
A historical perspective on 
Machine Learning 

(on the occasion of  the 25th Benelearn)
Luc De Raedt



A historical perspective on 
Machine Learning 

(on the occasion of  the 25th Benelearn)
Luc De Raedt



A historical perspective on 
Machine Learning 

(on the occasion of  the 25th Benelearn)
Luc De Raedt

WARNING!

Based on a true story 
of Machine Learning 



A historical perspective on 
Machine Learning 

(on the occasion of  the 25th Benelearn)
Luc De Raedt

WARNING!

Based on a true story 
of Machine Learning 

ADVISORY
S C I E N T I F I C

P E R S O N A L  
P E R S P E C T I V E



Machine Learning: 
an AI approach



Machine Learning: 
an AI approach

Ryszard Michalski … 



Machine Learning: 
an AI approach

Ryszard Michalski, Tom Mitchell, Jaime Carbonell



Machine Learning: 
an AI approach

Ryszard Michalski, Tom Mitchell, Jaime Carbonell

1983
1986 1990 1994



Preface  
1983



https://archive.org/details/handbookofartific02barr

Before 1980 —Handbook of AI 1981 overview 

https://archive.org/details/handbookofartific02barr


https://archive.org/details/handbookofartific02barr

Before 1980 —Handbook of AI 1981 overview 

https://archive.org/details/handbookofartific02barr




Menace (Michie 63)
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Menace (Michie 1963)
Learns Tic-Tac-Toe 
Hardware: 

287 Boxes  
(1 for each state) 
Pearls in 9 colors  
(1 color per position) 

Play principle: 
Choose box corresponding to current state 
Choose pearl at random from box 
Play corresponding move 

Learning algorithm: 
Game lost -> retain all pearls used  
(negative reword - reinforcement) 
Game won -> for each select pearl, add a pearl of the same color to box 
(positive reward - reinforcement)

X
X

OO



BOXES (1968)

• basis of reinforcement learning

https://www.youtube.com/watch?v=qF2fFMrNUCQ
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Herbert Simon (1916-2001) 
Turing Award 1975,  Nobel prize Economics 1978

Why should machines learn ?
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1980 … 1986 
• First workshops on Machine Learning (first conference in 1993) 

• Focus on AI and Cognitive Science paradigm 

• Focus on SYMBOLIC Methods, on HUMAN like learning, on 
AUTOMATED DISCOVERY 

• IJCAI 85 in LA had 3000 academic participants (10 000 with industry 
included?) These were the days of expert systems 

• No role for SUBSYMBOLIC methods / NEURAL NETS  

• NIPS would start in 1986, with the revival of Neural Networks (Parallel 
Distributed Processing / Connectionism — Rumelhart and McClelland) 

• https://www.youtube.com/watch?v=ilP4aPDTBPE  (1989)

https://www.youtube.com/watch?v=ilP4aPDTBPE


From the Dartmouth 1956  
proposal

The following are some aspects of the artificial intelligence problem: 

1. Automatic Computers : If a machine can do a job, then an automatic calculator can be 
programmed to simulate the machine. The speeds and memory capacities of present 
computers may be insufficient to simulate many of the higher functions of the human brain, 
but the major obstacle is not lack of machine capacity, but our inability to write programs 
taking full advantage of what we have. 

2. How Can a Computer be Programmed to Use a Language : It may be speculated that a 
large part of human thought consists of manipulating words according to rules of reasoning 
and rules of conjecture. From this point of view, forming a generalization consists of admitting 
a new word and some rules whereby sentences containing it imply and are implied by others. 
This idea has never been very precisely formulated nor have examples been worked out. 

3. Neuron Nets : How can a set of (hypothetical) neurons be arranged so as to form concepts. 
Considerable theoretical and experimental work has been done on this problem by Uttley, 
Rashevsky and his group, Farley and Clark, Pitts and McCulloch, Minsky, Rochester and 
Holland, and others. Partial results have been obtained but the problem needs more 
theoretical work. 



4. Theory of the Size of a Calculation : If we are given a well-defined problem (one for which it is possible to test 
mechanically whether or not a proposed answer is a valid answer) one way of solving it is to try all possible answers in 
order. This method is inefficient, and to exclude it one must have some criterion for efficiency of calculation. Some 
consideration will show that to get a measure of the efficiency of a calculation it is necessary to have on hand a method of 
measuring the complexity of calculating devices which in turn can be done if one has a theory of the complexity of 
functions. Some partial results on this problem have been obtained by Shannon, and also by McCarthy.

5. Self-lmprovement Probably a truly intelligent machine will carry out activities which may best be described as self-
improvement. Some schemes for doing this have been proposed and are worth further study. It seems likely that this 
question can be studied abstractly as well.

6. Abstractions A number of types of ``abstraction'' can be distinctly defined and several others less distinctly. A direct 
attempt to classify these and to describe machine methods of forming abstractions from sensory and other data would 
seem worthwhile.

7. Randomness and Creativity A fairly attractive and yet clearly incomplete conjecture is that the difference between 
creative thinking and unimaginative competent thinking lies in the injection of a some randomness. The randomness must 
be guided by intuition to be efficient. In other words, the educated guess or the hunch include controlled randomness in 
otherwise orderly thinking.



1986
• The Machine Learning Journal was founded by Pat 

Langley, Ryszard Michalski, Jaime Carbonnell and 
Tom M. Mitchell  

• find an own venue for ML research …  

• same focus / bias initially (cf. Langley, MLJ 2011) 

• The 1st European Working Session on ML was 
organised in Orsay by Yves Kodratoff



Video 
0;58-3:08 + 

22:25-25:43 ? + 
44:05-45



1989

• The 1st KDD workshop was organised at IJCAI 1989 in 
Detroit, attended by 67 participants (among which most of 
the key players in ML and KDD …) 

• Panel with Ross Quinlan, Pat Langley, and Larry Kerschberg 

• Donald Michie predicts that ``The next area that is going to 
explode is the use of machine learning tools as a component 
of large scale data analysis'' (AI Week, March 15, 1990) 

• First KDD conference 1995



  Call for Participation:
IJCAI-89 Workshop on Knowledge Discovery in Databases
            Sunday, August 20 (tentative), Detroit MI, USA

The growth in the amount of available databases far outstrips the growth of corresponding knowledge. 
This creates both a need and an opportunity for extracting knowledge from databases.  Many recent 
results have been reported on extracting different kinds of knowledge from databases, including 
diagnostic rules, drug side effects, classes of stars, rules for expert systems, and rules for semantic query 
optimization. 

Knowledge discovery in databases poses many interesting problems, especially when databases are 
large. Such databases are usually accompanied by substantial domain knowledge which can significantly 
facilitate discovery. Access to large databases is expensive - hence the need for sampling and other 
statistical methods.  Finally, knowledge discovery in databases can benefit from many available tools and 
techniques from several different fields including expert systems, machine learning, intelligent databases, 
knowledge acquisition, and statistics. 

Topics of interest include:

  o Discovery and use of approximate rules 
  o Knowledge-based discovery methods 
  o Integration of knowledge-based and statistical methods 
  o Efficient heuristic algorithms for discovery 
  o Automatic knowledge acquisition 
  o Construction of expert systems from data 
  o Discovery in medical and scientific data 
  o Bias for human understandability of discovered knowledge 
  o Learning query optimization rules and integrity constraints 
  o Knowledge discovery as a threat to database security and privacy



12:20   /  21:20  / 31:54

“Donald Michie” 



Benelearn 1991
• 1st Benelearn in Leuven, 70 participants, 10 talks, lunches paid by FWO, 

Invited talks by Yves Kodratoff and Katharina Morik 

• 1992, Amsterdam (Van Someren) 

• 1993, Brussels (Van de Velde) 

• 1994, Rotterdam (Bioch) - 27 presentations ! 

• 1995, Brussels (ULB) 

• 1996, Maastricht 

• 1997, Tilburg 

• 1998, Wageningen … 



Learning and Knowledge
• Explicit goal to learn new “knowledge”, focus on 

results that are “understandable” 

• Explicit goal to reason with that knowledge (eg. in 
problem solving) 

• Explicit goal to learn rich representations, to learn 
for use in expert systems 

• Cf. e.g. Dietterich, MLJ 86, Michalski’s trains etc.



Machine learning
• Was initially broadening its scope from purely symbolic and 

knowledge based to   

• probabilistic methods 

• reinforcement learning  

• case-based reasoning and instance based learning 

• problem solving …  

• was getting a diverse and open-minded field !

cf Langley, MLJ 2011



ML as an experimental 
science

• The title of an MLJ paper by Kibler and Langley in 1988; see also 
Langley MLJ 2011 

• Presented also as keynote as EWSL 88 

• Point of view that ML systems should not be just systems that do 
something, but should be evaluated according to scientific principles, 
through setting up experiments in a systematic way 

• UCI Database  

• Side-effect : focus on tasks that are easy to evaluate, on particular 
datasets, on classification and regression …  

• Another side-effect: you have to beat the competition … 

cf Langley, MLJ 2011



6 phases : 
1. Formulating Hypotheses 
2. Design experiments and select Samples 
3. Running experiments and compile results 
4. Test hypotheses 
5. Explain unexpected results 
6. Report



Introduction of SVMs
• Around 1992-95 by Vapnik, Cortes et al. 

• Enormous boost in performance  

• Principled theory, interesting mathematics coming from a new 
community (physics, optimisation…) 

• But also had a  profound influence on the nature of machine 
learning  

• Side-effect — shift of focus of ML, towards optimisation, math 
and Linear Algebra …  

• Side-effect — change of the field … 
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Observations
• The social aspects of science (of ML?) 

• Fields evolve, have biases, communities are dynamic, 
split, merge …  

• Quite important to retain identity, to remain broad 
enough, yet coherent enough, …  

• cf. The structure of scientific revolutions, Thomas Kuhn
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NN
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ICLPR



AI

ML
NN

KDD

NLP

GP
KRVISION

Robotics

Agents

Bioinformatics



ML today 
• Enormous progress made, impressive applications, 

used in many other fields as the enabling 
technology 

• A healthy field 

• Attracting loads of attention   

• Unreasonable expectations ? a bit like AI ?  

• Big data / data science … splitting off ?



ML today 
• Diversity could be better ? are not we converging 

too fast ? More exploration would be useful ? 

• in terms of methodology 

• in terms of tasks  

• Let’s play more with the problem set up ? 

• Links to AI, to human learning, to reasoning ? 



What is next ?

• Get AI more into the picture …  

• Machine learning : an AI approach ? 



Can we automate Data 
Science / Machine Learning ?

• The robot scientist (Ross King et al. Nature 2004)  

• Can we apply that idea to data science/machine learning itself ? 

• One possible solution to the lack of data scientists today



Selection and 
Preprocessing

Data Mining

Interpretation 
and Evaluation

Data 
Consolidation

Knowledge

Data Sources

Patterns & 
Models

Prepared Data 

Consolidated
Data

The KDD process

45



Synthesising Inductive Data Models

46

Data Model Inductive Model

+

Discover patterns and rules 
present in a Data Model

Apply patterns to make predictions 
and support decisions

https://dtai.cs.kuleuven.be/projects/synth

1. The synthesis system “learns the learning task”. It 
identifies the right learning tasks and learns appropriate 
IMs 

2. The system may need to restructure the data set 
before IM synthesis can start 

3. A unifying IDM language for a set of core patterns and 
models will be developed

Advanced ERC Grant

https://dtai.cs.kuleuven.be/projects/synth


Thanks

BTW: we are hiring PhD students and post-docs !


