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Abstrat. While Merury allows destrutive input/unique output modes whih

diret the ompiler to reuse memory, use of these modes is very umbersome for the

programmer. Moreover it does not �t the delarative programming paradigm where

the programmer doesn't have to worry about the details of memory management.

The paper briey reports on some experiments with a prototype analyser whih

aims at deteting memory available for reuse. The prototype is based on the live-

struture analysis developed by us for logi programs extended with delarations.

Yet the major ontribution of this paper onsists of the development of the

priniples of a module based analysis whih are essential for the analysis of large

Merury programs with ode distributed over many modules.

1 Introdution

Logi programs do not have destrutive assignment. It is one of the orner-

stones of their delarativeness. However, the absene of destrutive assign-

ment has an implementation ost; updating data strutures requires time

onsuming opying and leads to large memory onsumption. Prolog program-

mers have developed a bag of triks to irumvent the restrition. Pure ones

based on the use of open ended data strutures suh as di�erene lists, and

impure ones based on assert/retrat or more eÆient system spei� vari-

ants of built-ins with side e�ets. Those triks are not available in Merury

[15℄ whih has no impure built-ins and whose mode system exludes the

use of open ended data strutures. As a onsequene, the straightforward

port of a Prolog appliation to Merury does not always result in the an-

tiipated speed-up [20,19℄. While Merury does provide destrutive input |

unique output modes, their use is umbersome and does not �t the delar-

ative programming paradigm where the programmer doesn't have to worry

about memory management. Moreover, apart from input-output, destrutive

updates are not part of the urrent standard distribution of Merury. The

Merury programmer has to plug in his own C-ode doing the destrutive

updates if that is really neessary for his appliation [20,19℄. Suh pratie

may then onit with optimisations done by the Merury ompiler. These

onits an be prevented with the use of impure delarations, but in pratie

this is quite diÆult.

Muh better would be to have the ompiler perform the neessary reason-

ing for struture reuse. A number of authors have onsidered this problem
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within single-assignment languages, in the ontext of logi programming lan-

guages [6,11,13℄, as well as funtional programming languages [2,9,17,18℄.

Some of the approahes involve speial language onstruts (suh as unique-

ness delarations within Merury) [1,15,21,22℄, others are based on ompiler

analyses [7,10℄. Mulkers et al. [14℄ have developed suh an analysis for Pro-

log, however, the lak of delarations and the impurity of Prolog make it

diÆult to integrate the analysis in a Prolog ompiler. In [4℄ Bruynooghe et

al. have adapted the analysis for a Merury-like language with type, mode

and determinism delarations. The urrent paper briey reports on a proto-

type implementation of a live-struture analysis for Merury. To ahieve the

long term goal of integrating the analysis in the Merury ompiler, a module

based analysis is neessary. The paper develops the onepts of suh an anal-

ysis where it suÆes that the analysis of a module has aess to the results

of a goal independent analysis of the imported prediates.

Setion 2 realls the basis of the work desribed in [4℄. Setion 3 reports

on the results obtained with our prototype analysis system. In setion 4 mod-

ule based liveness analysis is developed. We onlude with a brief disussion

in Setion 5.

2 Bakground

The goal of liveness analysis is to determine whih data-strutures are live at

what program points. Data-strutures whih do not belong to the set of live

strutures are so-alled dead, and an then be seen as possible andidates

for reuse. Liveness analysis is based on the idea that within the ontext of

a prediate, a data-struture an only be live if it will be needed during the

subsequent exeution of the program. More spei�ally, a struture is live at

some program point in a prediate if it is in forward use (the struture or any

of its aliases are needed by the forward exeution of the program following

the program point), or in bakward use (i.e. the struture or any of its aliases

are needed due to baktraking).

2.1 Abstrat interpretation

The analysis system as presented in [4℄ is based on abstrat interpretation [5℄

and uses the top-down framework of [3℄. Very briey, abstrat interpretation

mimis onrete exeution by replaing the program's operations on on-

rete data with abstrat operations over data desriptions. The analysis of

a prediate, given abstrat information about the prediate's variables (so

alled all pattern), omputes abstrat information for eah program point,

and a �nal abstrat desription of the state of the variables at exit point (exit

pattern). For eah enountered prediate all, abstrat information from the

aller's ontext is mapped unto information relevant for the alled prediate

(so alled proedure entry), thus obtaining the all pattern of that prediate.
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The alled prediate is then analysed w.r.t. this all pattern. The obtained

exit pattern will then be used to ompute the abstrat state of the program

point following the all to this prediate in the aller's ontext (proedure

exit). The analysis uses �x-point iteration to ope with reursion.

2.2 Merury

Merury is a logi programming language provided with types, modes and

determinismdelarations. The language is strongly typed and it's type system

is based on a polymorphi many-sorted logi[8℄. It's mode-system is suh that

it does not allow the use of partially instantiated strutures.

Our analysis is performed at the level of the High Level Data Stru-

ture (HLDS) onstruted by the Merury ompiler. Within this struture,

prediates are normalized, i.e. all atoms appearing in the program have dis-

tint variables as arguments, and all uni�ations X = Y are expliited as

either (1) a test X == Y , (2) an assignment X := Y , (3) a onstrution

X ( f(Y

1

; : : : ; Y

n

), or (4) a deonstrution X ) f(Y

1

; : : : ; Y

n

). Within this

HLDS, the atoms de�ning the body of a prediate are possibly reordered

w.r.t. the soure ode and based on the mode-information: the input vari-

ables of prediate-alls must be instantiated, whereas output variables must

be free.

Note that a prediate an have more then one mode delaration, yet in this

paper we will assume that prediates have exatly one mode delaration

1

.

2.3 Notation

As reasoning about liveness involves reasoning about data-strutures, we will

�rst introdue some de�nitions and notations.

Types are of partiular importane to us. A type t (or if polymorphi

t(T

1

; : : : ; T

n

) with T

1

; : : : ; T

n

type variables) is de�ned by one or more type

onstrutors whose arguments are either types or type variables (only the

type variables used in the type name an be used inside the onstrutors). It

is well known that one an assoiate a type tree with eah type.

Example 1. The polymorphi type list(T ) is de�ned as:

list(T) ---> [℄ ; [T|list(T)℄.

Its type graph is shown in Fig. 1.

Type seletors are used to selet a node in a type tree. � denotes the

empty seletor, and t

�

selets the root node of t. With 

i

a type-onstrutor,

a seletor s expressed as the pair (

i

; j), selets the j

th

hild of the 

th

i

node of

type t, whih we write as t

s

. The seleted hild itself an be of a type t

1

. With

1

This is no restrition of our system. If a prediate is de�ned with di�erent modes,

we an onsider eah of these modes as distint prediates
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list(T)

[ . ][]

T

Fig. 1. Type graph of list(T)

s

1

a seletor appliable to t

1

we have: (t

s

)

s

1

= t

s:s

1

= t

s

1

1

, with s:s

1

being the

onatenation of seletors s and s

1

. Two seletors, say s

1

and s

2

may selet

nodes from a type t whih have the same type. In suh ase we say that t

s

1

and t

s

2

are equal. If a type t is reursive, and if the node orresponding to

some seletor s has type t, then t

s

is simpli�ed to t

�

. For example, in the

ontext of type list(T ), and using \." as list onstrutor, list(T )

(:;2)

will be

redued to list(T )

�

.

We de�ne the data-struture X

s

, where X is a variable of type t, and s is

a seletor for this type, as the memory ell whih orresponds with the type

node t

s

. For our analysis, seletors will always be simpli�ed if possible. X

�

is

alled the top-level data-struture of X.

Aliases are represented as pairs of data-strutures: (X

s

x

; Y

s

y

).

2.4 Liveness analysis

With the liveness analysis of [4℄, we derive for eah program point, the set of

data-strutures whih are live at that point.

The all pattern of a prediate all p(X

1

; : : : ; X

n

) whih is to be analysised

and where X

1

; : : : ; X

n

are the so-alled head-variables of the all, onsists of a

set of data-struture pairs (X

s

x

; Y

s

y

) expressing the possible aliases between

the head-variables (GA, global aliases), and a set of data-strutures relative

to the head-variables whih are known to be live due to the aller's ontext

(Live

0

). During analysis, eah program point i (preeding the urrent atom)

is annotated with the following abstrat information:

� loal use, LU

i

: set of variables in loal use whih is the union of the set of

variables in loal forward use, LFU

i

, and in loal bakward use, LBU

i

.

Variables are in loal forward use if they an be aessed by the atoms

following the urrent atom within the body of p. Variables are in loal

bakward use if they an be aessed upon baktraking on one of the

atoms in the body of p, assuming that the urrent atom fails.

� loal aliases, LA

i

: set of data-struture-pairs expressing whih sharing is

possible between the data-strutures representing the values of the bound

variables at the program point (and before exeuting the urrent atom).
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Aording to [4℄, the set of live data-strutures at program point i is then

expressed as:

Live

p

= L(LU

p

; LA

p

; GA;Live

0

) (1)

= Live

0

[

fX

�

jX 2 LU

p

g

[

(2)

fX

s

X

j(X

s

X

; Y

s

Y

) 2 Altlos(GA;LA

p

) ^ Y 2 LU

p

g

[

8

>

>

<

>

>

:

X

s

X

1

�

�

�

�

�

�

�

�

(X

s

X

; Y

s

Y

) 2 Altlos(GA;LA

p

) and

9s

1

; s

2

suh that Y

s

1

2 Live

0

and

either s

Y

� (s

1

:s

2

) ^ s

X

1

� s

X

or (s

Y

:s

2

) � s

1

^ s

X

1

� (s

X

:s

2

)g

9

>

>

=

>

>

;

where Altlos(A;B) is the alternating losure of two sets of aliases, i.e. the

set of aliases for whih there exists a path alternating between elements of A

and B. Intuitively, this expression states that data-strutures are live if they

are live due to the aller's environment { diretly (�rst term) or indiretly

(last term) { or if they are live due to their forward or bakward use { again

diretly or indiretly, resp. seond and third term.

Finally, the exit pattern for p will onsist of the set of aliases between the

head-variables after a all to p, and the set of head-variables whih are in

bakward use through p (if for example p is a nondeterministi prediate).

Within this setting, X

s

2 Live

i

expresses that the data-struture X

s

is

live, but also that for any seletor s

0

, X

(s:s

0

)

is live too. For example, with

X of type list(T ), we might have: (1) X

�

2 Live

i

expressing that the list

top-ell for X is live, but also all its subterms, thus that the whole list is live;

(2) X

(:;1)

2 Live

i

, X

�

62 Live

i

, expressing that only the elements of the list

are live, yet the bakbone of the list is not live.

A data-struture X

s

is said to be available for reuse at some program

point i, if X

s

62 Live

i

. There is no onstraint on the hildren of X

s

, i.e. even

if, for some given s

0

, X

(s:s

0

)

2 Live

i

, yet X

s

62 Live

i

, X

s

will still be available

for reuse.

Just as in [4℄, we hek if a top-level data-struture X

�

beomes avail-

able for reuse at the program-point prior to the deonstrution of X (X )

f(X

1

; : : : ; X

n

)). We say that X

�

an be reused if X

�

is available for reuse,

and the deonstrution X ) f(Z

1

; : : : ; X

n

) is followed by a onstrution

Y ( f(Y

1

; : : : ; Y

n

). An analysed prediate has diret reuse if the body of this

prediate ontains at least one deonstrution-onstrution pair for whih

the top-level data-struture an be reused. A prediate is said to have in-

diret reuse if it's body ontains at least one all to a prediate whih has

diret/indiret reuse.

Liveness analysis should be seen as a phase within the ompilationproess,

therefore the terms analysis and ompilation will be used interhangeably in

the remainders of the paper.
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2.5 Using the analysis results

Liveness analysis indiates when a data-struture X

s

beome available for

reuse, if at all. The most onvenient way to indiate this to the ompiler is to

insert a pragma reuse(X

s

) in the HLDS at the program point following the

deonstrution where the availability for reuse of X

s

is deided. This pragma

ould then be used to provide true automati struture reuse. The work of

Taylor [16℄ ould be adapted to make use of these pragma's instead of the

tedious hand-oded destrutive-input { unique output annotations. We will

not handle these issues here.

3 Experimental results thus far

We have implemented a prototype of a goal-dependent liveness analysis sys-

tem, overing most basi Merury-language onstruts, suh that a suÆ-

iently representative set of experiments ould be performed. The goal of

our experiments was to verify whether the analysis does detet reuse at the

expeted plaes, and to obtain a �rst idea of the omputation ost. Our benh-

marks onsist of a set of pure aademi prediates (essentially list manipula-

tions) and a ouple of real-life modules. One we have support for modules

(setion 4) we plan to do more detailed experiments. Current results an be

found in [12℄, here only a summary is given.

Reuse Detetion Our experiments revealed that for most of the predited

reuses, our analysis does indeed detet reuse. Some reuses are missed due to

our representation of aliases for reursive data-types as pointed out in the

next paragraph.

Consider the deonstrution of a variable X of type list(T ): X ) [AjB℄.

Variable B will be aliased with the tail of X, whih leads to the alias:

(B

�

; X

(:;2)

). Within our analysis this is simpli�ed into: (B

�

; X

�

). The on-

sequene of this simpli�ation is that whenever B

�

is live, the analysis will

derive that the entire struture X

�

is live too, although in reality only the

tail of X is live, hene the possibility for a missed reuse of the top-level

list-ell. A �rst remedy to this problem might involve a re�nement of our

alias-representation. However this an signi�antly inrease the analysis ost.

Another possible approah is to reorder the body of a prediate in suh sense

that the deonstrution is moved as losely as possible to the atom whih

truly uses the tail of the list, hene delaying the reation of the alias as muh

as possible.

Analysis ost Relating the time needed for the analysis of a module, T

a

, with

the time needed for ompiling this module without analysis, T



, we obtained

that in average T

a

=T



� 0:25. Taking into aount that while eÆieny was a

onern in the design of our prototype, it was sometimes sari�ed in favor of
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development ease and extendibility, this average relative ost seems aept-

able. Yet, our experiments also revealed some ases for whih the relative

ost was not aeptable at all (T

a

=T



� 10). This high ost is mainly related

to the omplexity of the types used, as the following example will illustrate.

Consider a type t de�ning n funtors, whih all have the same arity m � 1,

and arguments of some same other type, then the number of possible seletors

will be equal to n �m. The omplexity of the alternative losure operation is

known to be exponential to this number of seletors. With inreasing size of

n and m, it is evident that the global omputation ost beomes unbearable.

Suh situations should therefore be avoided as muh as possible. A possible

approah might onsist in arti�ially reduing the number of seletors

2

, a

typial widening operation. This widening will indue possible loss of prei-

sion. Future work has to determine what the best tradeo� between ost and

preision will be.

Yet, the main problem with the urrent prototype is it's lak of support

for modules, whih is the subjet of the seond and main part of this paper.

4 Towards a module based analysis

Modern programming languages allow large appliations to be distributed

over several modules, allowing separate ompilation of these. For the ompi-

lation of one module, only a small amount of information about the imported

modules is needed. This information is generated during the ompilation of

the latter modules, and is typially stored in a separate �le. This is also the

model followed by Merury.

While the goal-dependent liveness analysis system of setions 2 and 3

yields positive results, it does not math with this model though, as in order

to fully optimize a prediate and the prediates it depends on, the full soure

ode is needed. It would also require reanalysis and possibly reompilation

of all the imported modules. Although the resulting ompiled ode will be

highly optimized, the ost of these onstant reompilations is unbearable.

Essentially module based analysis an be split into two subproblems:

intra-module optimization |safely analyse a given prediate with minimal

information about imported prediates| and inter-module optimization |

making safe deisions on whether a prediate an use an optimized version

of an imported prediate or not. In setion 4.1 we disuss intra-module

optimization, so-alled weak module support. Setion 4.2 introdues inter-

module optimization (strong module support), where also the onept of

goal-independent liveness analysis is de�ned. Finally, setion 4.3 ombines

strong and weak module support into full module support.

2

e.g. by designating all arguments of a funtor at one by a unique seletor, thus

in a sense treating all arguments in the same way.
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4.1 Weak module support

Consider a prediate t of whih the body ontains a all to q, and where t

and q are de�ned in di�erent modules. q is said to be an external or imported

prediate w.r.t. the module in whih t is de�ned.

Let i be the program point in t before the all to q, and i+1 the program

point after the all to the external prediate. Then the set of live variables

at these program points an be expressed as:

Live

t

i

= L(LU

t

i

; LA

t

i

; GA

t

; Live

t

0

)

Live

t

i+1

= L(LU

t

i+1

; LA

t

i+1

; GA

t

; Live

t

0

)

As argued in [4℄, only the loal uses and aliases (LU

t

, LA

t

) are program-point

dependent.

Let's �rst onsider LU

t

i+1

for whih we have: LU

t

i+1

= LFU

t

i+1

[LBU

t

i+1

.

The forward use omponent, LFU

t

i+1

, is independent of q, as it simply on-

tains those variables whih are still used after this program point. On the

other hand, the bakward use omponent is not. Typially, if q is a non-

deterministi prediate, then it will introdue additional variables in loal

bakward use. Yet, whether q introdues these additional variables or not

is totally independent of the variables whih are already in bakward use,

hene we an express LBU

t

i+1

as LBU

t

i+1

(LBU

t

i

; LBU

q

; : : :), where LBU

q

is the set of variables in loal bakward use due to q. The latter an be

omputed independently.

The loal aliases an similarlybe expressed in terms of the already existing

aliases, and those due to the external prediate. As stated in [4℄: LA

t

i+1

=

Altlos(LA

t

i

; LA

q

), i.e. the set of loal aliases in a program point an be

approximated by the alternating losure between the already existing loal

aliases and the set of additional aliases reated by the preeding all. Again,

q's ontribution is totally independent of the already existing aliases, and an

therefore be derived independently.

In summary, in order to orretly analyse prediate t, the only information

needed about the external prediate q is: LBU

q

and LA

q

. This information is

independent of any spei� all-pattern, and an therefore be derived during

ompilation of the module to whih q belongs (either by a dediated analysis,

or as a result of a goal-independent liveness analysis as will be mentioned

later).

Note that here we are only interested in trying to optimize t, but not the

external prediates, hene the term weak module support.

4.2 Strong module support

Consider again a prediate t whih alls a prediate q, both being de�ned

in di�erent modules. Now suppose that a goal-dependent liveness analysis

of q under some arti�ial initial abstrat substitution, would reveal possible

reuse within q. We ould then reate multiple versions of q: one basi version
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without reuse, and a number of di�erent versions of q exploiting eah form of

deteted reuse

3

. For eah of these reuse-versions, we would have to express

onditions, so alled reuse onditions, whih would have to be veri�ed by the

aller in order to safely deide for a version of q with reuse or not. These

onditions ould then be saved into a separate �le, serving as interfae for

the module to whih q belongs, and avoiding herewith reompilation of that

module eah time it is imported into another module.

To ahieve this, two questions must be answered. How is a module-

prediate, say q, to be analysed in order to derive maximal information given

minimal knowledge about the possible all patterns? This will lead us to

the onept of goal-independent liveness analysis. And how an we express

onditions for reuse? These onditions must be easy to derive, and to verify.

4.2.1 Goal-independent analysis A goal-dependent analysis of a pred-

iate onsists of analysing that prediate, given it's initial all pattern. This

all pattern onsists of a set of data-strutures related to the head variables

whih are known to be live anyway (Live

0

), and a set of aliases whih might

exist between the arguments with whih the prediate is alled (GA). Let R

1

be the number of opportunities for reuse deteted in this setting.

Consider another analysis of the same prediate, under the assumption

that no variables are known to be a priori live (Live

0

= ;), and no aliases

exist between the arguments (GA = ;). In suh a setting strutures will only

be live depending on their loal use. If Live

0

and GA are not empty, then this

will always result in bigger live-sets. Therefore it is obvious that the analysis

will detet the maximal set of possible reuses, let R

max

be the size of this

set. We have: R

max

� R

1

. Yet, in this setting we risk to detet opportunities

for reuse whih are unrealisti and known to be seldom appliable, resulting

in extra versions of the prediate of whih the usability is known to be small.

Indeed, Merury is a moded language: every argument of a all is either input

or output. While examples an be found where even output variables might

beome andidates for reuse

4

, it is realisti to assume that the data-strutures

orresponding to the output variables are live within the ontext of the aller.

This leads us to a third possible analysis of the prediate, for whih Live

0

onsists of the top-ell data-strutures of the output-arguments, and where

GA = ;. Let R

2

be the number of possible opportunities for reuse. We have:

R

max

� R

2

� R

1

. Here R

2

will reet the maximal set of realisti reuses. We

de�ne this analysis setting as the goal-independent liveness analysis of the

onsidered prediate, as it is the most general pratial liveness analysis pos-

sible, and although the analysis is in fat a goal-dependent analysis (Set. 2),

3

Theoretially, if n opportunities for reuse are deteted, 2

n

di�erent versions for

q an be provided. See setion 4.2.3 for pratial issues on this matter.

4

e.g. a prediate with two output arguments X and Y . In a �rst step X is on-

struted, in a seond step Y is onstruted based on X. If X is not used within

the ontext of the aller, then Y ould be onstruted reusing data ells of X.
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the used all-pattern is fully independent of a true global goal-dependent

analysis one might perform.

In next setion we derive what extra information needs to be gathered

during this goal-independent analysis for expressing reuse onditions.

4.2.2 Expressing onditions for reuse In what follows, a omponent

is given a subsript i when its value depends on the program point i and

it is given a supersript gi or gd when its value di�ers between the goal

independent and the goal dependent analysis.

4.2.2.1 Diret reuse Let q be a prediate for whih a goal-independent anal-

ysis has been performed, and for whih exatly one opportunity for reuse has

been deteted: a variable, say X is deonstruted, it's top-level X

�

beomes

dead and an be reused in some following onstrution (diret reuse). Let i

be the program-point just before the deonstrution, and Live

gi

i

the live set

at that program-point. For a goal-independent ase, we have:

Live

gi

i

= L(LU

i

; LA

i

; ;; Live

gi

0

) (3)

where Live

gi

0

solely omprises the output arguments of q. Note that LU and

LA are independent of the all pattern.

As reuse is deteted we must have that X

�

62 Live

gi

i

.

Consider the all pattern for q during a goal-dependent analysis of some

other prediate. The orresponding analysis obtains:

Live

gd

i

= L(LU

i

; LA

i

; GA

gd

; Live

gd

0

) (4)

Reuse is allowed if and only if X

�

62 Live

gd

i

.

Expressions 3 and 4 di�er only in their global omponents, so a brute

fore approah to verify for reuse ould be as follows. At the end of the goal-

independent analysis, we simply save the loal omponents LU

i

and LA

i

.

When during a goal-dependent analysis q is alled, LU

i

and LA

i

of q an be

used to ompute Live

gd

i

with (2) (together with GA

gd

and Live

gd

0

from the

alling ontext). The reuse-version of q an be used if X

�

does not belong to

Live

gd

i

. Although oneptually very easy, this method has ertain drawbaks.

The body of q may ontain many loal variables, LU

i

and LA

i

may then be

relatively large sets. Computing Live

gd

i

an beome rather expensive. There-

fore we must examine whether the amount of information to be saved an be

redued, as well as the ost of verifying reuse.

Comparing the expliited formulas (2) for Live

gi

i

and Live

gd

i

, and given

that X

�

62 Live

gi

i

, we an observe that X

�

62 Live

gd

i

only if the following is

true:

1. X

�

62 Live

gd

0

2. 6 9Y : (X

�

; Y

s

) 2 Altlos(GA

gd

; LA

i

) ^ Y 2 LU

i
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3. 6 9Y : (X

�

; Y

s

Y

:s

) 62 Altlos(GA

gd

; LA

i

) ^ Y

s

Y

2 Live

gd

0

We will now examine eah of these onditions.

Condition 1. To hek ondition 1 during the goal-dependent analysis it

suÆes to know the name of the data-struture whih might be reused. During

that analysis one simply needs to perform the proedure-entry operation, thus

obtaining Live

gd

0

, and verify whether the onerned data-struture belongs

to this set or not.

Condition 2. We will �rst start with some lemma's and de�nitions. Se-

letors whih are irrelevant for the disussion are omitted.

Let H

in

be the set of input head-variables of the external prediate q. Let

var(E) denote the set of variables in the expression E

5

.

Lemma 1. var(GA

gd

) � H

in

.

By de�nition, GA

gd

relates only to head-variables. Due to Merury's moded

nature, output variables are known to be free variables at proedure-entry,

hene no aliases with these an exist at that moment.

Lemma 2. 6 9�; � : (�; �) 2 LA

i

^ �; � 2 H

in

.

Merury does not allow partially instantiated variables to be passed around,

hene no new aliases between input variables an be reated by the alled

proedure.

Reall that given two set of aliases A and B, Altlos(A;B) will onsist

of aliases (�; �) for whih there exists a path (with length � 1) of aliases

alternating between elements of A and B (see [4℄).

De�nition 41 Given sets of aliases A and B, Altlos

i

(A;B) is the set of

aliases for whih there exists a path of length i alternating between aliases of

A and B.

Note that Altlos

1

(A;B) = A [B.

Example 2. Let A = f(a; b); (; d)g, and B = f(a; ); (d; e)g. To ompute

Altlos

1

(A;B), one needs to onstrut only paths of length 1, therefore

Altlos

1

(A;B) = A[B. The only paths of length 2 are: (b; a)� (a; ); (d; )�

(; a); (; d)� (d; e). Therefore Altlos

2

(A;B) = f(b; ); (d; a); (; e)g. Paths of

length 3: (b; a) � (a; ) � (; d); (e; d)� (d; )� (; a), thus Altlos

3

(A;B) =

f(b; d); (e; a)g. Finally the only path of lenght 4 is: (b; a)�(a; )�(; d)�(d; e)

and Altlos

4

(A;B) = f(b; e)g.

De�nition 42 Given sets of aliases A and B, Altlos

�i

(A;B) is the set of

aliases for whih there exists a path of length � i alternating between aliases

of both sets.

5

If E is a variable with a seletor, say X

s

x

, we will use the notation: E 2 Set,

instead of var(E) � Set, where Set represents some set of variables
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Note that Altlos

�i

(A;B) = Altlos

i

(A;B) [Altlos

�i+1

(A;B).

Lemma 3. The paths generated for the omputation of Altlos

3

(GA

gd

; LA

i

)

will have the shape L

1

� G� L

2

, where L

f1;2g

2 LA

i

and G 2 GA

gd

.

Suppose a path G

1

� L � G

2

, where G

f1;2g

2 GA

gd

and L 2 LA

i

, would

have been generated for Altlos

3

(GA

gd

; LA

i

). Given that var(GA

gd

) � H

in

(lemma1), suh path would imply: var(L) � H

in

, whih ontradits lemma2.

Lemma 4. Altlos

�4

(GA

gd

; LA

i

) = ;.

Indeed, eah alternating path of length � 4 will have to ontain a subpath

of shape G

1

� L�G

2

, with G

f1;2g

2 GA

gd

and L 2 LA

i

, yet this was shown

to be impossible.

Lemma 5. Let LA

i

j

H

in

be the subset of aliases (�; �) of LA

i

for whih either

� or � belongs to H

in

. Altlos(GA

gd

; LA

i

) = Altlos(GA

gd

; LA

i

j

H

in

).

This is again a diret onsequene of the �rst two lemma's.

Using these lemma's and de�nitions, we an reformulate and split ondi-

tion 2 for reuse as:

6 9Y : (X

�

; Y

s

) 2 GA

gd

^ Y 2 LU

i

(5)

6 9Y : (X

�

; Y

s

) 2 LA

i

^ Y 2 LU

i

(6)

6 9Y : (X

�

; Y

s

) 2 Altlos

2

(GA

gd

; LA

i

j

H

in

) ^ Y 2 LU

i

(7)

6 9Y : (X

�

; Y

s

) 2 Altlos

3

(GA

gd

; LA

i

j

H

in

) ^ Y 2 LU

i

(8)

Note that var(GA

gd

) � H

in

, therefore we an limit the veri�ation of (5)

for all Y belonging to LU

i

j

H

in

, i.e. the subset of LU

i

related to input head-

variables only.

Expression (6) is always satis�ed. Indeed, suppose that there would be

suh a Y 2 LU

i

for whih (X

�

; Y

s

) 2 LA

i

, then aording to (2) for Live

gi

i

,

we would have X

�

2 Live

gi

i

, whih ontradits our starting point.

Expression (7) is equivalent to the statement: 6 9�; Y : (X

�

; �)� (�; Y

s

) 2

set of paths formed in Altlos

2

(GA

gd

; LA

i

j

H

in

) and Y 2 LU

i

. This ondition

an be split in two parts: (X

�

; �) either belongs to GA

gd

or LA

i

j

H

in

:

� 69� : (X

�

; �) 2 GA

gd

^(�; Y

s

) 2 LA

i

j

H

in

^Y 2 LU

i

. The third omponent

in (2) for Live

gi

i

is exatly f�j(�; Y

s

) 2 LA

i

j

H

in

^ Y 2 LU

i

g, whih

we denote as Live3

gi

i

. Note that as GA

gd

relates to input variables, we

an limit � by requiring it to belong to H

in

. Hene, with Live3

gi

i

j

H

in

de�ned as the set of input head-variables belonging to Live3

gi

i

, we obtain:

6 9� : (X

�

; �) 2 GA

gd

^ � 2 Live3

gi

i

j

H

in

.

� 6 9� : (X

�

; �) 2 LA

i

j

H

in

^ (�; Y

s

) 2 GA

gd

^ Y 2 LU

i

. Aording to

lemma 1, Y 2 H

in

. Here we are only interested in loal aliases related

to X

�

, we will denote this set as LA

i

j

H

in

;X

�

. We obtain: 6 9� : (X

�

; �) 2

LA

i

j

H

in

;X

�

^ (�; Y

s

) 2 GA

gd

^ Y 2 LU

i

j

H

in

.
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Using lemma 3, (8) is equivalent to: 6 9�; ; Y : (X

�

; �) 2 LA

i

j

H

in

^

(�; ) 2 GA

gd

^ (; Y

s

) 2 LA

i

j

H

in

^Y 2 LU

i

. The last two terms imply that

 2 Live3

gi

i

. Aording to lemma 1, we also have that f; �g � H

in

. We

an further limit � by observing that if � 2 LU

i

, then X

�

2 Live

gi

i

(formula

(2)), whih ontradits our starting point. Again we are only interested in

the set of loal variables onerning X

�

. Hene we obtain: 6 9�;  : � 2 (H

in

n

LU

i

j

H

in

) ^  2 Live3

gi

i

j

H

in

^ (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�; ) 2 GA

gd

.

Condition 3. Using a very similar reasoning as for ondition 2, we an

derive that ondition 3 splits up into three parts, see table 1.

Summary. Condition 1 resulted in one expression to be veri�ed, ondi-

tion 2 yielded four heks to be made, ondition 3 added again three veri�a-

tions, this brings us to a total of eight expressions to be veri�ed. Table 1 sum-

marizes them all. The information to be saved during the goal-independent

analysis is redued to the name of the variable whih an be reused (X

�

), as

well as the following sets: LU

i

j

H

in

, Live3

gi

i

j

H

in

and LA

i

j

H

in

;X

�

. Note that

from these sets all information regarding loal variables has been �ltered out

(exept for X

�

). The veri�ations are simple projetions of sets, hene they

will be heap to verify.

Yet having to verify eight onditions eah time appears as a high ost to

pay. We an observe that if X 2 H

in

then LA

i

j

H

in

;X

�

= ;, and all onditions

related to this set will always be true, resulting in only four onditions to

be veri�ed. On the other hand, if X 62 H

in

, then there will never exist a

� suh that (X

�

; �) 2 GA

gd

, whih eliminates the onditions depending on

this relation. We will also have X

�

62 Live

gd

0

. This also results in only four

onditions to be met. Therefore, pratially, we will never have to verify

expliitly all eight onditions, as only four of them will have to be veri�ed

eah time, the others being automatially ful�lled depending on whether

the reusable struture is a head-variable or not. This is also summarized in

table 1.

Note that due to the auray of the derivation of the onditions, verify-

ing these small onditions, or verifying whether the reusable data-struture

belongs to Live

gd

i

by omputing the latter from srath will, though with

di�erent omputation osts, yield exatly the same results, hene no loss of

preision is introdued at this level

4.2.2.2 Indiret reuse Consider a prediate q

1

for whih a goal-independent

analysis has been performed. Suppose this analysis deteted indiret reuse

with respet to some prediate q

2

. Let X

�

q

2

be the data-struture whih q

2

laims to be reusable. A possible strategy for de�ning onditions of reuse

in terms of q

1

ould be to translate the data-struture X

�

q

2

in terms of the

variables with whih q

2

has been alled, and express similar onditions as

above in terms of these variables. This translation an be based on the aliasing
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X

�

62 Live

gd

0

1

6 9Y : (X

�

; Y

s

) 2 GA

gd

^ Y 2 LU

i

j

H

in

2

6 9� : (X

�

; �) 2 GA

gd

^ � 2 Live3

gi

i

j

H

in

2

X 2 H

in

6 9Y : (X

�

; Y

s

y

:s

) 2 GA

gd

^ Y

s

y

2 Live

gd

0

3

6 9�; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;Y

s

) 2 GA

gd

^Y 2 LU

i

j

H

in

2

6 9�; ; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;) 2 GA

gd

^� 2 (H

in

n LU

i

j

H

in

) ^  2 Live3

gi

i

j

H

in

2

6 9Y : (X

�

; Y

s

y

:s

) 2 LA

i

j

H

in

;X

�

^ Y

s

y

2 Live

gd

0

3

6 9�; Y : (X

�

; �) 2 LA

i

j

H

in

;X

�

^ (�;Y

s

y

:s

) 2 GA

gd

X 62 H

in

^Y

s

y

2 Live

gd

0

3

Table 1. Summary of the expressions to be veri�ed in order to safely deide for

using the prediate version whih reuses X

�

or not. The last olumn refers to the

ondition (1, 2 or 3) of whih the expression has been derived.

information between X

q

2

and the head-variables of q

2

. Further work on this

part of reuse-veri�ation is required.

4.2.3 Pratial issues A goal-independent analysis of a prediate might

reveal more than one opportunity for reuse. Eah of these opportunities or-

responds with a di�erent set of onditions to be ful�lled by the aller. Now, if

we want a ompile-time garbage olletion system whih truly exploits every

possible form of data-reuse, and suppose a goal-independent analysis of some

prediate reveals n opportunities, then we would have to generate 2

n

di�erent

versions, resulting in a real ode-explosion. Therefore, in the implementation

of real analysis systems, a tradeo� will have to be made between the size of

the ompiled ode and the number of reuses ahieved. A possible strategy

ould onsist of only reating two versions of suh a prediate: a �rst version

without reuse, and a seond version with every possible reuse foreseen. The

onditions whih have to be ful�lled by the aller of this prediate will be-

ome more severe, risking that reuse is only possible in a few ases. Future

work will have to determine whih strategies are feasible.

Another issue whih has not been mentioned yet is the problem of mu-

tually reursive modules. Although the theory developed in previous para-

graphs is independent of the module-dependenies whih might exist, pra-

tially speaking, mutually reursive modules will be a problem. Whatever

strategy one will use to handle suh ases, it will always indue a ertain loss

of preision.
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4.3 Full module support

Weakmodule support is possible ifLBU and LA is available for eah exported

prediate of a Merury-module. As said, this information an be obtained by

a dediated analysis.

Strong module support onsists of performing goal-independent analyses

of all exported prediates of the modules used. Suh analyses yield informa-

tion on whether reuse is possible at all, and if so, provide the reuse onditions

to whih eventual aller's will have to omply in order to allow the use of

the reuse-version of the prediates. During a goal-independent analysis of a

prediate, the sets LBU and LA are being omputed anyway, therefore no

speial analysis has to be foreseen to dedue these sets: it an all be omputed

during goal-independent liveness analysis.

While weak module support allows the detetion of possible reuses within

the body of a prediate using external prediates, strong module support

also enables us to safely deide whether it is allowed or not to use a reuse-

version of the used external prediates. Weak and strong module support are

therefore omplementary. Combining both we obtain a full modular analysis.

5 Conlusion

We have implemented a prototype system for goal-dependent liveness analy-

sis of Merury. Results obtained with this prototype have been very positive

(preision as well as analysis ost), yet revealed two possible problems. First

of all, some potential reuses are missed due to our representation of reur-

sive data-strutures. In the presene of ompliated type-de�nitions, a seond

problem might our, as the analysis risks to beome exponential. We have

briey mentioned possible solutions to both problems, suggesting that fur-

ther optimization of basi goal-dependent liveness analysis will have to be

done. Generally, a tradeo� will always have to be made between analysis ost

and preision. Although the prototype already overs basi Merury language

onstruts, it must be extended to over them all (suh as higher-order pred-

iates and type-lasses whih are not yet supported).

Even in the presene of a full optimal goal-dependent liveness analysis,

the potential of reuse-detetion an only be fully exploited if support for mod-

ular analysis is provided. In this paper, we introdued the onept of weak

modular support, whih allows to analyse a prediate in a goal-dependent

way, even in the presene of external prediates. We also de�ned the notions

of strong module support and goal-independent liveness analysis, suh that

when analysing a prediate whih alls an external prediate, we an safely

deide whether this prediate may use a reuse-version of this external pred-

iate or not. The information needed from the goal-independent analysis of

the latter, as well as the ost of making this deision have been redued by

deriving lear-ut onditions for reuse. In the ase of diret reuses, expressing

and verifying these onditions introdues no loss of preision. This might be
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di�erent for indiret reuses though, and has to be further investigated. Fur-

ther work should also show an optimal strategy for keeping the number of

reuse-versions of a prediate to a realisti level.

Our long term goal is to inorporate a full ompile-time garbage olletion

system within the Merury ompiler. This paper is already one step loser

towards suh an eologial Merury.
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