(q ,i) |f ; θq

)
is smaller than the adopted thresh- 591

old, the joint a posteriori probability, represented by the right- 592

hand side of (6), also is. Therefore, given the set of cues f , it 593

is possible to reject in advance all discrete values belonging to 594

the set Sq that yields P
(
x(q ,i) |f ; θq

)
smaller than the adopted 595

threshold, thus saving processing time during the combinatorial 596

optimization. 597

IX. MODEL TRAINING 598

This section introduces a new constrained learning algorithm 599

for Bayesian networks that yields a convex optimization prob- 600

lem. This algorithm makes it possible to include human knowl- 601

edge in the training, thus helping in dealing with the limited 602

amount of annotated data. 603

One of the ideas behind the mapping is to fuse information 604

within a constrained domain, by training the mapping on anno- 605

tated datasets of small cardinalities, only to adapt the algorithm 606

to a given context. Therefore, beyond having few features, and 607

so a small number of related parameters to be adjusted, the 608

constraining of the search space is a key issue in keeping the 609

generalization capacity. 610

Despite the popularity of the maximum margin principle [33] 611

and its problem-independent geometric constraints, the mapping 612

framework bounds the search space through a set of constraints 613

encoding information on mutually exclusive values, i.e., infor- 614

mation about the unlikeliness of some conjunctions of variable 615

states, or set of states, which are defined by the expert knowledge 616

of the user, such as animals cannot talk or use tools, generat- 617

ing several constraints resulting from the combination of all the 618

animals belonging to the domain and actions that they cannot 619

perform. Therefore, the mapping framework makes available a 620

friendly user interface to input information on mutually exclu- 621

sive values, henceforth called exclusivity constraints. These con- 622

straints are modeled in a statistical manner, i.e., for an ordered 623

1The original MATLAB code is available for download at MAT-
LAB Central, http://www.mathworks.com/matlabcentral/fileexchange/29553-
feature-selector-based-on-genetic-algorithms-and-information-theory.
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pair of variables, (Xm ,Xn ) having the values (x(m,i) , x(n,j ))624

and subject to the exclusivity constraint, the following constraint625

is assumed for each training example k:626

P
(
x(m,i) |pa(m,k) , fk ; θm

)
P

(
x(n,j ) | pa(n,k) , fk ; θn

) ≤ ξ

(7)

where pa(m,k) represents the state of the parents of Xm in627

the observation k, fk is the set of cues extracted from the same628

observation, and ξ is an upper bound on the probability of above629

conjunction that is set by the user. Notice that this constraint630

assumes that the larger the likelihood of x(m,i) , the smaller the631

likelihood of x(n,j ) . The user interface allows defining subsets632

of exclusivity constraints at once. To do so, the user only has633

to provide two sets of slot values, one for variable Xm and the634

other of the variable Xn . The system automatically generates635

the constraints by giving all the pairwise combinations of the636

values per training example, i.e., one constraint per pairwise637

combination per training example.638

The mathematical formulation of our new constrained learn-639

ing method is detailed in Appendix B.640

X. EXPERIMENTS641

In this section, the mapping algorithm is evaluated on three642

stories: “The Day Tuk Became a Hunter” [19], “The Bear and643

the Travelers,”2 and “The First Tears,”3 henceforth referred to644

as story#1, story#2, and story#3, respectively. The idea is to645

have nine experiments, by training and evaluating on different646

stories, in order to assess the generalization capacity of the647

mapping framework, besides its capacity in fitting the training648

data, i.e., by evaluating also in the same story in which the649

algorithm was trained, in order to have information about the650

bias error, enabling the analysis of the bias-variance tradeoff,651

avoiding data overfitting. Therefore, the procedure is guided by652

the following four steps:653

1) to input the domain of the training story (the set of char-654

acters, objects, tools and directions);655

2) to train the Bayesian network, i.e., to adjust the parameters656

of the log-linear distributions on the training story;657

3) to change from the domain of the training story to that of658

the testing story (inputting the set of characters, objects,659

tools, and directions belonging to the testing story);660

4) to evaluate the algorithm on the testing story with the661

parameters of the log-linear distributions previously ad-662

justed on the training story.663

Regarding the domain, story#1 yields a set S0 composed of664

88 possible actions, i.e., actions processable by the graphical665

framework, while story#2 yields |S0 | = 28 and story#3 yields666

|S0 | = 34. The adopted evaluation metrics were precision, re-667

call, and F1. Since we introduced a new annotation scheme668

directly related with the task of animation rendering, it was669

not possible to compare our work with existing works based670

on other annotation schemes [34]; however, this section reports671

comparative experiments with our special formulation of GA672

2http://fairytalesoftheworld.com/quick-reads/the-bear-and-the-travellers/.
3http://americanfolklore.net/folklore/2010/09/the_first_tears.html.

TABLE X
EXAMPLE OF THE SRL AND COREFERENCE RESOLUTION OUTPUTS

“He practiced using a spear and even knew how to cut up animals”

SRL output

Frame#1 pred:practiced; A0:He; A1:using a spear
Frame#2 pred:using; A0:He; A1:a spear
Frame#3 pred:knew; A0:He; A1:how to cut up animals; AM-ADV:even
Frame#4 pred:cut; A1:different animals

Coref. output

Frame #1 A0:Tuk
Frame #2 A0:Tuk

TABLE XI
EXAMPLE OF THE MAPPING OUTPUT

“He practiced using a spear and even knew how to cut up animals”

semantic frame #1

action char–subj char–obj obj/ item tool direction
to practice tuk none none spear none

semantic frame #4

action char–subj char–obj obj/ item tool direction
to cut tuk none animals knife none

for MAP reasoning against two baseline algorithms: the usual 673

GA and random-restart hill climbing (RRHC). 674

To contextualize the experiments, this section starts by 675

exemplifying the mapping output. According to our KR 676

scheme, the mapping output is a set of low-level instances of 677

actions/predicates and their respective instance-arguments per 678

semantic frame. Let us consider the sentence “he practiced using 679

a spear and even knew how to cut up animals.” From the SRL 680

and the coreference resolution for the pronouns, see Table X, 681

the mapping module recognizes two semantic frames which are 682

relevant, the first frame is ruled by the predicate “practiced” and 683

the second by the predicate “cut.” For each relevant semantic 684

frame, the system outputs the value of the predicate/action and 685

the set of argument values, as can be seen in the output example 686

of Table XI. 687

The information of Table XI is encoded in an XML file, 688

according to the XSD schema of Listing 2. 689

Notice that the mapping is able to infer some information 690

which is not present in the text, such as the tool used to cut 691

animals (see Table XI), due to the feature φ́4 of Table VIII 692

that exploits the language model, encoded in the lookup table 693

g : D →W , when computing the cosine similarity between the 694

action “to cut” and the tool “knife.” 695

To better evaluate the mapping results, we first evaluate the 696

outcome of the NLP algorithms. The performance of our coref- 697

erence tool [18] was assessed by using the measure defined 698

in the CoNLL 2011 coreference task, which is the average of 699

three widespread measures (MUC, B3 and CEAFe ). The re- 700

sult of the application of our coreference tool on the three sto- 701

ries was MUC = 0.918, B3 = 0.744, CEAFe = 0.516, and 702

Avg = 0.726. The results per role of the semantic role classifi- 703

cation are given in Table XII. 704
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Listing 1: The XSD schema definition of the output of
mapping to KR.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”mapping”>
<xs:complexType>
<xs:sequence>
<xs:element name=”sentence”>
<xs:complexType>
<xs:sequence>
<xs:element name=”action”>
<xs:complexType>
<xs:element name=”char-subj” type=”xs:string”/>
<xs:element name=”char-obj” type=”xs:string”/>
<xs:element name=”item” type=”xs:string”/>
<xs:element name=”tool” type=”xs:string”/>
<xs:element name=”direction” type=”xs:string”/>
<xs:element name=”JointProb” type=”xs:decimal”/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

TABLE XII
PERFORMANCE INDICES OF THE SEMANTIC ROLE CLASSIFICATION

Role precision recall F1

A0 0.78 0.72 0.75
A1 0.71 0.77 0.74
A2 0.48 0.50 0.49
AM-LOC 0.47 0.41 0.44
AM-TMP 0.65 0.63 0.64
AM-MNR 0.56 0.50 0.53
AM-DIR 0.75 0.47 0.58

Regarding the mapping trained with exclusivity constraints,705

Table XIII reports the experimental results obtained by combin-706

ing training and evaluation in different stories, while Table XIV707

summarizes the statistics on the F1 values reported in Table XIII708

for two situations: when the model is evaluated on the same story709

than the one on which it was trained, i.e., the ground truth, and710

when the model is evaluated in other stories. The results of Ta-711

ble XIV can be compared with the results obtained by using712

the mapping trained by the usual maximum likelihood method,713

summarized in Table XV.714

As can be seen in Table XIV, even the prediction of the715

action/predicate yields mistakes, due to the issues in associat-716

ing the verb(s) in the sentence with the actions belonging to717

the set of actions S0 ; moreover, predicting the best instance for718

comprehensive actions, such as “to take care,” which can be719

instantiated as “to sharpen” or “to carry,” is also a problem, as720

can be seen in the example of Table I. To deal with these issues,721

the mapping makes use of information from the context (see722

TABLE XIII
PERFORMANCE MAPPING TRAINED WITH EXCLUSIVITY CONSTRAINTS

frame elem. perf. index t r a in \ test story#1 story#2 story#3

action/predicate precision story#1 0.93 0.92 1.00
story#2 0.78 1.00 0.93
story#3 0.85 0.85 1.00

recall story#1 0.86 0.80 0.74
story#2 0.72 0.87 0.68
story#3 0.79 0.73 0.79

F1 story#1 0.89 0.86 0.85
story#2 0.75 0.93 0.79
story#3 0.82 0.79 0.88

character subject story#1 precision 0.96 0.85 0.93
story#2 0.80 0.92 0.87
story#3 0.84 0.85 1.00

recall story#1 0.86 0.73 0.68
story#2 0.71 0.80 0.68
story#3 0.75 0.73 0.74

F1 story#1 0.91 0.79 0.79
story#2 0.75 0.86 0.76
story#3 0.79 0.79 0.85

character object precision story#1 0.83 0.67 1.00
story#2 0.50 1.00 1.00
story#3 0.67 0.67 1.00

recall story#1 0.71 0.67 0.50
story#2 0.43 1.00 0.50
story#3 0.57 0.50 0.50

F1 story#1 0.77 0.67 0.67
story#2 0.46 1.00 0.67
story#3 0.62 0.57 0.67

item/object precision story#1 0.80 1.00 0.88
story#2 0.60 1.00 0.63
story#3 0.70 0.40 0.88

recall story#1 0.67 0.50 0.78
story#2 0.46 0.67 0.56
story#3 0.58 0.67 0.88

F1 story#1 0.73 0.67 0.83
story#2 0.52 0.80 0.59
story#3 0.63 0.50 0.88

tool precision story#1 1.00 – 1.00
story#2 0.44 – 0.50
story#3 0.78 – 1.00

recall story#1 0.90 – 1.00
story#2 0.40 – 0.33
story#3 0.70 – 1.00

F1 story#1 0.95 – 1.00
story#2 0.42 – 0.40
story#3 0.74 – 1.00

direction precision story#1 0.83 0.50 1.00
story#2 0.50 1.00 0.50
story#3 0.67 0.50 1.00

recall story#1 0.63 0.33 0.20
story#2 0.38 0.67 0.20
story#3 0.50 0.33 0.40

F1 story#1 0.72 0.40 0.33
story#2 0.43 0.80 0.29
story#3 0.57 0.40 0.57

feature φ4 of Table III) beyond information from the language 723

model, as illustrated in Fig. 3. Moreover, there are action in- 724

stances belonging to S0 , such as “to give,” which can be easily 725

represented in some occurrences, such as in the sentence “Tuk’s 726

father gave him a new knife,” but is unrepresentable in the case 727

of the sentence “Tuk’s father gave him many hunting tips.” 728

By taking into account the tight relationship between the role 729

A0 and the character subject, see Table II, and comparing the 730

F1 value of the role A0 in Table XII with the mean value of 731

F1 for the character subject (see the second line of Table XIV), 732
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TABLE XIV
F1 STATISTICS OF MAPPING TRAINED WITH EXCLUSIVITY CONSTRAINTS

(MEAN ± STANDARD DEVIATION)

Frame element Ground truth Train and test in different stories

action/predicate 0.90 ± 0.03 0.81 ± 0.04
character subject 0.87 ± 0.03 0.78 ± 0.02
character object 0.81 ± 0.17 0.61 ± 0.08
item/object 0.80 ± 0.08 0.62 ± 0.12
tool 0.98 ± 0.04 0.64 ± 0.29
direction 0.70 ± 0.12 0.40 ± 0.10

TABLE XV
F1 STATISTICS OF MAPPING TRAINED BY MAXIMUM LIKELIHOOD

(MEAN ± STANDARD DEVIATION)

Frame element Ground truth Train and test in different stories

action/predicate 0.91 ± 0.03 0.79 ± 0.05
character subject 0.87 ± 0.03 0.76 ± 0.02
character object 0.83 ± 0.15 0.57 ± 0.09
item/object 0.81 ± 0.08 0.59 ± 0.12
tool 0.99 ± 0.02 0.60 ± 0.29
direction 0.70 ± 0.13 0.39 ± 0.09

TABLE XVI
CPU TIME IN SECONDS (MEAN ± STANDARD DEVIATION), AVERAGE NUMBER

OF GA INDIVIDUALS, GA GENERATIONS, RRHC RESTARTING LOOPS, AND

CHANGE ATTEMPTS/VARIABLE/LOOP

SGA GA RRHC

CPU time 14.28 ± 0.39 44.70 ± 0.37 42.51 ± 8.66
# GA individuals 40 100 –
# GA generations 14.83 19.50 –
# RRHC restarting loops – – 50
# change attempts/variable/loop – – 38.74

it is possible to realize that the mapping has produced a slight733

improvement in recognizing the character subject, even when734

the model is trained and evaluated in different stories. It might735

be due to the limited domain and the fusion of information from736

different sources, e.g., information from the language model,737

information encoded in the feature extraction (see Tables III–738

IX), and information encoded in the Bayesian model and in the739

constrained training. However, it is not possible to compare the740

performance of the other SRL rules with the mapping perfor-741

mance, since the PropBank annotation style is less specific than742

the annotation style assumed for the mapping.743

Regarding the processing time during the prediction stage,744

the exploitation of the properties (6) and (15) enables a quick745

mapping through GA. Moreover, our MAP algorithm seems746

consistent, in the sense that it presents a small standard devi-747

ation on the CPU time, as can be seen in Table XVI, which748

summarizes the mean and standard deviation values of the CPU749

time demanded to solve the MAP problem for the chosen sto-750

ries, running on the quadcore processor, by using our special751

formulation of GA, henceforward called SGA, and two base-752

line algorithms: the usual GA [without exploiting the properties753

given by (6) and (15)] and RRHC. In this experiment, the num-754

ber of GA individuals and the number of restarting loops (in755

the case of RRHC algorithm) were chosen aiming at overcom- 756

ing local minima, in such a way that the choice of the MAP 757

algorithm has no impact on the performance indices. However, 758

the choosing of the algorithm for MAP reasoning can strongly 759

affect the CPU time, which is the subject of our evaluation. 760

The advantage of SGA over the usual GA could be theoreti- 761

cally predicted by comparing (14) and (20). Regarding RRHC, 762

the major drawback seems to be the lack of an efficient meta- 763

heuristic. This issue implies a large standard deviation on the 764

distribution of the CPU time in experiments with repeated mea- 765

sures. The stop criterion of our RRHC implementation is based 766

on a tolerance value, i.e., a threshold on the number of change 767

attempts per variable without resulting improvement on the ob- 768

jective function; therefore, the CPU time can vary. It was also 769

observed that the hill climbing algorithm demands several at- 770

tempts to find a variable value that improves the objective func- 771

tion when the algorithm approaches a local optimum. 772

XI. CONCLUSION 773

In this paper, we introduced a framework to map text from 774

written stories to a specific low-level KR. This new framework 775

is able to reason with uncertainty, to integrate training from an- 776

notated data and constraints encoding information on mutually 777

exclusive values, beyond evidence from external sources, such 778

as information from the language model [20]. Similar to other 779

methods for structured prediction, the mapping aims at predict- 780

ing the most likely structure by searching in the large search 781

space derived from the exponential explosion of instance com- 782

binations, i.e., MAP inference. Therefore, an algorithm based on 783

GA, able to exploit some properties of the Bayesian network, see 784

(6) and (15), was developed for the statistical inference, requir- 785

ing less CPU time than the state-of-the-art tools while provid- 786

ing parallel scalability to deal with larger domains. Moreover, 787

the new constrained learning algorithm for Bayesian networks 788

yielded performance gains in predicting the most likely structure 789

given new sentences (unseen during the training). 790

APPENDIX A 791

This appendix details our special formulation for the MAP 792

optimization problem, whose fitness function is given by the 793

joint probability 794

P
(
x(−1,i) , x(0,j ) , . . . , x(Ni ,k) | f ; θ−1 , . . . , θNi

)

=

∏Ni

q=−1 eθq φq (x( q , i ) ,P aq ,f )
∏Ni

q=−1
∑|Sq |

h=1 eθq φq (x( q , h ) ,P aq ,f )
(8)

where x(q ,i) is the ith discrete value of the variable Xq and 795

Paq represents the state of the parents of node q. Therefore, 796

since log (·) is a monotonically increasing function on R+ , the 797

optimization task can be written as 798

{
x∗−1 , x

∗
0 , . . . , x

∗
Ni

}
= arg max

X−1 ,X 0 ,...,XN i

Π (9)
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where799

Π =
Ni∑

q=−1

θqφq (Xq , Paq , f)

−
Ni∑

q=−1

log
|Sq |∑

h=1

eθq φq (x( q , h ) ,P aq ,f ). (10)

The above optimization problem yields a search space, whose800

cardinality is
∏Ni

q=−1 |Sq |. Notice that it is possible to rewrite801

(9) and (10) as802
{
x̄∗1 , . . . , x̄

∗̄
M , x̃∗1 , . . . , x̃

∗
M̃

}
= arg max

X̄ 1 ,...,X̄ M̄ ,X̃ 1 ,...,X̃
M̃

Π1 + Π2

(11)
where803

Π1 =
M̄∑

q=1

θ̄q φ̄q

(
X̄q , Paq , f

)

−
M̄∑

q=1

log
|S̄q |∑

h=1

eθ̄q φ̄q (x̄( q , h ) ,P aq ,f ) (12)

and804

Π2 =
M̃∑

j=1

θ̃j φ̃j

(
X̃j , Paj , f

)

−
M̃∑

j=1

log
|S̃j |∑

h=1

eθ̃j φ̃j (x̃( j , h ) ,P aj ,f ). (13)

The search space of (11)–(13) has the same cardinality as (9)805

and (10), which can be rewritten as806

M̄∏

q=1

∣
∣S̄q

∣
∣

M̃∏

j=1

∣
∣
∣S̃j

∣
∣
∣ . (14)

Also note that Π2 is affected by the optimization of Π1 , since its807

parent nodes Paj belong to the set
{
X̄1 , . . . , X̄M̄

}
. However,808

it is possible to exploit the conditional independence property809

of the Bayesian network, since the variables X̃1 , . . . , X̃M̃
are810

conditionally independent given the values of X̄1 , . . . , X̄M̄ . For811

instance, in the case of our model, it is possible to state that812

Xi ⊥⊥ Xj |X0 ∀i, j ∈ {1, . . . , Ni} , i �= j (15)

as can be seen in Fig. 2. The conditional independence enables813

the system to reduce the search space by carrying out the equiv-814

alent optimization problem815
{
x̄∗1 , . . . , x̄

∗̄
M

}
= arg max

X̄ 1 ,...,X̄ M̄

Π1 + Π2 (16)

where816

Π1 =
M̄∑

q=1

θ̄q φ̄q

(
X̄q , Paq , f

)

−
M̄∑

q=1

log
|S̄q |∑

h=1

eθ̄q φ̄q (x̄( q , h ) ,P aq ,f ) (17)

and 817

Π2 =
M̃∑

j=1

θ̃j φ̃j

(
x̃∗j , Paj , f

)

−
M̃∑

j=1

log
|S̃j |∑

h=1

eθ̃j φ̃j (x̃( j , h ) ,P aj ,f ) (18)

and x̃∗j is found by solving the following subproblem for j = 818

1, . . . , M̃ : 819

x̃∗j = arg max
X̃ j

θ̃j φ̃j

(
X̃j , Paj , f

)
(19)

The problem (16)–(19) exploits a small subspace of (9) and (10) 820

of cardinality given by 821

M̄∏

q=1

∣
∣S̄q

∣
∣

M̃∑

j=1

∣
∣
∣S̃j

∣
∣
∣ . (20)

Although the optimization problem (16) only explicitly repre- 822

sents the variables X̄1 , . . . X̄M̄ at each iteration, the algorithm 823

stores the optimal values of X̃1 , . . . , X̃M̃
, resulting from the 824

maximization (19), in order to provide the optimal instances of 825

the whole set of variables. 826

APPENDIX B 827

This appendix details our new constrained learning method 828

for Bayesian networks. Assuming that the training examples are 829

independent and identically distributed, it is possible to model 830

the training of the statistical model (3) as the maximization of 831

the joint probability 832

max
θ−1 ...θN i

Ne∏

k=1

P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)

(21)
where Ne is the cardinality of the training dataset, x(j,k) is the 833

target state of the jth variable in the kth semantic frame. 834

Since log (·) is a monotonically increasing function on R+ , 835

the optimization task (21) is equivalent to 836

max
θ−1 ,...,θN i

Ne∑

k=1

log P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)
.

(22)
Our constrained learning formulation replaces the usual train- 837

ing approach (22) by the constrained optimization problem 838

min
θ0 ...θM

−
Ne∑

k=1

log P
(
x(−1,k) , . . . , x(Ni ,k) | fk ; θ−1 , . . . , θNi

)

s.t. ξ ≥ P
(
x(n,i) | pa(n,k) , fk ; θn

)

×P
(
x(m,j ) | pa(m,k) , fk ; θm

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

(23)

where k is the index of the training example and I × J is a 839

set of exclusivity constraints, in the form (7), defined by the 840

user with the support of a user interface that makes it possible to 841

define subsets of constraints at once for all the training examples 842
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k = 1, . . . , Ne . Substituting the expression of the adopted log-843

linear model into (23) and applying the logarithm on both sides844

of the constraint yields845

min
θ−1 ...θN i

− ρ (θ−1 , . . . , θNi
)

s.t. log ξ ≥ θm φm

(
x(m,j ) , pa(m,k) , fk

)

− log
|Sn |∑

h=1

exp
(
θnφn

(
x(n,h) , pa(n,k) , fk

))

− log
|Sm |∑

h=1

exp
(
θm φm

(
x(m,h) , pa(m,k) , fk

))

+ θnφn

(
x(n,i) , pa(n,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

(24)
where846

ρ (θ−1 , . . . , θNi
) =

Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

−
Ne∑

k=1

Ni∑

q=−1

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

))
(25)

and Sn is the domain of the variable Xn , from which x(n,h) ∈847

Sn is the hth value belonging to the set Sn . Notice that (24)848

has a log-sum-exp term originated from the normalization of849

the probability distributions, which is repeated in the objective850

function (25) and constraints. Therefore, to save computational851

effort, the above problem can be formulated in a more compact852

form as853

min
θ−1 ,...,θN i

−
Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

s.t. log β ≥ θnφn

(
x(n,i) , pa(n,k) , fk

)

+ θm φm

(
x(m,j ) , pa(m,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

))
= 0 {∀k∀q

(26)
where β ∈ (0, 1] is an upper bound, provided by the user, for the854

exclusivity constraints. The second constraint of (26) encodes855

the normalization, i.e., the denominator, of the log-linear model856

of the probability distribution, valid for both the objective func-857

tion and exclusivity constraints. Notice that this constraint keeps858

the second term of (25) constant, while the objective function of859

(26) aims at increasing the first term of (25) (remembering that860

a minimization of a function multiplied by −1 is equivalent to861

its maximization). Therefore, both formulations maximize (25).862

Unfortunately, (26) is not a convex problem, since an equality863

defines a convex domain if, and only if, it is an affine function,864

which is not the case of the second constraint of (26). However,865

it is also possible to maximize (25) by maximizing its first term,866

while bounding its second term, instead to keep it constant, as867

in (26). To do so, one can replace the equality of the second868

constraint of (26) by an inequality while keeping the properties869

of a Bayesian model, since the likelihood given by (2) is nor- 870

malized, obtaining a convex subnormalized approximation of 871

(26) as follows: 872

min
θ−1 ,...,θN i

−
Ne∑

k=1

Ni∑

q=−1

θqφq

(
x(q ,k) , pa(q ,k) , fk

)

s.t. 0 ≥ − log β + θnφn

(
x(n,i) , pa(n,k) , fk

)

+ θm φm

(
x(m,j ) , pa(m,k) , fk

) {∀k∀(x(n , i ) ,x(m , j ) )∈I×J

log
|Sq |∑

h=1

exp
(
θqφq

(
x(q ,h) , pa(q ,k) , fk

)) ≤ 0 {∀k∀q .

(27)
The optimization problem (27) differs from (26) only by the 873

equality constraint, which was replaced by an inequality, turn- 874

ing (26) into a convex optimization problem, since both the 875

objective functions and the first constraint of (27) are com- 876

positions of affine functions, being convex, while the second 877

constraint is a log-sum-exp function, better known as a con- 878

vex function. However, the second constraint of (27) makes the 879

model subnormalized, which is not a problem, since the likeli- 880

hood given by the log-linear model has a normalization term in 881

the denominator. 882

Our framework offers two algorithms to solve (27), the inte- 883

rior point and the active set algorithms. To improve the precision 884

and speed up the optimization, it is provided the partial deriva- 885

tives of the objective function, henceforward called F , given 886

by 887

δF

δθq
= −

Ne∑

k=1

φq

(
x(q ,k) , pa(q ,k) , fk

)
(28)

for q = −1, . . . , Ni . Since the objective function is linear, the 888

derivatives are constant for any θ, so they are calculated only 889

once, before calling the optimization algorithm. 890
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