Probabilistic (Logic) Programming and its Applications

Luc De Raedt

with many slides from Angelika Kimmmig

A key question in Al:

Statistical relational learning & Probabilistic Programming

The need for relations

- Travian: A massively multiplayer real-time strategy game
 - Commercial game run by TravianGames GmbH
 - ~3.000.000 players spread over different "worlds"
 - ~25.000 players in one world

[Thon et al. ECML 08]

World Dynamics

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

[Thon, Landwehr, De Raedt, ECML08]

World Dynamics

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

[Thon, Landwehr, De Raedt, ECML08]

World Dynamics

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

[Thon, Landwehr, De Raedt, ECML08]

Analyzing Video Data

- Track people or objects over time? Even if temporarily hidden? [Skarlatidis et al, TPLP 14; Nitti et al, IROS 13, ICRA 14]
- Recognize activities?
- Infer object properties?

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function
(O, A)	E	Effect prediction
(O, E)	A	Action recognition/planning
(A, E)	0	Object recognition/selection

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function
(O, A)	E	Effect prediction
(O, E)	A	Action recognition/planning
(A, E)	0	Object recognition/selection

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

Example: Information Extraction

instance	iteration	date learned	confidence
<u>kelly_andrews</u> is a <u>female</u>	826	29-mar-2014	98.7 🖓
nvestment_next_year is an economic sector	829	10-apr-2014	95.3 🖓
hibenik is a geopolitical entity that is an organization	829	10-apr-2014	97.2 🖓
uality_web_design_work is a character trait	826	29-mar-2014	91.0 🍰
nercedes_benz_cls_by_carlsson is an automobile manufacturer	829	10-apr-2014	95.2 🖓
ocial_work is an academic program at the university rutgers_university	827	02-apr-2014	93.8 🖓
lante wrote the book the_divine_comedy	826	29-mar-2014	93.8 🖓
villie_aames was born in the city los_angeles	831	16-apr-2014	100.0 🍰
<u>kitt_peak</u> is a mountain <u>in the state or province</u> arizona	831	16-apr-2014	96.9 🖓
greenwich is a park in the city london	831	16-apr-2014	100.0 🍰

10

NELL: http://rtw.ml.cmu.edu/rtw/

Example: Information Extraction

instance	iteration	date learned	confidence
<u>kelly_andrews</u> is a <u>female</u>	826	29-mar-2014	98.7 🖓 (
nvestment_next_year is an economic sector	829	10-apr-2014	95.3 🖓 (
shibenik is a geopolitical entity that is an organization	829	10-apr-2014	97.2 🖓 (
quality web design work is a character trait	826	29-mar-2014	91.0 🍰 (
mercedes_benz_cls_by_carlsson is an automobile manufacturer	829	10-apr-2014	95.2 🖓 (
social_work is an academic program at the university rutgers_university	827	02-apr-2014	93.8 🖉
dante wrote the book the_divine_comedy	826	29-mar-2014	93.8 🏖 (
<u>willie_aames</u> was <u>born in</u> the city <u>los_angeles</u>	831	16-apr-2014	100.0 🏖 (
<u>kitt_peak</u> is a mountain <u>in the state or province</u> <u>arizona</u>	831	16-apr-2014	96.9 🖓
greenwich is a park <u>in the city london</u>	831	16-apr-2014	100.0 🖓

10

instances for many different relations

NELL: http://rtw.ml.cmu.edu/rtw/

Example: Information Extraction

<u>elly_andrews</u> is a <u>female</u>		date learned	confidence
	826	29-mar-2014	98.7 🍃 🖏
investment_next_year is an economic sector		10-apr-2014	95.3 🖉 ኛ
shibenik is a geopolitical entity that is an organization		10-apr-2014	97.2 🖉 ኛ
uality_web_design_work is a character trait	826	29-mar-2014	91.0 🏖 ኛ
nercedes_benz_cls_by_carlsson is an automobile manufacturer	829	10-apr-2014	95.2 🕹 ኛ
ocial_work is an academic program at the university rutgers_university	827	02-apr-2014	93.8 🖓 ኛ
dante wrote the book the_divine_comedy		29-mar-2014	93.8 🗳 ኛ
willie_aames was born in the city los_angeles		16-apr-2014	100.0 🍃 ኛ
itt_peak is a mountain in the state or province arizona	831	16-apr-2014	96.9 💪 ኛ
reenwich is a park <u>in the city london</u>	831	16-apr-2014	100.0 🏠 ኛ
stances for many		degr	ree of ce
		9681	

10

NELL: http://rtw.ml.cmu.edu/rtw/

Biological Networks

This requires dealing with

- Structured environments
 - objects, and
 - relationships amongst them
- and possibly
- Statistical Relational Learnings Statistical Relational Learnings using background knowledge
- cope with uncertainty
- Iearn from data

Common theme **Dealing with** uncertainty Reasoning with relational data Learning

Statistical relational learning & Probabilistic Programming, ...

Some formalisms

Common theme

Reasoning with relational data

Statistical relational learning & Probabilistic Programming, ...

Probabilistic Logic Programming

Distribution Semantics [Sato, ICLP 95]: probabilistic choices + logic program → distribution over possible worlds

Roadmap

- Modeling (ProbLog and Church, another representative of PP)
- Inference
- Learning
- Dynamics and Decisions

... with some detours on the way

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

ProbLog by example: A bit of gambling

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.

probabilistic fact: heads is true with probability 0.4 (and false with 0.6)

h

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
 - win if (heads and a red ball) or (two balls of same color)
 - 0.4 :: heads. annotated disjunction: first ball is red with probability 0.3 and blue with 0.7
- 0.3 :: col(1, red); 0.7 :: col(1, blue).

h

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.
- 0.3 :: col(1,red); 0.7 :: col(1,blue). 0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).

logical rule encoding background knowledge

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.
- 0.3 :: col(1,red); 0.7 :: col(1,blue). 0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
- win :- heads, col(_,red). logical rule encoding
 win :- col(1,C), col(2,C). background knowledge

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

```
0.4 :: heads. probabilistic choices
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C). consequences
```

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
```

```
win :- heads, col(\_, red).
win :- col(1,C), col(2,C).
```

- Probability of win?
- Probability of win given col(2, green)?
- Most probable world where **win** is true?

0.4 :: heads.

- Probability of win given col(2, green)?
- Most probable world where win is true?

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
```

```
win :- heads, col(\_,red).
win :- col(1,C), col(2,C).
```

marginal probability

• Probability of win?

conditional probability

- Probability of win given col(2, green)?
 evidence
- Most probable world where win is true?

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
```

```
win :- heads, col(\_,red).
win :- col(1,C), col(2,C).
```

marginal probability

• Probability of win?

conditional probability

- Probability of win given col(2, green)?
- Most probable world where win is true?
 MPE inference

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```


0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```


0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1,blue).

0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, $col(_, red)$. win :- col(1,C), col(2,C).

0.4 ×0.3

0.4 :: heads.

0.3 :: col(1,red): 0.7 :: col(1,blue) 0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, $col(_,red)$. win :- col(1,C), col(2,C).

0.4 ×0.3 ×0.3

Possible Worlds

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
```

win :- heads, $col(_,red)$. win :- col(1,C), col(2,C).

Possible Worlds

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col( ,red).
```

```
win :- col(1,C), col(2,C).
```

0.4 ×0.3 ×0.3

All Possible Worlds

Most likely world where win is true?

MPE Inference

Most likely world where win is true?

MPE Inference

P(win) = ?

Marginal Probability

0.140

P(win|col(2,green))=?

Conditional Probability

[Vennekens et al, ICLP 04]

Alternative view: CP-Logic

P(break)=0.6×0.5×0.8+0.6×0.5×0.2+0.6×0.5+0.4×0.5×0.8

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

26

random variable with Gaussian distribution

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

Closely related to BLOG [Russell et al.]

• Discrete- and continuous-valued random variables

- Defines a generative process (as for CP-logic)
- Logic programming variant of Blog
- Tree can become infinitely wide
 - Sampling
- Well-defined under reasonable assumptions

Probabilistic Databases

Probabilistic Databases

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

bornIn		
person	city	
ann	london	
bob	york	
eve	new york	
tom	paris	

city	yln
city	country
london	uk
york	uk
paris	usa
relat	ional
data	base

Probabilistic Databases

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

one bor	world nIn	
person	city	
ann	london	
bob	york	
eve	new york	
tom	paris	

cit	yln
city	country
london	uk
york	uk
paris	usa
relat	ional
data	base

Probabilistic Databases

	bornIn			cityln	
person	city	Р	city	country	Р
ann	london	0,87	london	uk	0,99
bob	york	0,95	york	uk	0,75
eve	new york	0,9	paris	usa	0,4
tom	paris	0,56	tup	es as i	randor

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

world		ci
nIn		lon
city		ус
london		ра
york		r
new york		
paris		d
	world nln city london york new york paris	min city london york new york paris

-1		
city	yln	
city	country	
london	uk	
york	uk	
paris	usa	
relat	ional	-
data	base	

Probabilistic Databases

28

select x.person, y.country from bornIn x, cityIn y where x.city=y.city

			cit	yln
one	world		city	country
bor	nIn	1	london	uk
person	city		york	uk
ann	london		paris	usa
bob	york		relat	ional
eve	new york			i Onan
tom	paris		data	base

Probabilistic Databases

Example: Information Extraction

nstance	iteration	date learned	confidence
<u>elly_andrews</u> is a <u>female</u>	826	29-mar-2014	98.7 🖓 ኛ
nvestment_next_year is an economic sector	829	10-apr-2014	95.3 🗳 ኛ
hibenik is a geopolitical entity that is an organization	829	10-apr-2014	97.2 🗳 ኛ
uality_web_design_work is a character trait	826	29-mar-2014	91.0 🖉 ኛ
nercedes_benz_cls_by_carlsson is an automobile manufacturer	829	10-apr-2014	95.2 🖓 ኛ
ocial_work is an academic program at the university rutgers_university	827	02-apr-2014	93.8 💪 ኛ
ante wrote the book the_divine_comedy	826	29-mar-2014	93.8 🗳 ኛ
illie_aames was born in the city los_angeles	831	16-apr-2014	100.0 🖓 ኛ
<u>tt_peak</u> is a mountain <u>in the state or province arizona</u>	831	16-apr-2014	96.9 🗳 ኛ
eenwich is a park in the city london	831	16-apr-2014	100.0 🍃 ኛ
stances for many		deg	ree of ce
		2.2	

29

NELL: http://rtw.ml.cmu.edu/rtw/

Introduction.

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components bu uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
```

Some Probabilistic Programming Languages outside LP

- IBAL [Pfeffer 01]
- Figaro [Pfeffer 09]
- Church [Goodman et al 08]
- BLOG [Milch et al 05]
- Venture [Mansingha et al.]
- Anglican and Probabilistic-C [Wood et al].
- and many more appearing recently

Church by example: A bit of gambling

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

Probabilistic Programming Summary

- Church: functional programming + random primitives
- probabilistic generative model
- stochastic memoization
- sampling
- increasing number of probabilistic programming languages using various underlying paradigms

Roadmap

- Modeling (ProbLog and Church, another representative of PP)
- Inference
- Learning
- Dynamics and Decisions

... with some detours on the way

possible worlds

<pre>infl(bob,carl)</pre>	ર્ષ	<pre>infl(ann,bob)</pre>	&	st(ann)	&	$\pm t(bob)$
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	\+st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	\+st(ann)	&	st(bob)

possible worlds

influences(bob,carl) &
influences(ann,bob) & stress(ann)

<pre>infl(bob,carl)</pre>	æ	<pre>infl(ann,bob)</pre>	æ	st(ann)	&	\+st(bob)
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	\+st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	\+st(ann)	&	st(bob)

possible worlds

influences(bob,carl) &
influences(ann,bob) & stress(ann)

<pre>infl(bob,carl)</pre>	&	infl(ann,bob)	&	st(ann)	&	\+st(bob)
<pre>infl(bob,carl)</pre>	&	infl(ann,bob)	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	\+st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	æ	\+infl(ann,bob)	&	\+st(ann)	&	st(bob)

influences(bob,carl) & stress(bob)

possible worlds

influences(bob,carl) &
influences(ann,bob) & stress(ann)

<pre>infl(bob,carl)</pre>	&	infl(ann,bob)	&	st(ann)	&	\+st(bob)
<pre>infl(bob,carl)</pre>	&	infl(ann,bob)	&	st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	st(ann)	æ	st(bob)
<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	\+st(ann)	&	st(bob)
<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	\+st(ann)	&	st(bob)

influences(bob,carl) & stress(bob)

sum of proof probabilities: 0.096+0.08 = 0.1760

possible worlds

influences(bob,carl) & influences(ann,bob) & stress(ann)

	<pre>infl(bob,carl)</pre>	æ	<pre>infl(ann,bob)</pre>	&	st(ann)	&	\+st(bob)	0.0576
	<pre>infl(bob,carl)</pre>	&	infl(ann,bob)	&	st(ann)	&	st(bob)	0.0384
	<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	st(ann)	&	st(bob)	0.0256
	<pre>infl(bob,carl)</pre>	&	<pre>infl(ann,bob)</pre>	&	\+st(ann)	&	st(bob)	0.0096
	<pre>infl(bob,carl)</pre>	&	\+infl(ann,bob)	&	\+st(ann)	&	st(bob)	0.0064
influences(bob,carl) & stress(bob) $\sum = 0.1376$								
	sum of proof probabilities: 0.096+0.08 = 0.1760							
			22					

possible worlds solution: knowledge compilation 0.05/6 infl(bob,carl) & infl(ann,bob) st(ann) & +st(bob)& 0.0384 st(bob) infl(bob,carl) & infl(ann,bob) & st(ann) & 0.0256 st(bob) infl(bob,carl) & \+infl(ann,bob) & st(ann) & 0.0096 infl(ann,bob) & \+st(ann) & infl(bob,carl) & st(bob) 0.0064 infl(bob,carl) & \+infl(ann,bob) & \+st(ann) & st(bob) influences(bob,carl) & stress(bob) $\Sigma = 0.1376$

sum of proof probabilities: 0.096+0.08 = 0.1760

Binary Decision Diagrams [Bryant 86]

- compact graphical representation of Boolean formula
- automatically disjoins proofs
- popular in many branches of CS

Markov Chain Monte Carlo (MCMC)

- Generate next sample by modifying current one
- Most common inference approach for PP languages such as Church, BLOG, ...
- Also considered for PRISM and ProbLog

Key challenges:

- how to propose next sample
- how to handle evidence

Roadmap

- Modeling (ProbLog and Church, another representative of PP)
- Inference
- Learning
- Dynamics and Decisions

... with some detours on the way

Parameter Learning

- e.g., webpage classification model
- for each CLASSI, CLASS2 and each WORD
- ?? :: link_class(Source,Target,CLASS1,CLASS2).
 ?? :: word_class(WORD,CLASS).

class(Page,C) :- has_word(Page,W), word_class(W,C).

class(Page,C) :- links_to(OtherPage,Page), class(OtherPage,OtherClass), link_class(OtherPage,Page,OtherClass,C).

Sampling Interpretations

- use expected count instead of count
- P(Q |E) -- conditional queries !

⁴⁵ [Gutmann et al, ECML 11; Fierens et al, TPLP 14]

Rule learning — NELL

Table 5: Number of facts per predicate (NELL athlete dataset)

athletecoach(person, person)	18	a th let e plays for team (person, team)	721
athleteplayssport(person, sport)	1921	teamplays in league (team, league)	1085
a th let e plays in league (person, league)	872	athletealsoknownas(person,name)	17
coachesinleague(person,league)	93	coachesteam(person, team)	132
teamhomestadium(team, stadium)	198	teamplayssport(team, sport)	359
athleteplayssportsteamposition(person, position)	255	athletehomestadium(person, stadium)	187
athlete(person)	1909	attraction(stadium)	2
$\operatorname{coach}(\operatorname{person})$	624	female(person)	2
male(person)	7	hobby(sport)	5
organization(league)	1	person(person)	2
personafrica(person)	1	personasia(person)	4
personaustralia(person)	22	personcanada(person)	1
personeurope(person)	1	personmexico(person)	108
personus(person)	6	$\operatorname{sport}(\operatorname{sport})$	36
sportsleague(league)	18	sportsteam(team)	1330
sportsteam position (position)	22	stadiumoreventvenue(stadium)	171

Adaptation of standard rule learning and inductive logic programming setting [De Raedt et al IJCAI 15]

Experiments

Table 4: Precision for different experimental setups and parameters (A: m = 1, p = 0.99, B: m = 1000, p = 0.90).

Setting	etting athleteplaysforteam		athleteplayssport		teamplaysinleague		athleteplaysinleague		teamplaysagainstteam	
train/test/rule	Α	В	Α	В	Α	В	Α	В	Α	В
1: det/det/det	74.00	69.36	94.14	93.47	96.29	82.15	80.95	74.14	73.40	73.86
2: det/prob/det	73.51	69.57	97.53	94.85	96.70	87.83	90.83	77.73	73.70	73.35
3: det/prob/prob	74.67	69.82	95.86	94.74	96.35	82.57	82.26	75.29	73.84	74.34
4: det/prob/prob	77.25	73.87	96.53	96.04	98.00	90.59	84.91	79.36	77.26	77.83
5: det/prob/prob	74.76	69.97	95.85	94.69	96.44	82.51	81.99	75.07	73.90	74.16
6: prob/prob/det	75.83	73.11	93.40	93.76	94.44	93.67	79.41	79.42	80.87	80.60
7: prob/prob/prob	78.31	73.72	95.62	95.10	98.84	91.86	96.94	79.49	85.78	81.81

Table 3: Learned relational rules for the different predicates (fold 1).

0.9375::athleteplaysforteam(A,B)	\leftarrow	athleteledsportsteam(A,B).
0.9675::athleteplaysforteam(A,B)	\leftarrow	athleteledsportsteam(A,V1), teamplaysagainstteam(B,V1).
0.9375::athleteplaysforteam(A,B)	\leftarrow	athleteplayssport(A,V1), teamplayssport(B,V1).
0.5109::athleteplaysforteam(A,B)	\leftarrow	athleteplaysinleague(A,V1), teamplaysinleague(B,V1).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteledsportsteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),
		teamplayssport(V2,B).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),
		teamplayssport(V2,B),teamalsoknownas(V1,V2).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteplaysforteam(A,V1), teamplayssport(V1,B).
0.9286::athleteplaysinleague(A,B)	\leftarrow	athleteledsportsteam(A,V1), teamplaysinleague(V1,B).
0.7868::athleteplaysinleague(A,B)	\leftarrow	athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplaysinleague(V1,B)
0.9384::athleteplaysinleague(A,B)	\leftarrow	athleteplayssport(A,V2), athleteplayssport(V1,V2), teamplaysinleague(V1,B).
0.9024::athleteplaysinleague(A,B)	\leftarrow	athleteplaysforteam(A,V1), teamplaysinleague(V1,B).

Roadmap

- Modeling (ProbLog and Church, another representative of PP)
- Inference
- Learning
- Dynamics and Decisions

... with some detours on the way

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

decision fact: true or false?

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

probabilistic facts + logical rules

- person(1).
 person(2).
 person(3).
 person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy_marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

```
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).
```

```
utility facts: cost/reward if true
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy_marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

```
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1) marketed(3)

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1)	marketed(3)						
bt(2,1)	bt(2,4)	bm(1)					

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1)	marketed(3)				
bt(2,1)	bt(2,4)	bm(1)			
buys (1)	buys(2)				

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys (P) => 5 :- person (P).
marketed (P) => -3 :- person (P).
utility = -3 + -3 + 5 + 5 = 4
probability = 0.0032
marketed (1) marketed (3)
```

bt(2,1)	bt(2,4)	bm(1)

buys(1) buys(2)

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys (P) => 5 :- person (P).
marketed (P) => -3 :- person (P).
utility = -3 + -3 + 5 + 5 = 4
probability = 0.0032
marketed(1) marketed(3)
bt(2,1) bt(2,4) bm(1)
buys(1) buys(2)
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

world contributes 0.0032×4 to expected utility of strategy
DTProbLog

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy_marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```


- person(1).
 person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

task: find strategy that maximizes expected utility **solution:** using ProbLog technology

- Causes: Mutations
 - All related to similar phenotype
- Effects: Differentially expressed genes
- 27 000 cause effect pairs

- Interaction network:
 - 3063 nodes
 - Genes
 - Proteins
 - 16794 edges
 - Molecular interactions
 - Uncertain

- Goal: connect causes to effects through common subnetwork
 - = Find mechanism
- Techniques:
 - DTProbLog [Van den Broeck]
 - Approximate inference

Can we find the mechanism₅connecting

[De Maeyer et al., Molecular Biosystems 13, NAR 15]

causes to effects?

Distributional Clauses (DC)

- A probabilistic logic language
- Logic (relational): a template to define random variables
- MDP representation in Dynamic DC:
 - Transition model: $Head_{t+1} \sim Distribution \leftarrow Conditions_t$
 - Applicable actions: $applicable(Action)_t \leftarrow Conditions_t$
 - Reward: reward(R)_t \leftarrow Conditions_t
 - Terminal state: $stop_t \leftarrow Conditions_t$
- The state can contain:
 - Discrete, continuous variables
 - The number of variables in the state can change over time

IROS 13

IROS 13

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function	
(O, A)	E	Effect prediction	
(O, E)	A	Action recognition/planning	
(A, E)	0	Object recognition/selection	

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function	
(O, A)	E	Effect prediction	
(O, E)	A	Action recognition/planning	
(A, E)	0	Object recognition/selection	

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

What is an affordance ?

Clip 8: Relational O before (l), and E after the action execution (r).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties	Action	Effects
$\begin{array}{c} shape_{O_{Main}}: sprism\\ shape_{O_{Sec}}: sprism\\ dist X_{O_{Main},O_{Sec}}: 6.94cm\\ dist Y_{O_{Main}}: 0.6 \\ \end{array}$	tap(10)	$\begin{array}{c} displ X_{O_{Main}}: 10.33cm\\ displ Y_{O_{Main}}: -0.68cm\\ displ X_{O_{Sec}}: 7.43cm\\ displ Y_{O_{G}}: -1.31cm \end{array}$

- Formalism related to STRIPS but models delta
 - but also joint probability model over A, E, O

A key question in Al:

Statistical relational learning Probabilistic programming, ...

A key question in Al:

Dealing with uncertainty

Statistical relational learning Probabilistic programming, ...

Maurice Bruynooghe Bart Demoen **Anton Dries** Daan Fierens Jason Filippou Bernd Gutmann Manfred Jaeger Gerda Janssens **Kristian Kersting** Angelika Kimmig **Theofrastos Mantadelis** Wannes Meert Bogdan Moldovan Siegfried Nijssen **Davide Nitti** Joris Renkens Kate Revoredo **Ricardo Rocha** Vitor Santos Costa Dimitar Shterionov Ingo Thon Hannu Toivonen Guy Van den Broeck **Mathias Verbeke** Jonas Vlasselaer

Thanks !

http://dtai.cs.kuleuven.be/problog

Introduction.

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components but also the inherent uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms for various inference tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-studied tasks such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models

0.3::stress(X) :- person(X). 0.2::influences(X,Y) :- person(X), person(Y).