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Abstract 

The focus of this paper is to describe Bayesian estimation, including construction of prior 

distributions, and to compare parameter recovery under the Bayesian framework (using weakly 

informative priors) and the maximum likelihood (ML) framework in the context of multilevel 

modeling of single-case experimental data. Bayesian estimation results were found similar to ML 

estimation results in terms of the treatment effect estimates, regardless of the functional form and 

degree of information included in the prior specification in the Bayesian framework. In terms of 

the variance component estimates, both the ML and Bayesian estimation procedures result in 

biased and less precise variance estimates when the number of participants is small (i.e., 3). By 

increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise 

estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity 

matrix. When a more informative prior was added, more precise estimates for the fixed effects 

and random effects were obtained, even when only three participants were included. 

 

Keywords: Bayesian statistics, maximum likelihood, weakly informative prior, single-

case designs, two-level modeling 
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Multilevel Modeling of Single-Case Data: A Comparison of Maximum Likelihood and 

Bayesian Estimation 

Over the past decades, single-case experimental design (SCED) studies have made 

significant contributions to educational policy and practice (Kratochwill et al., 2010) as they 

provide scientifically sound evaluations of treatment effect estimates (Kratochwill & Levin, 

2010). In an SCED study, one entity or a small group of entities (i.e., subjects, participants, or 

experimental units) are the focus of interest and each entity is measured repeatedly during at 

least one baseline condition and one treatment condition. The main focus of SCEDs lies in 

assessing whether there is a causal relation between the introduction of a treatment and the 

change in a dependent variable (Levin, O'Donnell, & Kratochwill, 2003; Onghena, 2005). The 

most popular type of SCED study is the multiple-baseline design (MBD) across participants 

(Shadish & Sullivan, 2011, see Figure 1). In an MBD, an AB phase design (with one baseline 

phase, A, and one treatment phase, B) is implemented simultaneously to multiple participants 

(Barlow, Nock & Hersen, 2009; Ferron & Scot, 2005; Onghena, 2005). An inherent 

characteristic of MBDs is that the treatment is introduced sequentially across the participants. 

This entails the advantage that researchers can more easily disentangle treatment effects from 

external events, such as the illness of a teacher or the presence of a foreign observer (Baer, Wolf, 

& Risley, 1968; Barlow et al., 2009; Kinugasa, Cerin, & Hooper, 2004; Koehler, & Levin, 2000; 

Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2013a).  

--- INSERT FIGURE 1 ABOUT HERE --- 

Combining research findings across participants within an SCED study can provide 

strong quantitative evidence for the overall effectiveness of treatments across participants 

(Shadish & Rindskopf, 2007). In addition, it is informative to estimate the degree of variability in 
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the treatment effect estimate between participants (Shadish, Kyse & Rindskopf, 2013). It can be 

the case that a statistically significant average treatment effect is obtained across participants, but 

that there is a lot of variability in this estimate between participants, and that the treatment is not 

effective for all participants or even has adverse effects for some participants. In sum, inferences 

on the overall average treatment effect estimate need to be supplemented with an estimate of the 

between-participant variability because in single-case design studies the researchers care about 

individual participants (Barlow et al., 2009; Kazdin, 2011; Kratochwill et al, 2010, Kratochwill 

& Levin, 2014). 

 Van den Noortgate and Onghena (2003a, 2003b) proposed using a two-level regression 

model in order to capture in a single study both the overall average treatment effect across 

participants and between-participant variability in treatment effect estimates. This two-level 

regression model takes the hierarchical structure of the data into account, with observations 

nested within participants, and therefore takes into account that measurements from the same 

participant are more alike than measurements from different participants. 

The two-level regression approach to summarize SCED data across participants using 

restricted maximum likelihood (REML) has been evaluated through a computer-intensive 

simulation study (Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009), evaluating the relative 

parameter bias, relative standard error bias, the mean squared error, and the coverage proportion 

of the 95% confidence interval of the fixed effect estimates. Similarly, the bias and the precision 

of the variance components estimates have been evaluated. In their study, Ferron et al. (2009) 

found unbiased and precise fixed effect estimates. In contrast, the estimates of the variance 

components tended to be biased and imprecise (Ferron et al., 2009). Also subsequent research on 

the use of multilevel models to combine SCED data found that the variance component estimates 
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are unsatisfactory (e.g., Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2013b, 

2013c). To avoid these problems, single-case researchers may want to turn to other estimation 

procedures such as Bayesian methods which seem to be promising for obtaining more precise 

variance components estimates (Baldwin & Fellingham, 2013). It makes sense to apply Bayesian 

estimation techniques in contexts of single-case experimental data because we deal with small 

sample sizes, so asymptotic assumptions are not likely to be met. Given the importance of 

obtaining unbiased and precise variance components estimates, this study was designed to 

evaluate the performance of Bayesian data analysis with a focus on variance components 

estimates.  

Modeling of MBD Data 

Two-level modeling allows for the estimation of the overall treatment effects over 

participants without losing information about participant-specific treatment effects (Van den 

Noortgate & Onghena, 2003a, 2003b; Shadish et al., 2013). Moreover we can estimate how 

much the treatment effects vary between participants within a study. Previous research focusing 

on estimation procedures for multilevel meta-analysis (e.g., Van den Noortgate & Onghena, 

2003c) focused mainly on group-comparison designs and limited attention has been devoted to 

estimation procedures in the context of SCED studies (Kratochwill et al., 2010, Kratochwill & 

Levin, 2014). 

To specify the two-level model that combines data across participants within an MBD, 

we can define regression equations at two levels. At the first level, we can use the following 

regression equation: 

'
0 1 2 3 1ij j j ij j ij j ij ij i j ijy T D T D e e            (1) 
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 indicates the continuous outcome score (e.g., math score), on measurement occasion i (i = 

1,…I) for participant j (j = 1,…J) and is regressed on a dummy variable, , indicating the 

condition (e.g., 0 = baseline condition and 1 = treatment condition), a time variable,  (i.e., to 

model a possible time trend during the baseline phase), and an interaction term between  and 

the time variable ’ (i.e., because it is possible that the trend during the treatment condition will 

differ from the trend during the baseline condition). ’ is centered in a way that it equals zero at 

the start of the treatment phase, whereas  equals zero at the start of the experiment. As a 

consequence,  is the expected outcome score for participant j when  and  are zero, 

which means the expected score at the beginning of the baseline phase.  is the time trend 

during the baseline phase;  is the immediate treatment effect; and is the difference in 

trend between the baseline condition and treatment condition. For more details about coding the 

design matrix in contexts of SCEDs and the interpretation of regression coefficients, we refer the 

reader to Moeyaert, Ugille, Ferron, Beretvas, and Van den Noortgate (2014). The ’s are 

residuals, which are usually assumed to be normally distributed around a mean of zero with a 

variance of , but other distributions are possible. If the outcome variable, , is non-

continuous, for instance a count, the use of a Poisson or negative binomial distribution might be 

more appropriate (i.e., Breslow & Clayton, 1993; Shadish et al., 2013). ߩ indicates the 

autocorrelation parameter. If ߩ is positive, then errors closer in time are more similar; if ߩ is 

negative, errors closer in time are more different and if ߩ is zero, then there is no correlation 

between the errors. In SCED data, repeated measures are obtained within a person and as a 

consequence, the issue of autocorrelation cannot be neglected (Ferron et al., 2009; Huitema & 
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McKean, 1994; McKnight, McKean, & Huitema, 2000). Previous research indicates that not 

modeling existing autocorrelation in a two-level analysis of single-cases results in biased 

parameter estimates (Ferron et al., 2009). On the other hand, Shadish and Sullivan (2011) 

indicated that the size of autocorrelation in SSED studies varies tremendously (AR values across 

809 studies ranged from -.931 to .786), with an average of .20. It is unlikely that the treatment 

effects are the same for all participants included in the SCED study. To capture the variability 

between participants and to estimate the average treatment effect across the participants, we 

allow the level-1 coefficients to vary at the second level. 
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 (2) 

The  coefficients indicate the average effects over participants and the ’s indicate how 

individual participants differ from this overall effect. These level-2 residuals are assumed to 

follow a multivariate normal distribution. Researchers, policy makers, and practitioners are 

mainly interested in the average immediate treatment effect over participants ( ) and the 

average treatment effect on the time trend over participants ( ), as well as in how much the 

effect vary over participants (c.q  and , indicating the between-participant variance of the 

immediate treatment effect and the treatment effect on time trend respectively). The between-

participant variance can be found on the diagonal of the covariance matrix, whereas the off-

diagonal elements refer to the covariance. Multilevel modeling estimation is complex because of 

the composite error structure, consisting of both level-1 and level-2 residuals ( , , , , 
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), and two kinds of parameters are to be estimated, namely the fixed effect coefficients and 

the residuals’ (co)variance components. Assuming no autocorrelation (i.e., 0 = ߩ in Equation 1), 

combining Equation 1 and Equation 2 results in Equation 3: 

 (3) 

Level-1 residuals are assumed to be independent of level-2 residuals: Cov ( , ) = Cov ( ,

) = Cov ( , ) = Cov ( , ) = 0.  

Estimation Methods in the Two-level Modeling of SCED Data 

Maximum Likelihood Estimation 

Maximum likelihood (ML) algorithms are the default in most statistical software 

programs for multilevel analysis. For an introduction to the ML estimation algorithm, we refer 

the reader to Goldstein (1995), Raudenbush and Bryk (2002), and Snijders and Bosker (2012). 

ML estimates have desirable large sample properties: (1) they are consistent (i.e., as the sample 

size increases, the ML estimates tend to approach the true parameter value), (2) they are 

asymptotically normal (i.e., the ML estimates will have an approximate normal distribution 

centered around the true parameter value), which simplifies significance testing and the 

construction of confidence intervals for the parameters, and (3) the estimated likelihood function 

can be used for assessment of the model fit and comparison among models. ML parameter 

estimates are the parameter values that make the data most likely (that maximize the likelihood). 

The difference between full ML and restricted ML (FML and REML) lies in the way the 

(co)variances are estimated. When using REML, the principle of ML is applied to the least-

squares residuals. This means that the (co)variances are estimated after controlling the observed 

scores for the fixed effects (Harville, 1977; Patterson & Thompson, 1971; Robinson, 1991; 

Thompson, 1980). An advantage is that the (co)variance component estimates are less biased. 
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However, a drawback of REML is that the deviance scores (i.e., minus 2 times the residual log 

likelihood) cannot be used for comparing models that also differ in their fixed part, because the 

data then are corrected for two different fixed parts. The difference between both approaches 

becomes especially visible when a small number of level-2 units are included. 

In the context of SCED studies, we deal with small sample sizes and so asymptotic 

assumptions are rarely met. The central limit theorem cannot be applied and consequently the 

validity of the statistical inferences cannot be based on this theorem. Previous simulation studies 

studying the use of two-level models to summarize SCED data indicate that the FML and REML 

estimates for the fixed effects and the corresponding standard errors are still unbiased (Ferron et 

al., 2009). This stands in contrast to the estimates of the variance components, which tend to be 

biased and imprecisely estimated. This bias in variance estimates may result in biased standard 

errors and therefore flawed inferences on fixed effects (Moeyaert, Ugille, Ferron, Beretvas, & 

Van den Noortgate, 2013b). In the past, adjustments have been suggested to ML methods for 

inferences on the fixed effects estimates (Kenward & Roger, 1997, 2009). However, these 

adjustments do not deal with the uncertainty about the variance components estimates (Baldwin, 

Murray et al., 2011, Burrick & Graybill, 1992, Kenward & Roger, 1997, 2009). For this reason, 

we discuss the Bayesian estimation approach as an alternative to ML estimation, as it 

incorporates uncertainty about variance components in the estimation of fixed effects.   

Bayesian Estimation 

It is natural and logical to apply Bayesian estimation1 in the context of SCEDs because is 

it not based on asymptotic assumptions (de Vries & Morey, 2013; Rindskopf, 2014). 

                                                      
1 Fully Bayesian estimation is different from Empirical Bayes estimation. Empirical Bayes estimation can be used  
to get participant-specific treatment effect estimates, using the empirical data of all participants as a prior. The 
estimates are also called shrinkage estimates, because the estimates are in general closer to the mean estimates 



Running head: MAXIMUM LIKELIHOOD VS BAYESIAN ESTIMATION IN SCEDS 11 

Conceptually, Bayesian inference is simple: prior beliefs about one or more parameters 

are expressed in a statistical model, and observed evidence is used to update these prior beliefs. 

Bayes’ theorem is used to combine prior beliefs with observed evidence (i.e., data), producing 

the probability of a parameter given the data (Spiegelhalter, Abrams, & Myles, 2004): 

  (4) 

where  is the probability of the observed data for each possible value of  (i.e., the 

likelihood),  is the prior distribution of , that is, a distribution that represents knowledge 

about the parameter prior to observing the data (based on previous research in the field and/or 

experts’ knowledge), and ݌ሺݕሻ is the probability of the data. The left hand side of Equation 4, 	

, indicates the posterior distribution and Bayesian estimation consists of finding this 

posterior distribution of unknown parameters based on the observed data and a prior distribution 

defined by the researcher.  The construction of the posterior distribution can be complex and is 

not always analytically feasible, such as in the context of multilevel modeling, because 

integration over high-dimensional probability distributions is needed. Markov Chain Monte 

Carlo (MCMC) simulation methods can be very helpful in this context.  MCMC is a general 

method based on drawing values of a parameter of interest from the target distribution. MCMC is 

an iterative process. Once the joint target posterior distribution is reached, we expect to draw 

from the posterior distribution at each step of the process. There are many ways to construct the 

Markov Chains, but all of them are special cases of the general framework of Metropolis, 

Rosenbluth, Rosenbluth, Teller, and Teller (1953) and Hastings (1970). After a specific number 

of iterations, the chain has reached its target distribution and the samples that are drawn up to 

                                                                                                                                                                           
across participants than when using the individual participant data only. In contrast, in full Bayesian estimation, 
priors are defined in advance, and incorporated in the analysis.  
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that point (in what is called the ‘burn-in period’) can be thrown away. The minimum period of 

the burn-in is dependent on the model complexity and on certain characteristics of the model 

(e.g., correlation among parameters). An important aspect of Bayesian analysis is checking for 

convergence of the Markov Chains. Common approaches to assessing convergence include 

examining trace plots and diagnostic statistics, such as the Geweke diagnostic, the Heidelberger-

Welch test of stationarity, and the Gelman-Rubin diagnostic (Jackman, 2009; Gelman, Carlin, 

Stern, and Rubin , 2013). 

The posterior distribution is used to make probability statements. For instance, if the 

parameter of interest is (i.e., the overall average immediate treatment effect), the posterior 

distribution allows one to make direct statements such as “the probability that  exceeds 0 is 

95%”. The posterior distribution also allows for calculating credible intervals. These intervals are 

somewhat comparable to the usual confidence intervals from a frequentist (e.g., FML or REML) 

approach, although they are conceptually different. A 95% confidence interval from the 

frequentist approach is interpreted as follows: if we repeated this study many times, 95% of the 

confidence intervals computed using this method would contain . In contrast, a credible 

interval is interpreted directly in terms of probability: there is a 95% probability that the 

parameter value is in the 95 % credible interval. Despite the conceptual differences, we will 

compare in this study 95% credible intervals from the Bayesian approach and 95% confidence 

intervals from the frequentist approaches. 

It is important to notice that in general Bayesian inference is conceptually different from 

ML inferences. In traditional frequentist theory, a null hypothesis is assumed and the likelihood 

of observing the data y given the model, [i.e., ], is tested. If given the assumed model it is 

unlikely to observe data that are at least as extreme as the data at hand (i.e., p < .05), then we 
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reject the null hypothesis (note that this gives no information about the likelihood that the 

assumed model is correct). In the Bayesian approach we see the reverse: the assumed model is 

rejected as being unlikely given the data. For a more in depth introduction to Bayes’ theorem and 

Bayesian computation, we refer the reader to Carlin and Louis (2009), Gelman et al. (2013), and 

Lynch (2007). 

Selecting Priors 

Previous methodological research devoted to Bayesian statistics within social, 

educational, and behavioral sciences is rather scarce and is situated within growth mixture 

modeling (Depaoli, 2014; 2015), growth curve models (Zhang, Hamagami, Wang, Nesselroade, 

& Grimm, 2007), multilevel modeling involving large sample sizes (e.g., Browne, Draper, 

Goldstein, & Rasbash, 2002) and partially clustered data with small sample sizes (e.g., Baldwin 

& Fellingham, 2013). Limited methodological research within the field of two-level modeling of 

SCEDs has been conducted, even though experts within the field have advocated for this 

alternative estimation approach (e.g., Rindskopf, 2014; Shadish et al., 2013).  

As can be deduced from Equation 3, a total of nine parameters need to be estimated, if for 

simplicity we assume that the u’s are independent (i.e., covariance is zero): four fixed effects (

, , , and ) and five random effects ( , , ,  and ). 

Prior Selection for the Fixed Effects and the Within-Participant Variance. Previous 

research is consistent in recommending default non-informative priors for the fixed effects and 

the within-participant variance in multilevel modeling contexts because this choice results in 

unbiased and precise estimates (Gelman, 2006, Gelman et al., 2013, Spiegelhalter et al., 1994, 

2003). Based upon Gelman (2006) and Gelman et al. (2013) a non-informative normal 
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distribution with a mean of 0 and a variance of 106 can be chosen as prior for each of , , 

, and : 

, , ,  ~ Normal(0, 106)  (5) 

Based upon Spiegelhalter et al. (1994, 2003), an inverse gamma prior (with shape and scale 

parameters each set to a value of 0.001 and 0.001 respectively) can be used for the level-1 

residual variance parameter: 

2 (0.001,0.001)e inverse gamma   (6) 

Prior Selection for the Between-Case Variance Components. The literature is less 

consistent about which priors to define for the level-2 variance components (Gelman, 2006). The 

choice of a prior distribution for level-2 variance components can have a substantial impact on 

inferences, especially in the case when the number of level-2 units is small or the corresponding 

level-2 variance is small (Gelman, 2006; Gelman et al., 2013). Therefore, care needs to be given 

to the prior selection for the between-case variance components. Constructing default non-

informative priors is not a viable option as previous research indicates that this results in biased 

and unprecise estimates. Gelman (2006) used a uniform distribution with lower limit of 0 and a 

large value for the upper limit such as 50 or 100 as a non-informative prior. Gelman (2006) 

found that this prior might lead to positively biased and less accurate estimates if there are a very 

limited number of units (equal to or less than 3) and the population variance is expected to be 

small.  

In sum, it seems reasonable to use weakly informative priors. We use the term weakly 

informative priors (Gelman, 2006) when the information they contain is intentionally weaker 

than the actual prior knowledge that is available. The use of weakly informative priors has 

several advantages: (1) This category of priors have the potential to contain some information to 

00 10
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regularize the posterior distribution; that is to keep it within reasonable bounds but without 

attempting to fully capture ones scientific knowledge about the underlying parameter; (2) 

Gelman et al. (2013) state that the choice of non-informative prior distributions can have a big 

effect on inferences, especially for problems where the number of groups is small (equal to or 

less than 3) or the group variance is small (which are realistic conditions for SCEDs); (3) By 

choosing priors that are only weakly informative, we can still let to speak the data for themselves 

(Spiegelhalter et al., 2004).  

Spiegelhalter et al. (2004) advise to analyze past hierarchical models in similar contexts 

to determine reasonable values for the between-participant variance. As a consequence, re-

analyses of published meta-analyses of SCEDs in a given research area can be conducted to 

identify reasonable expected values for the variance components (Lau, Schmid, & Chalmers, 

1995; DerSimonian, 1996). In order to suggest reasonable priors, we conducted such re-analyses. 

We retrieved raw SCED data from graphs displayed in primary SCED studies (for more details 

about the SCED data retrieval process, we refer the reader to Moeyaert, Maggin, and Verkuilen, 

20162) included in five meta-analyses, all investigating the effectiveness of treatments to reduce 

problem behavior for students with special needs (Denis, Van den Noortgate, and Maes, 2011, 

Kokina and Kern, 2010; Shogren, Fagella-Luby, Bae, and Wehmeyer, 2004; and Wang, Cui, & 

Parrila, 2001). To make data from these meta-analyses comparable, we standardized the raw data 

(as described by Van den Noortgate & Onghena, 2008). The results of these re-analyses can be 

found in Table 1.  

--- INSERT TABLE 1 ABOUT HERE --- 

                                                      
2 An alternative is to contact the authors of the published meta-analysis to request the raw data. However, consistent 
with other fields of meta-analysis, researchers have found that the response rate associated with requests for the 
original data values from authors of original studies tend to be prohibitively low (Shadish & Sullivan, 2011; 
Manolov & Solanas, 2013). 



Running head: MAXIMUM LIKELIHOOD VS BAYESIAN ESTIMATION IN SCEDS 16 

Based on these results, and based on previous recommendations, three different types of 

weakly-informative prior distributions (with different degrees of information) are considered for 

the level-2 residuals’ standard deviation or variance. The first class of prior distributions are the 

half-Normal distributions, which are relatively easy to interpret as we are familiar with the 

normal distribution. A second set of prior distributions that will be investigated are half-Cauchy 

distributions, suggested by Gelman (2006) in scenarios for conditions representing a small 

number of level-2 units. Another typical distribution chosen for variances and covariance 

matrices are the inverse-Wishart distributions (e.g., Gelman & Hill, 2007), which are the 

conjugate prior for the covariance matrix of multivariate normal distributed variables, which 

implies that when it is combined with the likelihood function, it will result in a posterior 

distribution that belongs to the same distributional family. These three classes of prior 

distributions are discussed in detail in the next sections and an overview of the prior distributions 

can be found in Table 2.  

--- INSERT TABLE 2 ABOUT HERE --- 

Half-Normal Prior Distributions The first class of plausible and simple prior 

distributions for the standard deviations across participants are half-Normal distributions 

characterized by positive values only and values closer to zero having a larger likelihood to 

occur than values further away from zero. The value for the variance is defined based upon prior 

knowledge (see Table 1) and defines the spread of the distribution. We choose for the half-

Normal instead of the normal distribution as the variance (and standard deviation) is constrained 

to be positive: Half-Normal ~ [0, (ܵܦ௨/1.96)2] (Pauler & Wakefield, 2000). This distribution 

has its mode at 0 and is steadily declining in standard deviation, with Percentile 95 being the 

௨. Its median will be фିଵሺ0.75ሻܦܵ ൈ  ௨. We will explain the logic forܦܵ ௨/1.96 = 0.39ܦܵ
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including prior information in the distributions for the between-case standard deviation of the 

immediate treatment effect (ߪ௨మ), but the same reasoning can be applied for the between-

participant standard deviation for other parameters’ residuals (ߪ௨బ, ,௨భߪ -௨యሻ. Based upon the reߪ

analyses of meta-analyses, we found an upper limit of 4.980 for the between-case variance of the 

immediate treatment effect, corresponding to a standard deviation of 2.23. Because we wanted to 

make the prior less informative, we choose the following upper limits for the SD (ܵܦ௨): 6, 9 and 

14. The following formula, using ܵܦ௨, can be applied to specify the variance for the half-

Normal: (ܵܦ௨/1.96)2, resulting in the following values: 10 [~(6/1.96)2], 20 [~(9/1.96)2] and 50 

[~(14/1.96)2]. The medians of the distributions will be 2.34 (0.39 ൈ 6), 3.51 (0.39 ൈ 9), and 5.46 

(0.39 ൈ 14) respectively. A graphical display of the half-Normal distributions is given in Figure 

2.  

--- INSERT FIGURE 2 ABOUT HERE --- 

Half-Cauchy prior distributions. The second class of prior distributions for standard 

deviations are the half-Cauchy distributions characterized by positive values and values closer to 

zero having a larger likelihood to occur than values further away from zero. In contrast to the 

half-Normal distribution, the shape of the distribution is defined by a location parameter (i.e., 

where the peak of the distribution is located) and a scale parameter (which specifies the half-

width at half-maximum). We chose the half-Cauchy instead of the Cauchy distribution as the 

variance (and standard deviation) is constrained to be positive. The half-Cauchy can be a 

convenient weakly informative family; the distribution has a broad peak at zero and a single 

scale parameter. In the case that B (scale parameter) is very large (B  ∞) this becomes a 

uniform prior density. Large but finite values of B represent prior distributions which we 

consider weakly informative because, even in the tail, they have a slope (unlike for example a 
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half-Normal distribution) and can let the data dominate if the likelihood is strong in that region. 

In a similar situation (3 participants and small variance), Gelman (2006) used a half-Cauchy 

prior distribution on the standard deviation with a scale parameter B = 25 (a value chosen to be a 

bit higher than expected for the standard deviation of the underling fixed effects), so that the 

model will constrain the standard deviation only weakly. As a consequence, the prior distribution 

is high over the plausible range falling off gradually beyond that point removing much of the 

unrealistic upper tail. Following this logic, based upon the re-analyses of meta-analyses, the 

maximum between-case variance for the immediate effect was found to be 4.980 (the standard 

deviation 2.23). Therefore, we choose scale parameter larger than this values, being B = 10, 20 

or 50 (these values are more or less 5 times, 10 times and 20 times larger than we expect for the 

between-case standard deviation of the treatment effect. As is clear from the figures (see Figure 

3): the larger the scale parameter, the less informative the prior.  

--- INSERT FIGURE 3 ABOUT HERE --- 

Inverse-Wishart distributions. The third and last class of prior distributions under 

investigation in this study are the inverse-Wishart distributions. This class of distributions can 

also be applied in multivariate multilevel models. The inverse-Wishart distribution is a 

multivariate generalization of the scaled inverse ߯ଶ to describe the prior distribution of the 

variance covariance matrix. The Wishart prior with small degrees of freedom and a fixed scale 

matrix is commonly used as a reference (non-informative) proper prior. Setting ߑ	~	݄ݏ݅ݓ݅ௗାଵ(I) 

has the appealing feature that each of the correlations in ߑ have, marginally, a uniform prior 

distribution. ߑ refers to the covariance matrix, d refers to the dimensions of the covariance 

matrix (four in current study) and I refers to the identity matrix (diagonal elements of the scale 

matrix are set to 1 and the off-diagonals are set to zero). The degrees of freedom needs to be 
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larger than the dimension of the matrix. As a consequence the degrees of freedom needed to be at 

least five and so we choose to set the degrees of freedom to six. In a pilot study, we varied the 

degrees of freedom to investigate the influence on parameter recovery, but no differences were 

observed. In addition to specifying the scale matrix using the identity matrix, we suggest a 

second prior specification: one in which the scale matrix is based on prior estimates of the 

variances of the random parameters. For instance, the mean/median values of the between-case 

variances of the re-analyses of meta-analyses can be used. An additional advantage of the 

inverse-Wishart distribution is that it ensures positive definiteness of the covariance matrix. 

Because the inverse-Wishart distributions are multidimensional distributions describing 

variance/covariance matrices, they are more difficult to visualize (Tokuda, Ben Goodrich, Van 

Mechelen, Gelman & Tuerlinckx, 2011). Therefore, Figure 4 displays the scaled inverse 2  

distribution with six degrees of freedom, and varying the scale parameter. The scale parameter is 

the inverse of the variance. When we use the identity matrix, the scale parameter is 1. When we 

use the non-identity matrix and the variance is set to 2, the scale matrix is 1/2. As is clear from 

Figure 4, the smaller the scale parameter (larger the variance), the less informative the prior. 

--- INSERT FIGURE 4 ABOUT HERE --- 

Simulation Study 

The purpose of current study is to compare the performance of ML estimation and 

Bayesian estimation in contexts of small sample sizes as no previous research is conducted in 

this context. In addition, we evaluate parameter recovery in the Bayesian approach for three 

classes of plausible weakly informative prior distributions (half-Normal, half-Cauchy and 

inverse-Wishart, with characteristics as described above). The influence of the functional form 

and the level of information included in the prior specification on the parameter recovery has not 
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been studied up to date. We expect the half-Cauchy prior distributions to outperform the half-

Normal, because it allows for occasional larger standard deviations while still performing a 

reasonable amount of shrinkage towards zero. In other words, we think the set of true standard 

deviations that we might encounter has a distribution less like a normal than like a Cauchy with 

many small values and occasional large ones (Spiegelhalter et al., 2004). We expect the inverse-

Wishart resulting in less good results compared to the half-Normal and the half-Cauchy as it has 

problems similar to the inverse gamma for variances (Gelman, 2006). The inverse gamma prior 

distribution (߳,  ,is an attempt at noninformativeness within the conditionally conjugate family (ߝ

with ߳ set to a low value: 1, 0.01 or 0.001. A difficulty of this prior distribution is that in the limit 

߳ → 0 it yields an improper posterior density, and thus ߳ must be set to a reasonable value. As 

recognized by Daniels and Kass (2001), in small samples the specification of the scale matrix 

can be influential. 

In addition to this basic simulation study, we investigate two extensions for a subset of 

design conditions, namely (1) the modeling of autocorrelation and (2) the inclusion of a more 

informative prior distribution. 

Simulating Two-Level Data 

To compare the performance of Bayesian estimation and ML estimation to analyze two-

level SCED data, we simulated raw data using Equation 3 in SAS (version 9.4, SAS Institute 

Inc., 2011-2014). Previous research recommends using REML over FML in contexts of SCEDs, 

because of the small sample sizes (Ferron et al., 2009; Owens & Ferron, 2012). However, we 

will include both FML and REML for completeness in the current simulation study, because no 

previous research in the context of SCEDs compared the variance estimates under both 

estimation procedures. In order to simulate realistic SCED data, we conducted several re-
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analyses of SCED meta-analyses (Alen et al., 2009; Denis et al., 2011; Kokina & Kern, 2010; 

Shogren et al., 2004; Wang et al., 2011; Table 1). The conditions chosen for the simulation study 

were also based on a review of SCED studies conducted by Shadish and Sullivan (2011), Farmer 

et al. (2010) and Ugille et al. (2015). We varied four design conditions, namely the number of 

measurements within a participant (I), the number of participants within an MBD (J), the 

immediate treatment effect ( ), and the treatment effect on the time trend ( ). We chose the 

following parameter values for the design conditions: number of level-1 units (measurement 

occasions): I = 20 or 40, and number of level-2 units (participants): J = 3, 5 or 7. These numbers 

were selected based on the survey of SCED studies of Shadish and Sullivan (2011), where the 

number of cases per study ranged from 1 to 13 with median 3, and on a review of Farmer, 

Owens, Ferron and Allsopp (2010), where 93% of the average number of cases per study fell at 

or below 7. Because we focus on the MBD across participants design (an example is displayed in 

Figure 1), we simulated the data in a way that the start of the treatment is staggered across 

participants as depicted in Table 3. 

--- INSERT TABLE 3 ABOUT HERE --- 

For instance, if three participants are simulated with each participant having 20 measurements, 

the start of the treatment for the participants occurs at the seventh, eleventh, and fifteenth time 

points. The immediate effect of the treatment ( ), was varied to have values of 0 or 2 and the 

treatment effect on the time trend ( ) was set to 0 or 0.2. Because the interest lies in the 

estimate of the treatment effects (  and ), the initial baseline level ( ) and the trend 

during the baseline ( ) were kept to a constant value of 0 for simplicity. Covariances between 

regression coefficients were set to zero and therefore the between-participant covariance matrix 
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is a diagonal matrix: . , and , and  

indicate the between- participant variance of the initial baseline level, the trend during the 

baseline, the immediate treatment effect and the treatment effect on the time trend respectively. 

The reason for setting the covariances to zero is to avoid too much complexities in the current 

simulation study. For the basic simulation study, the level-1 variance was kept to a constant 

value of 1. 

Analyzing the Simulated Two-Level Data 

A total of 8,000 datasets were simulated using Equation 3, 500 datasets for each of the 16 

conditions. The datasets were analyzed ten times: using FML, using REML and using the 

Bayesian framework with eight different weakly informative priors. These eight prior 

distributions were discussed earlier in the section “choosing priors” (see Table 2 for an 

overview).  

For the analyses using ML estimation, PROC MIXED in SAS (version 9.4, SAS Institute 

Inc., 2011-2014) was used. The Kenward-Roger method (Kenward & Roger, 2009) was used to 

estimate the degrees of freedom because previous research has indicated that this method to 

adjust the standard errors and degrees of freedom resulted in unbiased fixed effect estimates, and 

in accurate confidence intervals for the fixed effects (Ferron et al., 2009). For Bayesian 

estimation, PROC MCMC from SAS version 9.4 was used. A preliminary simulation study 

indicated that for all included conditions the Markov Chain was stable after a burn in period 

between 5,000 and 10,000 iterations. This was evaluated by looking at the diagnostic tests 

(Geweke diagnostic, Heidelberger-Welch test of stationarity, and the Gelman Rubin diagnostic) 

and visual inspection of the trace plots for one simulation set for the 16 conditions. In order to 

ensure convergence in the final simulation, we set the burn in to 10,000. After the burn-in period 
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and thinning the distribution by keeping every 25th simulated draw from each sequence, 100,000 

samples were taken from this distribution and the central tendency of the posterior distribution is 

given (i.e., including the posterior median, referring to the parameter’s point estimate). Thinning 

is a common strategy for reducing sampling autocorrelations. For the fixed effect estimates, the 

prior probability distribution and the posterior distribution are in the same distributional family 

(they are called conjugate distributions) and as a consequence the Gibbs sampler is used to draw 

samples. This is also the case for the inverse-Wishart distribution for the variance components. 

Conjugate sampling is efficient, because it enables the Markov Chain to obtain values from the 

target distribution directly. The half-normal and half-Cauchy prior and posterior distribution for 

the standard deviations are not in the same family and as a consequence, the Metropolis-Hastings 

sampling method is used. 

In order to evaluate the performance of the ten analysis procedures (FML, REML and the 

Bayesian approach using eight different priors), we calculated the (relative) bias, the mean 

squared error, and the coverage proportion of the 95% confidence/credible interval of the 

estimated model parameters of interest, namely the immediate treatment effect ( ), the 

treatment effect on the time trend ( ), and the between-participant standard deviation of the 

treatment effects (i.e,  and ). 

The (estimated) absolute bias is the difference between the average effect estimate (the 

mean of the estimates across all replicated datasets) and the true population value. The relative 

bias is the absolute bias divided by the true population value. Therefore, the relative bias can 

only be estimated for non-zero true population values. For instance, the relative bias of the 

immediate treatment effect is: ( )/ .For the variance components estimates, between-
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case standard deviation estimates are obtained when the half-Cauchy and the half-Normal 

distributions are used as priors. Therefore, the relative bias of the between-case standard 

deviation is obtained by: 2 2ˆ /u u u   . Inverse-Wishart priors are specified on the variances 

and as a consequence between-case variance estimates are obtained. In order to make the scale of 

the relative bias comparable, we first calculated the between-case standard deviation ( 2ˆu  ) and 

used this to calculate the relative bias of the estimated between-case standard deviation: 

2 2 2ˆ /u u u   . We conclude that a parameter estimate is unbiased if the relative bias is 

smaller than the 5% cut off criterion set by Hoogland and Boomsma (1998). As preliminary 

analysis, we compared the absolute bias across all conditions. As no clear differences were found 

between the = 0 and  = 2 conditions and between the = 0 and  = 0.2 conditions , 

we choose to report only the results for the = 2 and = 0.2 conditions allowing us to 

present the relative bias instead of the absolute bias, and therefore to use the cut off criterion set 

by Hoogland and Boomsma (1998).The mean squared error (MSE) is defined as the mean 

squared difference between the estimates and the population value, which gives important 

information about both the bias and the variance of the estimates (MSE = bias2 + variance). We 

want the relative bias and the MSE to be as low as possible. In addition, we evaluate the coverage 

proportion of the 95% confidence or credible interval (CP95). This can be accomplished by 

constructing 95% confidence/credible intervals around the effect estimates (i.e., fixed effects and 

random components) and calculate in what proportion of the replicated datasets the 95% 

confidence/credible interval contains the true population value. We hope the CP95 is close to the 

nominal level of .95. Because we simulated 500 datasets for each condition, the coverage 

proportions of 95 % confidence intervals can be estimated relatively accurately. More 

20 20 30 30
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specifically the standard error can be calculated using the following formula: ܵܧሺ݌ሻ ൌ

ඥሾ݌ሺ1 െ  in which p stands for the probability, being .95 and B the number of ,	ܤ/ሻሿ݌

replications, being 500. As a consequence, the expected standard error for a probability of .95 is 

0.010 ൫ൌ 	ඥሺ0.95 ∗ 0.05ሻ/500൯ and therefore, we expect that 95 % of the coverage proportions 

of the 95 % confidence intervals range from 93.04 % to 96.96 % (95 %  1.96 *1 %). 

Constructing confidence intervals around the variance components is less straightforward 

because their distribution is extremely skewed and bounded at zero. Therefore, SAS Proc 

MIXED uses a Satterthwaite approximation that has a lower boundary constraint of zero. The 

formula that SAS 9.3 uses to calculate the lower and upper limits is displayed in Equation 7.  

  (7), 

with df’ indicating the adjusted degrees of freedom,  the estimated level-2 variance,  

the lower critical chi-square with df’ degrees of freedom and  the upper critical chi-square 

value with df’ degrees of freedom. The adjusted degrees of freedom, df’ is calculated as 2 times 

the square of the Wald Statistics (i.e., 2 × [ / SE( )]2. However, in the context of this study, 

this can result in unrealistically large upper limits.  

 The formula for the upper limit is very sensitive to the degrees of freedom. For one 

degree of freedom, the divisor is 0.001, for two degrees of freedom it is 0.056, for three degrees 

of freedom it is 0.216 and for four it is 0.484. The divisor changes by a factor of almost 500 for a 

change from one to four degrees of freedom. The lower limit only doubles for a change from one 

to four degrees of freedom. Therefore we propose an adjustment to calculate the upper limit of 

the 95% confidence interval for variance estimates. Instead of using df’ in the right part of 

Equation 4 we used the degrees of freedom equaling to the total number of participants – 1 and 
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then apply Equation 4. Using the total number of participants – 1 is the same as using the degrees 

of freedom for an ordinary variance, which might not be right, but it is closer than what is 

expected than the Satterthwaite approximation. The Satterthwaite approximation is only accurate 

in certain circumstances, and has not been tested for small samples (SAS Institute Inc., 2011-

2014).  

In order to study the variation in relative bias, MSE, CP95 of the estimated treatment 

effects and variance components of interest, we used PROC GLM (i.e., analysis of variance, 

ANOVA) in SAS 9.4. We investigated whether the estimates are dependent on the analysis 

procedure3, design factors, and (two-way) interactions of these. Because assumptions underlying 

the ANOVAs, such as normality and homoscedasticity, are questionable, the ANOVA procedure 

was only used as preliminary analyses, with the results only interpreted as giving a primary 

indication. We did not only look at the statistically significance of main and interaction effects (p 

< .0001), but we also calculated the eta-squares (i.e., ሻ as effect sizes indicating whether the 

estimated main effects and/or interaction effects are rather small (.02), medium (.13) or large 

(.26; Cohen, 1988). 

The SAS code for multilevel modeling and Bayesian estimation is included as 

supplementary material. 

Results of the Simulation Study 

Because of space limitations, we only display the results for  = 2 and = 0.2. The 

same patterns are obtained when the population treatment effects are set to 0. The full results can 

be requested from the first author.  

Results for Average Estimated Treatment Effects 

                                                      
3 The estimation procedure (i.e., ML procedures and Bayesian procedures) are included as a within-subjects factor in 
the analysis of variance. 
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Relative bias and mean squared error. The results of the fixed effect estimates (i.e., 

and ) are in line with the results of previous research about multilevel modeling that 

documents unbiased (i.e., relative bias < .05) and precise estimates using the FML, REML 

(Moeyaert et al., 2013b, 2013c), and Bayesian estimation using a non-informative prior normal 

distribution with a mean of 0 and a variance of 106 on the fixed effects (Gelman, 2006, Gelman et 

al., 2014). In terms of the bias, no large difference between the ten analyses procedures were 

found for both bias of ,F(9, 27577) = 0.44, p = .920,  = .0001 and bias of  , F(9, 

27557) = 0.02, p = 1.000, < .0001.  

Also for the MSE, no significant large differences were found between the procedures: 

for the MSE of , F(9, 27577) = 0.54, p = .850,  = .0002, and for the MSE of ,  F(9, 

27557) = 0.80, p = .621, = .0002. The number of participants contributed significantly to the 

precision of the estimates: for , F(2, 27557) = 936.68, p < .0001,  = .063 and for , F(2, 

27557) = 855.40, p < .0001,  = .058. The same is true for the number of measurements within 

participants: F(1, 27557) = 40.71, p < .0001,  = .0013 for and F(1, 27557) = 98.42, p < 

.0001,  = .0033 for . The larger the number of measurements and especially the number of 

participants, the more precise the estimates for  and . This is in line with previous 

research findings in multilevel contexts suggesting that the number of units at the highest level 

are most important in order to get unbiased and precise estimates (Hox, 2002). 

Coverage proportion of the 95% confidence interval. For the coverage proportion of 

the 95% confidence interval (i.e., CP95), we found a statistically significant and large main 

effect of the analysis procedure [F(9, 18) = 174.12, p < .0001,  = .818] and a statistically 
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significant interaction effect between the number of second level units and the analysis 

procedure for [F(18,18) = 16.38, p < .0001,  = .002].  

A first finding is that the ML procedures resulted in a too small CP95 when only three 

participants were included. By increasing the number of participants from 3 to 5, this problem 

was solved. 

A second finding is that the Inverse-Wishart distribution using the identity matrix 

resulted in a CP95 that was too low across all conditions (see Model 9 in Figure 5). In contrast, 

the inverse-Wishart using the non-identity values resulted in a CP95 close to the nominal level, 

but was slightly underestimated when the number of observations was set to a larger value (I = 

40) in combination with five or seven participants. 

A third finding is that the other Bayesian priors result in an appropriate CP95 when the 

number of participants was set to 5, with having at least 40 measurement occasions. If the 

number of participants was set to 7, the CP95 values were acceptable, independent of the number 

of measurements. 

 These three findings are graphically represented in Figure 5. Similar patterns were found 

for . 

--- INSERT FIGURE 5 ABOUT HERE --- 

Results for Variance Components 

Relative bias and mean squared error. The ANOVA indicated a statistically significant 

main effect of the analysis procedure [F(9, 27558) = 204.06, p < .0001,  = .061] and the 

number of participants [F(2, 27558) = 50.53, p < .0001,  = .003] on the relative bias of the 

between-participant standard deviation of the immediate treatment effect. However, the  
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values indicated that this effect was rather small. When including more participants, the relative 

bias became smaller as well as the difference between ML and Bayesian procedures (see Figure 

6). 

--- INSERT FIGURE 6 ABOUT HERE --- 

 When looking in more detail, a first finding is that the ML procedures underestimated the 

between-participant standard deviation of the immediate treatment effect. The relative bias was 

consistently larger in magnitude than 5% and became smaller as the number of participants 

increased. For instance, for the FML, the relative bias ranged from -.54 (when there were only 

three participants and 20 measurement occasions) to -.15 (when there were seven participants 

having 40 measurements). The REML resulted in less biased estimates compared to the FML 

and ranged from -.33 (when there were only three participants and 20 measurement occasions) to 

-.06 (when there were seven participants and 40 measurement occasions).  

A second conclusion is that the inverse-Wishart prior distributions consistently resulted 

in negatively biased estimates (i.e., relative bias was larger than – 5 % across all conditions). The 

relative bias for the inverse-Wishart with the non-identity values was smaller compared to the 

inverse-Wishart with the identity matrix, but is still larger than the threshold level of 5% (with a 

range from -.11 to -.16). 

As for the other prior distributions, we found positive values for the relative bias. The 

degree of relative bias was dependent on the analysis procedure when only three participants 

were included (independent of the number of measurements). In these conditions, the relative 

bias using half-Normal distributions was smaller compared to half-Cauchy distributions. The 

half-Normal distribution containing most information [i.e., half-Normal ~ (0, 10)] resulted in the 

smallest bias (i.e., relative bias = .19) and the relative bias increased when less prior information 
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was included. The smallest relative bias for the Half-Cauchy in this condition was .39. When 

increasing the number of participants from three to five, the relative bias for all models, except 

from the Wishart models, decreased and only slightly biased estimates were obtained (see Figure 

6). By further increasing the number of participants (from five to seven) no additional decrease 

in relative bias was found. Similar results were obtained for the estimate of the between-

participant standard deviation of the treatment effect on the trend (ߪො௨య). 

 We also investigated how precise the between-participant standard deviations were 

estimated using the ten different analysis procedures by calculating the MSE. The preliminary 

ANOVA indicated a statistically significant main effect of the analysis procedure [F(9, 27558) = 

204.06, p < .0001,  = .061] and the number of participants [F(9, 27558) = 50.53, p < .0001, 

 = .0034]. 

--- INSERT FIGURE 7 ABOUT HERE --- 

Increasing the number of participants resulted in a more precise between-participant standard 

deviation estimate; this applies for all analysis procedures except from the inverse-Wishart 

distribution using the identity matrix. When the number of participants was small (i.e., J = 3.), 

large differences in MSE of  between the analysis procedures were found (independent of the 

number of measurements). In these conditions, the MSE was smallest for the ML procedures. 

However, when the number of participants were set to 5 or 7 no differences between the ML and 

Bayesian procedures (except for the Inverse-Wishart distribution with the identity matrix) were 

observed. These results are graphically displayed in Figure 7. Similar results were obtained for 

 .ො௨యߪ

Coverage proportion of the 95% confidence interval. We found a statistically 

significant large main effect of the analysis procedure [F(9, 18) = 104.27, p < .0001,  = .700] 
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and a statistically significant small effect of the number of participants [F(9, 18) = 11.60, p = 

.0006,  = .017] on the CP95 of the between-participant standard deviation of the immediate 

treatment effect. An interaction between the analysis procedure and the number of participants 

was found [F(18, 18) = 17.31, p < .0001,  = .233]. 

First, from Figure 8, we can deduce that the CP95 was too small when ML was used. 

Only when the number of participants was 7 and there were 40 observations, the ML is close to 

the nominal level. The CP95 ranged from .618 to .948.  

Second, the CP95 was close to or larger than the nominal level of .95 when Bayesian 

procedures were applied (except from the inverse-Wishart prior distribution using the identity 

matrix). The nominal level of .95 was not attained in any condition when the number of 

participants was small (i.e., J = 3). When the number of participants was set to 5, all Bayesian 

procedures resulted in a CP95 close to the nominal level (except from the inverse-Wishart prior 

distribution using the identity matrix). However, by further increasing the number of 

participants, the CP95 became slightly too low (the CP95 ranged from .87 to .90). These results 

can be found in Figure 8. 

--- INSERT FIGURE 8 ABOUT HERE --- 

Extensions to the Basic Two-Level Model Simulation Study: Informative Prior and 

Autocorrelation 

 A first extension to the basic two level model involves the construction of a more 

informative prior and its influence on parameter recovery. We will discuss this using the half-

Normal distribution as functional form (but similar results were obtained for the half-Cauchy) 

and for a subset of design conditions: ߠ෠଴଴ ൌ ෠ଵ଴ߠ ,0 ൌ ෠ଶ଴ߠ 0 ൌ 2, ෠ଷ଴ߠ ൌ 0.2, J = 3 or 5 or 7, I = 

20, and . The prior can be constructed based on the 
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same logic as discussed for the weakly informative prior specification for the half-Normal 

distribution, but now we include more information based on the re-analyses of meta-analyses 

(Table 1). As discussed before, we found an upper limit of 4.980 for the between-case variance 

of the immediate treatment effect. This corresponds to an upper standard deviation of 2.23 and as 

a consequence, the variance of the half-Normal corresponds to: 1.30 (ܵܦ௨/1.96)2 [having a 

median of 1.08 (0.39 ൈ 2.34)]. Therefore, we chose a variance of 2, which is informative, but 

would still not dominate the data and as a consequence we expect this prior resulting in better 

recovery of the variance components compared to the weakly informative priors. Here we 

compare the results of the informative prior with the weakly informative half-Normal 

distributions (having a variance of 10, 20 or 50).  

Results. In terms of the relative bias and the mean squared error of the treatment effect 

estimates, similar results compared to the weakly informative priors are found: treatment effects 

are unbiased and the larger the number of cases, the more precise the estimate. For the CP95, we 

found differences between the analyses models [F(3, 11)] = 7.20, p = .02, ̂ߟଶ = .69], with the 

more informative prior resulting in a CP95 closer to the nominal level across all conditions. The 

CP95 equaled .94, .95 and .95 for 3, 4, and 7 cases respectively (whereas the CP95 for the 

weakly informative priors (half-Normal with 10, 20 and 50 as variance) in the same conditions 

varied from .97 to 1.00). 

For the variance components, the analysis procedure [F(3, 5999)] = 187.05, p < .001, ̂ߟଶ 

= .083] and the number of cases [F(2, 5999)] = 41.21, p < .001, ̂ߟଶ = .012] both have a statistical 

significant effect on the relative bias with the model having a larger effect, indicated by the 

larger value for ̂ߟଶ. The between-case variance is underestimated for the informative prior, 

whereas it is overestimated for the weakly informative priors. The relative bias is larger than 5% 
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for all the conditions when using the informative prior, whereas unbiased estimates for the 

weakly informative priors are obtained when 7 cases are included. For the MSE, the analysis 

procedure [F(3, 5999)] = 187.05, p < .001, ̂ߟଶ = .083] and the number of cases [F(2, 5999)] = 

41.21, p < .001, ̂ߟଶ = .012] have a statistical significant, but rather small effect: the more 

informative the prior, the smaller the MSE and the more cases included, the smaller the MSE. 

Although not statistically significant at the .001 level, the analysis procedure has only a moderate 

effect on the CP95 [F(3, 11)] = 3.16, p = .10, ̂ߟଶ = .18], whereas the number of cases has a 

statistically significant and large effect on the CP95 [F(2, 11)] = 18.43, p = .003, ̂ߟଶ = .70]. The 

CP95 is overestimated in all conditions and all analyses models except when using the 

informative prior.  

We investigated a second extension of the basic multilevel model by modeling 

autocorrelation. For this, a level-1 error covariance structure (Σe) was generated to follow the 

first-order autoregressive error structure, AR(1), with an autocorrelation value of .20. Shadish 

and Sullivan (2011) found that the distribution of AR values across 809 studies ranged from -

.931 to .786 (which covers almost the whole theoretical range [-1,1]), with an average of .20. By 

adding autocorrelation to the model, we also have to specify a prior on the AR for the Bayesian 

procedure. Given the large range of possible values for the AR parameter, we used a uniform 

distribution with lower limit -1 and upper limit +1. 

We found that the estimate of the AR is unbiased as the relative bias was smaller than or 

equal to 5% in all conditions (the value for the AR ranged from 0.19 to 0.21). No statistically 

significant effect of the design conditions on the relative bias or MSE was found. However, as 

the number of measurements and the number of participants increased, the smaller the relative 
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bias and precision. In addition, the presence of this AR did not influence the accuracy of the 

other parameter estimates.  

Discussion 

In current study, we described and evaluated the Bayesian estimation procedure as an 

alternative to the ML estimation procedure in contexts of two-level modeling of SCED data. We 

did not aim to convince the researcher of the Bayesian approach and philosophy, but rather 

discussed the use of Bayesian estimation procedures in contexts of SCED and elaborated on 

choosing and construction of prior distributions. Based on work by Gelman (2006) and Gelman 

et al. (2013) we proposed weakly informative priors using half-Cauchy, half-Normal distribution, 

and inverse-Wishart distributions for the Bayesian approach.  

The results of the simulation study comparing the performance of ML (FML and REML) 

and Bayesian estimation procedures confirm the results of previous research about estimates of 

fixed effects (i.e., average immediate treatment effect and treatment effect on the slope) when 

using two-level modeling for multiple-baseline across participants designs (Ferron et al., 2009; 

Van den Noortgate & Onghena, 2003a, 2003b). The treatment effect estimates are unbiased (i.e., 

the relative bias is smaller than 5%) and precisely estimated. Current research confirms that 

REML is capable of producing CP95s close to the nominal level of .95 as is the case for the 

Bayesian procedures (except from the inverse-Wishart prior distributions) when there are at least 

five participants included. When there are only three participants included, the CP95 is too small 

for the ML procedures and slightly too large for the Bayesian methods. As a consequence, the 

power of Bayesian procedures will probably be smaller compared to ML procedures. However, 

this was not formally evaluated in the simulation study. The ML does not attain the nominal 

confidence proportion of .95 in any condition. In sum, based on the results for the fixed effect 
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estimates, both REML and the Bayesian procedures seem appropriate when the number of 

participants is equal to or larger than five.  

An asset of the current study compared to previous research is that we also evaluate the 

variance components estimates. The between-participant variance estimates of the treatment 

effects yield important information as a means to evaluate whether the treatment has a similar 

effect across the participants or whether there is a large amount of variability. Previous research 

using REML indicates it produces biased estimates of the variance components (Ferron et al., 

2009). When the number of participants is small (i.e., J = 3), biased and less precise estimates are 

found for both the ML and Bayesian methods. When more participants are included in the 

synthesis (i.e., J = 5) less biased and more precise estimates are obtained and the difference in 

estimates between the procedures diminishes (except when the inverse-Wishart with identity 

matrix is used). The CP95 of the between-participant standard deviation is dependent on the 

analysis method. Even with a small number of participants, the CP95 is close to the nominal 

level of .95 for the Bayesian procedures (except when the inverse-Wishart is used) in contrast to 

the ML procedures. For the ML procedures, at least seven participants having 40 measurements 

are needed. Previous research recommended using REML in cases with small sample sizes. 

However, we want to warn SCED data analysts to not solely rely on REML if the research 

interest lies in the variance components estimates. In addition, we explored the option of 

constructing a more informative prior. The more informative prior resulted in more precise 

estimates and CP95 for the fixed effects and the random components closer to the nominal level. 

However, still biased variance components were obtained. The construction of informative priors 

and exploring different functional forms and its influence on the parameter recovery are beyond 

the scope of this study and we recommend this as a first step for future research in this area. 
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In sum, when the researcher wants to estimate the two-level model parameters using 

Bayesian methods, the half-Normal, and the half-Cauchy distributions can be used as priors, at 

least in conditions similar to the ones examined in this study and when at least five participants 

were included. If only three participants were included, all procedures resulted in biased 

estimates, but more precise estimates are obtained when using maximum likelihood and half-

Normal prior distributions. In addition, in these conditions, the CP95 for the Bayesian 

procedures is close to the nominal level in contrast to the ML procedures. The inverse Wishart 

with the identity matrix seems less appropriate in terms of bias of the parameter estimates and 

CP95. By using this standard noninformative version of the inverse-Wishart prior (small df and 

identity matrix) the marginal distribution of the correlations is uniform. Large standard 

deviations are related with large absolute correlations, which is not non-informative. In order to 

deal with this, the variances can be estimated first, and then use this to tweak the inverse-Wishart 

prior to have the right scale (Kass & Natarajan, 2006). This is what we did using the non-identity 

matrix.  

The construction of confidence intervals around the estimates of the variance components 

seemed to be less straightforward as the estimated variance components distribution is extremely 

skewed. SAS Proc MIXED uses a Satterthwaite approximation that seems to results in unrealistic 

large upper limits of the confidence interval in certain conditions. In this study, we proposed an 

adjustment to the formula standard programmed in SAS 9.4 that resulted in more reasonable 

values. However, further research in constructing confidence intervals around variance estimates 

is needed. 

Extensions 
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As with any simulation study, the results are limited to the chosen conditions and cannot 

be generalized to other conditions. Although we included commonly encountered conditions for 

SCED research, we are aware that the data and/or research questions may require more 

complicated models making our simulation results less informative. In this situation, the 

researcher can replicate the simulation study and slightly change the values depending on the 

prior belief and conduct a sensitivity analysis. In addition, we believe that further systematic 

simulation research is needed on the performance of ML and Bayesian procedures for SCED 

data in extensions of the studied conditions, as described as follows. 

Non-Continuous Outcomes. In a review of the SCED literature, Shadish and Sullivan 

(2011) indicated that over 90% of the outcome measures used were some form of count. These 

counts can be a number out of a fixed total, a number without a total, or can be presented as a 

percentage or rate. This is confirmed by a recent study aimed at giving an overview of SCED 

data characteristics by coding data for 399 SCEDs that appeared in the Journal of Applied 

Behavior Analysis in 2012 (Ugille et al., 2015). Ugille et al. (2015) found that the majority of 

SCED outcomes (i.e., 77.19%) are counts of some sort. Variables of these types are often poorly 

approximated by a Gaussian error distribution. For instance, floor or ceiling effect in one of the 

phases of an experiment or substantial heteroscedasticity across phases are not unusual. Failing 

to account for these features can end up creating important biases in quantitative effect size 

measures derived from the model. For instance, effect sizes are often extremely large and out of 

a plausible range.  

In scenarios where there are no floor or ceiling effects (i.e., percentages near zero or 100 

percent), percentages can be treated as continuous outcomes (Kratochwill & Levin, 2014) and as 

a consequence similar priors suggested as for continuous outcomes can be used as proposed in 
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this study. In the other scenarios (only representing a small fraction of the SCED data), in which 

the outcome is a count or rate, or percentages with floor and ceiling effects, it is better to model 

the count outcomes as counts by using a Poisson distribution (in the case the outcome is a count 

during an interval) or a binomial distribution (i.e., percentages or rates). In these situations future 

research is needed to define priors.  

Non-linear Trajectories. Trajectories in MBD data may be non-linear (i.e., Beretvas, 

2011, Hembry, Bunuan, Beretvas, Ferron & Van den Noortgate, 2014, Mulloy, 2011, Shadish et 

al., 2013). For instance, the effects can be increasing quadratically or logistically. Indeed, a 

typical MBD data trajectory is characterize by upper and/or lower asymptotes and can therefore 

be best described by a logistic model as suggested by Beretvas (2010) and validated through a 

consecutive simulation study of Hembry et al. (2014). In their study, Bayesian procedures were 

used, defining non-informative priors on the fixed effect, an inverse gamma on the within-

participant residual variance and half-Cauchy distributions on the between-participant standard 

deviation. 

Other Type of SCEDs. In this study, we focused on MBDs across participants because 

they represent the majority of the published SCED designs (i.e., 54,3% of the 809 SCEDs coded 

by Shadish & Sullivan, 2011). However, there are a variety of other type of SCEDs such as 

alternating treatment designs and reversal designs. Previous research already suggested coding of 

these design matrices (i.e., Shadish et al., 2013; Moeyaert, et al., 2014).  

Covariance Structures. In line with previous simulation research on multilevel 

modeling of small-N studies, we simulated and analyzed data assuming no covariance between 

the regression coefficients, resulting in a diagonal covariance matrix at the second level (Baldwin 

& Fellingham, 2013; Shadish, Hedges, Pustejovsky, Rindskopf, Boyajian, & Sullivan, 2014,). 
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However, if one is interested in analyzing the dataset with covariances, the inverse-Wishart 

distribution could be used as suggested by Gelman et al. (2013). However, we did not explore 

this in current study as the inverse-Wishart distribution needs further research as biased and less 

precise estimates can be obtained. Previous research warns that when variances are small (as is 

the case in SCED contexts) the inverse-Wishart prior specification can have a considerable 

impact on the parameter estimates. 

Also within participants, more complex covariance structures can be studied, such as 

higher order autoregressive models and first-order moving averages (Baek & Ferron, 2013). We 

also assumed homogeneous within-participant variance whereas the variance in outcome scores 

might be smaller in the baseline phase compared to the treatment phase and as such, 

heterogeneous within-participant variance might be more reasonable. 

Other prior distributions. We used half-Normal distributions, half-Cauchy 

distributions, and inverse-Wishart as priors, but other distributions are also possible such as the t-

distribution, the uniform distribution etc.. We invite other researchers to build further on this 

explorative simulation study, by varying the parameter values of the priors and the type of priors. 

A limitation of our simulation study is that we cannot determine when a chosen prior distribution 

has a too large effect on the results of the analysis. In a future study, it would be interesting to 

focus on the conditions in which three, five and seven participants are included (keeping all other 

conditions and parameter values constant), construct informative priors on the between-

participant standard deviation and systematically vary the degree of information included in the 

informative prior in order to investigate when results are overly influenced by the chosen prior 

distribution.  
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Additional levels. Another next step in this research field might be to add an additional 

level to the multilevel model, representing the study level. Recently there has been an increase in 

published meta-analyses of SCEDs. Meta-analyses investigating the same research question 

could be combined (to get more general treatment effect estimates) and this implies three-level 

modeling (measurements are clustered within participants and participants in turn are clustered 

within studies).  

 

Conclusion 

Currently, Bayesian techniques are not commonly taught in introductory statistics classes, 

and misconceptions exist concerning adding prior knowledge to a model. Defining priors can be 

hard, but seems natural to account for information that is already available in the existing 

literature before drawing conclusions in a study. In order to relax asymptotic assumptions 

(needed in the frequentist framework) and in order to make immediate probability statements, a 

researcher might lean towards Bayesian estimation procedures from a conceptual point of view.  

The Bayesian models result in similar results compared to the ML if the number of 

participants is at least five. However, if the number of participants is three, biased and less 

precise estimates are obtained for both approaches, but the CP95 is closer to the nominal level 

using the Bayesian approach (except from the inverse-Wishart distribution). The inverse-Wishart 

prior distribution with the identity matrix is not recommended for the conditions investigated in 

this simulation study. If a researcher applies the Bayesian data analysis approach to real data, we 

recommend to use a variety of different prior distributions and discuss to what extent and in what 

sense the results depend on the prior used. The more informative prior resulted in more precise 

estimates and CP95 for the fixed effects and the random components closer to the nominal level.  
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Table 1 

Overview of Re-analyses of Published Meta-Analysis of Single-Case Experimental Data 

Parameter Estimated Estimate (SE) 
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Note. Study 1 refers to the study of Alen et al. (2009); Study 2 Denis et al. (2008), Study 3 to Kokina and Kern, 2010; Study 4 to Shogren et al. (2004); and Study 
5 to Wang et al. (2001). For completeness, we included the between-study variance estimates, but for this study we are mainly interested in the between-case 
variance estimates. 

 Study 1 Study 2 Study 3 Study 4 Study 5 

Fixed Effects 

    Average baseline level (ߠ଴଴) 

    Average trend during baseline (ߠଵ଴) 

    Average treatment effect (ߠଶ଴) 

    Average treatment effect on time trend (ߠଷ଴) 

Random Effects 

     Between-study variance  

 Between-study variance baseline level (ߪ௩బ
ଶ )  

 Between-study variance trend baseline (ߪ௩భ
ଶ ) 

 Between-study variance treatment (ߪ௩మ
ଶ ) 

 Between-study variance treatment effect on   trend (ߪ௩య
ଶ )  

     Between-case variance  

 Between- case variance baseline level (ߪ௨బ
ଶ )  

 Between- case variance trend baseline (ߪ௨భ
ଶ ) 

 Between- case variance treatment (ߪ௨మ
ଶ ) 

 Between- case variance treatment effect on   trend (ߪ௨య
ଶ )  

 

    Within-case residual variance 

 

6.593 (1.236) 

-0.228 (0.095) 

-0.909 (0.359) 

-0.052 (0.007) 

 

 

12.021 (7.478) 

0.093 (0.046) 

0.329 (0.474) 

0.000 ( / ) 

 

 

6.934 (2.544) 

0.00002 (0.00005) 

1.543 (0.572) 

0.0001 (0.00007) 

 

1.052 (0.033) 

 

3.227 (0.975) 

0.090 (0.076) 

-3.096 (0.756) 

-0.113 (0.081) 

 

 

11.671 (5.685) 

0.075 (0.034) 

7.156 (3.349) 

0.081 (0.0386) 

 

 

4.619 (2.031) 

0.001 (0.001) 

2.178 (1.043) 

0.002 (0.002) 

 

1.063 (0.042) 

 

4.160 (0.912) 

0.007 (0.012) 

-1.133 (0.925) 

-0.015 (0.044) 

 

 

8.621 (4.400) 

0.000 ( / ) 

10.708 (4.623) 

0.015 (0.010) 

 

 

7.957 (2.355) 

0.000 ( / ) 

3.752 (1.217) 

0.002 (0.002) 

 

1.078 (0.061) 

 

4.201 (0.898) 

0.142 (0.063) 

-4.093 (0.987) 

-0.165 (0.074) 

 

 

0.927 (3.660) 

0.018 (0.013) 

1.401 (4.391) 

0.011 (0.016) 

 

 

3.699 (5.276) 

0.000 ( / ) 

4.980 (5.892) 

0.000 ( / ) 

 

1.146 (0.110) 

 

1.087 (0.398) 

-0.007 (0.006) 

1.032 (0.256) 

0.015 (0.019) 

 

 

0.888 (0.585) 

0.000 ( / ) 

0.190 (0.217) 

0.001 (0.001) 

 

 

0.007 (0.033) 

0.00005 
(0.00008) 

0.268 (0.156) 

0.000 ( / ) 

1.000 (0.058) 
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Table 2 

Overview of the Prior Distributions for the Variance Components 

  

Prior Distribution Scenario 1 Scenario 2 Scenario 3 

Half-Cauchy Half-Cauchy ~ (0, 50) Half-Cauchy ~ (0, 20) Half-Cauchy ~ (0, 10) 

Half-Normal Half-Normal ~ (0, 50) Half-Normal ~ (0, 20) Half-Normal ~ (0, 10) 

Inverse-Wishart 

݄ݏ݅ݓ݅ ൦

1
0 1
0 0 1
0 0 0 1

, 6൪ ݄݅ݏ݅ݓ ൦

2
0 0.2
0 0 2
0 0 0 0.2

, 6൪ 
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Table 3 

Start Points of the Treatment across Participants Within a Multiple-Baseline Design 

J  I = 20 I = 40 

3 Participant 1 7 11 
 Participant 2 11 21 

 Participant 3 15 31 

7 Participant 1 7 11 

 Participant 2 9 15 

 Participant 3 9 15 

 Participant 4 11 21 

 Participant 5 13 27 

 Participant 6 13 27 

 Participant 7 15 31 
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Figure 1. Graphical display of an MBD across 6 participants. The figure is adapted from ‘The 
Effect of Feedback on the Accuracy of Checklist Completion during Instrument Flight Training”, 
by W. G. Rantz, A. M. Dickinson, G. A. Sinclair, and R. V. Van Houten, 2009, Journal of 
Applied Behavior Analysis, 42, p. 503. 
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Figure 2. Illustration of the influence of the variance of the distribution on the shape of the half-Normal prior distribution. The left 
panel displays ܺ	~	ܰሺ0, 10, ݎ݁ݓ݋݈ ൌ 0.00ሻ, the middle panel displays ܺ	~	ܰሺ0, 20, ݎ݁ݓ݋݈ ൌ 0.00ሻ and the right panel displays 
ܺ	~	ܰሺ0, 50, ݎ݁ݓ݋݈ ൌ 0.00ሻ.  
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Figure 3. Illustration of the influence of the scale parameter on the form of the half-Cauchy prior distribution. The left panel displays 
,ሺ0ݕ݄ܿݑܽܥ	~	ܺ 10, ݎ݁ݓ݋݈ ൌ 0.00ሻ, the middle panel displays ܺ	~	ݕ݄ܿݑܽܥሺ0, 20, ݎ݁ݓ݋݈ ൌ 0.00ሻ and the right panel displays 
,ሺ0ݕ݄ܿݑܽܥ	~	ܺ 50, ݎ݁ݓ݋݈ ൌ 0.00ሻ.  
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Figure 4. Illustration of the influence of the scale parameter on the form of the scaled inverse 2 distribution used as simplifications of 

the inverse Wishart distribution. The left panel displays ܺ	~	ݒ݊ܫ െ 2 ሺ6, 1ሻ, representing the simplified version of the inverse 

Wishart distribution using the identity matrix and the right panel displays ܺ	~	ݒ݊ܫ െ 2 ሺ6, 1/2ሻ representing the simplified version 
of the inverse Wishart distribution using the non-identity matrix (assuming a variance of 2).  
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Figure 5. Graphical display of the coverage proportion of the 95% confidence interval of the 
immediate treatment effect estimate as a function of the number of participants, measurements 
and the analysis procedure. Full information Maximum Likelihood = Model 1, Restricted 
Maximum Likelihood = Model 2, Half-Normal ~ (0, 10) = Model 3, Half-Normal ~ (0, 20) = 
Model 4, Half-Normal ~ (0, 50) = Model 5, Half-Cauchy ~ (0, 10) = Model 6, Half-Cauchy ~ (0, 
20) = Model 7, Half-Cauchy ~ (0, 50) = Model 8, Inverse Wishart with identity matrix = Model 9 
and with inverse Wishart with non-identity values = Model 10. CP95 = coverage proportion of 
the 95% confidence interval. I and J indicate the number of measurements and cases respectively. 
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Figure 6. Graphical display of the relative bias of the between-case standard deviation estimate as 
a function of the number of participants, measurements and the analysis procedure. 
Full information Maximum Likelihood = Model 1, Restricted Maximum Likelihood = Model 2, 
Half-Normal ~ (0, 10) = Model 3, Half-Normal ~ (0, 20) = Model 4, Half-Normal ~ (0, 50) = 
Model 5, Half-Cauchy ~ (0, 10) = Model 6, Half-Cauchy ~ (0, 20) = Model 7, Half-Cauchy ~ (0, 
50) = Model 8, Inverse Wishart with identity matrix = Model 9 and with inverse Wishart with 
non-identity values = Model 10. I and J indicate the number of measurements and cases 
respectively. 
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Figure 7. Graphical display of the mean squared error of the between-case standard deviation 
estimate as a function of the number of participants, measurements and the analysis procedure. 
Full information Maximum Likelihood = Model 1, Restricted Maximum Likelihood = Model 2, 
Half-Normal ~ (0, 10) = Model 3, Half-Normal ~ (0, 20) = Model 4, Half-Normal ~ (0, 50) = 
Model 5, Half-Cauchy ~ (0, 10) = Model 6, Half-Cauchy ~ (0, 20) = Model 7, Half-Cauchy ~ (0, 
50) = Model 8, Inverse Wishart with identity matrix = Model 9 and with inverse Wishart with 
non-identity values = Model 10. MSE = Mean Squared Error. I and J indicate the number of 
measurements and cases respectively. 
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Figure 8. Graphical display of the coverage proportion of the 95% confidence interval of the 
between-case standard deviation estimate as a function of the number of participants, 
measurements and the analysis procedure. Full information Maximum Likelihood = Model 1, 
Restricted Maximum Likelihood = Model 2, Half-Normal ~ (0, 10) = Model 3, Half-Normal ~ (0, 
20) = Model 4, Half-Normal ~ (0, 50) = Model 5, Half-Cauchy ~ (0, 10) = Model 6, Half-Cauchy 
~ (0, 20) = Model 7, Half-Cauchy ~ (0, 50) = Model 8, Inverse Wishart with identity matrix = 
Model 9 and with inverse Wishart non-identity values = Model 10. CP95 = coverage proportion 
of the 95% confidence interval. I and J indicate the number of measurements and cases 
respectively. 
 
 


