Towards memory reuse in Mercury

Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe

Department of Computer Science, K.U.Leuven
Celestijnenlaan, 200A, B-3001 Heverlee, Belgium
nancy,gerda,maurice@cs.kuleuven.ac.be

Abstract. While Mercury allows destructive input/unique output modes which
direct the compiler to reuse memory, use of these modes is very cumbersome for the
programmer. Moreover it does not fit the declarative programming paradigm where
the programmer doesn’t have to worry about the details of memory management.

The paper briefly reports on some experiments with a prototype analyser which
aims at detecting memory available for reuse. The prototype is based on the live-
structure analysis developed by us for logic programs extended with declarations.

Yet the major contribution of this paper consists of the development of the
principles of a module based analysis which are essential for the analysis of large
Mercury programs with code distributed over many modules.

1 Introduction

Logic programs do not have destructive assignment. It is one of the corner-
stones of their declarativeness. However, the absence of destructive assign-
ment has an implementation cost; updating data structures requires time
consuming copying and leads to large memory consumption. Prolog program-
mers have developed a bag of tricks to circumvent the restriction. Pure ones
based on the use of open ended data structures such as difference lists, and
impure ones based on assert/retract or more efficient system specific vari-
ants of built-ins with side effects. Those tricks are not available in Mercury
[15] which has no impure built-ins and whose mode system excludes the
use of open ended data structures. As a consequence, the straightforward
port of a Prolog application to Mercury does not always result in the an-
ticipated speed-up [20,19]. While Mercury does provide destructive input —
unique output modes, their use is cumbersome and does not fit the declar-
ative programming paradigm where the programmer doesn’t have to worry
about memory management. Moreover, apart from input-output, destructive
updates are not part of the current standard distribution of Mercury. The
Mercury programmer has to plug in his own C-code doing the destructive
updates if that is really necessary for his application [20,19]. Such practice
may then conflict with optimisations done by the Mercury compiler. These
conflicts can be prevented with the use of impure declarations, but in practice
this is quite difficult.

Much better would be to have the compiler perform the necessary reason-
ing for structure reuse. A number of authors have considered this problem

2 Nancy Mazur et al.

within single-assignment languages, in the context of logic programming lan-
guages [6,11,13], as well as functional programming languages [2,9,17,18].
Some of the approaches involve special language constructs (such as unique-
ness declarations within Mercury) [1,15,21,22], others are based on compiler
analyses [7,10]. Mulkers et al. [14] have developed such an analysis for Pro-
log, however, the lack of declarations and the impurity of Prolog make it
difficult to integrate the analysis in a Prolog compiler. In [4] Bruynooghe et
al. have adapted the analysis for a Mercury-like language with type, mode
and determinism declarations. The current paper briefly reports on a proto-
type implementation of a live-structure analysis for Mercury. To achieve the
long term goal of integrating the analysis in the Mercury compiler, a module
based analysis is necessary. The paper develops the concepts of such an anal-
ysis where it suffices that the analysis of a module has access to the results
of a goal independent analysis of the imported predicates.

Section 2 recalls the basics of the work described in [4]. Section 3 reports
on the results obtained with our prototype analysis system. In section 4 mod-
ule based liveness analysis is developed. We conclude with a brief discussion
in Section b.

2 Background

The goal of liveness analysis is to determine which data-structures are live at
what program points. Data-structures which do not belong to the set of live
structures are so-called dead, and can then be seen as possible candidates
for reuse. Liveness analysis is based on the idea that within the context of
a predicate, a data-structure can only be live if it will be needed during the
subsequent execution of the program. More specifically, a structure is live at
some program point in a predicate if it is in forward use (the structure or any
of its aliases are needed by the forward execution of the program following
the program point), or in backward use (i.e. the structure or any of its aliases
are needed due to backtracking).

2.1 Abstract interpretation

The analysis system as presented in [4] is based on abstract interpretation [5]
and uses the top-down framework of [3]. Very briefly, abstract interpretation
mimics concrete execution by replacing the program’s operations on con-
crete data with abstract operations over data descriptions. The analysis of
a predicate, given abstract information about the predicate’s variables (so
called call pattern), computes abstract information for each program point,
and a final abstract description of the state of the variables at exit point (exit
pattern). For each encountered predicate call, abstract information from the
caller’s context is mapped unto information relevant for the called predicate
(so called procedure entry), thus obtaining the call pattern of that predicate.

Towards memory reuse in Mercury 3

The called predicate is then analysed w.r.t. this call pattern. The obtained
exit pattern will then be used to compute the abstract state of the program
point following the call to this predicate in the caller’s context (procedure
erit). The analysis uses fix-point iteration to cope with recursion.

2.2 Mercury

Mercury is a logic programming language provided with types, modes and
determinism declarations. The language is strongly typed and it’s type system
is based on a polymorphic many-sorted logic[8]. It’s mode-system is such that
it does not allow the use of partially instantiated structures.

Our analysis is performed at the level of the High Level Data Struc-
ture (HLDS) constructed by the Mercury compiler. Within this structure,
predicates are normalized, 1.e. all atoms appearing in the program have dis-
tinct variables as arguments, and all unifications X = Y are explicited as
either (1) a test X == VY, (2) an assignment X := Y, (3) a construction
X < f(Y1,...,Ys), or (4) a deconstruction X = f(¥1,...,Y,). Within this
HLDS, the atoms defining the body of a predicate are possibly reordered
w.r.t. the source code and based on the mode-information: the input vari-
ables of predicate-calls must be instantiated, whereas output variables must
be free.

Note that a predicate can have more then one mode declaration, yet in this
paper we will assume that predicates have exactly one mode declaration '.

2.3 Notation

As reasoning about liveness involves reasoning about data-structures, we will
first introduce some definitions and notations.

Types are of particular importance to us. A type ¢ (or if polymorphic
t(T, ..., T,) with Ty, ..., T, type variables) is defined by one or more type
constructors whose arguments are either types or type variables (only the
type variables used in the type name can be used inside the constructors). It
1s well known that one can associate a type tree with each type.

Ezample 1. The polymorphic type list(T) is defined as:
1list(T) ———> [1 ; [TIlist(T)].
Its type graph is shown in Fig. 1.

Type selectors are used to select a node in a type tree. ¢ denotes the
empty selector, and ¢© selects the root node of t. With ¢; a type-constructor,
a selector s expressed as the pair (¢;, j), selects the 4 child of the ¢* node of
type ¢, which we write as t°. The selected child itself can be of a type t;. With

! This is no restriction of our system. If a predicate is defined with different modes,
we can consider each of these modes as distinct predicates

4 Nancy Mazur et al.

Fig. 1. Type graph of 1ist(T)

s1 a selector applicable to ¢ we have: (¢¥)%t = ¢5°1 = ¢{* with s.s; being the
concatenation of selectors s and s;. Two selectors, say s; and s, may select
nodes from a type t which have the same type. In such case we say that ¢*!
and t°2 are equal. If a type ¢ is recursive, and if the node corresponding to
some selector s has type t, then ¢ is simplified to t¢. For example, in the
context of type list(T), and using “.” as list constructor, list(T)?) will be
reduced to list(T)°.

We define the data-structure X°, where X 1s a variable of type ¢, and s is
a selector for this type, as the memory cell which corresponds with the type
node #*. For our analysis, selectors will always be simplified if possible. X€ is
called the top-level data-structure of X.

Aliases are represented as pairs of data-structures: (X?®= Y?v).

2.4 Liveness analysis

With the liveness analysis of [4], we derive for each program point, the set of
data-structures which are live at that point.

The call pattern of a predicate call p(X71, ..., X,) which is to be analysised
and where X1, ..., X,, are the so-called head-variables of the call, consists of a
set of data-structure pairs (X°=,Y®v) expressing the possible aliases between
the head-variables (G A, global aliases), and a set of data-structures relative
to the head-variables which are known to be live due to the caller’s context
(Liveg). During analysis, each program point ¢ (preceding the current atom)
is annotated with the following abstract information:

o local use, LU;: set of variables in local use which is the union of the set of
variables in local forward use, LFU;, and in local backward use, LBU;.
Variables are in local forward use if they can be accessed by the atoms
following the current atom within the body of p. Variables are in local
backward use if they can be accessed upon backtracking on one of the
atoms in the body of p, assuming that the current atom fails.

o local aliases, LA;: set of data-structure-pairs expressing which sharing is
possible between the data-structures representing the values of the bound
variables at the program point (and before executing the current atom).

Towards memory reuse in Mercury 5

According to [4], the set of live data-structures at program point ¢ is then
expressed as:

Live, = L(LU,, LA, GA, Liveg) (1)
Liveo | J{X°|X € LU} (2)
{X*X|(X*x, YY) € Altelos(GA, LA,) AY € LU}

(X*x YY) € Altclos(GA,LA,) and
ds1, 82 such that Y?®1 € Liveg and
either sy = (s1.52) A sx, = sx

or (sy.sz) = s1 Asx, = (sx.52)}

X#x

where Altclos(A, B) is the alternating closure of two sets of aliases, i.e. the
set of aliases for which there exists a path alternating between elements of A
and B. Intuitively, this expression states that data-structures are live if they
are live due to the caller’s environment — directly (first term) or indirectly
(last term) — or if they are live due to their forward or backward use — again
directly or indirectly, resp. second and third term.

Finally, the ex:it pattern for p will consist of the set of aliases between the
head-variables after a call to p, and the set of head-variables which are in
backward use through p (if for example p is a nondeterministic predicate).

Within this setting, X® € Live; expresses that the data-structure X° is
live, but also that for any selector s’, X (%) s live too. For example, with
X of type list(T), we might have: (1) X¢ € Live; expressing that the list
top-cell for X 1s live, but also all its subterms, thus that the whole list is live;
(2) X6 e Live;, X¢ ¢ Live;, expressing that only the elements of the list
are live, yet the backbone of the list is not live.

A data-structure X° is said to be available for reuse at some program
point ¢, if X* & Live;. There is no constraint on the children of X*, i.e. even
if, for some given s', XD g Live;, yet X* & Live;, X* will still be available
for reuse.

Just as in [4], we check if a top-level data-structure X¢ becomes avail-
able for reuse at the program-point prior to the deconstruction of X (X =
F(X1,...,Xp)). We say that X¢ can be reused if X€ is available for reuse,
and the deconstruction X = f(Z1,...,Xy) is followed by a construction
Y < f(Y1,...,Y,). An analysed predicate has direct reuse if the body of this
predicate contains at least one deconstruction-construction pair for which
the top-level data-structure can be reused. A predicate is said to have in-
direct reuse if it’s body contains at least one call to a predicate which has
direct/indirect reuse.

Liveness analysis should be seen as a phase within the compilation process,
therefore the terms analysis and compilation will be used interchangeably in
the remainders of the paper.

6 Nancy Mazur et al.

2.5 Using the analysis results

Liveness analysis indicates when a data-structure X?* become available for
reuse, if at all. The most convenient way to indicate this to the compiler is to
insert a pragma reuse(X?®) in the HLDS at the program point following the
deconstruction where the availability for reuse of X? 1s decided. This pragma
could then be used to provide true automatic structure reuse. The work of
Taylor [16] could be adapted to make use of these pragma’s instead of the
tedious hand-coded destructive-input — unique output annotations. We will
not handle these issues here.

3 Experimental results thus far

We have implemented a prototype of a goal-dependent liveness analysis sys-
tem, covering most basic Mercury-language constructs, such that a suffi-
ciently representative set of experiments could be performed. The goal of
our experiments was to verify whether the analysis does detect reuse at the
expected places, and to obtain a first idea of the computation cost. Our bench-
marks consist of a set of pure academic predicates (essentially list manipula-
tions) and a couple of real-life modules. Once we have support for modules
(section 4) we plan to do more detailed experiments. Current results can be
found in [12], here only a summary is given.

Reuse Detection Our experiments revealed that for most of the predicted
reuses, our analysis does indeed detect reuse. Some reuses are missed due to
our representation of aliases for recursive data-types as pointed out in the
next paragraph.

Consider the deconstruction of a variable X of type list(T): X = [A|B].
Variable B will be aliased with the tail of X, which leads to the alias:
(B¢, X2, Within our analysis this is simplified into: (B¢, X¢). The con-
sequence of this simplification 1s that whenever B€ is live, the analysis will
derive that the entire structure X° is live too, although in reality only the
tail of X 1is live, hence the possibility for a missed reuse of the top-level
list-cell. A first remedy to this problem might involve a refinement of our
alias-representation. However this can significantly increase the analysis cost.
Another possible approach is to reorder the body of a predicate in such sense
that the deconstruction 1s moved as closely as possible to the atom which
truly uses the tail of the list, hence delaying the creation of the alias as much
as possible.

Analysis cost Relating the time needed for the analysis of a module, 7%, with
the time needed for compiling this module without analysis, T°, we obtained
that in average T* /T ~ 0.25. Taking into account that while efficiency was a
concern in the design of our prototype, it was sometimes sacrificed in favor of

Towards memory reuse in Mercury 7

development ease and extendibility, this average relative cost seems accept-
able. Yet, our experiments also revealed some cases for which the relative
cost was not acceptable at all (7*/T° ~ 10). This high cost is mainly related
to the complexity of the types used, as the following example will illustrate.
Consider a type t defining n functors, which all have the same arity m > 1,
and arguments of some same other type, then the number of possible selectors
will be equal to n - m. The complexity of the alternative closure operation is
known to be exponential to this number of selectors. With increasing size of
n and m, it 1s evident that the global computation cost becomes unbearable.
Such situations should therefore be avoided as much as possible. A possible
approach might consist in artificially reducing the number of selectors?, a
typical widening operation. This widening will induce possible loss of preci-
sion. Future work has to determine what the best tradeoff between cost and
precision will be.

Yet, the main problem with the current prototype is it’s lack of support
for modules, which is the subject of the second and main part of this paper.

4 Towards a module based analysis

Modern programming languages allow large applications to be distributed
over several modules; allowing separate compilation of these. For the compi-
lation of one module, only a small amount of information about the imported
modules is needed. This information is generated during the compilation of
the latter modules, and is typically stored in a separate file. This 1s also the
model followed by Mercury.

While the goal-dependent liveness analysis system of sections 2 and 3
yields positive results, it does not match with this model though, as in order
to fully optimize a predicate and the predicates it depends on, the full source
code is needed. It would also require reanalysis and possibly recompilation
of all the imported modules. Although the resulting compiled code will be
highly optimized, the cost of these constant recompilations is unbearable.

Essentially module based analysis can be split into two subproblems:
intra-module optimization —safely analyse a given predicate with minimal
information about imported predicates— and inter-module optimization —
making safe decisions on whether a predicate can use an optimized version
of an imported predicate or not. In section 4.1 we discuss intra-module
optimization, so-called weak module support. Section 4.2 introduces inter-
module optimization (strong module support), where also the concept of
goal-independent liveness analysis is defined. Finally, section 4.3 combines
strong and weak module support into full module support.

? e.g. by designating all arguments of a functor at once by a unique selector, thus
in a sense treating all arguments in the same way.

8 Nancy Mazur et al.

4.1 Weak module support

Consider a predicate ¢ of which the body contains a call to ¢, and where ¢
and ¢ are defined in different modules. ¢ i1s said to be an external or imported
predicate w.r.t. the module in which ¢ is defined.

Let ¢ be the program point in ¢ before the call to ¢, and i+ 1 the program
point after the call to the external predicate. Then the set of live variables
at these program points can be expressed as:

Live! = L(LU}, LAY, GA", Live})
Livei,, = L(LU{,,, LA}, GA', Live)

As argued in [4], only the local uses and aliases (LU?, LA") are program-point
dependent.

Let’s first consider LUZ»t_I_1 for which we have: LUZ»t_I_1 = LFU;_H ULBU;_H.
The forward use component, LFUZ»t_I_l, is independent of ¢, as it simply con-
tains those variables which are still used after this program point. On the
other hand, the backward use component 1s not. Typically, if ¢ is a non-
deterministic predicate, then it will introduce additional variables in local
backward use. Yet, whether ¢ introduces these additional variables or not
is totally independent of the variables which are already in backward use,
hence we can express LBUf,, as LBU! (LBU},LBUY,..), where LBUY
is the set of variables in local backward use due to ¢. The latter can be
computed independently.

The local aliases can similarly be expressed in terms of the already existing
aliases, and those due to the external predicate. As stated in [4]: LAS | =
Altelos(L AL, LAY), i.e. the set of local aliases in a program point can be
approximated by the alternating closure between the already existing local
aliases and the set of additional aliases created by the preceding call. Again,
q’s contribution is totally independent of the already existing aliases, and can
therefore be derived independently.

In summary, in order to correctly analyse predicate ¢, the only information
needed about the external predicate ¢ is: LBU? and LA%. This information is
independent of any specific call-pattern, and can therefore be derived during
compilation of the module to which ¢ belongs (either by a dedicated analysis,
or as a result of a goal-independent liveness analysis as will be mentioned
later).

Note that here we are only interested in trying to optimize ¢, but not the
external predicates, hence the term weak module support.

4.2 Strong module support

Consider again a predicate ¢ which calls a predicate ¢, both being defined
in different modules. Now suppose that a goal-dependent liveness analysis
of ¢ under some artificial initial abstract substitution, would reveal possible
reuse within ¢. We could then create multiple versions of ¢: one basic version

Towards memory reuse in Mercury 9

without reuse, and a number of different versions of ¢ exploiting each form of
detected reuse®. For ecach of these reuse-versions, we would have to express
conditions, so called reuse conditions, which would have to be verified by the
caller in order to safely decide for a version of ¢ with reuse or not. These
conditions could then be saved into a separate file, serving as interface for
the module to which ¢ belongs, and avoiding herewith recompilation of that
module each time it is imported into another module.

To achieve this, two questions must be answered. How is a module-
predicate, say ¢, to be analysed in order to derive maximal information given
minimal knowledge about the possible call patterns? This will lead us to
the concept of goal-independent liveness analysis. And how can we express
conditions for reuse? These conditions must be easy to derive, and to verify.

4.2.1 Goal-independent analysis A goal-dependent analysis of a pred-
icate consists of analysing that predicate, given it’s initial call pattern. This
call pattern consists of a set of data-structures related to the head variables
which are known to be live anyway (Liveg), and a set of aliases which might
exist between the arguments with which the predicate is called (GA). Let Ry
be the number of opportunities for reuse detected in this setting.

Consider another analysis of the same predicate, under the assumption
that no variables are known to be a priori live (Livey = @), and no aliases
exist between the arguments (GA = §). In such a setting structures will only
be live depending on their local use. If Livey and G A are not empty, then this
will always result in bigger live-sets. Therefore it is obvious that the analysis
will detect the maximal set of possible reuses, let R4 be the size of this
set. We have: Rpqr > Ri. Yet, in this setting we risk to detect opportunities
for reuse which are unrealistic and known to be seldom applicable, resulting
in extra versions of the predicate of which the usability is known to be small.
Indeed, Mercury is a moded language: every argument of a call is either input
or output. While examples can be found where even output variables might
become candidates for reuse?, it is realistic to assume that the data-structures
corresponding to the output variables are live within the context of the caller.

This leads us to a third possible analysis of the predicate, for which Liveg
consists of the top-cell data-structures of the output-arguments, and where
GA = (. Let Ry be the number of possible opportunities for reuse. We have:
Rimaz > R2 > Ri. Here Ry will reflect the maximal set of realistic reuses. We
define this analysis setting as the goal-independent liveness analysis of the
considered predicate, as it is the most general practical liveness analysis pos-
sible, and although the analysis is in fact a goal-dependent analysis (Sect. 2),

® Theoretically, if n opportunities for reuse are detected, 2™ different versions for
q can be provided. See section 4.2.3 for practical issues on this matter.

e.g. a predicate with two output arguments X and Y. In a first step X is con-
structed, in a second step Y is constructed based on X. If X is not used within
the context of the caller, then Y could be constructed reusing data cells of X.

4

10 Nancy Mazur et al.

the used call-pattern is fully independent of a true global goal-dependent
analysis one might perform.

In next section we derive what extra information needs to be gathered
during this goal-independent analysis for expressing reuse conditions.

4.2.2 Expressing conditions for reuse In what follows, a component
i1s given a subscript ¢ when its value depends on the program point ¢ and
it is given a superscript g¢ or gd when its value differs between the goal
independent and the goal dependent analysis.

4.2.2.1 Durect reuse Let ¢ be a predicate for which a goal-independent anal-
ysis has been performed, and for which exactly one opportunity for reuse has
been detected: a variable, say X is deconstructed, it’s top-level X¢ becomes
dead and can be reused in some following construction (direct reuse). Let 4
be the program-point just before the deconstruction, and Live!" the live set
at that program-point. For a goal-independent case, we have:

Livefi = L(LU;, LA;, 0, Livegi) (3)

where Livegi solely comprises the output arguments of ¢q. Note that LU and
LA are independent of the call pattern. '

As reuse is detected we must have that X¢ ¢ Live!".

Consider the call pattern for ¢ during a goal-dependent analysis of some
other predicate. The corresponding analysis obtains:

Lived® = L(LU;, LA;, GA9?, Lived") (4)

Reuse is allowed if and only if X© ¢ Livefd.

Expressions 3 and 4 differ only in their global components, so a brute
force approach to verify for reuse could be as follows. At the end of the goal-
independent analysis, we simply save the local components LU; and LA;.
When during a goal-dependent analysis ¢ is called, LU; and LA; of ¢ can be
used to compute Livefd with (2) (together with GA9¢ and Livegd from the
calling context). The reuse-version of ¢ can be used if X¢ does not belong to
Livefd. Although conceptually very easy, this method has certain drawbacks.
The body of ¢ may contain many local variables, LU; and LA; may then be
relatively large sets. Computing Livefd can become rather expensive. There-
fore we must examine whether the amount of information to be saved can be
reduced, as well as the cost of verifying reuse.

Comparing the explicited formulas (2) for Livefi and Livefd, and given
that X¢ ¢ Live!', we can observe that X¢ ¢ Livefd only if the following is
true:

1. X¢ ¢ Lived®
2. AY (X, Y*) € Altelos(GA9Y LAY ANY € LU;

Towards memory reuse in Mercury 11

3. AY ¢ (X, YV 9) & Altelos(GAIY LA) ANY*®Y € Lived®
We will now examine each of these conditions.

Condition 1. To check condition 1 during the goal-dependent analysis it
suffices to know the name of the data-structure which might be reused. During
that analysis one simply needs to perform the procedure-entry operation, thus
obtaining Livegd, and verify whether the concerned data-structure belongs
to this set or not.

Condition 2. We will first start with some lemma’s and definitions. Se-
lectors which are irrelevant for the discussion are omitted.

Let H;, be the set of input head-variables of the external predicate ¢. Let
var(E) denote the set of variables in the expression E°.

Lemma 1. var(GA9) C H;p,.

By definition, GA9¢ relates only to head-variables. Due to Mercury’s moded
nature, output variables are known to be free variables at procedure-entry,
hence no aliases with these can exist at that moment.

Lemma 2. Ao, 5 : (o, 8) € LA Ao, 8 € Hip.

Mercury does not allow partially instantiated variables to be passed around,
hence no new aliases between input variables can be created by the called
procedure.

Recall that given two set of aliases A and B, Altelos(A, B) will consist
of aliases («, 8) for which there exists a path (with length > 1) of aliases
alternating between elements of A and B (see [4]).

Definition 41 Given sets of aliases A and B, Altclos;(A, B) is the set of
aliases for which there exists a path of length i alternating between aliases of

A and B.
Note that Altclosi (A, B) = AU B.

Ezample 2. Let A = {(a,b),(c,d)}, and B = {(a,¢),(d,e)}. To compute
Altelosi (A, B), one needs to construct only paths of length 1, therefore
Altelosy (A, B) = AU B. The only paths of length 2 are: (b,a) — (a, ¢), (d,¢) —
(¢,a),(c,d)—(d,e). Therefore Altclosa(A, B) = {(b,¢), (d, a), (¢, e)}. Paths of
length 3: (b,a) — (a,¢) — (¢,d), (e,d) — (d,¢) — (¢, a), thus Altclosz(A, B) =
{(b,d), (e, a)}. Finally the only path of lenght 4 is: (b, a)—(a,¢)— (¢, d)—(d, €)
and Altcloss (A, B) = {(b,e)}.

Definition 42 Given sets of aliases A and B, Altcloss;(A, B) is the set of
aliases for which there exists a path of length > i alternating between aliases
of both sets.

5 If E is a variable with a selector, say X°¢, we will use the notation: E € Set,
instead of var(E) C Set, where Set represents some set of variables

12 Nancy Mazur et al.

Note that Altcloss;(A, B) = Altclos;(A, B) U Altclos>;11(A, B).

Lemma 3. The paths generated for the computation of Altcloss(GA9Y, LA;)
will have the shape Ly — G — Ly, where Ly 9y € LA; and G € G A9S,

Suppose a path Gy — L — G2, where Gy 91 € GA9 and L € LA;, would
have been generated for Altcloss(GA9Y, LA;). Given that var(GA9YY) C H,
(lemma 1), such path would imply: var(L) C H;y, which contradicts lemma 2.

Lemma 4. Altclosz4(GA9d, LA;) =0.

Indeed, each alternating path of length > 4 will have to contain a subpath
of shape G — L — Ga, with Gy 91 € GA9% and L € LA;, yet this was shown
to be 1mpossible.

Lemma 5. Let LA;|w,, be the subset of aliases («, 8) of LA; for which either
a or 3 belongs to Hipn. Altclos(GA9Y LA;) = Altelos(GA9Y, LA;|y,,).

This is again a direct consequence of the first two lemma’s.
Using these lemma’s and definitions, we can reformulate and split condi-
tion 2 for reuse as:

2V (X5, Y*) € GAY AY € LU; (5)
AV (X°Y*) € LA, AY € LU; (6)
AY (X°,Y®) € Altcloso (GA LA |y,)NY € LU; (7)
Y (X°,Y*) € Altcloss(GA LA;|y,,) ANY € LU; (8)
Note that var(GA9Y) C Hn, therefore we can limit the verification of (5)
for all Y belonging to LU;|y,, , 1.e. the subset of LU; related to input head-

variables only.
Expression (6) is always satisfied. Indeed, suppose that there would be
such a Y € LU; for which (X¢,Y?®) € LA;, then according to (2) for Live?'

we would have X° € Livefi, which contradicts our starting point.
Expression (7) is equivalent to the statement: A8,V : (X, 8) — (3,Y?*) €
set of paths formed in Altcloss(GA9Y, LA;|y,,) and Y € LU;. This condition

can be split in two parts: (X¢, 3) either belongs to GAY or LA;|x,,:

o A8 :(X°, B) € GAYA(B,Y*) € LA;|,, AY € LU;. The third component
in (2) for Live!" is exactly {B](8,Y*) € LA;|ln,, NY € LU;}, which
we denote as Live3?'. Note that as (GA9? relates to input variables, we

can limit 8 by requiring it to belong to H;,. Hence, with Live3§ﬂ Hin

defined as the set of input head-variables belonging to Live3§ﬂ, we obtain:
28 : (X5, B) € GAY A B € Live3?' |y, .

o AB : (X B) € LAi|n,, N(B,Y*) € GA9Y AY € LU;. According to
lemma 1, Y € H;,. Here we are only interested in local aliases related
to X¢, we will denote this set as LA;|%,, x<. We obtain: A5 : (X¢,) €

LAiln,. xe AB,Y®) € GAYAY € LU |, .

Towards memory reuse in Mercury 13

Using lemma 3, (8) is equivalent to: AB,~v,Y : (X, 8) € LAi|lu,, A
(B,7) € GAYA(,Y*) € LA;|n,, AY € LU;. The last two terms imply that
v € Live3!". According to lemma 1, we also have that {y,3} C H;,. We
can further limit 8 by observing that if 3 € LU;, then X*© € Livefi (formula
(2)), which contradicts our starting point. Again we are only interested in
the set of local variables concerning X©. Hence we obtain: A8,y : 8 € (Hin \
LUZ|’Hm) ANy € Live3§” |7, A (Xe,ﬁ) S LAi|7-L,n,X€ A (ﬁ,’)/) € GA%Y,

Condition 3. Using a very similar reasoning as for condition 2, we can
derive that condition 3 splits up into three parts, see table 1.

Summary. Condition 1 resulted in one expression to be verified, condi-
tion 2 yielded four checks to be made, condition 3 added again three verifica-
tions, this brings us to a total of eight expressions to be verified. Table 1 sum-
marizes them all. The information to be saved during the goal-independent
analysis is reduced to the name of the variable which can be reused (X°¢), as
well as the following sets: LU;|y,,, Live3?'|y,, and LA;|y,, x-. Note that
from these sets all information regarding local variables has been filtered out
(except for X€). The verifications are simple projections of sets, hence they
will be cheap to verify.

Yet having to verify eight conditions each time appears as a high cost to
pay. We can observe that if X € H;,, then LA;|y,, x- = (, and all conditions
related to this set will always be true, resulting in only four conditions to
be verified. On the other hand, if X ¢ H;,, then there will never exist a
S such that (X¢,3) € G A9 which eliminates the conditions depending on
this relation. We will also have X* ¢ Livegd. This also results in only four
conditions to be met. Therefore, practically, we will never have to verify
explicitly all eight conditions, as only four of them will have to be verified
each time, the others being automatically fulfilled depending on whether
the reusable structure is a head-variable or not. This is also summarized in
table 1.

Note that due to the accuracy of the derivation of the conditions, verify-
ing these small conditions, or verifying whether the reusable data-structure
belongs to Livefd by computing the latter from scratch will, though with
different computation costs, yield exactly the same results, hence no loss of
precision is introduced at this level

4.2.2.2 Indirect reuse Consider a predicate ¢; for which a goal-independent
analysis has been performed. Suppose this analysis detected indirect reuse
with respect to some predicate g2. Let Xg, be the data-structure which ¢,
claims to be reusable. A possible strategy for defining conditions of reuse
in terms of ¢, could be to translate the data-structure X/ in terms of the
variables with which ¢s has been called, and express similar conditions as
above in terms of these variables. This translation can be based on the aliasing

14 Nancy Mazur et al.

X< g Lived?
AY (X, Y®) € GAY AY € LUy,
X € Hin 75 (X, 0) € GA™ AF € Lived” |,
AY (X, Y95 € GAY AY Y € Lived?
78,Y : (X, B) € LAily,, x< AN(B,Y®) € GA
AY € LUi|yn,, 2
28,7, Y 1 (X 8) € LAila,,,x< A(B,7) € GAT
XEMHin| AB € (Hin\ LU|3,,) Ay € Live3? |,
Y (X Yv%) € LA, xe ANY™Y € Lived®
78,Y : (X<, 8) € LAilu,, x< A(B,Y°v°) € GAY
AY*¥ € Lived? 3

W0 o —

(V]

w

Table 1. Summary of the expressions to be verified in order to safely decide for
using the predicate version which reuses X° or not. The last column refers to the
condition (1, 2 or 3) of which the expression has been derived.

information between X, and the head-variables of ¢5. Further work on this
part of reuse-verification is required.

4.2.3 Practical issues A goal-independent analysis of a predicate might
reveal more than one opportunity for reuse. Each of these opportunities cor-
responds with a different set of conditions to be fulfilled by the caller. Now, if
we want a compile-time garbage collection system which truly exploits every
possible form of data-reuse, and suppose a goal-independent analysis of some
predicate reveals n opportunities, then we would have to generate 2" different
versions, resulting in a real code-explosion. Therefore, in the implementation
of real analysis systems, a tradeoff will have to be made between the size of
the compiled code and the number of reuses achieved. A possible strategy
could consist of only creating two versions of such a predicate: a first version
without reuse, and a second version with every possible reuse foreseen. The
conditions which have to be fulfilled by the caller of this predicate will be-
come more severe, risking that reuse is only possible in a few cases. Future
work will have to determine which strategies are feasible.

Another issue which has not been mentioned yet i1s the problem of mu-
tually recursive modules. Although the theory developed in previous para-
graphs is independent of the module-dependencies which might exist, prac-
tically speaking, mutually recursive modules will be a problem. Whatever
strategy one will use to handle such cases, it will always induce a certain loss
of precision.

Towards memory reuse in Mercury 15

4.3 Full module support

Weak module support is possible if LBU and LA is available for each exported
predicate of a Mercury-module. As said, this information can be obtained by
a dedicated analysis.

Strong module support consists of performing goal-independent analyses
of all exported predicates of the modules used. Such analyses yield informa-
tion on whether reuse is possible at all, and if so, provide the reuse conditions
to which eventual caller’s will have to comply in order to allow the use of
the reuse-version of the predicates. During a goal-independent analysis of a
predicate, the sets LBU and LA are being computed anyway, therefore no
special analysis has to be foreseen to deduce these sets: it can all be computed
during goal-independent liveness analysis.

While weak module support allows the detection of possible reuses within
the body of a predicate using external predicates, strong module support
also enables us to safely decide whether it 1s allowed or not to use a reuse-
version of the used external predicates. Weak and strong module support are
therefore complementary. Combining both we obtain a full modular analysis.

5 Conclusion

We have implemented a prototype system for goal-dependent liveness analy-
sis of Mercury. Results obtained with this prototype have been very positive
(precision as well as analysis cost), yet revealed two possible problems. First
of all, some potential reuses are missed due to our representation of recur-
sive data-structures. In the presence of complicated type-definitions, a second
problem might occur, as the analysis risks to become exponential. We have
briefly mentioned possible solutions to both problems, suggesting that fur-
ther optimization of basic goal-dependent liveness analysis will have to be
done. Generally, a tradeoff will always have to be made between analysis cost
and precision. Although the prototype already covers basic Mercury language
constructs, it must be extended to cover them all (such as higher-order pred-
icates and type-classes which are not yet supported).

Even in the presence of a full optimal goal-dependent liveness analysis,
the potential of reuse-detection can only be fully exploited if support for mod-
ular analysis is provided. In this paper, we introduced the concept of weak
modular support, which allows to analyse a predicate in a goal-dependent
way, even in the presence of external predicates. We also defined the notions
of strong module support and goal-independent liveness analysis, such that
when analysing a predicate which calls an external predicate, we can safely
decide whether this predicate may use a reuse-version of this external pred-
icate or not. The information needed from the goal-independent analysis of
the latter, as well as the cost of making this decision have been reduced by
deriving clear-cut conditions for reuse. In the case of direct reuses, expressing
and verifying these conditions introduces no loss of precision. This might be

16

Nancy Mazur et al.

different for indirect reuses though, and has to be further investigated. Fur-
ther work should also show an optimal strategy for keeping the number of
reuse-versions of a predicate to a realistic level.

Our long term goal is to incorporate a full compile-time garbage collection

system within the Mercury compiler. This paper is already one step closer
towards such an ecological Mercury.

References

10.

11.

Yves Bekkers and Paul Tarau. Monadic constructs for logic programming.
In John Lloyd, editor, Proceedings of the International Symposium on Logic
Programming, pages 51-65, Cambridge, December 4-7 1995. MIT Press.

A. Bloss. Path analysis and the optimization of non-strict functional lan-
guages. Technical Report YALEU/DCS/RR-704, Department of Computer
Science, Yale University, New Haven, CT', 1988.

Maurice Bruynooghe. A practical framework for the abstract interpretation of
logic programs. Journal of Logic Programming, 10(2):91-124, February 1991.
Maurice Bruynooghe, Gerda Janssens, and Andreas Kagedal. Live-structure
analysis for logic programming languages with declarations. In .. Naish, editor,
Proceedings of the Fourteenth International Conference on Logic Programming
(ICLP’97), pages 33-47, Leuven, Belgium, 1997. MIT Press.

. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-

tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the Fourth ACM Symposium on Principles of
Programming Languages, pages 238-252, L.os Angeles, 1977.

Saumya K. Debray. On copy avoidance in single assignment languages. In
David S. Warren, editor, Proceedings of the Tenth International Conference on
Logic Programming, pages 393-407, Budapest, Hungary, 1993. The MIT Press.
G. Gudjonsson and W. Winsborough. Update in place: Overview of the Siva
project. In D. Miller, editor, Proceedings of the International Logic Program-
ming Symposium, pages 94-113, Vancouver, Canada, 1993. The MIT Press.
Fergus Henderson, Thomas Conway, Somogyi Zoltan, and Jeffery David. The
mercury language reference manual. Technical Report 96/10, Dept. of Com-
puter Science, University of Melbourne, February 1996.

S. B. Jones and D. Le Métayer. Compile-time garbage collection by sharing
analysis. In Proceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture ‘89, Imperial College, London, pages 54-74,
New York, NY, 1989. ACM.

Andreas Kagedal and Saumya Debray. A practical approach to structure reuse
of arrays in single assignment languages. In Lee Naish, editor, Proceedings of the
14th International Conference on Logic Programming, pages 18-32, Cambridge,
July 8-11 1997. MIT Press.

Feliks Kluzniak. Compile-time garbage collection for ground Prolog. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium on Logic Programming, pages 1490—
1505, Seattle, 1988. MIT Press, Cambridge.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Towards memory reuse in Mercury 17

N. Mazur, G. Janssens, and M. Bruynooghe. Towards mem-
ory reuse for Mercury. Report CW278, Department of Com-
puter Science, Katholicke Universiteit Leuv en, June 1999.

http://www.cs.kuleuven.ac.be/publicaties /rapporten/CW1999.html.

Anne Mulkers, Will Winsborough, and Maurice Bruynooghe. Analysis of shared
data structures for compile-time garbage collection in logic programs. In
D. H. D. Warren and P. Szeredi, editors, Proceedings of the Seventh Inter-
national Conference on Logic Programming, pages 747-762, Jerusalem, 1990.
MIT Press, Cambridge.

Anne Mulkers, Will Winsborough, and Maurice Bruynooghe. Live-structure
dataflow analysis for Prolog. ACM Transactions on Programming Languages
and Systemns, 16(2):205-258, March 1994.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algo-
rithm of Mercury, an efficient purely declarative logic programming language.
The Journal of Logic Programming, 29(1-3):17-64, October-December 1996.
Simon Taylor. Optimization of Mercury programs. Honours report, Department
of Computer Science, University of Melbourne, November 1998.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy
Hgjfeld Olesen Hgjfeld, Peter Sestoft, and Peter Bertelsen. Programming with
regions in the ML Kit. Technical Report D-342, Dept. of Computer Science,
University of Copenhagen, 1997.

Mads Tofte and Talpin Jean-Pierre. Region-based memory management. In-
formation and Computation, 132(2):109-176, 1997.

H. Vandecasteele. Constraint Logic Programming: Applications and Implemen-
tation. PhD thesis, Department of Computer Science, K.U. Leuven, May 1999.
H. Vandecasteele, B. Demoen, and J. Van Der Auwera. The use of Mercury for
the implementation of a finite domain solver. In I. de Castro Dutra, M. Carro,
V. Santos Costa, G. Gupta, E. Pontellia, and Silva F, editors, Nova Science
Special Volume on Parallelism and Implementation of Logic and Constraint
Logic Programming. Nova Science Publishers Inc, 1999.

Philip Wadler. The essence of functional programming. In Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 1-14, Albequerque, New Mexico, January
1992.

Philip Wadler. How to declare an imperative (invited talk). In International
Logic Programming Symposium, Portland, Oregon, December 1995. MIT Press.

