
Probabilistic (Logic)
Programming and its

Applications
Luc De Raedt

with many slides from Angelika Kimmmig

A key question in AI:
Dealing with uncertainty

Reasoning with
relational data

Learning

Statistical relational learning
& Probabilistic Programming

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

2

The need for relations

Dynamics: Evolving Networks

• Travian: A massively multiplayer real-time strategy game

• Commercial game run by TravianGames GmbH

• ~3.000.000 players spread over different “worlds”

• ~25.000 players in one world
[Thon et al. ECML 08]

4

World Dynamics

border

border

border

border

Alliance 2

Alliance 3

Alliance 4

Alliance 6

P 2

1081

895
1090

1090

1093

1084

1090

915

1081

1040

770

1077

955

1073

8041054

830

9421087

786

621

P 3

744

748
559

P 5

861

P 6

950

644

985

932

837
871

777

P 7

946

878

864 913

P 9

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?

Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECML08]

5

World Dynamics

border

border

border

border

Alliance 2

Alliance 4

Alliance 6

P 2

904
1090

917

770

959

1073

820

762

9461087

794

632

P 3

761

961

1061

607

988

771

924

583

P 5

951

935

948

938

867

P 6

950

644

985

888

844
875

783

P 7

946

878

864 913

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?

Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECML08]

6

World Dynamics

border

border

border

border

Alliance 2

Alliance 4

Alliance 6

P 2

918
1090

931

779

977

835

781

9581087

808

701

P 3

838

947

1026

1081

833

1002
987

827

994

663

P 5

1032

1026

1024

1049

905

926

P 6

986

712

985

920

877

807

P 7

895

959

P 10

824

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?

Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECML08]

7

Analyzing
Video Data

• Track people or objects over
time? Even if temporarily
hidden?

• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.5 1 1.5 2 2.5 3 3.5

E
rr

o
r

ra
te

s
 p

e
r

tr
a

c
k
 a

n
d
 f

ra
m

e

Clustering distance threshold dP (m)

w/o tracking

Overs. + Unders.
Oversegm.

Undersegm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

A
v
g

.
c
y
c
le

 t
im

e
 (

s
e

c
)

Number of people in ground truth

Group tracker
People tracker

Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For

8

[Skarlatidis et al, TPLP 14;
Nitti et al, IROS 13, ICRA 14]

Learning relational affordances
Learn probabilistic model

From two object interactions
Generalize to N

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances
Learn probabilistic model

From two object interactions
Generalize to N

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al. ICRA 12, 13, 14, PhD 15

Example:
Information Extraction

10 NELL: http://rtw.ml.cmu.edu/rtw/

Example:
Information Extraction

10 NELL: http://rtw.ml.cmu.edu/rtw/

instances for many
different relations

Example:
Information Extraction

10 NELL: http://rtw.ml.cmu.edu/rtw/

instances for many
different relations

degree of certainty

codes for

gene

protein

pathway

cellular
component

homologgroup

phenotype

biological
process

locus

molecular
function has

is homologous to

participates in

participates in
is located in

is related to

refers to
belongs to

is found in

subsumes,
interacts with

is found in

participates in

refers to

Biomine
database @

Helsinki

Biological Networks

11http://biomine.cs.helsinki.fi/

• Structured environments

• objects, and

• relationships amongst them

• and possibly

• using background knowledge

• cope with uncertainty

• learn from data

This requires dealing with

12

Sta
tis

tic
al

Rela
tio

na
l L

ea
rn

ing

Pr
ob

ab
ilis

tic
 Pr

og
ra

mming

Common theme
Dealing with
uncertainty

Reasoning with
relational data

Learning

Statistical relational learning
& Probabilistic Programming, ...

13

Some formalisms

14

Some SRL formalisms

LPAD: Bruynooghe

Vennekens,Verbaeten
Markov Logic: Domingos,

Richardson

CLP(BN): Cussens,Page,

Qazi,Santos Costa

Present

PRMs: Friedman,Getoor,Koller,

Pfeffer,Segal,Taskar

´03

SLPs: Cussens,Muggleton

´90 ´95 96

First KBMC approaches:

Breese,

Bacchus,

Charniak,

Glesner,

Goldman,

Koller,

Poole, Wellmann

´00

BLPs: Kersting, De Raedt

RMMs: Anderson,Domingos,

Weld

LOHMMs: De Raedt, Kersting,

Raiko

Future

Prob. CLP: Eisele, Riezler

´02

PRISM: Kameya, Sato

´94

PLP: Haddawy, Ngo

´97´93

Prob. Horn

Abduction: Poole

´99

1BC(2): Flach,

Lachiche

Logical Bayesian Networks:

 Blockeel,Bruynooghe,

Fierens,Ramon,

Common theme
Dealing with
uncertainty

Reasoning with
relational data

Learning

Statistical relational learning
& Probabilistic Programming, ...

15

• many different formalisms
• our focus: probabilistic  
 (logic) programming

Probabilistic Logic
Programming

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

e.g., PRISM, ICL, ProbLog, LPADs, CP-logic, ...

multi-valued
switches

probabilistic
alternatives

probabilistic
facts

annotated
disjunctions

causal-
probabilistic

laws

Roadmap

• Modeling (ProbLog and Church, another
representative of PP)

• Inference

• Learning

• Dynamics and Decisions

... with some detours on the way

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

18

0.4 :: heads.  

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with
probability 0.4 (and false with 0.6)

18

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

annotated disjunction: first ball is red
with probability 0.3 and blue with 0.7

18

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
 0.5 :: col(2,blue).  

annotated disjunction: second ball is red with
probability 0.2, green with 0.3, and blue with 0.5

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

18

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
 0.5 :: col(2,blue).  

win :- heads, col(_,red). logical rule encoding
background knowledge

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

18

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
 0.5 :: col(2,blue).  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

logical rule encoding
background knowledge

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

18

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
 0.5 :: col(2,blue).  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic choices

consequences
18

Questions

• Probability of win?  

• Probability of win given col(2,green)?  

• Most probable world where win is true?

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

19

Questions

• Probability of win?  

• Probability of win given col(2,green)?  

• Most probable world where win is true?

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

marginal probability

query

19

Questions

• Probability of win?  

• Probability of win given col(2,green)?  

• Most probable world where win is true?

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

marginal probability

conditional probability

evidence

19

Questions

• Probability of win?  

• Probability of win given col(2,green)?  

• Most probable world where win is true?

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

marginal probability

conditional probability

MPE inference

19

Possible Worlds

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

20

Possible Worlds

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

20

Possible Worlds

H

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4

20

Possible Worlds

H R

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

×0.30.4

20

Possible Worlds

H R

×0.3

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

×0.30.4
G

20

Possible Worlds

H
W

R

×0.3

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

×0.30.4
G

20

Possible Worlds

H
W

R

×0.3

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

×0.30.4
G

20

All Possible Worlds

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

21

Most likely world
where win is true?

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

MPE Inference

22

Most likely world
where win is true?

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

MPE Inference

22

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

? Marginal
Probability

23

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑ Marginal
Probability

23

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑ =0.562 Marginal
Probability

23

P(win|col(2,green))=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

? Conditional
Probability

24

=P(win∧col(2,green))/P(col(2,green))
P(win|col(2,green))=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑/∑ Conditional
Probability

24

=P(win∧col(2,green))/P(col(2,green))
P(win|col(2,green))=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑/∑ Conditional
Probability

24

P(win|col(2,green))=
=0.036/0.3=0.12

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑/∑ Conditional
Probability

24

Alternative view:
CP-Logic

25

[Vennekens et al, ICLP 04]

throws(john).
0.5::throws(mary).

0.8 :: break :- throws(mary).
0.6 :: break :- throws(john).

probabilistic causal laws

John throws
Window breaks

Window breaks Window breaks

doesn’t break

doesn’t break doesn’t break

Mary throws Mary throwsdoesn’t throw doesn’t throw

1.0

0.6 0.4

0.50.5
0.5 0.5

0.80.8
0.20.2

P(break)=0.6×0.5×0.8+0.6×0.5×0.2+0.6×0.5+0.4×0.5×0.8

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]26

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

random variable with Gaussian distribution

26

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
 ≃length(OBot) ≥ ≃length(OTop),  
 ≃width(OBot) ≥ ≃width(OTop).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

comparing values of
random variables

26

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
 ≃length(OBot) ≥ ≃length(OTop),  
 ≃width(OBot) ≥ ≃width(OTop).
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,  
 0 : pitcher, 0.8676 : plate, 
 0.0284 : bowl, 0 : serving,  
 0.1016 : none])  
 :- obj(Obj), on(Obj,O2), type(O2,plate).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

random variable with
discrete distribution

26

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
 ≃length(OBot) ≥ ≃length(OTop),  
 ≃width(OBot) ≥ ≃width(OTop).
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,  
 0 : pitcher, 0.8676 : plate, 
 0.0284 : bowl, 0 : serving,  
 0.1016 : none])  
 :- obj(Obj), on(Obj,O2), type(O2,plate).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]26

Closely related to BLOG [Russell et al.]

• Defines a generative process (as for CP-logic)

• Logic programming variant of Blog

• Tree can become infinitely wide

• Sampling

• Well-defined under reasonable assumptions

27

Distributional Clauses (DC)

Dealing with
uncertainty

Reasoning with
relational data

Probabilistic Databases

Learning28

[Suciu et al 2011]

Dealing with
uncertainty

relational
database

Probabilistic Databases

Learning28

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

[Suciu et al 2011]

Dealing with
uncertainty

relational
database

Probabilistic Databases

Learning

one world

28

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

[Suciu et al 2011]

relational
database

tuples as random
variables

Probabilistic Databases

Learning

one world

28

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

person city P

ann london 0,87

bob york 0,95

eve new york 0,9

tom paris 0,56

bornIn

city country P

london uk 0,99

york uk 0,75

paris usa 0,4

cityIn

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

[Suciu et al 2011]

relational
database

tuples as random
variables

Probabilistic Databases

Learning

one world

several possible worlds

28

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

person city P

ann london 0,87

bob york 0,95

eve new york 0,9

tom paris 0,56

bornIn

city country P

london uk 0,99

york uk 0,75

paris usa 0,4

cityIn

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

[Suciu et al 2011]

relational
database

tuples as random
variables

Probabilistic Databases

Learning

one world

several possible worlds

28

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

person city P

ann london 0,87

bob york 0,95

eve new york 0,9

tom paris 0,56

bornIn

city country P

london uk 0,99

york uk 0,75

paris usa 0,4

cityIn

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

probabilistic tables + database queries
→ distribution over possible worlds

[Suciu et al 2011]

Example:
Information Extraction

29 NELL: http://rtw.ml.cmu.edu/rtw/

instances for many
different relations

degree of certainty

30

Some Probabilistic Programming
Languages outside LP

• IBAL [Pfeffer 01]

• Figaro [Pfeffer 09]

• Church [Goodman et al 08]

• BLOG [Milch et al 05]

• Venture [Mansingha et al.]

• Anglican and Probabilistic-C [Wood et al].

• and many more appearing recently

(define win (or win1 win2))

(define heads (mem (lambda () (flip 0.4))))

Church by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

32

(define color1 (mem (lambda () (if (flip 0.3) 'red 'blue))))

(define color2 (mem (lambda ()  
 (multinomial '(red green blue) '(0.2 0.3 0.5)))))

(define redball (or (equal? (color1) 'red) (equal? (color2) 'red)))

(define win1 (and (heads) redball))

(define win2 (equal? (color1) (color2)))

Probabilistic
Programming Summary

• Church: functional programming + random primitives

• probabilistic generative model

• stochastic memoization

• sampling

• increasing number of probabilistic programming
languages using various underlying paradigms

33

Roadmap

• Modeling (ProbLog and Church, another
representative of PP)

• Inference

• Learning

• Dynamics and Decisions

... with some detours on the way

Answering Questions

program

queries

evidence

marginal
probabilities

conditional
probabilities

MPE state

Given: Find:

?
35

Answering Questions

program

queries

evidence

marginal
probabilities

conditional
probabilities

MPE state

Given: Find:

?
possible worlds 

 
 
 
 
 

infe
asi

ble

35

Answering Questions

program

queries

evidence

marginal
probabilities

conditional
probabilities

MPE state

Given: Find:

?
possible worlds 

 
 
 
 
 

infe
asi

ble
logical reasoning

probabilistic inference

data structure

35

Answering Questions

program

queries

evidence

marginal
probabilities

conditional
probabilities

MPE state

Given: Find:

?
possible worlds 

 
 
 
 
 

infe
asi

ble
logical reasoning

probabilistic inference

data structure

35

knowledge
compilation

Answering Questions

program

queries

evidence

marginal
probabilities

conditional
probabilities

MPE state

Given: Find:

?
possible worlds 

 
 
 
 
 

infe
asi

ble
logical reasoning

probabilistic inference

data structure

1. using proofs
2. using models

35

knowledge
compilation

Proofs in
ProbLog

0.8::stress(ann).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

smokes(X) :- stress(X).  
smokes(X) :-  
 influences(Y,X),  
 smokes(Y).

influences(bob,carl)&influences(ann,bob)&stress(ann)

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

probability of proof = 0.2 × 0.6 × 0.8 = 0.096
36

influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in
ProbLog

0.8::stress(ann).
0.4::stress(bob).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

smokes(X) :- stress(X).  
smokes(X) :-  
 influences(Y,X),  
 smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

0.2×0.6×0.8  
= 0.096

37

influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in
ProbLog

0.8::stress(ann).
0.4::stress(bob).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

smokes(X) :- stress(X).  
smokes(X) :-  
 influences(Y,X),  
 smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

0.2×0.6×0.8  
= 0.096

37

influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in
ProbLog

0.8::stress(ann).
0.4::stress(bob).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

smokes(X) :- stress(X).  
smokes(X) :-  
 influences(Y,X),  
 smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=anninfluences(bob,carl)  
& stress(bob)

0.2×0.6×0.8  
= 0.096

0.2×0.4  
= 0.08

37

influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in
ProbLog

0.8::stress(ann).
0.4::stress(bob).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

smokes(X) :- stress(X).  
smokes(X) :-  
 influences(Y,X),  
 smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=anninfluences(bob,carl)  
& stress(bob)

0.2×0.6×0.8  
= 0.096

0.2×0.4  
= 0.08

proofs overlap!  
cannot sum probabilities  
(disjoint-sum-problem)

37

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem
possible worlds

38

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem
influences(bob,carl) &

influences(ann,bob) & stress(ann)

possible worlds

38

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem

influences(bob,carl) & stress(bob)

influences(bob,carl) &
influences(ann,bob) & stress(ann)

possible worlds

38

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem

influences(bob,carl) & stress(bob)

influences(bob,carl) &
influences(ann,bob) & stress(ann)

possible worlds

sum of proof probabilities: 0.096+0.08 = 0.1760
38

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem

influences(bob,carl) & stress(bob)

influences(bob,carl) &
influences(ann,bob) & stress(ann)

possible worlds

sum of proof probabilities: 0.096+0.08 = 0.1760

0.0576
0.0384
0.0256
0.0096
0.0064

∑ = 0.1376

38

infl(bob,carl) & infl(ann,bob) & st(ann) & \+st(bob)  

infl(bob,carl) & infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & st(ann) & st(bob) 

infl(bob,carl) & infl(ann,bob) & \+st(ann) & st(bob) 

infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) 

...

Disjoint-Sum-Problem

influences(bob,carl) & stress(bob)

influences(bob,carl) &
influences(ann,bob) & stress(ann)

possible worlds

sum of proof probabilities: 0.096+0.08 = 0.1760

0.0576
0.0384
0.0256
0.0096
0.0064

∑ = 0.1376

38

solution: knowledge compilation

Binary Decision Diagrams

i(b,c)

0 1

i(a,b)

s(a)

s(b)

influences(bob,carl) &
influences(ann,bob) & stress(ann)

influences(bob,carl) &
stress(bob)

• compact graphical
representation of
Boolean formula

• automatically
disjoins proofs

• popular in many
branches of CS

[Bryant 86]

39 & not stress(bob)

Markov Chain Monte
Carlo (MCMC)

• Generate next sample by modifying current one

• Most common inference approach for PP
languages such as Church, BLOG, ...

• Also considered for PRISM and ProbLog

Key challenges:  
- how to propose next sample
- how to handle evidence

40

Roadmap

• Modeling (ProbLog and Church, another
representative of PP)

• Inference

• Learning

• Dynamics and Decisions

... with some detours on the way

Parameter Learning

class(Page,C) :- has_word(Page,W), word_class(W,C).

class(Page,C) :- links_to(OtherPage,Page),
class(OtherPage,OtherClass),

link_class(OtherPage,Page,OtherClass,C).

for each CLASS1, CLASS2 and each WORD

?? :: link_class(Source,Target,CLASS1,CLASS2).
?? :: word_class(WORD,CLASS).

42

e.g., webpage classification model

Sampling
Interpretations

43

Sampling
Interpretations

43

Parameter Estimation

44

Parameter Estimation

44

p(fact) = count(fact is true)
Number of interpretations

Learning from partial
interpretations

• Not all facts observed

• Soft-EM

• use expected count instead of count

• P(Q |E) -- conditional queries !

45 [Gutmann et al, ECML 11; Fierens et al, TPLP 14]

Rule learning — NELL

16 Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, Mathias Verbeke

6.1 Dataset

In order to test probabilistic rule learning for facts extracted by NELL, we used the NELL athlete
dataset8, which has already been used in the context of meta-interpretive learning of higher-order
dyadic Datalog [36]. This dataset contains 10130 facts. The number of facts per predicate is listed
in Table 5. The unary predicates in this dataset are deterministic, whereas the binary predicates
have a probability attached9.

Table 5: Number of facts per predicate (NELL athlete dataset)

athletecoach(person,person) 18 athleteplaysforteam(person,team) 721
athleteplayssport(person,sport) 1921 teamplaysinleague(team,league) 1085

athleteplaysinleague(person,league) 872 athletealsoknownas(person,name) 17
coachesinleague(person,league) 93 coachesteam(person,team) 132

teamhomestadium(team,stadium) 198 teamplayssport(team,sport) 359
athleteplayssportsteamposition(person,position) 255 athletehomestadium(person,stadium) 187

athlete(person) 1909 attraction(stadium) 2
coach(person) 624 female(person) 2
male(person) 7 hobby(sport) 5

organization(league) 1 person(person) 2
personafrica(person) 1 personasia(person) 4

personaustralia(person) 22 personcanada(person) 1
personeurope(person) 1 personmexico(person) 108

personus(person) 6 sport(sport) 36
sportsleague(league) 18 sportsteam(team) 1330

sportsteamposition(position) 22 stadiumoreventvenue(stadium) 171

Table 5 also shows the types that were used for the variables in the base declarations for the
predicates. As indicated in Section 4.5, this typing of the variables forms a syntactic restriction
on the possible groundings and ensures that arguments are only instantiated with variables of the
appropriate type. Furthermore, the LearnRule function of the ProbFOIL algorithm is based on
mFOIL and allows to incorporate a number of variable constraints. To reduce the search space, we
imposed that unary predicates that are added to a candidate rule during the learning process can
only use variables that have already been introduced. Binary predicates can introduce at most one
new variable.

6.2 Relational probabilistic rule learning

In order to illustrate relational probabilistic rule learning with ProbFOIL+ in the context of NELL,
we will learn rules and report their respective accuracy for each binary predicate with more then
500 facts. In order to show ProbFOIL+’s speed, also the runtimes are reported. Unless indicated
otherwise, both the m-estimate’s m value and the beam width were set to 1. The value of p for
rule significance was set to 0.9. The rules are postprocessed such that only range-restricted rules
are obtained. Furthermore, to avoid a bias towards to majority class, the examples are balanced,
i.e., negative examples are added to balance the number of positives. Anton: negative examples
are removed?

8 Kindly provided by Tom Mitchell and Jayant Krishnamurthy (CMU).
9 The dataset in ProbFOIL+ format can be downloaded from [removed for double-blind review].

Adaptation of standard rule learning and
inductive logic programming setting

[De Raedt et al IJCAI 15]

Experiments

Roadmap

• Modeling (ProbLog and Church, another
representative of PP)

• Inference

• Learning

• Dynamics and Decisions

... with some detours on the way

07/14/10 DTProbLog 17

Homer
Marge

Bart Lisa

Lenny

Apu

Moe

Seymour
Ralph

Maggie

??
??

??

?? ??

??

??

??

??

??

+$5

-$3

Which strategy
gives the
maximum
expected utility?

Viral Marketing
Which advertising
strategy maximizes

expected profit?

[Van den Broeck et al,
AAAI 10]49

07/14/10 DTProbLog 17

Homer
Marge

Bart Lisa

Lenny

Apu

Moe

Seymour
Ralph

Maggie

??
??

??

?? ??

??

??

??

??

??

+$5

-$3

Which strategy
gives the
maximum
expected utility?

Viral Marketing

[Van den Broeck et al,
AAAI 10]

decide truth values of
some atoms

49

DTProbLog
1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

decision fact: true or false?

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

probabilistic facts
+ logical rules

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

utility facts: cost/reward if true

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed(1) marketed(3)

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed(1) marketed(3)

 bt(2,1) bt(2,4) bm(1)

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed(1) marketed(3)

 bt(2,1) bt(2,4) bm(1)

 buys(1) buys(2)

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed(1) marketed(3)

 bt(2,1) bt(2,4) bm(1)

 buys(1) buys(2)

utility = −3 + −3 + 5 + 5 = 4  
probability = 0.0032

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed(1) marketed(3)

 bt(2,1) bt(2,4) bm(1)

 buys(1) buys(2)

utility = −3 + −3 + 5 + 5 = 4  
probability = 0.0032

world contributes
0.0032×4 to

expected utility of
strategy

50

DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

1

2
3

4

person(1).
person(2).
person(3).
person(4).

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

task: find strategy that maximizes expected utility
solution: using ProbLog technology

50

Phenetic

l Causes: Mutations
l All related to similar

phenotype
l Effects: Differentially expressed
genes
l 27 000 cause effect pairs

l Interaction network:
l 3063 nodes

l Genes
l Proteins

l 16794 edges
l Molecular interactions
l Uncertain

l Goal: connect causes to effects
through common subnetwork

l = Find mechanism
l Techniques:

l DTProbLog [Van den Broeck]
l Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15]

51Can we find the mechanism connecting
causes to effects?

DT-ProbLog
decision theoretic version

Distributional Clauses (DC)

● A probabilistic logic language

● Logic (relational): a template to define random variables

● MDP representation in Dynamic DC:

– Transition model: Headt+1~ Distribution ← Conditionst

– Applicable actions: applicable(Action)t ← Conditionst

– Reward: reward(R)t ← Conditionst

– Terminal state: stopt ← Conditionst

● The state can contain:

– Discrete, continuous variables

– The number of variables in the state can change over time

53

IROS 13

53

IROS 13

Learning relational affordances
Learn probabilistic model

From two object interactions
Generalize to N

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances
Learn probabilistic model

From two object interactions
Generalize to N

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al. ICRA 12, 13, 14, PhD 15

What is an affordance ?

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map
of the example shown in Figure 5. The orange points in the right-hand image show the points
that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their
associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling
phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by
the sum of the individual single-arm actions.

15

• Formalism — related to STRIPS but models delta

• but also joint probability model over A, E, O

During this behavioural babbling stage, data for O, A and E are collected for
each of the robot’s exploratory actions. The robot executed 150 such exploratory
actions. One example of collected data during such an action is shown in Table 1.
Note that these values are obtained by the robot from its perception, which
naturally introduces uncertainty, which the relational a↵ordance model takes
into account (e.g., the displacement of OMain is observed to be a bit more than
10cm).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action E↵ects
shapeOMain : sprism
shapeOSec : sprism

distXOMain,OSec : 6.94cm
distYOMain,OSec : 1.90cm

tap(10)

displXOMain : 10.33cm
displYOMain : �0.68cm
displXOSec : 7.43cm
displYOSec : �1.31cm

During the babbling phase, we also learn the action space of each action. As
the iCub is not mobile, and each arm has a specific action range, each ai 2 A
can be performed when an object is located in a specific action space. An object
can be acted upon by both arms, by one arm but not the other, or it can be
completely out of the reach of the robot. If the exploratory arm action on an
object fails because no inverse kinematics solution was found, then that object is
not in that arm’s action space. We will show later how any spatial constraints,
such as action space, can be modelled with logical rules.

5.2. Learning the Model

The model will be learnt from the data collected during the robot’s 150
exploratory actions, one instance of such data as illustrated in Table 1. We
will model the (relational) object properties: distX, distY (the x and y-axis
distance between the centroids of the two objects), and the e↵ects: displX and
displY (the x and y-axis displacement of an object) with continuous distribution
random variables. We will start by learning a Linear Conditional Gaussian
(LCG) Bayesian Network [26]. An LCG BN specifies a distribution over a
mixture of discrete and continuous variables. In an LCG, a discrete random
variable may have only discrete parents, while a continuous random variable may
have both discrete and continuous parents. A continuous random variable (X)
will have a single Gaussian distribution function whose mean depends linearly
on the state of its continuous parent variables (Y) for each configuration of its
discrete parent variables (U) [26]. This LCG distribution can be represented
as: P (X = x|Y = y, U = u) = N (x|M(u) +W (u)T y,�2(u)), with M a table of
mean values, W a table of regression (weight) coe�cient vectors, and � a table
of variances (independent of Y). [26]

To learn an LCG BN for our setting, we will approximate displX, displY ,
and distX and distY by conditional Gaussian distributions over the short dis-
tances over which objects interact. These distances will be enforced by adding
logical rules.

16

A key question in AI:
Dealing with uncertainty

Reasoning with
relational data

Learning

Statistical relational learning
Probabilistic programming, ...

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

56

A key question in AI:
Dealing with uncertainty

Reasoning with
relational data

Learning

Statistical relational learning
Probabilistic programming, ...

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

56

• Many languages, systems, applications, ...
• not yet a technology ! but a lot of progress
• and a lot more to do !
• … excellent area for PhDs …

Thanks!

http://dtai.cs.kuleuven.be/problog

Maurice Bruynooghe
Bart Demoen
Anton Dries
Daan Fierens
Jason Filippou

Bernd Gutmann
Manfred Jaeger
Gerda Janssens

Kristian Kersting
Angelika Kimmig

Theofrastos Mantadelis
Wannes Meert

Bogdan Moldovan
Siegfried Nijssen

Davide Nitti
Joris Renkens

Kate Revoredo
Ricardo Rocha

Vitor Santos Costa
Dimitar Shterionov

Ingo Thon
Hannu Toivonen

Guy Van den Broeck
Mathias Verbeke
Jonas Vlasselaer

57

Thanks !

