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Occupant behaviour has since long been of main interest in the domain of building energy savings and indoor
air quality; and its importance is recognized by its wide coverage in literature. In the recent developments of
detailed transient building energy simulations, including the occupant behaviour as boundary condition for
the thermal comfort and system efficiency calculations has been a major research topic given its significant
impact. Simultaneous growing interest in district energy simulations raises similar questions at the aggregate
level, where upscaling from the building to an aggregate neighborhood level at the spatial scale of a low-voltage
feeder results in a natural regression to the mean lowering uncertainty compared to the level of the household.

The presented work starts with the description of StROBe, a stochastic residential occupant behaviour for
district energy simulations; integrating the modelling of receptacle loads, internal heat gains, thermostat settings
and hot water tappings based on occupancy and activity prerequisites. Given this model, the uncertainty for
district energy simulations is addressed. The epistemic uncertainties are aleborated first comparing model
results with reference values and denoting local disaggregation of demographic statistics as possible main
hiatus of general modelling methods for building energy occupant behaviour used at the neighborhood level.
To conclude, the aleatory uncertainty caused by stochastic residential occupant behaviour in integrated district
energy simulations are quantified. Here, the expected value of the objective functions have to a large extend
the same minimizers as the measures of the proposed robustness. As such, optimizing an objective value for its
expected value generally seems to result in a optimum near the optimum of robustness. However, 95 percent
of the observed objectives lay between 0.81 and 1.6 times the expected value for a feeder larger than 10 houses
and between 0.88 and 1.3 times the expected value for more than 20 houses denoting an overall ‘rather small’
uncertainty on the possible objective functions caused by user behaviour. Furthermore, we show that the design
of the building energy system has its impact on the robustness of the objective criteria and it could thus be
minimized as part of an optimiation exercise.

Keywords: District simulation; Stochastic modelling; Occupant behaviour; Uncertainty.

1. Introduction

Occupant behaviour has since long been of main interest in the domain of building energy sav-
ings and indoor air quality; and its importance is recognized by its wide coverage in Annex 5
(), Annex 8 () and Annex 20 () of the International Energy Agency (IEA) Energy
in Buildings and Communities (EBC) Programme focussing on ventilation habits, and in Task
26 () of the IEA Solar Heating and Cooling (SHC) Programme focussing on hot water con-
sumption. In the recent developments of detailed transient building energy simulations, including
the - possibly irrational - occupant behaviour as boundary condition for the thermal comfort
and system efficiency calculations has been a major research topic given its significant impact.
Here, the recent Annex 66 () of the IEA-EBC Programme aims to harmonize research
on stochastic modelling of energy related occupant behaviour in buildings at over 20 research
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Figure 1. General overview of the implemented algorithms in StROBe. The framework is found on the stochastic determi-
nation of occupancy and activity chains as prerequisites; based on the clustered time use survey data. Given the generated
occupancy chains and activity probabilities, the profiles for the receptacle load of appliances and lighting, for the hot water
tappings, the internal heat gains, and the space heating set points are determined.

groups.Simultaneous with these developments in building energy simulations, the interest grows
in district energy simulations; due to the possible externalities of rooftop-mounted photovoltaic
systems and electricity-driven heat pumps for space heating and domestic hot water.
Given the impact of thermostat adjustments and hot water tapping on the simultaneity of heat
pump load profiles and the additional aggregation of receptacle loads at neighbourhood level, the
presented work aims to estimate the uncertainty in district energy simulations regarding occu-
pant behaviour within the presented context. Here, up-scaling from the building to an aggregate
neighbourhood level at the spatial scale of a low-voltage feeder results in a natural regression to
the mean lowering uncertainty compared to the level of the household.
To address this, the presented work starts by (a) the description of a developed stochastic residen-
tial occupant behaviour model StROBe (short for ‘Stochastic Residential Occupant Behaviour’)
for district energy simulations; integrating the modelling of receptacle loads, internal heat gains,
thermostat settings and hot water tapping based on occupancy and activity prerequisites. Given
this model, the uncertainty for district energy simulations is addressed: epistemic uncertainties
(b) are elaborated first, comparing model results with reference values and denoting possible
hiatus of general modelling methods for building energy occupant behaviour used at the neigh-
bourhood level. At last, the aleatory uncertainty (c) is estimated describing the uncertainty in
district energy simulations inherent to the non-deterministic occupant behaviour.

An overall overview of the followed methodology is given in Figure 1; making distinction of the
used data sources used to model occupancy profiles and activity probabilities as prior common
prerequisites for the modelling of the stochastic phenomena in occupant behaviour with physical
impact on (building and) district energy simulations.

2. Prior considerations

Without elaborating on a full-length literature review of related work on occupant behaviour
modelling for building energy simulations, we will precede the description of developed occupant
model by a set of literature-based modelling assumptions.
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Modelling approach. Review of the extensive related literature on (a) receptacle load mod-
elling, on (b) modelling the interaction between occupants and building systems providing in-
door environmental quality, and on (c) hot water tap load modelling allows us to draw the
first methodology outlines for a correct representation and modelling of the pervasive system in
residential district energy simulations:

• A bottom-up model using occupancies and activities of the household individuals as pre-
requisites for modelling the heating settings, plug loads, internal heat gains and domestic
hot water tapping time series is preferred. The former is introduced in early work of by
C.Walker () and A.Capasso () et al. (Walker, 1982; Walker & Pokoski, 1985;
Capasso et al. , 1993, 1994), and is adopted by a majority of load models (Jordan & Vajen,
2001b,a; Spur et al. , 2006; Widén et al. , 2009a,b; Widén & Wäckelg̊a rd, 2010; Widén
et al. , 2012; Stokes et al. , 2004; Richardson et al. , 2008, 2009, 2010; Richardson, 2010;
Wilke et al. , 2013; ?; Aerts, 2015).

• Demographic and socio-economic survey data are used in preference of load data as basis
for modelling. As such, the model allows cross-sectional and longitudinal analyses of be-
havioural aspects. The latter approach is adopted in all previously reference models, while
load-based comprehensive models are scarce (Mansouri et al. , 1996; Paatero & Lund,
2006; Armstrong et al. , 2009).

Additionally, though not indisputably proven in latest model developments regarding occupant
behaviour, it is the author’s opinion that:

• Existing comprehensive stochastic models for window opening and solar shading control
in a residential environment are not sufficiently described or validated, in contrast to the
models for offices (Warren & Parkins, 1984; Fritsch et al. , 1990; Johnson & Long, 2005;
Rijal et al. , 2008, 2011; Yun & Steemers, 2008; Yun et al. , 2009; Yun & Steemers, 2010;
Haldi & Robinson, 2011; Schweiker et al. , 2012; Andersen et al. , 2013; Yun et al. , 2009;
Guerra-santin & Itard, 2010; Haldi & Robinson, 2011).

• Clustering and survival analysis are preferably combined for modelling the variables which’
state values duration sequences influence most the system efficiencies (Wilke et al. , 2013;
Aerts, 2015).

• First-order Markov chains are preferably only used for modelling the variables which’
duration sequences have little influence on system efficiencies.

• A time resolution of ten minutes or less is recommended (Widén et al. , 2010; Baetens
et al. , 2011; Groscurth et al. , 1995).

Remarkably, the earliest model of C.Walker () yet includes majority of the quoted pre-
ferred principles, of which many of them were abandoned in successive research (Walker, 1982).
We will adopt his model philosophy, updated with the latest developments and available data.
As such, the Python StROBe Package (short for ‘Stochastic Residential Occupant Behaviour’) is
developed as a modular framework in Python 2.7 and describes the occupant behaviour for res-
idential (building and) district energy simulations based on the cited related work and national
surveys.

Additional assumptions. Prior to the modelling of the stochastic nature of occupant behaviour,
we will state all assumptions shared by two or more of the related sub-systems. As such, prior,
we will assume that:

• Occupant behaviour is spatially homogeneous with respect to the national demography;
and the technical systems and occupant behaviour are spatially homogeneous with respect
to the weather.

• Structural demographic changes can be neglected during a single simulation.

• Households and household members behave independently of each other, and indepen-
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dently of the building and district energy systems’ state.

The first premise means that ‘people living in a single neighbourhood do not predominantly
tend to fall in one or two consumer types’, and that appliance ownerships, demography and
dwelling type can described independently of each other, but studies on this assumption are not
unequivocal (Gardiner & Manson, 1994; Vanneste et al. , 2001). The premise additionally means
that system interactions on environmental data do not depend on the location within the system.
This may introduce an overestimation of the simultaneity of climate-induced loads, e.g. on the
lighting load or photovoltaic output on cloudy days. The true spatial inhomogeneity can however
not be modelled due to a lack of data, but its effect is assumed to be negligible due to the small
spatial scale of interest in the research. Considering the last two premises; the stated research
question is generally addressed by performing energy simulations representing the duration of
one year. The structural changes of occupant behaviour in such a period are rather small,
and negligible for energy system evaluations. The changes in a long-term perspective are more
pronounced, e.g. the evolution to more energy efficient appliances up to changing demographics
in time.

3. The StROBe Package; a residential human behaviour model

Given these assumptions, the effective implementation of the stochastic nature of occupant
behaviour is a research question on his own and will therefore be elaborated on in the following
sections.

An overview of StROBe is given in Figure 1 on page 2. In a first stage, available survey
data is clustered and used for household composition. Following, the household proclivities are
determined, and occupancy and activity chains are generated based on survival models. In a
third and last stage, the effective occupant behaviour concerning receptacle loads, thermostat
settings and domestic hot water tapping is modelled.

3.1 Subspace clustering

The majority of the used statistics in this work are based on two surveys, i.e. the decennial
Belgian Time-Use Survey and Household Budget Survey (from now on referenced as BeTUS’05

and BeHBS’05) collected in 2005 by the Directorate-general Statistics and Economic Informa-
tion.(Glorieux et al. , 2008b,a; Glorieux & Minnen, 2008; Heylen et al. , 2007) The BeTUS’05 and
BeHBS’05 datasets relate to a population of 6400 individuals from 3474 households, who com-
pleted questionnaires describing the chronological course of activities in their diaries in 10 min
increments throughout 24 hours, starting and ending at 4:00 AM. These activities are assigned
from a extensive list of 272 different activity types.

The physical quantities of interest in BeTUS’05 are the probabilities to perform different ac-
tivities during the day, and the possible cross-correlations with all demographic parameters. At
the resolution of the individual, observed occupancy and activity chains are respectively char-
acterised by the discrete-time data series o′(x)[n] and a′(x)[n] of the individual x over time bins
n. Here, three possible occupancy states Ωo are determined for each time step, i.e. being awake
at home, being asleep at home, and being absent.

As depicted by D.Aerts et al. , subgroup population clustering is required for model validity
allocated at the single building scale (Aerts, 2015). In order to predict occupancy and activity
chains so that individual behaviour or possible sequential activity occurrence can be captured,
the aggregated BeTUS’05 data is clustered in seven partitions βj by D.Aerts et al. by means of
agglomerative hierarchical clustering C( · ) based on the Levenshtein distance as metric between
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Table 1. BeTUS’05 coverage of individual employment types for all partitions βj if applied for weekdays, representing household

members behaving according to a typical occupancy profile j.The bold coverages denote an over-representation in βj in comparison

to the overall population, as such being dominated by these clusters.

β1 β2 β3 β4 β5 β6 β7 U(β)

Full-time employment 0.657 0.413 0.323 0.177 0.142 0.138 0.158 0.294
Part-time employment .085 .130 .097 .098 .066 .107 .084 .079
Being retired or unemployed .067 .150 .368 .599 .642 .679 .712 .296
Minor .192 .308 .213 .084 .194 .076 .046 .145

all observed occupancy state sequences o′(x)[n] (Aerts, 2015)

{βj}1:7 , Clev

({
o′(x)[n]

}
s

)
: BeTUS’05 (1)

with βj ⊆ BeTUS’05Ėach partition βj represent household members behaving according to a
typical occupancy profile j. All partitions together cover 81.4 percent of the original dataset for
weekdays, 76.6 percent for Saturdays and 80.0 percent for Sundays as shown in Table 1 on page
5.

3.2 Household composition & cluster allocation

The household composition must be determined before generating the household behavioural
variables. With respect to StROBe, it is required to know how many people live in the dwelling,
to which cluster βj they can be allocated, and which appliances they own.

Household composition is determined based on the compositions found in BeTUS’05, i.e. a
random household composition is each time taken from the BeTUS’05 database determined by
the professional life stages of the individuals who are part of it. Here, distinction is made between
‘minors’, ‘full-time’ employed individuals, ‘part-time’ employed individuals and individuals be-
ing ‘idle’. The latter is later on divided into ‘unemployed’ and ‘retired’ individual as will be
required for determining thermostat settings. As such, the household is at this point determined
as e.g. {full-time, unemployed, minor}. Given these professional life stages of the individuals,
each individual is allocated to a cluster βj based on the known representations of a certain em-
ployment as shown in Table 1 on page 5. As such, the household is at this point determined as
e.g. {β1, β6, β2}.

The owned appliances are determined by the average ownerships found in BeHBS’05, i.e. the
ownership is evaluated for each household based on the observed probabilities.

3.3 Occupancy and activity prerequisites

Based on the clustered datasets, the occupancy chains and the activities of all household members
will be modelled as a common prerequisite for the modelling of the variables with physical impact.
This improves their resulting auto- and cross-correlations.

3.3.1 Member occupancy

The occupancy o(x)[n] of each household member x is explicitly modelled as a common prereq-
uisite for the physical behavioural variables. The generation of the behavioural profile assumes
members to behave independently of each other 1 and consists of three steps, i.e. defining the
start state, and successively evaluating a survival time density and an event density to determine
the time n at which the next event will take place and to which state the occupancy will change.

1Independent behaviour is an assumption made in a majority of behavioural research, although correlated behaviour can be
suspected (Tanimoto et al. , 2008b; Widén & Wäckelg̊a rd, 2010; Richardson, 2010). The use of clusters slightly improves
the current approaches, while combining individual probabilities with household proclivities is an active research domain
which might improve the generation of o(x)[n] in the near future(Wilke et al. , 2013; Aerts, 2015).
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As such, the resulting occupancy chain o(x)[n] is described as

o(x)[n] =
{(
o(x)
n0
, l1

)
,
(
o

(x)
n0+l1

, l2

)
, . . . ,

(
o

(x)
N

)}
(2)

where o
(x)
n ∈ Ωo is the occupancy state of individual x at time n, Ωo is the occupancy state space

and ln is the survival time for which the state o
(x)
n remains equal to its previous value o

(x)
n−1.

The occupancy state o
(x)
n0 at time n0 is directly determined for each x as

o(x)
n0

= X
(

Π
(
{o′(x′)
n0
}(β(x))

))
: x ∝ β(x) ⊆ BeTUS’05 (3)

where {o′(x)
n0 }(β

(x)) is the set of observed occupancy states at n0 in β(x) ⊆ BeTUS’05 to which
the individual x was allocated, Π( · ) describes the distribution of the given variable and X( · )
denotes a random value from the given distribution function.

Once o
(x)
n0 defined, the stochastic process is ruled by a heterogeneous discrete-time Markov

chain with alternate transitions in the state space and in time space. These transitions are

determined by an event density and a survival time density. We define the event density O
(x)
n

and lead time density L
(x)
n at time n as

O(x)
n , Π

(
o(x)
n | o

(x)
n−1, n

)
: ∀n ∈ N,∀o(x)

n ∈ Ωo\o(x)
n−1 (4)

L(x)
n , Π

(
o

(x)
n+k = o(x)

n | o(x)
n , n

)
: ∀n, k ∈ N (5)

whose image O
(x)
n is a complete description of the cumulative distribution function of o

(x)
n con-

ditional to o
(x)
n−1 and the presupposition that an event occurs at time n; and whose image L

(x)
n

is a complete description of the cumulative distribution function of the lead time k conditional

to the presupposition that o
(x)
n+k = o

(x)
n . Both event and survival time densities are defined at

clock-time τ30 but will be evaluated at τ10 in the algorithm when profiles are generated, and the
parametrization set of day-types is restricted to Weekday, Saturday and Sunday. An example

day-profile of the observed O(x)[nd] and L
(x)
nd is given in Figure 2 for two arbitrary clusters βj .

The resulting final occupancy chain o(x)[n] for x as defined in Equation 2 is derived by succes-

sively determining the start state o
(x)
n0 as in Equation 3, obtaining its survival time l

(x)
0 = X(L

(x)
n0 )

denoting the time after which a change in occupancy state will occur, proceed to n
(x)
0 + l0, de-

termine the new state o
(x)
n0+l0

= X(O
(x)
n0+l0

) and repeat the last three steps until the end of the
simulation period. The generation of a one-year occupancy profile for IDEAS 0.3 usually con-
sists of a one-week profile repeated 52 times; as creating a full-year stochastic profile shows an
increased regression to the mean.

3.3.2 Activity proclivities

The exerted activities are not modelled explicitly but only described by their statistics, in
contrast to the occupancies. As such, we recall C.Walkers’ proclivity function often referred
to as I.Richardsons’ static activity function and formally defined as

g
(x)
j,n , p

(
a(x)
n = j | o(x)

n

)
: ∀n ∈ N,∀j ∈ Ωa (6)

whose image g
(x)
j,n denotes the likelihood that this individual x is engaged in the depicted activity

j at time n conditional to o
(x)
n (Walker, 1982; Richardson et al. , 2010). Similar to the event

density and survival time density, g
(x)
j is defined at clock-time τ30 but evaluated at τ10 in the
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Figure 2. Example profile of event density Ô(x)[nd] (left) and survival time density L̂
(x)
nd (right) for clusters β2 and β5. The

given event density L̂
(x)
nd denotes the probability that on+k is ‘home and awake’ (bold) or ‘away’ (dashed) given that on

equals ‘home and sleeping’. The given L̂
(x)
nd denotes the survival time density at 6:00 AM for a transition from ‘home and

sleeping’ to ‘home and awake’ (bold) or ‘away’ (dashed).

algorithm when profiles are generated, and the parametrization set of day-types S is restricted
to weekday, Saturday and Sunday.

3.4 Temporal pervasive space of human behaviour

The defined approach on household proclivities result in occupancy chains o(x)[n] and the related

static activity likelihoods ĝ
(x)
j [n] for each household member x and all time bins n. Both variables

have no first-order impact on the energy simulations, but are prerequisites to determine the
correlated space heating settings, the plug loads for appliances and lighting, internal heat gains,
and domestic hot water tapping flows which influence all commodity flows.

3.4.1 Receptacle loads

The first conclusive model in StROBe models the receptacle loads and is divided in two sections,
i.e. modelling of the residential appliances loads Pα[n] and the lighting loads Pλ[n] respectively.

Residential appliance loads The implemented appliance load model adopts the approach of
I.Richardson et al. (Richardson et al. , 2010), determining the load profile Pα[n] for appliances
α based on the generated occupancy chains {o(x)[n]}h, appliance power characteristics, appliance-

activity assignment, static activity likelihoods which correspond to the proclivity functions g
(x)
j [n]

and the determination of a calibration scalar. In general, domestic appliances have two states as
they may either be standby or on reducing the calculation of Pα[n] to defining the switching-on
and -off events.
For each appliance α and member x, the probability of switch-on p

(x)
α (t) is defined as

p(x)
α,n =

{
g

(x)
aα,ncα if o

(x)
n = 1

cα if
(
aα = o

(x)
n

)
or (aα = ∅)

(7)

with cα ≤ 1 a calibration scalar, aα ∈ Ωa the activity to which the use of appliance α is related,

and g
(x)
aα,n the likelihood of activity aα related to appliance α for x ∈ β(x); g

(x)
aα is determined at

τ10 being the time resolution of the generated o(x)[n]h but evaluated at τ1 in the algorithm. The
calibration scalar cα determines the average number of times the respective appliance α is used
in a year, and is determined iteratively after hundred of algorithm runs per iteration. Here, cα
is required as there is no one-to-one link between the use of appliances and the activities. Once

a switch-on event is detected as X(p
(x)
α,n) for appliance α by x, the duration δα of the on-state
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να is determined as

δα = X
(
N (µα, σ

2
α)
)

: σα , µα/10 (8)

with µα the appliance’ mean duration of the on-state, and where-after the procedure is repeated
for the entire occupancy chain.

Once all events are defined and all durations determined, the resulting load profile Pα[n] of α
can be easily determined as να[n]Pνα with να[n] the generated state of α and Pνα the charac-
teristics power of α. Given the load profile, the resulting internal convective and longwave heat

gains are straightforwardly determined as Q̇
(α)
a,g , fa,αPα[n] and Q̇

(α)
lw,g , flw,αPα[n] respectively

based on the simplification that appliances do not have a thermal capacity. Here, fa,α and flw,α
are the convective and radiative fraction of the heat gain for appliance α. Both factors do not
necessarily sum up to unity to include heat generation in appliances which are not transferred
to the building zone, e.g. appliances for cooking and laundry.

Residential lighting loads A distinct model is used for defining the receptacle lighting loads
Pλ[n] for the lighting fixtures λ. Here, the approach of J.Widen et al. () for simulating the
use of lighting for residential buildings is chosen in favour of the model of I.Richardson et al. as
it does not require the nominal power of all fixtures separately (Widén et al. , 2009a; Richardson
et al. , 2010). The approach starts by defining a theoretical desired power level Pλ,id[n] as

Pλ,id[n] , uab[n]Pλ,ab + uac[n]Pλ,ac[n] + uia[n]Pλ,ia (9)

where Pλ,ab and Pλ,ia are default electric loads for lighting in case the most-active occupant
is absent or inactive respectively and and where the functions ui[n] are step functions stating
o(x)[n] = i; while Pλ,ac[n] is an ideal load required to meet global comfort when active given by

Pλ,ac[n] =

{
Pminψ(t) + Pmax (1− ψ(t)) if E

(h)
e (t) ≤ Elim

Pmin if E
(h)
e (t) > Elim

(10)

where ψ(t) , E
(h)
e (t)/Elim as function of the global irradiation levels E

(h)
e (t) on the horizontal

surface based on the assumption that the illuminance on a surface is linearly dependent on the
irradiance and where Elim is a threshold value. The effective lighting load Pλ[n] is defined by
and incremental power ∆Pλ with a constant probability pλ reducing the difference between the
effective load for lighting Pλ,n and the instantaneous ideal load Pλ,id,n at evaluation in each

time step for o
(x)
n = 1 denoting the slow response of occupants to changing light conditions.

Given the load profile, the resulting internal heat gains can be straightforwardly determined as

Q̇
(λ)
a,g , fa,λPλ[n] and Q̇

(λ)
lw,g , flw,λPλ[n] respectively; with fa,λ and flw,λ the convective and

radiative fraction of heat gain for appliance λ.

3.4.2 Internal heat gains

Once the occupancy chains o(x)[n] of all household individuals x and the receptacle load chains
Pα[n] and Pλ[n] of all appliances and lighting fixtures are determined, the overall convective and
longwave internal heat gain profiles Q̇a,g[n] and Q̇lw,g[n] can be defined straightforwardly as

the sums Q̇
(α)
a,g [n] + Q̇

(λ)
a,g [n] +

∑
x f

(x)
a QM (o(x)[n]) and Q̇

(α)
lw,g[n] + Q̇

(λ)
lw,g[n] +

∑
x f

(x)
lw QM (o(x)[n])

respectively, with fa,x and flw,x respectively the convective and radiative fraction of heat gain

for humans and QM (o(x)) the metabolic heat production of x in state o(x).



July 3, 2015 10:2 Journal of Building Performance Simulation jbps2015˙BehavorialUncertainty

Journal of Building Performance Simulation 9

3.4.3 Space heating settings

There are no comprehensive stochastic models known focussing on the space heating settings
based on prerequisite occupancy and activity chains. The recent survey data analysis method of
K.Leidelmeijer et al. denoting clustering of the space heating comfort desires, patterns and
heated spaces, and the resulting findings closely match a o(x)[n]-prerequisite approach when
reformulated for modelling and will be adopted here (Leidelmeijer & Van Grieken, 2005). As
such, the used statistics in this section are based on the Dutch Qualitative House Registration
(from now on referenced as DuQHR’00) collected in  by the Directorate-general Housing of
the Ministry of Housing, Spatial Planning and the Environment VRO/DG Wonen (2000). The
dataset relates to a population of 15000 dwellings, who completed questionnaires describing their
heating and ventilation behaviour.

To analyse the temporal behavioural patterns, DuQHR’00 is clustered in seven partitions ϕj by

K.Leidelmeijer et al. based on the observed space heating state chains T
′(sd)
sh [n] of the living

area sd (Leidelmeijer & Van Grieken, 2005)

{ϕj}1:7 , C
({
T
′(sd)
sh [n]

}
s

)
: DuQHR’00 (11)

with ϕj ⊆ DuQHR’00. Each partition ϕj represent households heating according to a typical
pattern j, e.g. partition ϕ3 covers the households in DuQHR’00 with a typical space heating profile
heating the day-zone just below 20◦C all day long, increasing their set-point in the evening while
reducing it at night to 15◦C. All partitions together cover 98 percent of the original dataset as
shown in Table 2 on page 10; though partition ϕ1 covering 4 percent of DuQHR’00 is removed for
modelling new neighbourhoods denoting the households which never heat their dwelling. The
set {ϕj}1:7 ⊆ DuQHR’00 covers two distinct aspects at the same time, i.e. the characterisation of
the heating pattern in time and of the desired comfort levels. If we only consider the temporal

behaviour in ϕj replacing T
′(sd)
sh [n] by a function u

′(sd)
sh [n] with state space high, medium and low,

the partitioning ϕj matches the earlier found partitioning {βj}1:7 ⊆ BeTUS’05 on occupancy
with state space awake at home, ‘asleep at home’ and absent. We therefore conclude that the
space heating set-point model can start from the generated occupancy chains {o(x)[n]}h of all
members x in household h. The model is as such defined based on the instantaneous most-active
occupancy state of all members x. Given the stated o(x)-prerequisite, the probabilistic allocation
of household h to the cluster h ∝ ϕ(h) is based on the given un-parametrized coverages in

DuQHR’00 and translated to the parameter set T
′(sd)
sh,u1

(
Ωo, ϕ

(h)
)

denoting the space heating set-
points for the living area as function of the occupancy state of the most-active member.

In order to analyse the spatial behavioural patterns, DuQHR’00 was again clustered by Lei-
delmeijer & van Grieken based on the observed heated spaces {s′sh}h.(Leidelmeijer & Van
Grieken, 2005) As such, DuQHR’00 is clustered in six partitions σj

{σj}1:6 , C
(
{s′sh}h

)
: DuQHR’00 (12)

with σj ⊆ DuQHR’00. Each partition σj represent households heating according to a typical pat-
tern j, e.g. partition ϕ3 covers the households in DuQHR’00 which heat the day-zone, kitchen
and bathroom according to the pattern observed in the living area sd. For convenient han-
dling of multi-zone building energy simulations, the state space of DuQHR’00 is converted to the
smaller state space with day-zone, night-zone and bathroom by dealing the living area, kitchen
and scullery equal. The coverages of the subgroups on heated spaces {σj}1:6 are not quanti-
fied but only expressed qualitatively in relation to the subgroups on heating patterns {ϕj}1:7,
i.e. the most common combination for each cluster σj with ϕj is given. As such we can only

deterministically allocate h ∝ σ(h) given the allocation h ∝ ϕ(h) as shown in Table 2 on page 10.



July 3, 2015 10:2 Journal of Building Performance Simulation jbps2015˙BehavorialUncertainty

10 Taylor & Francis and I.T. Consultant

Table 2. DuQHR’00 coverage of household heating behaviour patterns for all partitions ϕj representing household members behaving

according to a typical settings j with set point Tsh as function of the occupancy state for the heated spaces {ssh}h. The bold

coverages denote an over-representation in ϕj in comparison to the overall population, as such being dominated by these clusters.

The possible heated spaces are the dayzone (d), bathroom (b) and nightzone (n).

ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 U(ϕ)

Coverage 0.35 0.16 0.08 0.11 0.05 0.20

Tsh if home & awake 20.0◦C 18.5◦C 20.0◦C 20.0◦C 21.0◦C 21.5◦C 19.11◦C
Tsh if home & asleep 19.5◦C 18.5◦C 19.5◦C 15.0◦C 21.0◦C 21.5◦C 18.35◦C
Tsh if absent 15.0◦C 15.0◦C 11.0◦C 14.0◦C 20.5◦C 15.5◦C 13.13◦C

Heated spaces {ssh}h {d,b,n} {d,b} {d,n} {d} {d,b,n} {d,b}

3.4.4 Hot water redraws

The implemented hot water tap model adopts the exact same approach as the receptacle loads,
determining the load profile ṁγ [n] for taps γ based on the generated occupancy chains {o(x)[n]}h,
tap flow characteristics, tap-activity assignment, static activity likelihoods which correspond to

the proclivity functions g
(x)
j [n] and the determination of a calibration scalar. In general, domestic

taps have two states as they may either be closed or open reducing the calculation of ṁγ [n] to
defining the opening and closing events of all taps.

For each tap γ and member x, the probability of switch-open p
(x)
γ [n] is defined

p(x)
γ,n =

{
ĝ

(x)
aγ ,ncγ if o

(x)
n = 1

cγ if
(
aγ = o

(x)
n

)
or (aγ = ∅)

(13)

with cγ ≤ 1 a calibration scalar, aγ ∈ Ωa the activity to which the use of tap γ is related,

and ĝ
(x)
aγ ,n the likelihood of activity aγ related to tap γ for x ∈ β(x). The calibration scalar cγ

determines the average number of times the respective tap γ is used in a year, and is determined
iteratively after hundred of algorithm runs per iteration. Here, cγ is required as there is no one-
on-one link between the use of taps and the activities. Once a switch-open event is detected as

X(p
(x)
γ,n) for tap γ by x, the duration δγ of the open-state νγ is determined as

δγ = X
(
N (µγ , σ

2
γ)
)

: σγ , µγ/10 (14)

with µγ the tap’ mean duration of the open-state, and where after the procedure is repeated for
the entire occupancy chain.
Once all events are defined and all durations determined, the resulting load profile ṁγ [n] of γ can
be easily determined as να[n]ṁνγ with νγ [n] the generated state of γ and ṁνγ the characteristics
tap flow of γ.

3.4.5 Ventilation and solar shading control

As the focus lies on (new) low-energy dwellings in the proposed research questions, we will
state that the required ventilation is achieved by a mechanical ventilation system and its control
is, together with the control of the solar shading, performed by a building energy management
system.

4. Epistemic uncertainty: evaluating methods in StROBe for IDEAS

The Python StROBe Package has been developed to include stochastic residential occupant
behaviour as a main boundary conditions in integrated (building and) district energy simulations
with the Modelica IDEAS Library. The main improvements achieved in StROBe compared to the
state-of-the-art is the use of clustered BeTUS’05 data for occupancy and activity modelling, and
combining all different commodities in a single model found on the same prerequisites; as such
improving the representation of their cross- and autocorrelations which are important for district
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Figure 3. Example week profile of the receptacle load Pr[n] (left) and hot water redraws ṁγ [n] (right) for a single dwelling
(blue) compared to the instantaneous aggregate profile (green) derived by summing hundred profiles scaled with a factor
.10 for readability.

energy simulations. Resulting example profiles of Pr[n] and ṁγ [n] at dwelling and aggregated
level are given in Figure 3.

The Python StROBe Package is one of the main implicit sets of equality constraints for
the parameter set x in integrated district energy simulations. The set of assumptions made
in the previous sections and which are specific to the development of a bottom-up building-
energy occupant behaviour model such as StROBe cause epistemic uncertainties, i.e. uncertainties
attributable to incomplete knowledge about a phenomenon that affects our ability to model it.
As epistemic uncertainties are due to ‘things we could in principle know but don’t in practice’,
they are evidently hard to quantify. As such we will try to estimate them on three aspects,
i.e. by verifying the StROBe model outcome with known reference values on the annual loads,
the simultaneity of loads and on the autocorrelation of loads.

Annual loads. An overview is given of the histograms for hundred annual simulations in Figure
4 regarding the total annual receptacle loads, the total annual hot water tap and the average
space heating set point temperature for the day-zone.

The observed annual average of the modelled electricity loads is 3.1 MWh. This annual con-
sumption can be compared to the values found in the Belgian Energy Consumption Survey (from
now on referenced as BeECS’10) collected in 2010 under the authority of eurostat (Jespers et al.
, 2010). The BeECS’10 dataset relates to a population 3396 households who completed question-
naires related to their energy demand, and denotes a median annual electricity consumption of
3.6 MWh. The observed underestimation can be explained with two arguments:

• An underestimation of the electricity loads is often found in bottom-up load models based
on occupancy, activity and ownership; and is generally addressed by the notion that the
considered list of appliances is never exhaustive and the nation that occupant behaviour
is not always argumentative (Aerts, 2015).

• Residential energy consumption statistics contain more than just the receptacle loads,
e.g. the loads of pumps and fans. Additionally, for Belgium, twenty percent of households
provide hot water based on an electric boiler, while ten percent of the households heat their
house based on electricity and an additional ten percent sporadically heat an additional
space with an electric heater.

As such, we would expect an underestimation compared to energy consumption statistics, though
we can not directly estimate it. The latter does not apply for hot water tapping. The observed
average of the modelled hot water load is 135 litre per household per day normalized at a
temperature of 60◦C. This number is hard to compare with Belgian statistics, but matches well
with the rule-of-thumb denoting 60 litre per person per day which results in an average hot
water load of 140 litre per household per day given the average household size of 2.3 persons.
The observed average of the modelled space heating set-point in the day-zone is 18.3◦C. Also
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Figure 4. Comparison of the resulting epistemic histograms for the annual receptacle load Pr, the average daily hot water
consumption mγ and the average space heating setpoint Tsh with (average) reference values given in literature.

this number is hard to compare as it is based on the supposed set-point temperature given
when the space heating is considered to be switched off, but matches well with the considered
average building temperature of 18◦C in the Belgian energy directive on the energy performance
of buildings.

Factors of simultaneity. When modelling the pervasive space at a neighbourhood level, the
simultaneity of loads at the aggregate level is one of the main factors influencing the resulting
system performance and the design assessment. To address this, the factor of simultaneity ks ≤ 1
or its inverse diversity factor is defined in both electrical and hydronic design standards. The
factor of simultaneity is the ratio of the peak load of a group of loads to the sum of peak powers
for each load in this group and can thus be formally determined as:

ks

(
ṁ(H)
γ

)
=

max
(∑H

h ṁ
(h)
γ [n]

)
∑H

h

(
max ṁ

(h)
γ [n]

) s.t. h ∈ H (15)

where H is the set of households h in the depicted feeder or neighbourhood. The same definition
is applied to Pr[n] for the design of electricity systems.

The resulting factors of simultaneity ks for the modelled Pr[n] and ṁγ [n] at τ15 are shown
in Figure 5 as function of the number of dwellings n considered in the feeder. To get a correct
representation of ks, each neighbourhood with n dwellings is simulated a hundred times.1 The
average ks of the modelled data is 0.94/n + 0.23 for Pr[n] and 1.12/n + 0.09 for ṁγ [n] for
n ∈ [2, 30]. Given the simulated set of hundred cases for each feeder size n ∈ [2, 30], we can
compare the found factors of simultaneity with the known design standards; which values should
indicate a upper limit of ks as function of the system size, bound by a confidence interval or
safety factor. Before comparing the simulated values with the standard, we will state that ‘the
factors of simultaneity ks may be treated as being normally distributed for a single n’; which
allows us to described ks based on standard deviations. For both ks (mγ [n]) and ks (Pr[n]), the
null hypothesis H0 against N (µ, σ2) is refuted by Shapiros’ W -test for normality for an α-level
of .05 and W ≥ .95.2 As such, we can calculate the coefficient of variation of ks, equal to .2 n−14
percent for the receptacle loads Pr[n] and .07 n− 12 percent for the water redraws ṁγ [n].
Having defined the standard deviation under the assumption of normality, we can compare an
µ+ n ·σ upper limit for ks (Pr[n]) and ks (mw[n]) at τ10 with the reference values given in their
respective system design standards IEC Std. 60439 and Std. EN 806-3 on low-voltage switchgear

1The size of hundred cases is set based on the suggestion of K.Lomas et al. and I.Macdonald et al. stating that the
accuracy does not improve much above a hundred runs (Lomas & Eppel, 1992; Macdonald, 2009); though this can be
questioned (Janssen, 2013).
2To be complete, also the null hypothesis H0 against lnN (µ, σ2) is refuted by Shapiros’ W -test for (log-)normality for the
same α-level of .05 and W ≥ .95, which may allow us to treat ks as being a log-normal distributed with a longer upper-tail.
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Figure 5. Verification of the modelled factors of simultaneity ks for τ15 receptacle loads Pr[n] (left) and hot water redraws
mγ [n] (right) denoted for 100 cases per feeder size in comparison to its design standards.

and in-home water piping respectively; which’ values should describe an upper limit of observed
values, bound by a confidence interval or safety factor.

The comparison of the calculated ks (Pα[n]) with IEC Std. 60439 and ks (ṁγ [n]) with
Std. EN 806-3 as shown in Figure 5 gives an indication of the correctness of the modelled data.
The modelled upper 3σ limit for ks (Pα[n]) of 1.84/n + 0.26 corresponds visually well with the
bottom limit of 3.77/n+ 0.26 in the design standard IEC Std. 60439, and also the bottom limit
of 1.81/n + 0.34 in the design standard Std. EN 806-3 matches visually well to the calculated
upper 3σ limit for ks (ṁγ [n]) of 1.61/n + 0.11. From this we may draw the implication that
ks (ṁγ) and thus the simultaneity of the modelled ṁγ at feeder level is satisfyingly verified,
though the difference between both remains significant. Two explanations can be given for the
underestimated ks of the modelled time series;

• A first reason may be the premise that the pervasive system is spatially homogeneous with
respect to the national demography. As stated earlier, A.Gardiner et al. and A.Riddell
repelled this assumption by stating based on measured household and transformer load
profiles that ‘time series Pr[n] found at individual-house level are apparent at the feeder-
transformer’ implying that people living in a given neighbourhood predominantly tend to
fall in just one or two clusters βj ∈ β (Gardiner & Manson, 1994; Riddell, 1996). Such a
local concentration of clusters βj would amplify the log-normality of ks (Pr[n]) compared
to its normality, and as such raise the upper 3σ limit.

• On the other hand, Std. EN 806-3 includes domestic hot water as well as cold water
tapping which gives a distorted comparison with the modelled hot water loads.

Unfortunately, there is not enough data available in BeTUS’05 or BeHBS’05 to allow a proper
modelling of the local inhomogeneity of the pervasive space. Despite the observed underestima-
tion of the factors of simultaneity compared to their design values in standards, we will say that
the simultaneity is modelled well enough for its purpose in district energy simulations.

Receptacles’ autocorrelation. When modelling the pervasive space at a building level, the auto-
correlation of loads is one of the indicators addressing the correct representation of the load
profile. To address this, the autocorrelation function (ACF) of the modelled Pr[n] loads at τ1

for hundred households is compared to an equal number of random profiles measured in a single
district at τ15 as showed in Figure 5 for a one-week period (Labeeuw, 2013).

Visual comparison of the modelled and measured autocorrelation functions shows an under-
estimation for the modelled Pr[n]-profile compared to the measured profiles, while the lag is
correctly represented. Autocorrelation functions however depend on the sample size and first-
order lag, and due to the difference in time resolution of both datasets we have to compare them
in relation to their respective threshold levels of correlation needed to reject the null hypothesis
H0 of zero population correlation with .95 significance for an α-level of .05. The resulting r.95

are .062 for the modelled load profiles and .094 for the measured load profiles (Andersen, 1941).
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Labeeuw, W. (2013)
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Figure 6. Verification of the modelled autocorrelation function (ACF) for τ1 for receptacle loads Pr[n] (blue) in comparison
to the average ACF for 100 random profiles measured by W.Labeeeuw et al. (green) as such and (right) corrected for to
their respective threshold levels of correlation r.95 needed to reject the null hypothesis H0 of zero population correlation
with .95 significance for an α-level of .05.(Labeeuw, 2013)

As showed in Figure 6 (right), the r.95 threshold level is exceeded at lags which are a plurality
of a day similar to the observed data, and reaches 2.05 · r.95 after 24 hours and 1.47 · r.95 at its
pluralities for the modelled load profiles in comparison of 2.98 · r.95 and 2.41 · r.95 respectively in
the observations. As such, as observed before, a slight underestimation of the auto-correlation
function of the measured load profiles remains even when corrected for r.95. Two explanations
can be given;

• On the one hand, repeatability of behaviour is only accounted for in the explicit modelling
of o(x)[n]. The activity modelling could include a correction for the recorded repetition
of daily behaviour by adopting a Markov-chain method as proposed by U.Wilke et al. ,
J.Tanimoto et al. or J.Widén et al. who focus on rectifying ax,n (Wilke, 2013; Tanimoto
et al. , 2008a; Widén et al. , 2012). The latter however requires behavioural data of
consecutive days and a rejection of the assumption that household individuals behave
individually from each other.

• On the other hand and similar to the underestimation of ks, stating that the pervasive
system is spatially homogeneous with respect to the national demography may underesti-
mate the autocorrelation function. As stated earlier, A.Gardiner et al. and A.Riddell
repelled this assumption (Gardiner & Manson, 1994; Riddell, 1996). Such a local con-
centration of clusters βj would lower the observed spread and raise the mean observed
autocorrelation.

Despite the small observed underestimation of the autocorrelation functions compared to their
design values in standards, we will say that the autocorrelation is modelled well enough for its
purpose in district energy simulations.

5. Aleatory uncertainties; the inherent spread on results by occupant behaviour

As stated earlier, the Python StROBe Package is one of the main implicit sets of equal-
ity constraints for the parameter set x in integrated district energy simulations. When used
for simulation and optimization, the objective function zi(x) is defined by Z : Rm → R as
zi(x) , Z (yt(x, 1)) , ∀i ∈ {1, . . . , n} where yt(x, 1) ∈ Rm is the simulation solution for all
state variables yt in time as implemented in the Modelica IDEAS Library or another district
energy simulation environment. The stochastic occupant behaviour as modelled in StROBe cause
aleatory uncertainties, i.e. uncertainties inherent in a non-deterministic phenomena. As such,
and contrary to epistemic uncertainties, aleatory uncertainties cannot be reduced by further
study, as it expresses the inherent variability of a phenomenon. The latter requires us to rewrite
the previous definition of the objective function zi as:

zi(x, α) , Z (yt(x, α, 1)) , ∀i ∈ {1, . . . , n} (16)
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with yt the state variables and α the input quantities provided by the environment the system
is embedded in, including the pervasive system environment.

Different methods are available to incorporate uncertainties, which thrive to define a robust
counterpart Zi of the original objective function zi; The probabilistic nature of aleatory uncer-
tainties makes probability distributions an adequate mean for the mathematical description of
these uncertainties, which is generally translated to ‘an expectancy measure’ and ‘a probabilistic
threshold measure’ of robustness in literature.

We therefore simulate the states of yt(x, α, 1) a hundred times for a radial feeder of variable
length n with given energy system designs, only differing in its pervasive space as α-variable.

Case description. The aleatory uncertainty of district energy simulations is defined for low-
voltage distribution feeder with 5, 10, 15, 20, 25 and 30 residential detached dwellings connected
to a EXAVB 4G150 cable, all with a heated area of 123 m2. For each feeder size, a version is
simulated with 0, 20, 40, 60, 80 and 100 percent of the buildings equipped with a modulating air-
to-water heat pump influenced by the occupant behaviour and influencing the feeder dynamics;
and this combined without or with a photovoltaic system of 2 or 4 kVA. As such, 108 different
neighbourhood designs have been simulated 100 times to define the aleatory uncertainty caused
by occupant behaviour.

The architectural types is determined earlier as representative for the Belgian building stock
and is modelled as a 2-zone model with the day zone (e.g. living area, kitchen) and night zone
(e.g. bedrooms) of the dwelling respectively. The distribution of internal gains by occupant
behaviour is based on a volume-weighted ratio. All dwellings are designed to result in a low-energy
standard. Heat losses by conduction are reduced to a minimum by applying thermal insulation
to obtain an overall mean heat transfer coefficient of 0.11 W/m2K, 0.13 W/m2K, 0.10 W/m2K
and 0.8 W/m2K for the cavity walls, concrete foundation floors, timber roof constructions and
windows respectively; while the dwellings are as airtight as possible with a natural infiltration
rate of 0.03 ACH. All dwellings are equipped with mechanically balanced, air-to-air heat-recovery
ventilation with an air change rate of 0.5 h-1 and a recovery efficiency of 0.84. These measures
result in a design heat load of 26 W/m2 for the moderate climate of Uccle, Belgium.

The modulating air-to-water heat pump connected to low-temperature radiator in each thermal
zone. The heat pump model is based on interpolation in a performance map retrieved from
manufacturer data. The interpolation defines the heating power and electricity use as a function
of condenser outlet temperature, the ambient temperature and can modulate to 30 percent.
The coefficient of performance based on manufacturer data is 3.17 at 2/35◦C test conditions
(i.e. air/water temperature) and 2.44 at 2/45◦C test conditions for full load operation. The
heatvpump is controlled based on the measured and set-point values for the thermal comfort.
The HP control set-points are based on a heating curve for space heating (i.e. 55◦C at an outdoor
temperature of -8◦C and 20◦C at an outdoor temperature of 15◦C).

Objective functions. Four objective functions will be focused on in the uncertainty assessment,
i.e. the annual Ohmic losses in the grid EΩ, the annual net electricity demand Eγ , the absolute
peak transformer load Ptra and the characteristic voltage deviation U rmsφ defined as

U(k)
φ =

1

U
(k)
0

[
1

nd

nd∑
d=1

max
τ10

(∣∣∣U (k)
φ,d(t)

∣∣∣− U (k)
0

)2
]0.5

(17)

where U
(k)
φ,d is the line voltage of phase φ in feeder k at day d and U

(k)
0 be the reference voltage,

i.e. 230 V. Before quantifying the aleatory uncertainty, we will state that ‘all four objectives
zi(x, α) may be treated as being log-normally distributed for α given a single n’; which allows us
to describe zi based on a ‘coefficient of variation’. For all four objectives, the null hypothesis H0
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against lnN (µ, σ) is refuted by Shapiros’ W -test for log-normality with a test statistic W ≥ .90
and an α-level of .001 for feeder sizes n larger than 2, and with W ≥ .95 and an α-level of .05
for feeder sizes larger than 10. The observed test statistics for log-normality are, hereby, much
higher than the test statistics of H0 against N (µ, σ2), where W ≥ .90 is only observed for feeder
sizes higher than 10 and an α-level of .05 for feeder sizes of 25 or higher. As such, we may
formulate all criteria as being log-normally distributed for the pervasive space α denoting a tail
in the probability density function at one side of the mean.

5.1 Expectancy measures of robustness

A first approach to deal with aleatory uncertainties is defining one or more integral measures of
robustness, i.e. ‘expectancy measures’ and ‘dispersion measures’; The expectancy measure of an
objective zi(x, α) describes the long-run average value of repetitions of the variable it represents,
whereas the dispersion measure of zi(x, α) describes the possible values of the objective around
the expected value.

Within this context, the robust counterpart Zi(x, α) of zi(x, α) can be defined as the expecta-
tion of Z (yt(x, α, 1)) denoted as E [zi(x, α)]; which has to be traded off to its variance denoted
as Var [zi(x, α)]. The multi-objective optimization task then becomes

(E [zi(x, α)] ,Var [zi(x, α)]) , ∀i ∈ {1, . . . , n} , x ∈ S (18)

E [zi(x, α)] and Var [zi(x, α)] may have different minimizers x̂ representing conflicting objectives.
Therefore, we might need to aggregate both objectives in a single objective function using a
weighted sum of both functions or consider the Pareto-optimal solutions.1 The stated trade-off
is given graphically for four zi(x, α) in Figure 7 for the given three different building energy
solutions in a radial feeder and for a variable degree of heat pump and photovoltaic system
implementation. No general relation can be observed between the variance and expectation of
a random objective zi(x, α). However, following remarks may be stated based on the observed
trade-offs.

E [zi(x, α)] and Var [zi(x, α)] have different minimizers x̂ when regarding the ohmic losses
EΩ, characteristic voltage deviation U rmsφ as defined in Equation 17 on page 15, net energy
off-take Eγ and transformer peak load Ptra as to be minimized objective functions; therefore
representing conflicting goals. All observed Var [zi(x, α)] are, however, lower than or equal to
the observed variance for the annotated reference case only existing of receptacle loads; except
for x ∈ S1 considering EΩ → min. The latter allows us to state that E [zi(x, α)] may be seen
as the dominating objective function, as a reduction in Var [zi(x, α)] is almost always achieved
though not to a minimum. The denoted increase of the conditional variance Var [zi(x, α)] for a
reduction in conditional expectation E [zi(x, α)], may however induce a flaw in using E [zi(x, α)]
as objective function for minimisation; If the increase of Var [zi(x, α)] is more pronounced than
the decrease in E [zi(x, α)], an absolute increase of zi(x, α) given x could be noticed for certain
α.

As shown in Figure 8, besides EΩ, all stated objectives functions zi(x, α) show a general
low Var [zi(x, α)] with respect to E [zi(x, α)]; generally denoting a factor of variation below
15 percent. Taking into account the log-normality and leaving aside EΩ, we may say that 95.4
percent of the observed objectives zi(x) lay in the (.81, 1.6) E [zi|x] interval for n ≤ 10 with a
p-value of .92, and in the (.88, 1.3) E [zi|x] interval for n ≤ 20 with a p-value of .80.

For the considered systems x, we observe that integrating (or increase) photovoltaic systems
always lowers the variance of the denoted zi(x, α). This may be explained logically, as the
integration of deterministic loads (i.e. equal in all simulated cases) influencing zi(x, α) lowers

1The former approach using a weighted sum of both functions is not explored in the consecutive paragraphs as there is no
rational method to defining the weight factor.
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Figure 7. Trade-off between the variance Var [zi(x, α)] induced by human behaviour and the expectation E [zi(x, α)] of
the Ohmic losses EΩ, voltage quality Urmsφ , net energy offtake Eγ and peak transformer load Ptra for a feeder of variable

length, building system design and degree of implementation of low-energy dwellings.
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Figure 8. Variance Var [zi(x, α)] induced by human behaviour as function of the feeder size as shown in Figure 7 on page
17, normalized to the expected value E [zi(x, α)] for a feeder of variable building system design and degree of implementation
of low-energy dwellings.

the dependency of zi(x, α) on the behaviour-related α-variables; thus lowering Var [zi(x, α)]. The
latter can not be formulated for the integration of the heat pump system: we observe that adding
heat pumps may increase the absolute value of the coefficient of variation, while lowering it when
normalized to the expected value. Furthermore, the impact of the integration of heat pumps on
zi(x, α) depends on the behaviour-induced control of the system. However, both statements can
not be generalized for all possible solutions based on the limited considered number of technical
systems in this section.

5.2 Threshold measure of robustness

A second approach to deal with aleatory uncertainties is proposed based on defining a proba-
bilistic threshold measure of robustness. Within this context, we do not consider the expected
value of an objective function zi(x, α) but the distribution of the variate directly. That is, in the
case of minimization, we look for the threshold {zi(x, α)}p0 below which we expect p0n number
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Figure 9. Normalized 2nd and 98th percentile {zi(x, α)}j induced by human behaviour of the Ohmic losses EΩ, voltage
quality Urmsφ , net energy offtake Eγ and peak transformer load Ptra for a feeder of variable building system design and

degree of implementation of low-energy dwellings.

of samples fulfilling zi(zi(x, α)) ≤ {zi(x, α)}p0 for a fixed number of samples n. We therefore
yield the threshold dependent criterion {zi(x, α)}p0 for robustness of zi(x, α) as

p (zi (x, α) ≤ {zi(x, α)}p0) ≥ p0 (19)

with p0 defines the desired conditional relative frequency of the zi(x, α) in the case of minimiza-
tion.

In relation to the earlier mentioned 95.4 percent confidence interval based on the 3σ-rule, we
will focus on {zi(x, α)}.02 and {zi(x, α)}.98, closely representing the expected infimum and supre-
mum in simulations. The threshold values of objectives are given graphically for four zi(x, α) in
Figure 9 in relation to the feeder size, for the given three different building energy solutions for a
variable degree of implementation. These results confirm the observations found in the previous
section based on Var [zi(x, α)]: the statement that 95.4 percent of the observed objectives zi(x)
lay in the (.81, 1.6) E [zi|x] interval for n ≤ 10 and in the (.88, 1.3) E [zi|x] interval for n ≤ 20
corresponds well with the found range of z.02(x, α) to z.98(x, α) leaving aside EΩ. Similarly to
the observations for Var [EΩ(x, α)], the 2nd and 98th percentiles for EΩ are show a much larger
range compared to the other objective functions showing an uncertainty which is roughly twice
as large.

Furthermore, we noticed that E [zi(x, α)] and {zi(x, α)}.98 have the same minimizers x̂ there-
fore representing harmonized goals. This observation is however not absolute, i.e. different points
can be observed which have alternatives north-west in E [zi(x, α)] 7→ {zi(x, α)}.98 or south-east
in E [zi(x, α)] 7→ {zi(x, α)}.02 when regarding zi(x, α) as to be minimized objective functions.
The latter means that two options can be weighted differently against each other, depending on
assuming the conditional expectancy or the 98th percentile of the observed objective functions
zi(x, α), and thus depending on the occupant behaviour.

6. Conclusions

The presented work started by (a) the description of StROBe, a stochastic residential occupant
behaviour for district energy simulations; integrating the modelling of receptacle loads, internal
heat gains, thermostat settings and hot water tapping based on occupancy and activity prereq-
uisites. Given this model, the uncertainty for district energy simulations is addressed: epistemic
uncertainties (b) are elaborated first comparing model results with reference values and denoting
possible hiatus of general modelling methods for building energy occupant behaviour used at
the neighbourhood level, followed by the aleatory uncertainty (c) describing the uncertainty in
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district energy simulations inherent to the non-deterministic occupant behaviour.
The resulting outcome of StROBe is verified with known standards and measurement indicating

its fit for purpose and main shortcomings. At the neighbourhood level, the simultaneity of electric
and hot water tap loads is compared to existing design standards which show a good agreement
with the 5σ-limit of the modelled data. As the statistics behind the reference standards is
unknown, the distance from the modelled factors of simultaneity to the design values is assigned
to the assumption that ‘occupant behaviour is spatially homogeneous with respect to the national
demography’. Here, local disaggregation of demographic statistics might be of high importance
in future work on modelling of occupant behaviour for district energy simulations.

To conclude, we quantified the aleatory uncertainty caused by stochastic residential occupant
behaviour in integrated district energy simulations. For the simulated cases, we have shown
that the design of the building energy system has its impact on the robustness of the objective
criteria and it could thus be minimized as part of an optimisation exercise. Furthermore, the
expected value of the objective functions have to a large extend the same minimizers as the
measures of the proposed robustness. As such, optimizing an objective value for its expected
value generally seems to result in a optimum near the optimum of robustness. However, 95
percent of the observed objectives lay between 0.81 and 1.6 times the expected value for a feeder
larger than 10 houses and between 0.88 and 1.3 times the expected value for more than 20
houses denoting an overall ‘rather small’ uncertainty on the possible objective functions caused
by occupant behaviour.

In future work, the presented occupant behaviour model can be used to properly assess the
impact of e.g. residential heat pump based space heating and domestic hot water systems on
the electricity distribution grid, and estimate the potential of thermal demand side management
with respect to electric grid constraints.

7. Nomenclature

Physical symbols

a(x)[n] Activity chain in discrete time of individual x
α Input parameters causing uncertainty
α Statistical significance, -
α Appliance
βj Subset j ⊆ BeTUS’05

β(x) Cluster to which x is appointed to
C( · ) Clustering of dataset ·
dpdf Density distance function, -
EΩ Annual Ohmic feeder losses, W
Eγ Net energy off-take, W

E( · ) Expected value of the depicted set of variables

g
(x)
j,n Proclivity function for activity j of individual x, -

ĝ
(x)
j Approximate of g

(x)
j,n based on observed data, -

g′β
(x)

j,nd
Observed g

(x)
j,n in β(x) ⊆ BeTUS’05 at time nd

H0 Null hypothesis
idpdf Distance, -
ks Factor of simultaneity, -
ln Lead time at time n, s

L
(x)
n Occupancy lead time density at time n, -

L̂
(x)
n Approximate of L

(x)
n based on observed data

L
′(β(x))
nd Observed L

(x)
n in β(x) ⊆ BeTUS’05 at time nd
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ṁw[n] Hot water tapping profile, L/s
nd Clock-time
n, k Time in discrete notation
n Number of dwellings in depicted neighbourhood, -

o(x)[n] Occupancy chain in discrete time of individual x

o
(x)
n Occupancy state of x at time n

o′(x)[n] Observed occupancy chain in discrete time of individual x

O
(x)
n Occupancy event density at time n

Ô
(x)
n Approximate of O

(x)
n based on observed data, -

O
′(β(x))
nd Observed O

(x)
n in β(x) ⊆ BeTUS’05 at time nd

Ωo Occupancy state space
Ωa Activity state space

Php(t) Heat pump load, W
Pnet(t) Net power exchange, W
Ptra Peak transformer load, VA
Pα[n] Receptacle load profile for appliance α, W
Pλ[n] Lighting load profile for appliance α, W

Q̇a,g[n] Convective internal heat load profile, W

Q̇lw,g[n] Longwave internal heat load profile, W
r.98 Threshold value at the 98th percentile
s Day-type
S Day-type state space

Top(t) Operative building zone temperature, K
τi Time resolution of i minutes

T ssh[n] Space heating set point temperatures for zone s, K
Uφ Phase feeder voltage, Vor pu
U0 Reference phase voltage, i.e. 230 V

U rmsφ Voltage quality, V

Var( · ) Variation of the depicted set of variables
x Set of parameters
yt State variables
ỹt Uncertain approximation of the state variables yt
zi Evaluation criteria i

Sub- or superscripts

(x) Variable related to individual x
(h) Variable related to household h
n Defined at time n
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