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Abstract

A data set from a Belgian telematics product aimed at young drivers is used to identify how
car insurance premiums can be designed based on the telematics data collected by a black box
installed in the vehicle. In traditional pricing models for car insurance, the premium depends
on self-reported rating variables (e.g. age, postal code) which capture characteristics of the
policy(holder) and the insured vehicle and are often only indirectly related to the accident risk.
Using telematics technology enables tailor-made car insurance pricing based on the driving
behavior of the policyholder. We develop a statistical modeling approach using generalized
additive models and compositional predictors to quantify and interpret the effect of telematics
variables on the expected claim frequency. We find that such variables increase the predictive
power and render the use of gender as a discriminating rating variable redundant.

Keywords: Pay-as-you-drive insurance; Usage-based insurance; Risk classification; Generalized
additive models; Compositional predictors; Structural zeros.

1 Introduction

For a unique Belgian portfolio of young drivers in the period between 2010 and 2014, telematics
data on how many kilometers are driven, during which time slots and on which type of roads
were collected using black box devices installed in the insureds’ cars. The aim in this paper is to
incorporate this information in statistical rating models, where we focus on predicting the number
of claims, in order to adequately set premium levels based on individual policyholder’s driving
habits.

Determining a fair and correct price for an insurance product (also called ratemaking, pricing or
tarification) is crucial for both insureds and insurance companies. Pricing through risk classification
or segmentation is the mechanism insurance companies use to compete and to reduce the price
of insurance contracts. Insurance Europe, the European insurance and reinsurance federation,
reports1 a total motor premium income amounting to e124 billion in 2014. Car insurance is
the most widely purchased non-life insurance product in Europe, accounting for 27.3% of non-life
premiums. To avoid lapses in this competitive market many rating factors are used to classify risks
and differentiate prices. Besides the fierce competition, high acquisition and retention costs, low

1http://www.insuranceeurope.eu/european-motor-insurance-markets-addendum
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customer engagement, no brand loyalty and a high cost of retention have put a huge pressure on
the car insurance industry. Car insurance is traditionally priced based on self-reported information
from the insured, most importantly: age, license age, postal code, engine power, use of the vehicle,
and claims history. However, these observable risk factors are only proxy variables, not reflecting
present patterns of driving habits and the driving style, and consequently tariff cells are still quite
heterogeneous.

Telematics technology – the integrated use of telecommunication and informatics – may funda-
mentally change the car insurance industry. The use of this technology in insured vehicles enables
to transmit and receive information that allows an insurance company to better quantify the ac-
cident risk of drivers and adjust the premiums accordingly through usage-based insurance (UBI).
By monitoring their customers’ motoring habits, underwriters can increasingly distinguish between
drivers who are safe on the road from those who merely seem safe on paper.2 Young drivers and
drivers in other high risk groups, who are typically facing hefty insurance premiums, can be judged
based on how they really drive. Regulation also plays a role as the use of indirect indicators of
risk is being questioned by the European Court of Justice. In 2012, a European Union (EU) ruling
came into force, banning price differentiation based on gender.3 Through telematics, women may
be able to confirm that they really are safer drivers.

The use of telematics risk factors potentially enables an improved method for determining the
cost of insurance. Due to a more refined customer segmentation and greater monitoring of the
driving behavior, UBI addresses the problems of adverse selection and moral hazard that arise
from the information asymmetry between the insurer and the policyholders (Filipova-Neumann
and Welzel, 2010). Closer aligning insurance policies to the actual risks increases actuarial fairness
and reduces cross-subsidization compared to grouping the drivers into too general actuarial classes
(Desyllas and Sako, 2013). In addition, some positive externalities are to be expected (Parry,
2005; Litman, 2015; Tselentis et al., 2016). Telematics insurance gives a high incentive to change
the current driving pattern and stimulates more responsible driving. Users’ feedback on driving
behavior and gamification of UBI can further enhance the customer experience by making it more
interactive, gratifying and even exciting (Toledo et al., 2008). Less and safer driving is encouraged,
leading to improved road safety and reduced vehicle travel with less congestion, pollution, fuel
consumption, road cost, and crashes (Greenberg, 2009).

Usage-based insurance includes Pay-as-you-drive (PAYD) and pay-how-you-drive (PHYD) schemes
(Tselentis et al., 2016). PAYD focuses on the driving habits, e.g. the driven distance, the time of
day, how long the insured has been driving, and the location. PHYD goes even further by also
considering the driving style, e.g. the speed, harsh or smooth braking, aggressive acceleration or
deceleration, cornering and parking skills. Furthermore, the telematics data collected can be en-
riched using other sources of data, for example road maps with corresponding speed limitations to
infer road types and speeding violations.

Telematics insurance started as a niche market when the technology first surfaced more than
10 years ago. The high implementation costs and its complexity limited its success. Advances in
technology and telecommunication have however reduced the cost substantially. Early adopters
of UBI were seen primarily in the United States (US), Italy and the United Kingdom (UK) due
to the higher premiums, particularly for young drivers, the highly competitive markets, and a
higher incidence of fraudulent claims and vehicle theft. Monti’s decree of 20124, encouraging
Italian insurers to provide a telematics option, has made Italy the most active country in Europe

2How’s my driving? (2013, February 23) The Economist. http: // econ. st/ Yd5x3C
3http://europa.eu/rapid/press-release_IP-11-1581_en.htm
4Law Decree of 24 January 2012, n.1 “Urgent provisions for competition, infrastructure development and compet-

itiveness” (the so-called “Cresci Italia”), converted by law 24 March 2012, n.27.
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in telematics insurance, with the overall penetration level around 15% in June 2016.5 Ptolemus
further reports that at that moment insurance companies have launched 292 telematics programs or
active trials worldwide (see Husnjak et al., 2015, for some examples of UBI solutions implemented
worldwide). The number of UBI policies is over 7.9 million in the US, over 5 million in Italy and
over 860 000 in the UK.6 Moreover, on 28 April 2015 the European Parliament voted in favor of
eCall regulation which forces all new cars in the EU from April 2018 onwards to be equipped with
a telematics device that will automatically dial 112 in the event of an accident, providing precise
location and impact data.7 However, legislation also gives rise to legal concerns and challenges in
the telematics insurance market. In particular, insurers have to comply with the aspects of data
protection and privacy in the evolving legal environment.

This potentially high dimensional telematics data, collected on the fly, forces pricing actuaries
to change their current practice, both from a business as well as a statistical point of view. New
statistical models have to be developed to adequately set premiums based on an individual policy-
holder’s driving habits and style and the current literature on insurance rating does not adequately
address this question. In this paper, we take a first step in this direction. We use a Belgian
telematics insurance data set with in total over 297 million kilometers driven. Based on how many
kilometers the insured drives, on which kind of roads and during which moments in the day, we
quantify the impact of individual driving habits on expected claim frequencies. Combined with a
similar predictive model for claim severities, which is outside of the scope in this paper, this allows
for tailor-made car insurance pricing. We first discuss how a car insurance policy is traditionally
priced and relate this to the literature investigating the impact of vehicle usage on the accident
risk in Section 2. The data set is described in Section 3, along with the necessary preliminary data
processing steps to combine the telematics information with the policy and claims information. By
constructing predictive models for the claim frequency, we compare the performance of different
sets of predictor variables (e.g. traditional vs. purely telematics) and unravel the relevance and
impact of adding telematics insights. In particular, we contrast the use of time and distance as
exposure-to-risk measures. The statistical methodology, including in particular the challenges when
incorporating the divisions of the driven distance by road type and time slots as predictors in the
model, is presented in Section 4. In Section 5, we present the results and, finally, in Section 6, we
conclude.

2 Statistical background and related modeling literature

Insurance pricing is the calculation of a fair premium, given the policy(holder) characteristics, as
well as information on claims reported in the past (if available). The pure premium represents the
expected cost of the claims a policyholder will declare during the insured period. Pricing relies on
regression techniques and requires a data set with policy(holder) information and corresponding
claim frequencies and severities, where severity is the ultimate total impact of a claim.

A priori pricing refers to the statistical problem of pricing without incorporating the claim his-
tory of the policyholder, thus neither frequency nor severity of past claims is taken into account.
The construction of an a priori tariff traditionally relies on a frequency-severity modeling frame-
work in which the claim frequency and severity components are typically modeled separately using
regression techniques (Frees, 2014). A policyholder’s pure premium is obtained by multiplying the

5http://www.ptolemus.com/ubi-study/telematics-insurance-infographic/
6Ptolemus Consulting Group (2016). Usage-based insurance (global study), free abstract.
7Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 April 2015 concerning type-

approval requirements for the deployment of the eCall in-vehicle system based on the 112 service and amending
Directive 2007/46/EC.
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expected claim frequency and expected claim severity, given the observable risk factors. The current
state-of-the-art (see Denuit et al., 2007; de Jong and Heller, 2008, for an overview) uses generalized
linear models (GLMs; McCullagh and Nelder, 1989), with typically a Poisson GLM for the claim
counts and a gamma GLM for the claim severities. Modeling the claim severities is difficult, since
only those observations corresponding to policyholders who filed a claim can be used to estimate
the claim severity model and due to the complexity of the phenomenon (Denuit and Charpentier,
2005). On the one hand, there is a long delay to assess the cost of bodily injury and other severe
claims and on the other hand the cost of an accident is, for most part, beyond the control of the
driver. In practice, covariates are much less informative to predict claim amounts than to predict
frequency (Boucher and Charpentier, 2014).

A posteriori pricing refers to experience rating systems which penalize or reward policyholders
based on (usually) the number of claims reported in the past. The idea is that, over time, insurers
try to refine their a priori risk classification and restore fairness using no-claim discounts and claim
penalties. A bonus-malus system is a typical example (Lemaire, 1995). From a statistical point of
view a posteriori rating requires the analysis of multilevel data (Gelman and Hill, 2007).

In car insurance, the duration of the policy period during which coverage is provided, is referred
to as the exposure-to-risk, the basic rating unit underlying the insurance premium. The expected
number of claims is in practice modeled directly proportional to the exposure. The logic behind
this is to make the premiums proportional to the length of coverage. As such, a premium related
to an insured period of 6 months will be half of the one-year premium, for a given risk profile.
From a theoretical point of view, this can also be motivated by the probabilistic framework of
Poisson processes (Denuit et al., 2007). It is however suggested (see e.g. Butler, 1993) that every
kilometer traveled by a vehicle transfers risk to its insurer and hence the number of driven kilometers
(car-kilometer) should be adopted as the exposure unit instead of the policy duration (car-year).
Statistical studies show how claim frequencies significantly increase with kilometers (Bordoff and
Noel, 2008; Ferreira and Minikel, 2010; Litman, 2011; Boucher et al., 2013; Lemaire et al., 2016).
Most of these studies show a relationship between claim frequencies and the number of driven
kilometers which is less than proportional. They suggest that possibly high-kilometer drivers are
more experienced, have newer and safer vehicles, or drive more on low-risk motorways rather than
high-risk urban areas.

Data collected using telematics technology offers more insight in the driving habits. Instead of
relying only on the self-reported annual number of driven kilometers, pay-as-you-drive insurance
can also account for the type of road and the time of the day when an insured has been driving. A
next step is to also take data on driving style into account, leading to a pay-how-you-drive insurance
(Weiss and Smollik, 2012). Statistical analysis of these types of data has been the subject of limited
academic scrutiny.

Ayuso et al. (2014, 2016) study the traveled time and distance to the first accident using Weibull
regression models involving both policy and telematics predictors. Paefgen et al. (2014) investigate
the relationship between the accident risk and driving habits using logistic regression models. Their
case-control study design does not allow for inference on the probability of accident involvement.
The difference in time exposure between the vehicles with accident involvement (6 months prior
to the accident) and the control group (24 months) is however only used to obtain a per-month
distance exposure, but is further neglected in the study. Traditional risk factors were not accounted
for, since that information was not available, and the compositional nature of the constructed
telematics predictor variables was ignored. In contrast, combining the new telematics variables
with traditional policy(holder) information through a careful model and variable selection process
as well as recognizing the compositional structure in the analysis are main focus points in our
research, see Section 3.2.
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3 Telematics insurance data

We consider data from a Belgian portfolio of drivers with motor third party liability (MTPL)
insurance. MTPL insurance is the legally compulsory minimum insurance covering damage to third
parties’ health and property caused by an accident for which the driver of the vehicle is responsible.
The special type of MTPL product we are considering, is specifically aiming for young drivers who
are traditionally facing high insurance premiums. Insureds were offered a substantial discount on
their premium if they agree to install a telematics black box device in their car. The telematics
box collects statistics on the driving habits: how often one drives, how many kilometers, where
and when. Information on the driving style (such as speeding, braking, accelerating, cornering or
parking) is not registered. The telematics data have so far no effect on the (future) premium levels
of the insureds and do not induce any restrictions on how much or where they can drive.

3.1 Data processing

The unstructured telematics data, collected by the telematics box installed in the vehicle, are first
transmitted to the data provider who structures and aggregates these data each day and then
reports them to the insurance company as a CSV file (Figure 1a). Only the structured, aggregated
telematics information is available to us. Each daily file contains information on the daily driven
distance (in meters) for each policyholder. This number of meters is split into 4 road types (urban
areas, other, motorways and abroad) and 5 time slots (6h-9h30, 9h30-16h, 16h-19h, 19h-22h and
22h-6h). The nature of the data does not allow for a classification of a driven meter by road
type and time slot simultaneously. The number of trips, measured as key-on/key-off events, is also
reported. This is a typical setup (see Paefgen et al., 2014). In this study, we analyze the telematics
data collected between January 1, 2010 and December 31, 2014.
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Figure 1: (a) A schematic overview of the flow of information. (b) The number of registered kilometers
on each day on an aggregate, portfolio level for the telematics data observed between January
1, 2010 and December 31, 2014. The outliers by the turn of the year 2014, corresponding to a
technical malfunction, are indicated as triangles.

The telematics data are linked with the policy(holder) and claims information of the insurance
company corresponding to the portfolio under consideration (see Table 1 for a complete list). Policy
data, such as age, gender and characteristics of the car, are directly reported by the insured to the
insurer at underwriting (see Figure 1a). They are updated over time which enables us to link the
claims occurring at a specific moment in time to the correct policy information. Each observation
of a policyholder in the policy data set refers to a policy period over which the MTPL insurance
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coverage holds and contains the most recent policy information. For most insureds, this coverage
period is one year, however, it can be smaller for several reasons. If for instance the policyholder
decides to add a comprehensive coverage, buys a new vehicle, or changes his residence during the
term of the contract, the policy period will be restricted to that date and an additional observation
line will be added for the subsequent period. A policy period can also be split when the coverage
is suspended for a certain time.

Using the policy number and period we first merge the telematics information on daily level
with the policy data set. Next, we adjust the start and end date of the policy periods based on the
first and last day at which telematics data are observed for each policy period of each insured. This
ensures that the adjusted policy periods reflect time periods over which both the insurance coverage
holds and telematics data are collected. Based on Figure 1b, where we plot the evolution of the
driven distance on each day by all drivers of the portfolio, we suspect that technical deficiencies
of the data provider can cause an underreporting of the number of meters driven on an aggregate
level. The outliers indicated as triangles by the turn of the year 2014 could be linked to a serious
technical failure preventing telematics information from being reported for a significant part of our
portfolio. We dealt with this by removing this period of roughly one month from the policy periods
of all insureds. In the remainder of the observation period between January 1, 2010 and December
31, 2014, clear causes of underreporting could not be identified and hence we did not take any
other corrective action. However, this illustrates that data reliability forms a challenge for this
new telematics technology. We further removed those observations with a policy duration of less
than 30 days in order to avoid senseless observations of only a couple of days and retained only the
complete observations with no missing policyholder information.

Next, we aggregate the telematics information by policyholder and period. This means that we
sum the driven distance, their divisions into 4 road types and 5 time slots, and the number of trips
made. Finally, we use the claims information to link the number of MTPL claims at fault that
occurred between the start and end date of the adjusted policy periods for each policy record.

Over the time period of this study, we end up with a data set of 33 259 observations. Table 1
gives an overview of the available variables coming from the three data sources (claims, policy, and
telematics). These observations correspond to 10 406 unique policyholders, who are followed over
time, have jointly driven over 297 million kilometers during a combined insured policy period of
17 681 years and reported 1481 MTPL claims at fault. Hence, on average, there were 0.0838 claims
per insured year or 0.0499 claims per 10 000 driven kilometers. For over 95% of the observations
no claim occurred during the corresponding policy period, whereas for 52 observations two claims
occurred and for a single observation even three during the same policy period.

3.2 Risk classification using policy and telematics information

The goal of this research is to build a rating model to express the number of claims as a function
of the available covariates. Two sources of information are combined which are described in detail
in Table 1. First, there is the self-reported policy information which contains all rating variables
traditionally used in car insurance pricing. The second source of information is derived from the
telematics data. The main objective is to discover the relevance and impact of adding the new
telematics insights using flexible statistical modeling techniques in combination with appropriate
model and variable selection tools. One of the key questions is whether the amount of risk trans-
ferred from the policyholder to the insurer is proportional to the duration of the policy period or
the driven distance during that time. Telematics technology allows a shift to be made from time
as exposure to distance as exposure. This would lead to a form of pay-as-you-drive insurance,
where a driver pays for every kilometer driven. Histograms of both potential exposure variables
are contrasted in Figure 2a and 2b.
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Claims information

claims number of reported MTPL claims at fault during the
policy period

Policy information

policy period duration in days of the policy period (minimal 30 days
and at most one year)

age age of the least experienced driver listed on the pol-
icy at the start of the policy period, measured as the
number of years between the birth date and the start
of the policy period

experience experience of the least experienced driver listed on the
policy, measured as the number of years between the
date when the driver’s permit was obtained and the
start of the policy period

gender gender of the least experienced driver listed on the
policy (male or female)

material damage cover indicator whether the insurance policy also covers ma-
terial damage (yes or no)

postal code Belgian postal code where the policyholder resides
bonus-malus bonus-malus level of the policy, reflecting the past in-

dividual claims experience, between −4 and 22 with
lower values indicating a better history

age vehicle age of the vehicle, measured as the number of years
between the date when the car was registered and the
start of the policy period

kwatt horsepower of the vehicle, measured in kilowatt
fuel fuel type of the vehicle (petrol or diesel)

Telematics information

distance distance in meters driven during the policy period
yearly distance distance in meters driven during the policy period,

rescaled to a full year by dividing by duration in days
of the policy period and multiplying by 365

trips number of trips (key-on, key-off ) during the policy
period

average distance distance in meters driven on average during one trip,
obtained by dividing the distance by the number of
trips

road type division of the distance into 4 road types (motorways,
urban areas, abroad and other)

time slot division of the distance into 5 time slots (22h-6h, 6h-
9h30, 9h30-16h, 16h-19h and 19h-22h)

week/weekend division of distance into week (Monday to Friday)
and weekend (Saturday, Sunday)

Table 1: Description of the variables contained in the data set arising from the different sources of infor-
mation.
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Figure 2: Histogram of (a) the duration (in days) of the policy period (at most one year) and (b) the driven
distance (in 1000 km) during the policy period. (c) A graphical representation of the similarities
and differences between the four predictor sets.

In order to investigate the influence and explanatory power of the telematics variables in pre-
dicting the risk of an accident, we compare the performance of four sets of predictor variables used
to model the number of claims, see Figure 2c. The classic set only contains policy information and
uses time as exposure-to-risk. The telematics set only contains telematics information and uses
the distance in meters as exposure-to-risk. The two other models, time hybrid and meter-hybrid,
both contain policy and telematics information. Whereas the first one uses time as an exposure
measure, the second one uses distance. These four predictor sets contrast on the one hand the
use of traditional policy rating variables and telematics variables and on the other hand the use of
policy duration as exposure and the use of distance as exposure in the assessment of the risk.

The main predictors based on the policy information besides the duration of the policy period
include the age of the driver, the experience as measured using the driver’s license age, the gender,
characteristics of the car and the postal code where the policyholder lives. In the case of multiple
insured drivers (around 18% of the observations), we select (in consultation with the insurer) the
age, gender, experience and postal code belonging to the driver with the most recent permit and
hence the lowest experience. This is in line with the strategy of the insurer who offers this type of
insurance contract to young drivers. The bonus-malus level is a special kind of variable that reflects
the past individual claims experience. It is a function of the number of claims reported in previous
years with values between -4 and 22 where lower levels indicate a better history. Even though,
the bonus-malus scale level is not a covariate of the same type as the other a priori variables, we
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Figure 3: Histograms and bar plots of the continuous and categorical policy variables contained in the data
set. The map in the lower right depicts the geographical information by showing the proportion
of insureds per squared kilometer living in each of the different postal codes in Belgium. The five
class intervals have been created using k-means clustering.

keep it in the analysis to have an idea of the information contained in this variable (as is also done
in, for instance, Denuit and Lang, 2004). From a statistical point of view, it tries to structure
dependencies between observations arising from the same policyholder. An overview of the policy
predictor variables and their sample distributions is given in Figure 3.

In the telematics information set we use the driven distance during the policy period as a
predictor, but we also create two additional telematics variables, the yearly and average distance
driven, see Table 1. Histograms of these variables are shown in Figure 4. The divisions of the driven
distance by time slot, road type and week/weekend are highly correlated with the total driven
distance as they sum up to this amount. To distinguish the absolute information measured by the
driven distance in a certain policy period from the compositional information of the distance split
into different categories, we consider box plots of the relative proportions in Figure 4. These relative
proportions sum to one for each observation in our data set. To stress this interconnectedness
present in the different splits, we show the compositional profiles of a sample of 100 drivers on top
of the marginal box plots. Another important point to stress is that not all components of a certain
division of the distance are present for each observation. For instance, if an insured does not drive
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Figure 4: Graphical illustration of the telematics variables contained in the data set. For the yearly and
average distance, we construct histograms. For the division of the driven distance by road types,
time slots and week/weekend, we construct box plots of the relative proportions. To highlight
the dependencies intrinsic to the fact that the division in different categories sums to one, we
plot profile lines for 100 randomly selected observations in the data set.

abroad during the policy period, the relative proportion of the driven distance abroad will be zero.
The use of such compositional information as predictors in statistical modeling is another key issue
in this research.

4 Model building and selection

We model the frequencies of claims by constructing Poisson and negative binomial (NB) regression
models. We denote by Nit the number of claims for policyholder i in policy period t with i =
1, . . . , I and t = 1, . . . , Ti. The model is denoted by Nit ∼ Poisson(µit) or Nit ∼ NB(µit, φ), where
µit = E(Nit) represents the expected number of claims reported by policyholder i in policy period
t and φ is the parameter of the NB distribution such that Var(Nit) = µit + µ2it/φ, allowing for
overdisperion. A log linear relationship between the mean and the predictor variables is specified
by the log link function. This means that we set µit = exp(ηit) where ηit is a predictor function
of the available explanatory factors. The probability mass functions for the Poisson and the NB
models are, respectively, expressed as

P(Nit = nit) =
exp(−µit)µnit

it

nit!
and P(Nit = nit) =

(
φ

φ+ µit

)φ Γ(φ+ nit)

nit!Γ(φ)

(
µit

φ+ µit

)nit

.
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For each of the predictor sets in Figure 2c we construct the best model using the allowed information
based on AIC, see Section 4.3. Additionally, we identify the best models under the restriction that
the risk is proportional to the time or meter exposure. This is accomplished by incorporating
the logarithm of the exposure-to-risk, either duration of the policy period or total distance driven
during the policy period, as an offset term in the predictor, i.e. a regression variable with a constant
coefficient of 1 for each observation. In the most general case, the predictor has the form

ηit = β0 + offset + ηcatit + ηcontit + ηspatialit + ηreit + ηcomp
it , (1)

where β0 denotes the intercept, the categorical effects are bundled in ηcatit , the term ηcontit contains the

effects of the continuous predictors, ηspatialit represents the geographical effect, ηreit the policyholder-
specific random effect and the term ηcomp

it embodies the effects of the compositional predictors.
Under the offset restriction, the continuous effect of the exposure-to-risk, either the duration of the
policy period (time based rating) or the driven distance (meter based rating), gets replaced by the
logarithm of the exposure-to-risk as an offset.

Zero inflated variants of these models are not considered because it is not realistic to assume
that the sample is coming from a mixture of two sorts of drivers: one group of drivers whose number
of claims are generated by the standard regression model, and another group of drivers who have
a zero probability of a claim count greater than 0. Moreover, such models are also not able to
capture the effect of a varying exposure-to-risk in a transparent and intuitive way.

4.1 Generalized additive models

The model framework we work with in this study is the one of generalized additive models (GAMs),
introduced by Hastie and Tibshirani (1986). GAMs allow to incorporate continuous covariates in
a more flexible way as compared to the traditional GLMs used in actuarial practice (see e.g. Klein
et al., 2014). From an accuracy standpoint, GAMs are competitive with popular black box machine
learning techniques (such as neural networks, random forests or support vector machines), but they
have the important advantage of interpretability. In insurance pricing it is of crucial importance
to have interpretable results in order to understand the premium structure and explain this to
clients and regulators. Using a semiparametric additive structure, GAMs define nonparametric
relationships between the response and the continuous predictors in the predictor in the following
way

ηcatit + ηcontit = Zitβ +
J∑
j=1

fj(xjit) ,

where Zit represents the row corresponding to policyholder i in policy period t of the model matrix
of parametric terms for the categorical predictors with parameter vector β and fj represents a
smooth function of the jth continuous predictor variable. To estimate fj , we choose cubic spline
basis functions Bjk, such that fj can be represented as fj(x) =

∑q
k=1 γjkBjk(x). The knots are

chosen using 10 quantiles of the unique xj values. Cardinal basis functions parametrize the spline
in terms of its values at the knots (Lancaster and Salkauskas, 1986). For identifiability, we impose
constraints by centering each smooth component around zero, thus

∑I
i=1

∑Ti
t=1 fj(xjit) = 0 for

j = 1, . . . , J. To avoid overfitting, the cubic splines are penalized by the integrated squared second
derivative (Green and Silverman, 1994), which yields a measure for the overall curvature of the
function. For each component, this penalty can be written as a quadratic function,∫ (

f ′′j (x)
)2
dx =

q∑
k=1

q∑
l=1

γjkγjl

∫
B′′jk(x)B′′jl(x)dx = γtjSjγj ,
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with (Sj)kl =
∫
B′′jk(x)B′′jl(x)dx. Given these penalty functions for each component, we define the

penalized log-likelihood as

`(ψ)− 1

2

J∑
j=1

λjγ
t
jSjγj , (2)

where `(ψ) denotes the log likelihood as a function of all model parameters ψ = (β,γ1, . . . ,γJ)t

and λj denotes the smoothness parameter that controls the tradeoff between goodness of fit and
the degree of smoothness of component fj for j = 1, . . . , J . Different smoothing parameters for
each component allow to penalize the smooth functions differently.

The model parameters ψ are estimated by maximizing (2) using penalized iteratively reweighted
least squares (P–IRLS) (Wood, 2006). For the Poisson model, the smoothing parameters λ1, . . . , λJ
are estimated using an unbiased risk estimator criterion (UBRE), which is a rescaled version of
Akaike’s information criterion (AIC; Akaike, 1974). For the negative binomial model, we estimate
the smoothing parameters and the scale parameter φ using maximum likelihood (ML).

In addition to categorical and continuous covariates, the data set contains spatial information,
namely the postal code where the policyholder resides. Insurance companies tend to use the ge-
ographical information of the insured’s residence as a proxy for the traffic density and for other
unobserved socio-demographic factors of the neighborhood. We model the spatial heterogeneity of
claim frequencies by adding a spatial term ηspatialit = fs(latit, longit) in the additive predictor ηit,
using the latitude and longitude coordinates (in degrees) of the center of the postal code where
the policyholder resides. We use second order smoothing splines on the sphere (Wahba, 1981) to
model fs. This allows us to quantify the effect of the geographic location while taking the regional
closeness of the neighboring postal codes into account.

In our data set, many policyholders i = 1, . . . , I are observed over multiple policy periods
t = 1, . . . , Ti. This longitudinal aspect of the data can be modeled by including policyholder-
specific random effects ηreit in the predictor. The generalized additive model considered thus far
is extended in this way by exploiting the link between penalized estimation and random effects
(see e.g. Ruppert et al., 2003). We assess whether such random effects are needed to take the
correlations between observations of the same policyholder into account using the approximate test
for a zero random effect developed by Wood (2013).

4.2 Compositional data

The divisions of the total driven distance in the different categories – road types (4), time slots (5)
and week/weekend (2), see Table 1 – are highly correlated with and sum up to the total driven
distance. Incorporating these divisions in a predictor also containing the total distance leads to a
perfect multicollinearity problem. Furthermore, the corresponding model parameter estimators are
not invariant to the ordering of the components: the statistical inference changes when permuting
the components making interpretations misleading. The standard regression interpretation of a
change in one of the components of the distance when the other components are held constant is
not possible due to the sum constraint of adding up to the total distance.

The total distance in meters is used as a continuous predictor in the telematics models and
its effect is modeled using a smooth function. Since the divisions of the distance only contribute
additional relative information, we divide all components of each split by the total driven distance,
see Figure 4. We obtain what is known as compositional data (Van den Boogaart and Tolosana-
Delgado, 2013; Pawlowsky-Glahn et al., 2015). Such data are represented by real vectors with
constant sum equal to one and positive components. The space of representations of compositions

12



is called the simplex of D parts, denoted SD, defined by

SD =

{
x = (x1, . . . , xD)t : xi > 0,

D∑
i=1

xi = 1

}
.

Only relative information is important, and multiplication of the vector of positive components by
a positive constant does not change the ratios between the components. When data are considered
compositional, classical statistics, that do not take the special geometry of the simplex into account,
are not appropriate. Extending the current literature, we propose a new way of quantifying and
interpreting the effect of the compositional explanatory variables on the outcome and propose an
approach to deal with structural zeros.

4.2.1 The Aitchison geometry of the simplex

The vector space structure of the mathematical simplex was discovered by Aitchison (1986) who
defined operations on compositional data leading to the Aitchison geometry of the simplex. Pertur-
bation plays the role of addition on the simplex and is defined as a closed component-wise product
x ⊕ y = C(x1y1, . . . , xDyD)t, where the closing operation C ensures a total sum of one, i.e. the
closure of x is C(x) = x/

∑D
i=1 xi. The product of a vector by a scalar is called powering and is

defined as α� x = C(xα1 , . . . , xαD)t, for α ∈ R. The Aitchison inner product for compositions is

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj

=
D∑
i=1

ln(xi) ln(yi)−
1

D

(
D∑
i=1

ln(xi)

) D∑
j=1

ln(yj)


and induces the following norm ‖x‖a =

√
〈x,x〉a and distance da(x,y) = ‖x 	 y‖a, where 	

represents the opposite operation of ⊕, i.e. 	y = ⊕((−1) � y). The simplex along with these
operations then forms a (D − 1)-dimensional Euclidean vector space (SD,⊕,�, 〈·, ·〉a). Given this
Euclidean structure, we can measure distances and angles, and define related geometrical concepts.
Elementary statistical notions involving the metrics of the sample space can be adapted to the
Euclidean structure of the simplex.

Egozcue et al. (2003) constructed orthonormal bases for this Euclidean space and deduced
corresponding isometries between SD and RD−1, called isometric logratio transformations (ilr).
One possible ilr transformation maps a compositional data vector x in a (D − 1)-dimensional real
vector z = (z1, z2, . . . , zD−1)

t with components

zi = ilri(x) =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1 . (3)

As the ilr transformation is isometric, all angles and distances are preserved. This means that,
whenever compositions are transformed into coordinates, the metrics and operations in the Aitchi-
son geometry of the simplex are translated into the ordinary Euclidean metrics and operations in
real space. Let V be the D × (D − 1) matrix with elements

Vij =
D − j√

(D − j + 1)(D − j)
for i = j,

−1√
(D − j + 1)(D − j)

for i > j, and 0 otherwise,

for which it holds that V tV = ID−1 and V V t = ID − (1/D)1D1
t
D, where ID is the identity matrix

of dimension D and 1D a D-vector of ones (Egozcue et al., 2011). Then we can rewrite this ilr
transform and its inverse in matrix notation as

z = ilr(x) = V t lnx , and x = ilr−1(z) = C(exp(V z)) , (4)
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where the logarithmic and exponential function apply componentwise.
Even though the simplex SD is a subset of the real space RD, Aitchison (1986) showed that the

geometry is clearly different. Ignoring this aspect in a statistical context can lead to incompatible
or incoherent results. The compositional nature of the data must not be ignored. The principle
of working on coordinates in statistics (Mateu-Figueras et al., 2011) is to first express the compo-
sitional data with respect to an orthonormal basis of the underlying vector space with Euclidean
structure. Next, to apply standard statistical techniques to the vectors of coordinates and, finally,
to back-transform and describe the results in terms of the simplex. Final results do not depend on
the chosen basis.

4.2.2 A new interpretation for compositional predictors

In our setting, it is key to incorporate the compositional data arising from the divisions of the
distances into different categories as predictors in the claim count regression models. Hron et al.
(2012) propose to first apply the isometric log ratio transform (3) to map the compositions in the
D-part Aitchison simplex to a (D − 1) Euclidean space. Then, these terms are used as explana-
tory variables in a linear regression model. More generally, in any regression context involving a
predictor, one can add a compositional predictor term ηcomp using the ilr transformed variables,
i.e.

ηcomp = β1z1 + . . .+ βD−1zD−1 . (5)

The fitted model does not depend on the choice of the orthonormal ilr basis since the coordinates of
x with respect to different orthonormal bases are orthogonal transformations of each other. Using
the ilr transformation the model parameters can be estimated without constraints and the ceteris
paribus interpretation of altering one zi without altering any other becomes possible. Only the first
regression parameter, β1, however has a comprehensible interpretation since z1 explains relevant
information about x1. The remaining coefficients are not straightforward to interpret and hence
Hron et al. (2012) suggest to permute the indices in formula (3) and construct D regression models,
each time with a different component first for which we can interpret the corresponding coefficient.
Having to refit the model multiple times is undesirable, especially in our case where we have more
than one compositional predictor and each model fit is computationally intensive due to smooth
continuous, spatial, and random effects. Hence, we develop a new strategy to include compositional
predictors and interpret their effect.

By using the inverse ilr transform on the model coefficients, i.e. set b = ilr−1(β) where β =
(β1, . . . , βD−1)

t, we can rewrite the compositional predictor as

ηcomp =
D−1∑
i=1

βizi =
D−1∑
i=1

ilri(b)ilri(x) = 〈b,x〉a ,

since the ilr transform preserves the inner product (Van den Boogaart and Tolosana-Delgado,
2013; Pawlowsky-Glahn et al., 2015). The composition b ∈ SD can be interpreted as the simplicial
gradient of ηcomp with respect to x (Barceló-Vidal et al., 2011) and is the compositional direction
along which the predictor increases fastest. In particular, if we increase x to x̃ = x ⊕ b

‖b‖a , then
the predictor becomes

η̃comp = 〈b, x̃〉a = 〈b,x⊕ b

‖b‖a
〉a = 〈b,x〉a +

1

‖b‖a
〈b, b〉a = ηcomp + ‖b‖a .

When D = 3, the estimated regression model can be visualized as a surface on a ternary diagram
(Van den Boogaart and Tolosana-Delgado, 2013). For D > 3, a graphical representation is not
straightforward.
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In order to overcome this shortcoming in interpretation and to develop a graphical representation
for compositional explanatory variables, we propose to perturb the composition in the direction of
each component. This offers a new interpretation for the effect of altering the composition on the
predictor. For example, a relative ratio change of α > 1 (increase) or α < 1 (decrease) in the first
component of x with constant ratios of the remaining components can be achieved by perturbing
the composition x by (α, 1, . . . , 1)t. This leads to a change of the predictor given by

〈b, (α, 1, . . . , 1)t〉a = ln(b1) ln(α)− 1

D

(
D∑
i=1

ln(bi)

)
ln(α) = clr1(b) ln(α) , (6)

which is independent of the original composition x and where

clri(b) = ln

(
bi

gm(b)

)
, gm(b) =

(
D∏
i=1

bi

)1/D

, i = 1, . . . , D

denotes the centered log-ratio (clr) transform of b (Egozcue et al., 2011). The effect of a relative
increase in any of the components can hence best be understood by considering the clr transform of
b, of which the elements sum to zero and indicate the positive or negative effect of each component
on the predictor. A graphical representation of the effect of a compositional predictor can be made
by visualizing clr(b) and comparing the elements to zero. Since β = ilr(b) = V t ln(b) = V tclr(b)
and V V t = ID − (1/D)1D1

t
D, the clr transform of b can be written as clr(b) = V β. Confidence

bounds can thus be constructed using the corresponding covariance matrix V Σ̂V t where Σ̂ is the
estimated covariance matrix related to estimating β. To interpret the effect on the level of the
expected outcome in the Poisson and NB models, we can transform these confidence intervals using
the exponential function. The exponentiated clr transform of b has to be compared to one and the
effect of a relative ratio change of α in component i = 1, . . . , D is given by αclri(b).

4.2.3 Dealing with structural zeros in compositional predictors

An additional difficulty when incorporating the compositional information as predictors in the
analysis of the claim counts is the presence of proportions of a specific component that are exactly
zero. In the division of the driven distance by road type, for instance, many insureds did not
drive abroad during the observed policy period. Since compositional data are always analyzed by
considering logratios of the components (see Section 4.2.1), a workaround is necessary.

The structural zeros patterns (Pawlowsky-Glahn et al., 2015) are listed in Appendix A. The
presence of zeros is most prominent for splitting distance by road types as 40% of the drivers did
not go abroad. Unlike rounded zeros, when certain components may be unobserved because their
true values are below the detection limit (cfr. geochemical studies), or count zeros, when the zero
values are due to the limited size of the sample in compositional data arising from count data,
structural zeros are truly zero. Zeros are most often dealt with using replacement strategies (see
e.g. Mart́ın-Fernández et al., 2011, for an overview), which do not make sense for structural zeros. A
general methodology is still to be developed (see e.g. Aitchison and Kay, 2003; Bacon Shone, 2003).
In particular, there does not exist a method that deals with compositional data with structural
zeros as predictor in regression models. Applying the ilr transform to the compositional data x
and using the transformed z as explanatory variables in the predictor as discussed in Section 4.2.2
is no longer possible.

We propose to treat the structural zero patterns of the compositional predictors as different
subgroups within the data and model the effect conditional on the zero pattern. In the most
general situation, 2D − 1 possible zero patterns can occur when dealing with compositional data
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with D components (a structural zero for every component being excluded). We introduce indicator
variables for each zero pattern and use these in the compositional predictor term ηcomp of the
regression model to specify the effect on the outcome separately for each zero pattern. More
specifically, we define the variables

d(i1,...,ik) =

{
1 if components i1, . . . , ik of x are nonzero and all other are zero ,

0 otherwise

for all k = 1, . . . , D and 1 6 i1 < . . . < ik 6 D. Conditional on the zero pattern (i1, . . . , ik) of
the compositional data vector x, the contribution to the predictor is given by the Aitchison inner
product 〈b(i1,...,ik),x(i1,...,ik)〉a of the subcomposition x(i1,...,ik) existing of the nonzero components
of x and a subcompositional simplicial gradient b(i1,...,ik), which is different for each zero pattern.
In case of only one nonzero component, the contribution is given by a simple categorical effect b(i).
Note that the subscript (i1, . . . , ik) has a different interpretation for the dummy variable, simplicial
gradient and compositional data vector. The proposed compositional predictor reads

ηcomp =

D∑
i=1

d(i)b(i) +
D∑
k=2

∑
16i1<...<ik6D

d(i1,...,ik)〈b(i1,...,ik),x(i1,...,ik)〉a .

Zero pattern specific intercepts can be added in the second term if deemed necessary.

4.3 Model selection and assessment

Using the same form as Akaike’s information criterion, AIC for a GAM is defined as

AIC = −2 · ̂̀+ 2 · EDF (7)

where ̂̀ is the log-likelihood, evaluated at the estimated model parameters obtained using penalized
likelihood maximization, and the effective degrees of freedom (EDF) is used instead of the actual
number of model parameters. The EDF is defined as the trace of the hat or smoothing matrix in
the corresponding working linear model at the last P-IRLS iteration (Hastie and Tibshirani, 1990).
As such, (7) measures the quality of the model as a trade-off between the goodness-of-fit and the
model complexity.

For each of the four predictor sets, see Figure 2c, variables are selected by AIC using an ex-
haustive search over all the possible combinations of variables given in Table 1. We limit ourselves
to additive regression models (i.e. no interactions) such that an exhaustive search is still feasible
and the marginal impact of a single variable can be easily assessed, interpreted and visualized.
Even though the 2011 EU ruling prohibits a distinction between men and women in car insurance
pricing, we allow gender to be selected as a categorical predictor in the model. For the division of
the number of meters in different categories, 10 structural zero patterns occur for the road types,
20 for the time slots, and 3 for week/weekend. However, based on their relative frequencies, we
only allow an additional compositional predictor for the distinction by road type in the case that a
car did not drive abroad, which occurs for 40% of the observations. All remaining zero patterns are
bundled into one residual group and their effect is modeled using a categorical effect b0, see Table
A.4 of Appendix A. The most comprehensive compositional predictor term we allow to be selected
in the hybrid and telematics models is

ηcomp
it =droad(1111)〈b

road
(1111),x(1111)〉a + droad(1110)〈b

road
(1110),x(1110)〉a + (1− droad(1111) − d

road
(1110))b

road
0

+ dtime
(11111)〈b

time
(11111),x(11111)〉a + (1− dtime

(11111))b
time
0

+ dweek(11) 〈b
week
(11) ,x(11)〉a + (1− dweek(11) )bweek0 .
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In total, 165 888 model specifications are estimated under both the Poisson and the negative bino-
mial framework.

Predictive performance of these models is assessed using proper scoring rules for count data,
see Table 2 (Czado et al., 2009). Scoring rules assess the quality of probabilistic forecasts through
a numerical score s(P, n) based on the predictive distribution P and the observed count n. Lower
scores indicate a better quality of the forecast. A scoring rule is proper (Gneiting and Raftery, 2007)
if s(Q,Q) 6 s(P,Q) for all P and Q with s(P,Q) the expected value of s(P, ·) under Q. In general,
we define by pk = P(N = k) and Pk = P(N 6 k) the probability mass function and cumulative
probability function of the predictive distribution P for count variable N . The probability mass at
the observed count n is denoted as pn. The mean and standard deviation of P are written as µP
and σP , respectively, and we set ‖p‖ =

∑∞
k=0 p

2
k.

Score Formula

logarithmic logs(P, n) = − log pn
quadratic qs(P, n) = −2pn + ‖p‖
spherical sphs(P, n) = − pn

‖p‖
ranked probability rps(P, n) =

∑∞
k=0{Pk − 1(n 6 k)}2

Dawid-Sebastiani dss(P, n) =
(
n−µP
σP

)2
+ 2 log σP

squared error ses(P, n) = (n− µP )2

Table 2: Proper scoring rules for count data.

We compare the predictive performance of the best models according to AIC under the four
predictor sets, with or without offset in the predictor (1), and using a Poisson or negative binomial
distribution. We apply the proper scoring rules to the predictive count distributions of the observed
claim counts. We adopt a K-fold cross-validation approach (Hastie et al., 2009) with K = 10 and
apply the same partition to assess each model specification. Let κit ∈ 1, 2, . . .K be the part of the
data to which the observed claim count nit of policyholder i in policy period t is allocated by the
randomization. Denote by P̂−κitit the predictive count distribution for observation nit estimated
without the κitth part of the data. The K-fold cross-validation score CV(s) is then given by

CV(s) =
1∑I
i=1 Ti

I∑
i=1

Ti∑
t=1

s(P̂−κitit , nit) ,

where s is any of the aforementioned proper scoring rules and smaller values of CV(s) indicate
better forecasts.

5 Results

5.1 Model selection

All computations are performed with R 3.2.5 (R Core Team, 2016) and, in particular, the R package
mgcv version 1.8-11 (Wood, 2011) is used for the parameter estimation in the GAMs. The variables
selected for each of the predictor sets were identical for the Poisson and NB models, see Table 3.
The functional forms of the selected best models are given in Appendix B. The offset versions of
the classic and time-hybrid model replace the term f1(timeit) by ln(timeit), without any regression
coefficient in front. This causes the expected number of reported MTPL claims, µit = E(Nit) =
exp(ηit), to be proportional to the duration of the policy period. In the offset versions of the
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meter-hybrid and telematics model, the flexible term related to distance gets replaced by an offset
ln(distanceit), imposing the risk to be proportional to the distance. Both hybrid models drop the
fuel term in the best offset variants.

The models which are allowed to use the policyholder information prefer the use of experience,
measured as the years since obtaining the driver’s license, instead of age to segment the risk in
young drivers. Gender is only selected as an important covariate in the classic models, not in any of
the hybrid models, indicating that the telematics information renders the use of gender as a rating
variable redundant. The newly introduced telematics predictors are selected in both the hybrid
and the telematics models and hence contribute to the quality of these models.

The second best models, with only a slightly higher AIC value, show that adding kwatt to the
classic model gives a comparable model fit and fuel and kwatt can easily be left out of the hybrid
models without deteriorating the fit.

Predictor Classic Time-hybrid Meter-hybrid Telematics

P
ol

ic
y

Time × offset × offset
Age
Experience × × × × × ×
Sex × ×
Material × × × × × ×
Postal code × × × × × ×
Bonus-malus × × × × × ×
Age vehicle × × × × × ×
Kwatt × × × ×
Fuel × × × ×

T
el

em
at

ic
s

Distance × offset × offset
Yearly distance × ×
Average distance × × × ×
Road type 1111 × × × × × ×
Road type 1110 × × × × × ×
Time slot × × × × × ×
Week/weekend × × × × × ×

Table 3: Variables contained in the best Poisson model for each of the predictor sets. The second column
of each predictor set refers to the model with the offset restriction for either time or meter. The
best NB models were identical to the best Poisson models.

For each of these best model formulations, we added a policyholder-specific random effect in the
predictor (1) to account for possible dependence from observing policyholders over multiple policy
periods. However, none of the added random effects were deemed necessary at the 5% significance
level using the approximate test of Wood (2013).

5.2 Model assessment

Table 4 reports AIC and all 6 proper scoring rules obtained using 10-fold cross validation for each
predictor set. These performance tools unanimously indicate that the time-hybrid model without
offset scores best. The meter-hybrid model is a close second. Their respective versions with an offset
restriction conclude the top four according to all criteria except the Dawid–Sebastiani score. This
demonstrates the significant impact of telematics constructed variables on the predictive power of
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the model. In addition, the telematics model without offset outperforms the classic models across
all assessment criteria. Hence, using only telematics predictors is considered to be better than the
use of the traditional rating variables.

Predictor set Offset EDF
AIC logs qs sphs rps dss ses

value, rank value, rank value, rank value, rank value, rank value, rank value, rank

Classic no 32.15 11 896 6 0.1790 6 −0.918 58 6 −0.958 22 6 0.042 24 6 −2.206 5 0.045 35 6
yes 27.27 11 995 7 0.1804 7 −0.918 39 7 −0.958 16 7 0.042 34 7 −2.130 7 0.045 46 7

Time-hybrid no 39.66 11 727 1 0.1764 1 −0.919 10 1 −0.958 37 1 0.041 95 1 −2.275 1 0.045 01 1
yes 36.22 11 811 3 0.1777 3 −0.918 90 3 −0.958 31 3 0.042 06 3 −2.212 4 0.045 14 3

Meter-hybrid no 41.47 11 736 2 0.1766 2 −0.919 08 2 −0.958 36 2 0.041 96 2 −2.266 2 0.045 02 2
yes 36.23 11 856 4 0.1784 4 −0.918 80 4 −0.958 27 4 0.042 12 4 −2.158 6 0.045 22 4

Telematics no 18.05 11 890 5 0.1787 5 −0.918 60 5 −0.958 22 5 0.042 22 5 −2.224 3 0.045 32 5
yes 14 12 061 8 0.1813 8 −0.918 16 8 −0.958 07 8 0.042 50 8 −2.066 8 0.045 80 8

Table 4: Model assessment of the best models according to AIC under each of the four predictor sets. The
second row of each predictor set refers to the model with the offset restriction for either time
or meter. For each model we list the effective degrees of freedom (EDF), Akaike information
criterion (AIC) and 6 cross-validated proper scoring rules: logarithmic (logs), quadratic (qs),
spherical (sphs), ranked probability (rps), Dawid-Sebastiani (dss), and squared error scores (ses).
For AIC and the proper scoring rules, the first column represents the value and the second column
the rank.

Across all predictor sets, the use of an offset for the exposure-to-risk, either time or meter, is
too restrictive for these data. From a statistical point of view, the time or meter rating unit cannot
be considered to be directly proportional to the risk. However, from a business point of view, it is
convenient to consider a proportional approach due to its simplicity and explainability.

Similar results are obtained under the negative binomial model specification. The rankings ac-
cording to AIC are the same as in Table 4. The AIC values for each predictor set under the NB
model specification compared to their Poisson counterpart were slightly higher for the classic and
hybrid models and slightly lower for the telematics models indicating that only the telematics pre-
dictor sets benefit from the additional parameter to capture overdispersion. The model assessment
using proper scoring rules led to the same conclusions as before.

Beside an exhaustive search among additive terms, we have explored the use of interactions
among categorical, among continuous, between categorical and continuous, and between categorical
and compositional predictors. Slight marginal improvements in AIC could only be achieved in the
classic model by further refining the effects of experience, age vehicle and material by gender

without changing the rankings in Table 4 of the best models.

5.3 Visualization and discussion

The effects of each predictor variable in the best time-hybrid model without offset restriction are
graphically displayed in Figure 5 for the policy model terms and Figure 6 for the telematics model
terms. By exponentially transforming the additive effects, we show the multiplicative effects on
the expected number of claims for each categorical parametric, continuous smooth or geographical
term in the fitted model. For the categorical predictors we quantify the uncertainty of those
estimates by constructing individual 95% confidence intervals based on the large sample normality
of the model parameter estimators. Bayesian 95% confidence pointwise intervals are used for the
smooth components of the GAM and include the uncertainty about the intercept (Marra and Wood,
2012). For the compositional data predictors, we visualize the exponentiated clr transform of the
corresponding model parameters with 95% confidence intervals along with a reference line at one
(see Section 4.2.2). Similar graphs for the other three predictor sets, see Figure 2c, are shown in
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Appendix C and the relative importance of these predictors is quantified and visualized in Appendix
D. In the remainder of this section, we discuss the insights and interpretations for both the policy
and telematics variables in each of these models.

Figure 5: Multiplicative response effects of the policy model terms of the time-hybrid model.

Policy variables The rating unit policy period in the classic and time-hybrid models always
has a monotone increasing estimated effect. The longer a policyholder is insured, the higher the
premium amount, ceteris paribus. Using the fact that the level of the nonlinear smooth components
are not uniquely identifiable (see Section 4.1), we vertically translated the estimated smooth term
to pass the point (365, 0) on the predictor scale (and hence (365, 1) on the response scale) for ease
of interpretation.

The smooth effect of experience embodies the higher risk posed by younger, less experienced
drivers. The increased risk is more outspoken in the first two years for the hybrid models as
compared to the classic model.

In the classic model, the significant effect of gender indicates that women are 16% less risky
drivers than men. However, when telematics predictors are taken into account in the hybrid models,
the categorical variable gender is no longer selected as predictor. Neither did any interaction term
between gender and a categorical, a continuous or a compositional predictor improve AIC. The
perceived difference between women and men can hence be explained through differences in driving
habits. In particular, female drivers in the portfolio drive significantly fewer kilometers on a yearly
basis compared to men (15 409 vs 18 570 on average, with a p-value smaller than 0.001 using a two
sample t-test). Similar findings are reported in Ayuso et al. (2016). In light of the EU rules on
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gender-neutral pricing in insurance, this shows how moving towards car insurance rating based on
individual driving habits and style can resolve possible discrimination of basing the premium on
proxies such as gender.

The smooth effects of bonus-malus in the classic and hybrid models are nonlinear and somewhat
counterintuitive. Given the lack of a lengthy claim history of the young drivers of this portfolio, the
BM level of the insureds are not yet fully developed and stabilized. The majority of the drivers has
a bonus-malus (BM) level between 4 and 12 for which the effect on the claim frequency is increasing.
For the highest BM levels however, the effect is declining, albeit with a high uncertainty due to
a lack of observations in this region. Furthermore, the effect does not decrease for the lowest BM
levels. This can be explained by an improper use of the BM scale as marketing tool to attract new
customers. By lowering the initial value of the BM scale, the insurer can reduce the premium a
potential new policyholder has to pay.

When it comes to characteristics of the car, insureds driving older vehicles have an estimated
higher risk of accidents. The smooth effect of age vehicle is estimated as a straight line on the
predictor scale in the classic and hybrid models. The effect of kwatt in the hybrid models also
reduced to a straight line on the predictor scale. When the insured vehicle has more horsepower,
the estimated expected claims number is lower, although this effect is of lesser importance for the
model fit as indicated earlier. The categorical model term fuel shows that vehicles using petrol
have an estimated lower risk for accidents compared to diesel. This difference is however smaller
and no longer statistically significant in the hybrid models compared to the classic model.

In both the classic and hybrid models, the policies without material damage cover have a
20% lower estimated expected number of claims. This may be explained by the reluctance of
some insureds without additional material damage coverage to report small accidents. Due to
bonus-malus mechanisms being independent of the claim amount, filing a claim leads to premium
surcharges which may be more disadvantageous for policyholders than for them to defray the third
party. This phenomenon is known as the hunger for bonus (Denuit et al., 2007). Insureds with an
additional material damage cover are less inclined to do so since their own, first party costs are
also covered making it more worthwhile to report a claim at fault. Including telematics variables
in the model does not affect this discrepancy.

The geographical effect (postal code), plotted on top of a map of Belgium for the classic and
hybrid models, captures the remaining spatial heterogeneity based on the postal code where the
policyholder resides. For the classic model, the graph shows higher claim frequencies for urban areas
like Brussels in the middle, Antwerp in the north and Liège in the east and lower claim frequencies
in the more sparsely populated regions in the south. The geographic variation however decreases
strongly in the hybrid models due to the inclusion of telematics predictors not taken into account in
the classic model. The EDF corresponding to the spatial smooth reduced from 15.8 in the classic
model to 6.4 in both hybrid models. This is satisfactory as it means, instead of overrelying on
geographical proxies, the hybrid models are basing the insurance premium on actual differences in
driving habits (such as the proportion driven on urban roads) which is more closely related to the
accident risk.

Telematics variables In the meter-hybrid and telematics models, distance is used as the rating
unit. Similar to the time effect in the classic and time-hybrid model, the effect of the risk exposure
is estimated as a monotone increasing function. The accident risk however does not vanish for
insureds who hardly drive any kilometers during the observation period.

The yearly distance is used in the time-hybrid model, which uses time as exposure, to differ-
entiate between drivers who travel many versus few kilometers on a yearly basis. In this way, the
driven distance is rescaled on a yearly basis (see Section 3.2) and used as an additional risk factor
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Figure 6: Multiplicative response effects of the telematics model terms of the time-hybrid model.

having a weaker effect on the claim frequency compared to the meter-hybrid and telematics models
where distance is used a rating unit. In both hybrid models, the estimated average distance

effect shows lower claim frequencies for insureds who on average drive long distances.
The exponentiated clr transforms of the model coefficients related to the compositional road

type predictor in the telematics model show how insureds who drive relatively more on urban roads
have higher claim frequencies and insureds who drive relative more on the road type ‘other’ have
lower claim frequencies. The same interpretation holds for insureds who do not drive abroad during
the policy period. In the hybrid models, these effects are less outspoken but heading in the same
direction with the exception that motorways is perceived as riskier. The elevated accident risk for
insureds driving more on urban roads is in line with Paefgen et al. (2014), where the driven distance
is divided over ‘highway’, ‘urban’ and ‘extra-urban’ road types. The authors however neglect the
compositional nature of this predictor in the analysis and do not incorporate any of the classical
policy risk factors in the logistic regression model. In Ayuso et al. (2014), the percentage of urban
driving is considered an important variable to predict either the time or the distance to the first
accident, although percentages driven on different road types are not considered. Using either a
quadratic effect or a categorical effect (urban driving > 25%) in Weibull regression models shows
how increased percentages of urban driving reduce both the expected time or distance to the first
accident.

The compositional time slot predictor in the hybrid and telematics models indicates that pol-
icyholders who drive relatively more in the morning have lower claim frequencies and policyholders
who drive relatively more in the evening and during the night have higher claim frequencies. In
Paefgen et al. (2014), the accident risk is considered to be lower during the daytime (between 5
and 18h) compared to the evening (between 18h and 21h), based on the estimated coefficients of
linear model terms of the log transformed percentages of the driven distance in these time slots.
Ayuso et al. (2014) reports how a higher percentage of driving at night reduces the expected time
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to a first accident, where the effect is modeled linearly, with no further distinction in time slots.
Driving more in the week than in the weekend increases the probability of having a claim. An

increased accident risk in case of more driving in the week is also found in Paefgen et al. (2014),
though they define weekend from Friday to Sunday. The compositional effect of week/weekend is
retained in both hybrid models as well as the telematics model according to AIC even though it is
not statistically significant. This is due to a highly significant and positive estimated categorical
effect bweek0 for the 73 observations with structural zeros belonging to the rest group, see Table
A.4 of Appendix A. These drivers have jointly driven 58 000 kilometers during a combined insured
policy period of 16.5 years and reported the remarkably high number of 5 claims.

6 Conclusion

Telematics insurance offers new opportunities for insurers to differentiate drivers based on their
driving habits and style. By aggregating the telematics data on the level of the policy period
by policyholder and combining it with traditional policy(holder) rating variables, we construct
predictive models for the frequency of MTPL claims at fault. Generalized additive models with
a Poisson or negative binomial response are used to model the effects of predictors in a smooth,
yet interpretive way. The divisions of the driven distance into 4 road types and 5 time slots forms
a challenge from a methodological point of view that has not been addressed in the literature.
We demonstrate how to include this information as compositional predictors in the regression and
formulate a new way of how to interpret their effect on the average claim frequency.

Our research reveals the significant impact of the use of telematics data through an exhaustive
model selection and an assessment of the predictive performance. The time-hybrid is the best
model according to AIC and all proper scoring rules, closely followed by the meter-hybrid model.
The model using only telematics variables is ranked higher than the best classic model using only
traditional policy information.

The compositional predictors show that a further classification of the driven distance based
on the location and the time is relevant. Our contribution indicates that driving more on urban
roads, in the evening or at night and during the week contributes to a riskier driving pattern. The
best hybrid models highlight that certain popular pricing factors (gender, fuel, postcode) are indeed
proxies for the driving habits and part of their predictive power is taken over by the distance driven
and the splits into different categories. Hence, we demonstrate using careful statistical modeling
how the use of telematics variables is an answer to the European regulation on insurance pricing
practices that bans the use of gender as a rating factor.

In the case of multiple insured drivers, it is unclear which characteristics (such as age, experience
and gender) the insurer must use to determine the premium. We proceed, in consultation with the
Belgian insurer providing the data, by identifying the driver with the lowest experience as the main
driver and use his policyholder information as predictors in the regression for tarification purposes.
In practice, when a parent adds a child as a driver in the policy, a premium surcharge is often
avoided to prevent the policyholder from lapsing. By shifting towards pricing based on telematics
information as we do in this research, this tarification issue becomes less of a problem because the
premium will be usage-based.

Pricing using telematics data can be seen as falling in between a priori and a posteriori pricing.
The driving habits and style are no traditional a priori variables since they cannot be determined
before the policyholder starts to drive. Insurers now reason that available UBI products are only
purchased by drivers who consider themselves to be either safe or low-kilometer drivers. This
potential form of positive selection, which could not be quantified based on the studied portfolio
alone, validates an upfront discount on the traditional insurance premium. Based on the telematics
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data collected over time, insurers can set up a discount structure to adapt the premium in an a
posteriori way. The discount structure can depend on the actual driven distance, with a further
personalized differentiation based on the riskiness of the profile as perceived from the driving habits
of the insured. The insights provided in this paper reveal which elements can be adopted in such a
structure, for instance, by making kilometers driven on urban roads or in the evening or at night
more expensive.

In conclusion, telematics technology provides means to insurers to better align premiums with
risk. Pay-as-you-drive insurance is a first step in which the number of driven kilometers, the type
of road and the time of day are combined with the traditional self-reported information such as
policyholder and car characteristics to calculate insurance premiums. A next step is pay-how-you-
drive insurance, where on top of these driving habits also the driving style is considered to assess
how risky someone drives by monitoring for instance speed infringements, harsh braking, excessive
acceleration, and cornering style. The ideas and statistical framework presented can be extended
to incorporate such additional pay-how-you-drive predictors if they are available.
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A Structural zero patterns of the compositional telematics pre-
dictors

We give an overview of the structural zero patterns for the division of the number of meters in road types
(Table A.1), time slots (Table A.2) and week/weekend (Table A.3). The pattern is represented in the first
column by a code indicating which components are zero (0) or non-zero (1). For each structural zero pattern,
we tabulate their absolute and relative frequency and the compositional mean of the nonzero components,
which for M observations xi = (xi1, . . . , xiD)t and i = 1, . . . ,M is defined as

x =
1

M
�

M⊕
i=1

xi = C

( M∏
i=1

xi1

)1/M

, . . . ,

(
M∏
i=1

xiD

)1/M
t

(8)

resulting in the closed componentwise geometric mean. Following the principle of working on coordinates,
we can alternatively write the compositional mean as

x = ilr−1

(
1

M

M∑
i=1

ilr(xi)

)
,

where we first transform the compositional data from SD to RD−1 using the ilr transformation, then compute
the mean in RD−1 and finally apply the inverse ilr transformation to obtain the compositional mean in SD.
In the paper, infrequently observed patterns are bundled into a residual group when incorporating the
compositional variables as predictors in the claim count models leading to the distinguished structural zero
patterns of Table A.4.
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Road type Number Percent Urban Other Motorways Abroad

1111 18821 0.5659 0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071 0.5079 0.2782 0.2139 –
1100 481 0.0145 0.5923 0.4077 – –
1101 258 0.0078 0.4960 0.4648 – 0.0392
0001 131 0.0039 – – – 1
1010 7 0.0002 0.9075 – 0.0925 –
1001 7 0.0002 0.0034 – – 0.9966
1000 6 0.0002 1 – – –
0101 5 0.0001 – 0.0002 – 0.9998
0111 3 0.0001 – 0.0130 0.0833 0.9038

Table A.1: Structural zero patterns for the division of meters in road types.

Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h

11111 31886 0.9587 0.1472 0.4699 0.2159 0.1010 0.0661
11110 991 0.0298 0.2000 0.5090 0.2323 0.0587 –
11101 130 0.0039 0.2060 0.5953 0.1296 – 0.0691
11100 110 0.0033 0.2134 0.6238 0.1628 – –
01111 47 0.0014 – 0.5398 0.1983 0.1339 0.1280
01110 23 0.0007 – 0.5850 0.2793 0.1357 –
01100 22 0.0007 – 0.7912 0.2088 – –
11000 16 0.0005 0.1459 0.8541 – – –
11001 10 0.0003 0.0697 0.8000 – – 0.1304
01000 7 0.0002 – 1 – – –
01001 3 0.0001 – 0.6803 – – 0.3197
01010 2 0.0001 – 0.3054 – 0.6946 –
10000 2 0.0001 1 – – – –
01101 2 0.0001 – 0.6698 0.1744 – 0.1558
10001 2 0.0001 0.1271 – – – 0.8729
11011 2 0.0001 0.0653 0.5536 – 0.2762 0.1049
00100 1 0.0000 – – 1 – –
00110 1 0.0000 – – 0.8200 0.1800 –
10010 1 0.0000 0.9787 – – 0.0213 –
10110 1 0.0000 0.2451 – 0.2935 0.4614 –

Table A.2: Structural zero patterns for the division of meters in time slots.

Week/weekend Number Percent Week Weekend

11 33186 0.9978 0.7490 0.2510
10 72 0.0022 1 –
01 1 0.0000 – 1

Table A.3: Structural zero patterns for the division of meters in week and weekend.
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Road type Number Percent Urban Other Motorways Abroad

1111 18821 0.5659 0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071 0.5079 0.2782 0.2139 –
0 898 0.0270 – – – –

Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h

11111 31886 0.9587 0.1472 0.4699 0.2159 0.1010 0.0661
0 1373 0.0413 – – – – –

Week/weekend Number Percent Week Weekend

11 33186 0.9978 0.7490 0.2510
0 73 0.0022 – –

Table A.4: Structural zero patterns for the division of the number of meters in road types, time slots and
week/weekend as recognized in the models in the paper.

B Functional forms of the selected best models

The functional form of the predictor in the preferred classic model can be written as

ηclassicit =β0 + β1genderit + β2materialit + β3fuelit + f1(timeit) + f2(experienceit)

+ f3(bonus-malusit) + f4(age vehicleit) + fs(latit, longit) .

The predictor in the best time-hybrid model is

ηtime-hybrid
it =β0 + β1materialit + β2fuelit + f1(time)it + f2(experienceit)

+ f3(bonus-malusit) + f4(age vehicleit) + fs(latit, longit)

+ f5(yearly distanceit) + f6(average distanceit) + droad(1111)〈b
road
(1111),x(1111)〉a

+ droad(1110)〈b
road
(1110),x(1110)〉a + (1− droad(1111) − d

road
(1110))b

road
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a

+ (1− dtime
(11111))b

time
0 + dweek

(11) 〈b
week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 ,

and for the preferred meter-hybrid model we have

ηmeter-hybrid
it =β0 + β1materialit + β2fuelit + f1(experienceit) + f2(bonus-malusit)

+ f3(age vehicleit) + fs(latit, longit) + f4(distanceit)

+ f5(average distanceit) + droad(1111)〈b
road
(1111),x(1111)〉a + droad(1110)〈b

road
(1110),x(1110)〉a

+ (1− droad(1111) − d
road
(1110))b

road
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a + (1− dtime

(11111))b
time
0

+ dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 .

Finally, the predictor in the best telematics model is

ηtelematics
it =β0 + f1(distance)it + droad(1111)〈b

road
(1111),x(1111)〉a + droad(1110)〈b

road
(1110),x(1110)〉a

+ (1− droad(1111) − d
road
(1110))b

road
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a + (1− dtime

(11111))b
time
0

+ dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 .
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C Graphical displays of the multiplicative response effects

Figure C.1: Multiplicative response effects of the model terms of the classic model.

Figure C.2: Multiplicative response effects of the model terms of the telematics model.
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Figure C.3: Multiplicative response effects of the policy model terms of the meter-hybrid model.

Figure C.4: Multiplicative response effects of the telematics model terms of the meter-hybrid model.
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D Relative importance of the predictors

To assess the relative importance of these variables in the model, we construct histograms of the multiplicative
effects by predictor for each observation in the data set. This is done for the classic model in Figure C.1,
for the telematics model in Figure C.2, for the time-hybrid model in Figures D.7 and D.8 and for the
meter-hybrid model in Figures C.3 and C.4. For the hybrid models, we constructed separate graphs for the
model terms derived from the policy and telematics information. For categorical predictors this reduces to
a bar plot of the categorical effects and for the continuous and geographical predictors to a histogram of
the exponentiated smooth effects. For a compositional predictor, such as time slot, we plot a histogram of

the exponential of the term 〈b̂
time

(11111),x(11111)〉a for all observations with pattern 11111. With the division in
road types, we consider simultaneously the terms related to patterns 1111 and 1110. To rank the influence
of the different policy and telematics variables on the claim frequency, we use the standard deviations over
all observations of the effects on the predictor scale, see Table D.5.

Predictor Classic Time-hybrid Meter-hybrid Telematics

P
ol

ic
y

Time 0.36 0.69 0.37 0.69
Age
Experience 0.18 0.14 0.16 0.11 0.15 0.12
Gender 0.09 0.09
Material 0.11 0.11 0.11 0.10 0.11 0.10
Postal code 0.21 0.20 0.14 0.14 0.14 0.16
Bonus-malus 0.16 0.18 0.11 0.15 0.14 0.15
Age vehicle 0.08 0.10 0.09 0.10 0.10 0.11
Kwatt 0.07 0.06 0.07 0.08
Fuel 0.09 0.09 0.05 0.05

T
el

em
at

ic
s

Distance 0.44 0.95 0.41 0.95
Yearly distance 0.30 0.36
Average distance 0.23 0.25 0.21 0.32
Road type 0.13 0.14 0.12 0.15 0.22 0.33
Time slot 0.20 0.20 0.20 0.18 0.21 0.19
Week/weekend 0.03 0.03 0.03 0.04 0.02 0.02

Table D.5: Standard deviations of the effects on the predictor scale in the best Poisson model for each of
the predictor sets. The second column of each predictor set refers to the model with the offset
restriction for either time or meter.
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Figure D.5: Relative frequencies of the multiplicative response effects of the model terms of the classic
model.

Figure D.6: Relative frequencies of the multiplicative response effects of the model terms of the telematics
model.
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Figure D.7: Relative frequencies of the multiplicative response effects of the policy model terms of the
time-hybrid model.

Figure D.8: Relative frequencies of the multiplicative response effects of the telematics model terms of the
time-hybrid model.
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Figure D.9: Relative frequencies of the multiplicative response effects of the policy model terms of the
meter-hybrid model.

Figure D.10: Relative frequencies of the multiplicative response effects of the telematics model terms of
the meter-hybrid model.
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