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Abstra
t. While Mer
ury allows destru
tive input/unique output modes whi
h

dire
t the 
ompiler to reuse memory, use of these modes is very 
umbersome for the

programmer. Moreover it does not �t the de
larative programming paradigm where

the programmer doesn't have to worry about the details of memory management.

The paper brie
y reports on some experiments with a prototype analyser whi
h

aims at dete
ting memory available for reuse. The prototype is based on the live-

stru
ture analysis developed by us for logi
 programs extended with de
larations.

Yet the major 
ontribution of this paper 
onsists of the development of the

prin
iples of a module based analysis whi
h are essential for the analysis of large

Mer
ury programs with 
ode distributed over many modules.

1 Introdu
tion

Logi
 programs do not have destru
tive assignment. It is one of the 
orner-

stones of their de
larativeness. However, the absen
e of destru
tive assign-

ment has an implementation 
ost; updating data stru
tures requires time


onsuming 
opying and leads to large memory 
onsumption. Prolog program-

mers have developed a bag of tri
ks to 
ir
umvent the restri
tion. Pure ones

based on the use of open ended data stru
tures su
h as di�eren
e lists, and

impure ones based on assert/retra
t or more eÆ
ient system spe
i�
 vari-

ants of built-ins with side e�e
ts. Those tri
ks are not available in Mer
ury

[15℄ whi
h has no impure built-ins and whose mode system ex
ludes the

use of open ended data stru
tures. As a 
onsequen
e, the straightforward

port of a Prolog appli
ation to Mer
ury does not always result in the an-

ti
ipated speed-up [20,19℄. While Mer
ury does provide destru
tive input |

unique output modes, their use is 
umbersome and does not �t the de
lar-

ative programming paradigm where the programmer doesn't have to worry

about memory management. Moreover, apart from input-output, destru
tive

updates are not part of the 
urrent standard distribution of Mer
ury. The

Mer
ury programmer has to plug in his own C-
ode doing the destru
tive

updates if that is really ne
essary for his appli
ation [20,19℄. Su
h pra
ti
e

may then 
on
i
t with optimisations done by the Mer
ury 
ompiler. These


on
i
ts 
an be prevented with the use of impure de
larations, but in pra
ti
e

this is quite diÆ
ult.

Mu
h better would be to have the 
ompiler perform the ne
essary reason-

ing for stru
ture reuse. A number of authors have 
onsidered this problem
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within single-assignment languages, in the 
ontext of logi
 programming lan-

guages [6,11,13℄, as well as fun
tional programming languages [2,9,17,18℄.

Some of the approa
hes involve spe
ial language 
onstru
ts (su
h as unique-

ness de
larations within Mer
ury) [1,15,21,22℄, others are based on 
ompiler

analyses [7,10℄. Mulkers et al. [14℄ have developed su
h an analysis for Pro-

log, however, the la
k of de
larations and the impurity of Prolog make it

diÆ
ult to integrate the analysis in a Prolog 
ompiler. In [4℄ Bruynooghe et

al. have adapted the analysis for a Mer
ury-like language with type, mode

and determinism de
larations. The 
urrent paper brie
y reports on a proto-

type implementation of a live-stru
ture analysis for Mer
ury. To a
hieve the

long term goal of integrating the analysis in the Mer
ury 
ompiler, a module

based analysis is ne
essary. The paper develops the 
on
epts of su
h an anal-

ysis where it suÆ
es that the analysis of a module has a

ess to the results

of a goal independent analysis of the imported predi
ates.

Se
tion 2 re
alls the basi
s of the work des
ribed in [4℄. Se
tion 3 reports

on the results obtained with our prototype analysis system. In se
tion 4 mod-

ule based liveness analysis is developed. We 
on
lude with a brief dis
ussion

in Se
tion 5.

2 Ba
kground

The goal of liveness analysis is to determine whi
h data-stru
tures are live at

what program points. Data-stru
tures whi
h do not belong to the set of live

stru
tures are so-
alled dead, and 
an then be seen as possible 
andidates

for reuse. Liveness analysis is based on the idea that within the 
ontext of

a predi
ate, a data-stru
ture 
an only be live if it will be needed during the

subsequent exe
ution of the program. More spe
i�
ally, a stru
ture is live at

some program point in a predi
ate if it is in forward use (the stru
ture or any

of its aliases are needed by the forward exe
ution of the program following

the program point), or in ba
kward use (i.e. the stru
ture or any of its aliases

are needed due to ba
ktra
king).

2.1 Abstra
t interpretation

The analysis system as presented in [4℄ is based on abstra
t interpretation [5℄

and uses the top-down framework of [3℄. Very brie
y, abstra
t interpretation

mimi
s 
on
rete exe
ution by repla
ing the program's operations on 
on-


rete data with abstra
t operations over data des
riptions. The analysis of

a predi
ate, given abstra
t information about the predi
ate's variables (so


alled 
all pattern), 
omputes abstra
t information for ea
h program point,

and a �nal abstra
t des
ription of the state of the variables at exit point (exit

pattern). For ea
h en
ountered predi
ate 
all, abstra
t information from the


aller's 
ontext is mapped unto information relevant for the 
alled predi
ate

(so 
alled pro
edure entry), thus obtaining the 
all pattern of that predi
ate.
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The 
alled predi
ate is then analysed w.r.t. this 
all pattern. The obtained

exit pattern will then be used to 
ompute the abstra
t state of the program

point following the 
all to this predi
ate in the 
aller's 
ontext (pro
edure

exit). The analysis uses �x-point iteration to 
ope with re
ursion.

2.2 Mer
ury

Mer
ury is a logi
 programming language provided with types, modes and

determinismde
larations. The language is strongly typed and it's type system

is based on a polymorphi
 many-sorted logi
[8℄. It's mode-system is su
h that

it does not allow the use of partially instantiated stru
tures.

Our analysis is performed at the level of the High Level Data Stru
-

ture (HLDS) 
onstru
ted by the Mer
ury 
ompiler. Within this stru
ture,

predi
ates are normalized, i.e. all atoms appearing in the program have dis-

tin
t variables as arguments, and all uni�
ations X = Y are expli
ited as

either (1) a test X == Y , (2) an assignment X := Y , (3) a 
onstru
tion

X ( f(Y

1

; : : : ; Y

n

), or (4) a de
onstru
tion X ) f(Y

1

; : : : ; Y

n

). Within this

HLDS, the atoms de�ning the body of a predi
ate are possibly reordered

w.r.t. the sour
e 
ode and based on the mode-information: the input vari-

ables of predi
ate-
alls must be instantiated, whereas output variables must

be free.

Note that a predi
ate 
an have more then one mode de
laration, yet in this

paper we will assume that predi
ates have exa
tly one mode de
laration

1

.

2.3 Notation

As reasoning about liveness involves reasoning about data-stru
tures, we will

�rst introdu
e some de�nitions and notations.

Types are of parti
ular importan
e to us. A type t (or if polymorphi


t(T

1

; : : : ; T

n

) with T

1

; : : : ; T

n

type variables) is de�ned by one or more type


onstru
tors whose arguments are either types or type variables (only the

type variables used in the type name 
an be used inside the 
onstru
tors). It

is well known that one 
an asso
iate a type tree with ea
h type.

Example 1. The polymorphi
 type list(T ) is de�ned as:

list(T) ---> [℄ ; [T|list(T)℄.

Its type graph is shown in Fig. 1.

Type sele
tors are used to sele
t a node in a type tree. � denotes the

empty sele
tor, and t

�

sele
ts the root node of t. With 


i

a type-
onstru
tor,

a sele
tor s expressed as the pair (


i

; j), sele
ts the j

th


hild of the 


th

i

node of

type t, whi
h we write as t

s

. The sele
ted 
hild itself 
an be of a type t

1

. With

1

This is no restri
tion of our system. If a predi
ate is de�ned with di�erent modes,

we 
an 
onsider ea
h of these modes as distin
t predi
ates
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list(T)

[ . ][]

T

Fig. 1. Type graph of list(T)

s

1

a sele
tor appli
able to t

1

we have: (t

s

)

s

1

= t

s:s

1

= t

s

1

1

, with s:s

1

being the


on
atenation of sele
tors s and s

1

. Two sele
tors, say s

1

and s

2

may sele
t

nodes from a type t whi
h have the same type. In su
h 
ase we say that t

s

1

and t

s

2

are equal. If a type t is re
ursive, and if the node 
orresponding to

some sele
tor s has type t, then t

s

is simpli�ed to t

�

. For example, in the


ontext of type list(T ), and using \." as list 
onstru
tor, list(T )

(:;2)

will be

redu
ed to list(T )

�

.

We de�ne the data-stru
ture X

s

, where X is a variable of type t, and s is

a sele
tor for this type, as the memory 
ell whi
h 
orresponds with the type

node t

s

. For our analysis, sele
tors will always be simpli�ed if possible. X

�

is


alled the top-level data-stru
ture of X.

Aliases are represented as pairs of data-stru
tures: (X

s

x

; Y

s

y

).

2.4 Liveness analysis

With the liveness analysis of [4℄, we derive for ea
h program point, the set of

data-stru
tures whi
h are live at that point.

The 
all pattern of a predi
ate 
all p(X

1

; : : : ; X

n

) whi
h is to be analysised

and where X

1

; : : : ; X

n

are the so-
alled head-variables of the 
all, 
onsists of a

set of data-stru
ture pairs (X

s

x

; Y

s

y

) expressing the possible aliases between

the head-variables (GA, global aliases), and a set of data-stru
tures relative

to the head-variables whi
h are known to be live due to the 
aller's 
ontext

(Live

0

). During analysis, ea
h program point i (pre
eding the 
urrent atom)

is annotated with the following abstra
t information:

� lo
al use, LU

i

: set of variables in lo
al use whi
h is the union of the set of

variables in lo
al forward use, LFU

i

, and in lo
al ba
kward use, LBU

i

.

Variables are in lo
al forward use if they 
an be a

essed by the atoms

following the 
urrent atom within the body of p. Variables are in lo
al

ba
kward use if they 
an be a

essed upon ba
ktra
king on one of the

atoms in the body of p, assuming that the 
urrent atom fails.

� lo
al aliases, LA

i

: set of data-stru
ture-pairs expressing whi
h sharing is

possible between the data-stru
tures representing the values of the bound

variables at the program point (and before exe
uting the 
urrent atom).
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A

ording to [4℄, the set of live data-stru
tures at program point i is then

expressed as:

Live

p

= L(LU

p

; LA

p

; GA;Live

0

) (1)

= Live

0

[

fX

�

jX 2 LU

p

g

[

(2)

fX

s

X

j(X

s

X

; Y

s

Y

) 2 Alt
los(GA;LA

p

) ^ Y 2 LU

p

g

[

8

>

>

<

>

>

:

X

s

X

1

�

�

�

�

�

�

�

�

(X

s

X

; Y

s

Y

) 2 Alt
los(GA;LA

p

) and

9s

1

; s

2

su
h that Y

s

1

2 Live

0

and

either s

Y

� (s

1

:s

2

) ^ s

X

1

� s

X

or (s

Y

:s

2

) � s

1

^ s

X

1

� (s

X

:s

2

)g

9

>

>

=

>

>

;

where Alt
los(A;B) is the alternating 
losure of two sets of aliases, i.e. the

set of aliases for whi
h there exists a path alternating between elements of A

and B. Intuitively, this expression states that data-stru
tures are live if they

are live due to the 
aller's environment { dire
tly (�rst term) or indire
tly

(last term) { or if they are live due to their forward or ba
kward use { again

dire
tly or indire
tly, resp. se
ond and third term.

Finally, the exit pattern for p will 
onsist of the set of aliases between the

head-variables after a 
all to p, and the set of head-variables whi
h are in

ba
kward use through p (if for example p is a nondeterministi
 predi
ate).

Within this setting, X

s

2 Live

i

expresses that the data-stru
ture X

s

is

live, but also that for any sele
tor s

0

, X

(s:s

0

)

is live too. For example, with

X of type list(T ), we might have: (1) X

�

2 Live

i

expressing that the list

top-
ell for X is live, but also all its subterms, thus that the whole list is live;

(2) X

(:;1)

2 Live

i

, X

�

62 Live

i

, expressing that only the elements of the list

are live, yet the ba
kbone of the list is not live.

A data-stru
ture X

s

is said to be available for reuse at some program

point i, if X

s

62 Live

i

. There is no 
onstraint on the 
hildren of X

s

, i.e. even

if, for some given s

0

, X

(s:s

0

)

2 Live

i

, yet X

s

62 Live

i

, X

s

will still be available

for reuse.

Just as in [4℄, we 
he
k if a top-level data-stru
ture X

�

be
omes avail-

able for reuse at the program-point prior to the de
onstru
tion of X (X )

f(X

1

; : : : ; X

n

)). We say that X

�


an be reused if X

�

is available for reuse,

and the de
onstru
tion X ) f(Z

1

; : : : ; X

n

) is followed by a 
onstru
tion

Y ( f(Y

1

; : : : ; Y

n

). An analysed predi
ate has dire
t reuse if the body of this

predi
ate 
ontains at least one de
onstru
tion-
onstru
tion pair for whi
h

the top-level data-stru
ture 
an be reused. A predi
ate is said to have in-

dire
t reuse if it's body 
ontains at least one 
all to a predi
ate whi
h has

dire
t/indire
t reuse.

Liveness analysis should be seen as a phase within the 
ompilationpro
ess,

therefore the terms analysis and 
ompilation will be used inter
hangeably in

the remainders of the paper.
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2.5 Using the analysis results

Liveness analysis indi
ates when a data-stru
ture X

s

be
ome available for

reuse, if at all. The most 
onvenient way to indi
ate this to the 
ompiler is to

insert a pragma reuse(X

s

) in the HLDS at the program point following the

de
onstru
tion where the availability for reuse of X

s

is de
ided. This pragma


ould then be used to provide true automati
 stru
ture reuse. The work of

Taylor [16℄ 
ould be adapted to make use of these pragma's instead of the

tedious hand-
oded destru
tive-input { unique output annotations. We will

not handle these issues here.

3 Experimental results thus far

We have implemented a prototype of a goal-dependent liveness analysis sys-

tem, 
overing most basi
 Mer
ury-language 
onstru
ts, su
h that a suÆ-


iently representative set of experiments 
ould be performed. The goal of

our experiments was to verify whether the analysis does dete
t reuse at the

expe
ted pla
es, and to obtain a �rst idea of the 
omputation 
ost. Our ben
h-

marks 
onsist of a set of pure a
ademi
 predi
ates (essentially list manipula-

tions) and a 
ouple of real-life modules. On
e we have support for modules

(se
tion 4) we plan to do more detailed experiments. Current results 
an be

found in [12℄, here only a summary is given.

Reuse Dete
tion Our experiments revealed that for most of the predi
ted

reuses, our analysis does indeed dete
t reuse. Some reuses are missed due to

our representation of aliases for re
ursive data-types as pointed out in the

next paragraph.

Consider the de
onstru
tion of a variable X of type list(T ): X ) [AjB℄.

Variable B will be aliased with the tail of X, whi
h leads to the alias:

(B

�

; X

(:;2)

). Within our analysis this is simpli�ed into: (B

�

; X

�

). The 
on-

sequen
e of this simpli�
ation is that whenever B

�

is live, the analysis will

derive that the entire stru
ture X

�

is live too, although in reality only the

tail of X is live, hen
e the possibility for a missed reuse of the top-level

list-
ell. A �rst remedy to this problem might involve a re�nement of our

alias-representation. However this 
an signi�
antly in
rease the analysis 
ost.

Another possible approa
h is to reorder the body of a predi
ate in su
h sense

that the de
onstru
tion is moved as 
losely as possible to the atom whi
h

truly uses the tail of the list, hen
e delaying the 
reation of the alias as mu
h

as possible.

Analysis 
ost Relating the time needed for the analysis of a module, T

a

, with

the time needed for 
ompiling this module without analysis, T




, we obtained

that in average T

a

=T




� 0:25. Taking into a

ount that while eÆ
ien
y was a


on
ern in the design of our prototype, it was sometimes sa
ri�
ed in favor of
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development ease and extendibility, this average relative 
ost seems a

ept-

able. Yet, our experiments also revealed some 
ases for whi
h the relative


ost was not a

eptable at all (T

a

=T




� 10). This high 
ost is mainly related

to the 
omplexity of the types used, as the following example will illustrate.

Consider a type t de�ning n fun
tors, whi
h all have the same arity m � 1,

and arguments of some same other type, then the number of possible sele
tors

will be equal to n �m. The 
omplexity of the alternative 
losure operation is

known to be exponential to this number of sele
tors. With in
reasing size of

n and m, it is evident that the global 
omputation 
ost be
omes unbearable.

Su
h situations should therefore be avoided as mu
h as possible. A possible

approa
h might 
onsist in arti�
ially redu
ing the number of sele
tors

2

, a

typi
al widening operation. This widening will indu
e possible loss of pre
i-

sion. Future work has to determine what the best tradeo� between 
ost and

pre
ision will be.

Yet, the main problem with the 
urrent prototype is it's la
k of support

for modules, whi
h is the subje
t of the se
ond and main part of this paper.

4 Towards a module based analysis

Modern programming languages allow large appli
ations to be distributed

over several modules, allowing separate 
ompilation of these. For the 
ompi-

lation of one module, only a small amount of information about the imported

modules is needed. This information is generated during the 
ompilation of

the latter modules, and is typi
ally stored in a separate �le. This is also the

model followed by Mer
ury.

While the goal-dependent liveness analysis system of se
tions 2 and 3

yields positive results, it does not mat
h with this model though, as in order

to fully optimize a predi
ate and the predi
ates it depends on, the full sour
e


ode is needed. It would also require reanalysis and possibly re
ompilation

of all the imported modules. Although the resulting 
ompiled 
ode will be

highly optimized, the 
ost of these 
onstant re
ompilations is unbearable.

Essentially module based analysis 
an be split into two subproblems:

intra-module optimization |safely analyse a given predi
ate with minimal

information about imported predi
ates| and inter-module optimization |

making safe de
isions on whether a predi
ate 
an use an optimized version

of an imported predi
ate or not. In se
tion 4.1 we dis
uss intra-module

optimization, so-
alled weak module support. Se
tion 4.2 introdu
es inter-

module optimization (strong module support), where also the 
on
ept of

goal-independent liveness analysis is de�ned. Finally, se
tion 4.3 
ombines

strong and weak module support into full module support.

2

e.g. by designating all arguments of a fun
tor at on
e by a unique sele
tor, thus

in a sense treating all arguments in the same way.
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4.1 Weak module support

Consider a predi
ate t of whi
h the body 
ontains a 
all to q, and where t

and q are de�ned in di�erent modules. q is said to be an external or imported

predi
ate w.r.t. the module in whi
h t is de�ned.

Let i be the program point in t before the 
all to q, and i+1 the program

point after the 
all to the external predi
ate. Then the set of live variables

at these program points 
an be expressed as:

Live

t

i

= L(LU

t

i

; LA

t

i

; GA

t

; Live

t

0

)

Live

t

i+1

= L(LU

t

i+1

; LA

t

i+1

; GA

t

; Live

t

0

)

As argued in [4℄, only the lo
al uses and aliases (LU

t

, LA

t

) are program-point

dependent.

Let's �rst 
onsider LU

t

i+1

for whi
h we have: LU

t

i+1

= LFU

t

i+1

[LBU

t

i+1

.

The forward use 
omponent, LFU

t

i+1

, is independent of q, as it simply 
on-

tains those variables whi
h are still used after this program point. On the

other hand, the ba
kward use 
omponent is not. Typi
ally, if q is a non-

deterministi
 predi
ate, then it will introdu
e additional variables in lo
al

ba
kward use. Yet, whether q introdu
es these additional variables or not

is totally independent of the variables whi
h are already in ba
kward use,

hen
e we 
an express LBU

t

i+1

as LBU

t

i+1

(LBU

t

i

; LBU

q

; : : :), where LBU

q

is the set of variables in lo
al ba
kward use due to q. The latter 
an be


omputed independently.

The lo
al aliases 
an similarlybe expressed in terms of the already existing

aliases, and those due to the external predi
ate. As stated in [4℄: LA

t

i+1

=

Alt
los(LA

t

i

; LA

q

), i.e. the set of lo
al aliases in a program point 
an be

approximated by the alternating 
losure between the already existing lo
al

aliases and the set of additional aliases 
reated by the pre
eding 
all. Again,

q's 
ontribution is totally independent of the already existing aliases, and 
an

therefore be derived independently.

In summary, in order to 
orre
tly analyse predi
ate t, the only information

needed about the external predi
ate q is: LBU

q

and LA

q

. This information is

independent of any spe
i�
 
all-pattern, and 
an therefore be derived during


ompilation of the module to whi
h q belongs (either by a dedi
ated analysis,

or as a result of a goal-independent liveness analysis as will be mentioned

later).

Note that here we are only interested in trying to optimize t, but not the

external predi
ates, hen
e the term weak module support.

4.2 Strong module support

Consider again a predi
ate t whi
h 
alls a predi
ate q, both being de�ned

in di�erent modules. Now suppose that a goal-dependent liveness analysis

of q under some arti�
ial initial abstra
t substitution, would reveal possible

reuse within q. We 
ould then 
reate multiple versions of q: one basi
 version
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without reuse, and a number of di�erent versions of q exploiting ea
h form of

dete
ted reuse

3

. For ea
h of these reuse-versions, we would have to express


onditions, so 
alled reuse 
onditions, whi
h would have to be veri�ed by the


aller in order to safely de
ide for a version of q with reuse or not. These


onditions 
ould then be saved into a separate �le, serving as interfa
e for

the module to whi
h q belongs, and avoiding herewith re
ompilation of that

module ea
h time it is imported into another module.

To a
hieve this, two questions must be answered. How is a module-

predi
ate, say q, to be analysed in order to derive maximal information given

minimal knowledge about the possible 
all patterns? This will lead us to

the 
on
ept of goal-independent liveness analysis. And how 
an we express


onditions for reuse? These 
onditions must be easy to derive, and to verify.

4.2.1 Goal-independent analysis A goal-dependent analysis of a pred-

i
ate 
onsists of analysing that predi
ate, given it's initial 
all pattern. This


all pattern 
onsists of a set of data-stru
tures related to the head variables

whi
h are known to be live anyway (Live

0

), and a set of aliases whi
h might

exist between the arguments with whi
h the predi
ate is 
alled (GA). Let R

1

be the number of opportunities for reuse dete
ted in this setting.

Consider another analysis of the same predi
ate, under the assumption

that no variables are known to be a priori live (Live

0

= ;), and no aliases

exist between the arguments (GA = ;). In su
h a setting stru
tures will only

be live depending on their lo
al use. If Live

0

and GA are not empty, then this

will always result in bigger live-sets. Therefore it is obvious that the analysis

will dete
t the maximal set of possible reuses, let R

max

be the size of this

set. We have: R

max

� R

1

. Yet, in this setting we risk to dete
t opportunities

for reuse whi
h are unrealisti
 and known to be seldom appli
able, resulting

in extra versions of the predi
ate of whi
h the usability is known to be small.

Indeed, Mer
ury is a moded language: every argument of a 
all is either input

or output. While examples 
an be found where even output variables might

be
ome 
andidates for reuse

4

, it is realisti
 to assume that the data-stru
tures


orresponding to the output variables are live within the 
ontext of the 
aller.

This leads us to a third possible analysis of the predi
ate, for whi
h Live

0


onsists of the top-
ell data-stru
tures of the output-arguments, and where

GA = ;. Let R

2

be the number of possible opportunities for reuse. We have:

R

max

� R

2

� R

1

. Here R

2

will re
e
t the maximal set of realisti
 reuses. We

de�ne this analysis setting as the goal-independent liveness analysis of the


onsidered predi
ate, as it is the most general pra
ti
al liveness analysis pos-

sible, and although the analysis is in fa
t a goal-dependent analysis (Se
t. 2),

3

Theoreti
ally, if n opportunities for reuse are dete
ted, 2

n

di�erent versions for

q 
an be provided. See se
tion 4.2.3 for pra
ti
al issues on this matter.

4

e.g. a predi
ate with two output arguments X and Y . In a �rst step X is 
on-

stru
ted, in a se
ond step Y is 
onstru
ted based on X. If X is not used within

the 
ontext of the 
aller, then Y 
ould be 
onstru
ted reusing data 
ells of X.
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the used 
all-pattern is fully independent of a true global goal-dependent

analysis one might perform.

In next se
tion we derive what extra information needs to be gathered

during this goal-independent analysis for expressing reuse 
onditions.

4.2.2 Expressing 
onditions for reuse In what follows, a 
omponent

is given a subs
ript i when its value depends on the program point i and

it is given a supers
ript gi or gd when its value di�ers between the goal

independent and the goal dependent analysis.

4.2.2.1 Dire
t reuse Let q be a predi
ate for whi
h a goal-independent anal-

ysis has been performed, and for whi
h exa
tly one opportunity for reuse has

been dete
ted: a variable, say X is de
onstru
ted, it's top-level X

�

be
omes

dead and 
an be reused in some following 
onstru
tion (dire
t reuse). Let i

be the program-point just before the de
onstru
tion, and Live

gi

i

the live set

at that program-point. For a goal-independent 
ase, we have:

Live

gi

i

= L(LU

i

; LA

i

; ;; Live

gi

0

) (3)

where Live

gi

0

solely 
omprises the output arguments of q. Note that LU and

LA are independent of the 
all pattern.

As reuse is dete
ted we must have that X

�

62 Live

gi

i

.

Consider the 
all pattern for q during a goal-dependent analysis of some

other predi
ate. The 
orresponding analysis obtains:

Live

gd

i

= L(LU

i

; LA

i

; GA

gd

; Live

gd

0

) (4)

Reuse is allowed if and only if X

�

62 Live

gd

i

.

Expressions 3 and 4 di�er only in their global 
omponents, so a brute

for
e approa
h to verify for reuse 
ould be as follows. At the end of the goal-

independent analysis, we simply save the lo
al 
omponents LU

i

and LA

i

.

When during a goal-dependent analysis q is 
alled, LU

i

and LA

i

of q 
an be

used to 
ompute Live

gd

i

with (2) (together with GA

gd

and Live

gd

0

from the


alling 
ontext). The reuse-version of q 
an be used if X

�

does not belong to

Live

gd

i

. Although 
on
eptually very easy, this method has 
ertain drawba
ks.

The body of q may 
ontain many lo
al variables, LU

i

and LA

i

may then be

relatively large sets. Computing Live

gd

i


an be
ome rather expensive. There-

fore we must examine whether the amount of information to be saved 
an be

redu
ed, as well as the 
ost of verifying reuse.

Comparing the expli
ited formulas (2) for Live

gi

i

and Live

gd

i

, and given

that X

�

62 Live

gi

i

, we 
an observe that X

�

62 Live

gd

i

only if the following is

true:

1. X

�

62 Live

gd

0

2. 6 9Y : (X

�

; Y

s

) 2 Alt
los(GA

gd

; LA

i

) ^ Y 2 LU

i
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3. 6 9Y : (X

�

; Y

s

Y

:s

) 62 Alt
los(GA

gd

; LA

i

) ^ Y

s

Y

2 Live

gd

0

We will now examine ea
h of these 
onditions.

Condition 1. To 
he
k 
ondition 1 during the goal-dependent analysis it

suÆ
es to know the name of the data-stru
ture whi
h might be reused. During

that analysis one simply needs to perform the pro
edure-entry operation, thus

obtaining Live

gd

0

, and verify whether the 
on
erned data-stru
ture belongs

to this set or not.

Condition 2. We will �rst start with some lemma's and de�nitions. Se-

le
tors whi
h are irrelevant for the dis
ussion are omitted.

Let H

in

be the set of input head-variables of the external predi
ate q. Let

var(E) denote the set of variables in the expression E

5

.

Lemma 1. var(GA

gd

) � H

in

.

By de�nition, GA

gd

relates only to head-variables. Due to Mer
ury's moded

nature, output variables are known to be free variables at pro
edure-entry,

hen
e no aliases with these 
an exist at that moment.

Lemma 2. 6 9�; � : (�; �) 2 LA

i

^ �; � 2 H

in

.

Mer
ury does not allow partially instantiated variables to be passed around,

hen
e no new aliases between input variables 
an be 
reated by the 
alled

pro
edure.

Re
all that given two set of aliases A and B, Alt
los(A;B) will 
onsist

of aliases (�; �) for whi
h there exists a path (with length � 1) of aliases

alternating between elements of A and B (see [4℄).

De�nition 41 Given sets of aliases A and B, Alt
los

i

(A;B) is the set of

aliases for whi
h there exists a path of length i alternating between aliases of

A and B.

Note that Alt
los

1

(A;B) = A [B.

Example 2. Let A = f(a; b); (
; d)g, and B = f(a; 
); (d; e)g. To 
ompute

Alt
los

1

(A;B), one needs to 
onstru
t only paths of length 1, therefore

Alt
los

1

(A;B) = A[B. The only paths of length 2 are: (b; a)� (a; 
); (d; 
)�

(
; a); (
; d)� (d; e). Therefore Alt
los

2

(A;B) = f(b; 
); (d; a); (
; e)g. Paths of

length 3: (b; a) � (a; 
) � (
; d); (e; d)� (d; 
)� (
; a), thus Alt
los

3

(A;B) =

f(b; d); (e; a)g. Finally the only path of lenght 4 is: (b; a)�(a; 
)�(
; d)�(d; e)

and Alt
los

4

(A;B) = f(b; e)g.

De�nition 42 Given sets of aliases A and B, Alt
los

�i

(A;B) is the set of

aliases for whi
h there exists a path of length � i alternating between aliases

of both sets.

5

If E is a variable with a sele
tor, say X

s

x

, we will use the notation: E 2 Set,

instead of var(E) � Set, where Set represents some set of variables
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Note that Alt
los

�i

(A;B) = Alt
los

i

(A;B) [Alt
los

�i+1

(A;B).

Lemma 3. The paths generated for the 
omputation of Alt
los

3

(GA

gd

; LA

i

)

will have the shape L

1

� G� L

2

, where L

f1;2g

2 LA

i

and G 2 GA

gd

.

Suppose a path G

1

� L � G

2

, where G

f1;2g

2 GA

gd

and L 2 LA

i

, would

have been generated for Alt
los

3

(GA

gd

; LA

i

). Given that var(GA

gd

) � H

in

(lemma1), su
h path would imply: var(L) � H

in

, whi
h 
ontradi
ts lemma2.

Lemma 4. Alt
los

�4

(GA

gd

; LA

i

) = ;.

Indeed, ea
h alternating path of length � 4 will have to 
ontain a subpath

of shape G

1

� L�G

2

, with G

f1;2g

2 GA

gd

and L 2 LA

i

, yet this was shown

to be impossible.

Lemma 5. Let LA

i

j

H

in

be the subset of aliases (�; �) of LA

i

for whi
h either

� or � belongs to H

in

. Alt
los(GA

gd

; LA

i

) = Alt
los(GA

gd

; LA

i

j

H

in

).

This is again a dire
t 
onsequen
e of the �rst two lemma's.

Using these lemma's and de�nitions, we 
an reformulate and split 
ondi-

tion 2 for reuse as:

6 9Y : (X

�

; Y

s

) 2 GA

gd

^ Y 2 LU

i

(5)

6 9Y : (X

�

; Y

s

) 2 LA

i

^ Y 2 LU

i

(6)

6 9Y : (X

�

; Y

s

) 2 Alt
los

2

(GA

gd

; LA

i

j

H

in

) ^ Y 2 LU

i

(7)

6 9Y : (X

�

; Y

s

) 2 Alt
los

3

(GA

gd

; LA

i

j

H

in

) ^ Y 2 LU

i

(8)

Note that var(GA

gd

) � H

in

, therefore we 
an limit the veri�
ation of (5)

for all Y belonging to LU

i

j

H

in

, i.e. the subset of LU

i

related to input head-

variables only.

Expression (6) is always satis�ed. Indeed, suppose that there would be

su
h a Y 2 LU

i

for whi
h (X

�

; Y

s

) 2 LA

i

, then a

ording to (2) for Live

gi

i

,

we would have X

�

2 Live

gi

i

, whi
h 
ontradi
ts our starting point.

Expression (7) is equivalent to the statement: 6 9�; Y : (X

�

; �)� (�; Y

s

) 2

set of paths formed in Alt
los

2

(GA

gd

; LA

i

j

H

in

) and Y 2 LU

i

. This 
ondition


an be split in two parts: (X

�

; �) either belongs to GA

gd

or LA

i

j

H

in

:

� 69� : (X

�

; �) 2 GA

gd

^(�; Y

s

) 2 LA

i

j

H

in

^Y 2 LU

i

. The third 
omponent

in (2) for Live

gi

i

is exa
tly f�j(�; Y

s

) 2 LA

i

j

H

in

^ Y 2 LU

i

g, whi
h

we denote as Live3

gi

i

. Note that as GA

gd

relates to input variables, we


an limit � by requiring it to belong to H

in

. Hen
e, with Live3

gi

i

j

H

in

de�ned as the set of input head-variables belonging to Live3

gi

i

, we obtain:

6 9� : (X

�

; �) 2 GA

gd

^ � 2 Live3

gi

i

j

H

in

.

� 6 9� : (X

�

; �) 2 LA

i

j

H

in

^ (�; Y

s

) 2 GA

gd

^ Y 2 LU

i

. A

ording to

lemma 1, Y 2 H

in

. Here we are only interested in lo
al aliases related

to X

�

, we will denote this set as LA

i

j

H

in

;X

�

. We obtain: 6 9� : (X

�

; �) 2

LA

i

j

H

in

;X

�

^ (�; Y

s

) 2 GA

gd

^ Y 2 LU

i

j

H

in

.
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Using lemma 3, (8) is equivalent to: 6 9�; 
; Y : (X

�

; �) 2 LA

i

j

H

in

^

(�; 
) 2 GA

gd

^ (
; Y

s

) 2 LA

i

j

H

in

^Y 2 LU

i

. The last two terms imply that


 2 Live3

gi

i

. A

ording to lemma 1, we also have that f
; �g � H

in

. We


an further limit � by observing that if � 2 LU

i

, then X

�

2 Live

gi

i

(formula

(2)), whi
h 
ontradi
ts our starting point. Again we are only interested in

the set of lo
al variables 
on
erning X

�

. Hen
e we obtain: 6 9�; 
 : � 2 (H

in

n

LU

i

j

H

in

) ^ 
 2 Live3

gi

i

j

H

in

^ (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�; 
) 2 GA

gd

.

Condition 3. Using a very similar reasoning as for 
ondition 2, we 
an

derive that 
ondition 3 splits up into three parts, see table 1.

Summary. Condition 1 resulted in one expression to be veri�ed, 
ondi-

tion 2 yielded four 
he
ks to be made, 
ondition 3 added again three veri�
a-

tions, this brings us to a total of eight expressions to be veri�ed. Table 1 sum-

marizes them all. The information to be saved during the goal-independent

analysis is redu
ed to the name of the variable whi
h 
an be reused (X

�

), as

well as the following sets: LU

i

j

H

in

, Live3

gi

i

j

H

in

and LA

i

j

H

in

;X

�

. Note that

from these sets all information regarding lo
al variables has been �ltered out

(ex
ept for X

�

). The veri�
ations are simple proje
tions of sets, hen
e they

will be 
heap to verify.

Yet having to verify eight 
onditions ea
h time appears as a high 
ost to

pay. We 
an observe that if X 2 H

in

then LA

i

j

H

in

;X

�

= ;, and all 
onditions

related to this set will always be true, resulting in only four 
onditions to

be veri�ed. On the other hand, if X 62 H

in

, then there will never exist a

� su
h that (X

�

; �) 2 GA

gd

, whi
h eliminates the 
onditions depending on

this relation. We will also have X

�

62 Live

gd

0

. This also results in only four


onditions to be met. Therefore, pra
ti
ally, we will never have to verify

expli
itly all eight 
onditions, as only four of them will have to be veri�ed

ea
h time, the others being automati
ally ful�lled depending on whether

the reusable stru
ture is a head-variable or not. This is also summarized in

table 1.

Note that due to the a

ura
y of the derivation of the 
onditions, verify-

ing these small 
onditions, or verifying whether the reusable data-stru
ture

belongs to Live

gd

i

by 
omputing the latter from s
rat
h will, though with

di�erent 
omputation 
osts, yield exa
tly the same results, hen
e no loss of

pre
ision is introdu
ed at this level

4.2.2.2 Indire
t reuse Consider a predi
ate q

1

for whi
h a goal-independent

analysis has been performed. Suppose this analysis dete
ted indire
t reuse

with respe
t to some predi
ate q

2

. Let X

�

q

2

be the data-stru
ture whi
h q

2


laims to be reusable. A possible strategy for de�ning 
onditions of reuse

in terms of q

1


ould be to translate the data-stru
ture X

�

q

2

in terms of the

variables with whi
h q

2

has been 
alled, and express similar 
onditions as

above in terms of these variables. This translation 
an be based on the aliasing
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X

�

62 Live

gd

0

1

6 9Y : (X

�

; Y

s

) 2 GA

gd

^ Y 2 LU

i

j

H

in

2

6 9� : (X

�

; �) 2 GA

gd

^ � 2 Live3

gi

i

j

H

in

2

X 2 H

in

6 9Y : (X

�

; Y

s

y

:s

) 2 GA

gd

^ Y

s

y

2 Live

gd

0

3

6 9�; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;Y

s

) 2 GA

gd

^Y 2 LU

i

j

H

in

2

6 9�; 
; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;
) 2 GA

gd

^� 2 (H

in

n LU

i

j

H

in

) ^ 
 2 Live3

gi

i

j

H

in

2

6 9Y : (X

�

; Y

s

y

:s

) 2 LA

i

j

H

in

;X

�

^ Y

s

y

2 Live

gd

0

3

6 9�; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;Y

s

y

:s

) 2 GA

gd

X 62 H

in

^Y

s

y

2 Live

gd

0

3

Table 1. Summary of the expressions to be veri�ed in order to safely de
ide for

using the predi
ate version whi
h reuses X

�

or not. The last 
olumn refers to the


ondition (1, 2 or 3) of whi
h the expression has been derived.

information between X

q

2

and the head-variables of q

2

. Further work on this

part of reuse-veri�
ation is required.

4.2.3 Pra
ti
al issues A goal-independent analysis of a predi
ate might

reveal more than one opportunity for reuse. Ea
h of these opportunities 
or-

responds with a di�erent set of 
onditions to be ful�lled by the 
aller. Now, if

we want a 
ompile-time garbage 
olle
tion system whi
h truly exploits every

possible form of data-reuse, and suppose a goal-independent analysis of some

predi
ate reveals n opportunities, then we would have to generate 2

n

di�erent

versions, resulting in a real 
ode-explosion. Therefore, in the implementation

of real analysis systems, a tradeo� will have to be made between the size of

the 
ompiled 
ode and the number of reuses a
hieved. A possible strategy


ould 
onsist of only 
reating two versions of su
h a predi
ate: a �rst version

without reuse, and a se
ond version with every possible reuse foreseen. The


onditions whi
h have to be ful�lled by the 
aller of this predi
ate will be-


ome more severe, risking that reuse is only possible in a few 
ases. Future

work will have to determine whi
h strategies are feasible.

Another issue whi
h has not been mentioned yet is the problem of mu-

tually re
ursive modules. Although the theory developed in previous para-

graphs is independent of the module-dependen
ies whi
h might exist, pra
-

ti
ally speaking, mutually re
ursive modules will be a problem. Whatever

strategy one will use to handle su
h 
ases, it will always indu
e a 
ertain loss

of pre
ision.
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4.3 Full module support

Weakmodule support is possible ifLBU and LA is available for ea
h exported

predi
ate of a Mer
ury-module. As said, this information 
an be obtained by

a dedi
ated analysis.

Strong module support 
onsists of performing goal-independent analyses

of all exported predi
ates of the modules used. Su
h analyses yield informa-

tion on whether reuse is possible at all, and if so, provide the reuse 
onditions

to whi
h eventual 
aller's will have to 
omply in order to allow the use of

the reuse-version of the predi
ates. During a goal-independent analysis of a

predi
ate, the sets LBU and LA are being 
omputed anyway, therefore no

spe
ial analysis has to be foreseen to dedu
e these sets: it 
an all be 
omputed

during goal-independent liveness analysis.

While weak module support allows the dete
tion of possible reuses within

the body of a predi
ate using external predi
ates, strong module support

also enables us to safely de
ide whether it is allowed or not to use a reuse-

version of the used external predi
ates. Weak and strong module support are

therefore 
omplementary. Combining both we obtain a full modular analysis.

5 Con
lusion

We have implemented a prototype system for goal-dependent liveness analy-

sis of Mer
ury. Results obtained with this prototype have been very positive

(pre
ision as well as analysis 
ost), yet revealed two possible problems. First

of all, some potential reuses are missed due to our representation of re
ur-

sive data-stru
tures. In the presen
e of 
ompli
ated type-de�nitions, a se
ond

problem might o

ur, as the analysis risks to be
ome exponential. We have

brie
y mentioned possible solutions to both problems, suggesting that fur-

ther optimization of basi
 goal-dependent liveness analysis will have to be

done. Generally, a tradeo� will always have to be made between analysis 
ost

and pre
ision. Although the prototype already 
overs basi
 Mer
ury language


onstru
ts, it must be extended to 
over them all (su
h as higher-order pred-

i
ates and type-
lasses whi
h are not yet supported).

Even in the presen
e of a full optimal goal-dependent liveness analysis,

the potential of reuse-dete
tion 
an only be fully exploited if support for mod-

ular analysis is provided. In this paper, we introdu
ed the 
on
ept of weak

modular support, whi
h allows to analyse a predi
ate in a goal-dependent

way, even in the presen
e of external predi
ates. We also de�ned the notions

of strong module support and goal-independent liveness analysis, su
h that

when analysing a predi
ate whi
h 
alls an external predi
ate, we 
an safely

de
ide whether this predi
ate may use a reuse-version of this external pred-

i
ate or not. The information needed from the goal-independent analysis of

the latter, as well as the 
ost of making this de
ision have been redu
ed by

deriving 
lear-
ut 
onditions for reuse. In the 
ase of dire
t reuses, expressing

and verifying these 
onditions introdu
es no loss of pre
ision. This might be
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di�erent for indire
t reuses though, and has to be further investigated. Fur-

ther work should also show an optimal strategy for keeping the number of

reuse-versions of a predi
ate to a realisti
 level.

Our long term goal is to in
orporate a full 
ompile-time garbage 
olle
tion

system within the Mer
ury 
ompiler. This paper is already one step 
loser

towards su
h an e
ologi
al Mer
ury.

Referen
es

1. Yves Bekkers and Paul Tarau. Monadi
 
onstru
ts for logi
 programming.

In John Lloyd, editor, Pro
eedings of the International Symposium on Logi


Programming, pages 51{65, Cambridge, De
ember 4{7 1995. MIT Press.

2. A. Bloss. Path analysis and the optimization of non-stri
t fun
tional lan-

guages. Te
hni
al Report YALEU/DCS/RR-704, Department of Computer

S
ien
e, Yale University, New Haven, CT, 1988.

3. Mauri
e Bruynooghe. A pra
ti
al framework for the abstra
t interpretation of

logi
 programs. Journal of Logi
 Programming, 10(2):91{124, February 1991.

4. Mauri
e Bruynooghe, Gerda Janssens, and Andreas K�agedal. Live-stru
ture

analysis for logi
 programming languages with de
larations. In L. Naish, editor,

Pro
eedings of the Fourteenth International Conferen
e on Logi
 Programming

(ICLP'97), pages 33{47, Leuven, Belgium, 1997. MIT Press.

5. Patri
k Cousot and Radhia Cousot. Abstra
t interpretation: A uni�ed lat-

ti
e model for stati
 analysis of programs by 
onstru
tion or approximation

of �xpoints. In Pro
eedings of the Fourth ACM Symposium on Prin
iples of

Programming Languages, pages 238{252, Los Angeles, 1977.

6. Saumya K. Debray. On 
opy avoidan
e in single assignment languages. In

David S. Warren, editor, Pro
eedings of the Tenth International Conferen
e on

Logi
 Programming, pages 393{407, Budapest, Hungary, 1993. The MIT Press.

7. G. Gudjonsson and W. Winsborough. Update in pla
e: Overview of the Siva

proje
t. In D. Miller, editor, Pro
eedings of the International Logi
 Program-

ming Symposium, pages 94{113, Van
ouver, Canada, 1993. The MIT Press.

8. Fergus Henderson, Thomas Conway, Somogyi Zoltan, and Je�ery David. The

mer
ury language referen
e manual. Te
hni
al Report 96/10, Dept. of Com-

puter S
ien
e, University of Melbourne, February 1996.

9. S. B. Jones and D. Le M�etayer. Compile-time garbage 
olle
tion by sharing

analysis. In Pro
eedings of the Conferen
e on Fun
tional Programming Lan-

guages and Computer Ar
hite
ture '89, Imperial College, London, pages 54{74,

New York, NY, 1989. ACM.

10. Andreas K�agedal and Saumya Debray. A pra
ti
al approa
h to stru
ture reuse

of arrays in single assignment languages. In Lee Naish, editor, Pro
eedings of the

14th International Conferen
e on Logi
 Programming, pages 18{32, Cambridge,

July 8{11 1997. MIT Press.

11. Feliks Klu�zniak. Compile-time garbage 
olle
tion for ground Prolog. In

Robert A. Kowalski and Kenneth A. Bowen, editors, Pro
eedings of the Fifth

International Conferen
e and Symposium on Logi
 Programming, pages 1490{

1505, Seattle, 1988. MIT Press, Cambridge.



Towards memory reuse in Mer
ury 17

12. N. Mazur, G. Janssens, and M. Bruynooghe. Towards mem-

ory reuse for Mer
ury. Report CW278, Department of Com-

puter S
ien
e, Katholieke Universiteit Leuv en, June 1999.

http://www.
s.kuleuven.a
.be/publi
aties/rapporten/CW1999.html.

13. Anne Mulkers, Will Winsborough, and Mauri
e Bruynooghe. Analysis of shared

data stru
tures for 
ompile-time garbage 
olle
tion in logi
 programs. In

D. H. D. Warren and P. Szeredi, editors, Pro
eedings of the Seventh Inter-

national Conferen
e on Logi
 Programming, pages 747{762, Jerusalem, 1990.

MIT Press, Cambridge.

14. Anne Mulkers, Will Winsborough, and Mauri
e Bruynooghe. Live-stru
ture

data
ow analysis for Prolog. ACM Transa
tions on Programming Languages

and Systems, 16(2):205{258, Mar
h 1994.

15. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The exe
ution algo-

rithm of Mer
ury, an eÆ
ient purely de
larative logi
 programming language.

The Journal of Logi
 Programming, 29(1{3):17{64, O
tober-De
ember 1996.

16. Simon Taylor. Optimization of Mer
ury programs. Honours report, Department

of Computer S
ien
e, University of Melbourne, November 1998.

17. Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy

H�jfeld Olesen H�jfeld, Peter Sestoft, and Peter Bertelsen. Programming with

regions in the ML Kit. Te
hni
al Report D-342, Dept. of Computer S
ien
e,

University of Copenhagen, 1997.

18. Mads Tofte and Talpin Jean-Pierre. Region-based memory management. In-

formation and Computation, 132(2):109{176, 1997.

19. H. Vande
asteele. Constraint Logi
 Programming: Appli
ations and Implemen-

tation. PhD thesis, Department of Computer S
ien
e, K.U. Leuven, May 1999.

20. H. Vande
asteele, B. Demoen, and J. Van Der Auwera. The use of Mer
ury for

the implementation of a �nite domain solver. In I. de Castro Dutra, M. Carro,

V. Santos Costa, G. Gupta, E. Pontellia, and Silva F, editors, Nova S
ien
e

Spe
ial Volume on Parallelism and Implementation of Logi
 and Constraint

Logi
 Programming. Nova S
ien
e Publishers In
, 1999.

21. Philip Wadler. The essen
e of fun
tional programming. In Conferen
e Re
ord

of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin
iples

of Programming Languages, pages 1{14, Albequerque, New Mexi
o, January

1992.

22. Philip Wadler. How to de
lare an imperative (invited talk). In International

Logi
 Programming Symposium, Portland, Oregon, De
ember 1995. MIT Press.


