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11. IntroductionThere is a general trade-o� in computer science between expressive power and e�-ciency. Theorem proving in �rst order logic is less e�cient but more expressive thantheorem proving in propositional logic. It is therefore no surprise that �rst orderinduction techniques (such as those studied within inductive logic programming)are less e�cient than propositional or attribute-value learning techniques. On theother hand, inductive logic programming is able to solve induction problems beyondthe scope of attribute value learning, cf. (Bratko and Muggleton, 1995).The computational requirements of inductive logic programming systems arehigher than those of propositional learners due to the following reasons: �rst, thespace of clauses considered by inductive logic programming systems typically ismuch larger than that of propositional learners and can even be in�nite. Second,testing whether a clause covers an example is more complex than in attribute valuelearners. In attribute value learners an example corresponds to a single tuple ina relational database, whereas in inductive logic programming one example maycorrespond to multiple tuples of multiple relations. Therefore, the coverage test ininductive logic programming needs a database system to solve complex queries oreven a theorem prover. Third, and this is related to the second point, in attributevalue learning testing whether an example is covered is done locally, i.e. independ-ently of the other examples. Therefore, even if the data set is huge, a speci�ccoverage test can be performed e�ciently. This contrasts with the large majorityof inductive logic programming systems, such as FOIL (Quinlan, 1990) or Progol(Muggleton, 1995), in which coverage is tested globally, i.e. to test the coverageof one example the whole ensemble of examples and background theory needs tobe considered1. Global coverage tests are much more expensive than local ones.Moreover, systems using global coverage tests are hard to scale up. Due to the factthat one single coverage test (on one example) typically takes more than constanttime in the size of the database, the complexity of induction systems exploitingglobal coverage tests will grow more than linearly in the number of examples.In a more recent setting for inductive logic programming, called learning frominterpretations (De Raedt and D�zeroski, 1994; De Raedt et al., 1998), it is assumedthat each example is a small database (or a part of a global database), and localcoverage tests are performed. Algorithms using local coverage tests are typicallylinear in the number of examples. Furthermore, as each example can be loadedindependently of the other ones, there is no need to use a database system evenwhen the whole data set cannot be loaded into main memory.Within the setting of learning from interpretations, we investigate the issue of scal-ing up inductive logic programming. More speci�cally, we present two alternativeimplementations of the Tilde system (Blockeel and De Raedt, 1998): Tildeclassic,which loads all data in main memory, and TildeLDS, which loads the examplesone by one. The latter is inspired by the work by Mehta et al. (1996), who proposea level-wise algorithm that needs one pass through the data per level of the tree itbuilds. Furthermore, we experimentally compare the algorithms on large data setsinvolving 100,000 examples (in the order of 100 MBytes). The experiments clearly



2show that inductive logic programming systems can be scaled up to satisfy thestandards imposed by the data mining community. At the same time, this providesevidence in favor of local coverage tests (as in learning from interpretations) ininductive logic programming.This article is organized as follows. In Section 2 we introduce the learning frominterpretations setting and relate it to the relational database context. In Section3 we introduce �rst order logical decision trees and discuss the ILP system Tilde,which induces such trees. Section 4 shows how many propositional techniquescan be upgraded to the learning from interpretations setting (using Tilde as anillustration), and discusses why this is much harder for the classical ILP setting.Section 5 reports on experiments with Tilde through which we empirically validateour claims, Section 6 discusses some related work and in Section 7 we conclude.2. The learning settingWe �rst introduce the problem speci�cation in a logical context, then discuss it inthe context of relational databases, and �nally relate it to the standard inductivelogic programming setting.We assume familiarity with Prolog or Datalog (see e.g. (Bratko, 1990)), andrelational databases (see e.g. (Elmasri and Navathe, 1989)).A word on our notation: in logical formulae we will adopt the Prolog conventionthat names starting with a capital denote variables, and names starting with alowercase character denote constants.2.1. Problem speci�cationIn our framework, each example is a set of facts. These facts encode the speci�cproperties of the examples in a database. Furthermore, each example is classi-�ed into one of a �nite set of possible classes. One may also specify backgroundknowledge in the form of a Prolog program.More formally, the problem speci�cation is:Given:� a set of classes C (each class label c is a nullary predicate),� a set of classi�ed examples E (each element of E is of the form (e; c) with e aset of facts and c a class label)� and a background theory B,Find: a hypothesis H (a Prolog program), such that for all (e; c) 2 E,� H ^ e ^ B j= c, and� 8c0 2 C � fcg : H ^ e ^B 6j= c0
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Figure 1. Bongard problemsThis setting is known in inductive logic programming under the label learningfrom interpretations (De Raedt and D�zeroski, 1994; De Raedt, 1997; De Raedt etal., 1998) (an interpretation is just a set of facts). Notice that within this setting,one always learns �rst order de�nitions of propositional predicates (the classes). Animplicit assumption is that the class of an example depends on that example only,not on any other examples. This is a reasonable assumption for many classi�cationproblems, though not for all; it precludes, e.g., recursive concept de�nitions.Example: Figure 1 shows a set of pictures each of which is labelled 	 or �. Thetask is to classify new pictures into one of these classes by looking at the objectsin the pictures. We call this kind of problems Bongard-problems, after MikhailBongard, who used similar problems for pattern recognition tests (Bongard, 1970).Assuming we only consider the shape, con�guration (pointing upwards or down-wards, for triangles only) and relative position (objects may be inside other objects)of objects, the pictures in Figure 1 can be represented as follows:Picture 1: fcircle(o1), triangle(o2), points(o2, up), inside(o2, o1)gPicture 2: fcircle(o3), triangle(o4), points(o4, up), triangle(o5),points(o5, down), inside(o4, o5)getc.(The oi are constants denoting geometric objects. The exact names of these con-stants are of no importance; they will not be referred to in the �rst order hypo-thesis.)Background knowledge might be provided to the learner, e.g., the following de�n-itions could be in the background:



4doubletriangle(O1,O2) :- triangle(O1), triangle(O2), O1 6= O2.polygon(O) :- triangle(O).polygon(O) :- square(O).When considering a particular example (e.g. Picture 2) in conjunction with thebackground knowledge it is possible to deduce additional facts in the example. Forinstance, in Picture 2, the facts doubletriangle(o4,o5) and polygon(o4) hold.The format of a hypothesis in this setting will be illustrated later.2.2. Learning from Multiple RelationsThe learning from interpretations setting, as introduced before, can easily be relatedto learning from multiple relations in a relational database.Typically, each predicate will correspond to one relation in the relational database.Each fact in an interpretation is a tuple in the database, and an interpretationcorresponds to a part of the database (a set of tuples). Background knowledge canbe expressed by means of views as well as extensional tables.Example: For the Bongard example, the following database contains a descriptionof the �rst two pictures in Figure 1 (note that an extra relation CONTAINS isintroduced, linking objects to pictures; this relation was implicit in the previousrepresentation):CONTAINSpicture object1 o11 o22 o32 o42 o5CIRCLE TRIANGLE POINTS INSIDEobjecto1o3 objecto2o4o5 object directiono2 upo4 upo5 down inner outero2 o1o4 o5The background knowledge can be de�ned using views, as follows: (we are as-suming here that a relation SQUARE is also de�ned)DEFINE VIEW doubletriangle ASSELECT c1.object, c2.object



5FROM contains c1, c2WHERE c1.object <> c2.objectAND c1.picture = c2.pictureAND c1.object IN triangleAND c2.object IN triangle;DEFINE VIEW polygon ASSELECT object FROM triangleUNIONSELECT object FROM square;In this example the background knowledge is in a sense redundant: it is computedfrom the other relations. This is not necessarily the case. The following exampleillustrates this. It is also a more realistic example of an application where miningmultiple relations is useful.Example: Assume that one has a relational database describing molecules. Themolecules themselves are described by listing the atoms and bonds that occur inthem, as well as some properties of the molecule as a whole. Mendelev's periodictable of elements is a good example of background knowledge about this domain.The following tables illustrate what such a chemical database could look like:MENDELEVnumber symbol atomic weight electrons in outer layer . . .1 H 1.0079 12 He 4.0026 23 Li 6.941 14 Be 9.0121 25 B 10.811 36 C 12.011 4. . . . . . . . . . . . . . .MOLECULES CONTAINSformula name classH2O water inorganicCO2 carbon dioxide inorganicCO carbon monoxide inorganicCH4 methane organicCH3OH methanol organic. . . . . . . . .
molecule atom idH2O h2o-1H2O h2o-2H2O h2o-3CO2 co2-1CO2 co2-2. . . . . .



6ATOMS BONDSatom id elementh2o-1 Hh2o-2 Oh2o-3 Hco2-1 O. . . . . .
atom id1 atom id2 typeh2o-1 h2o-2 singleh2o-2 h2o-3 singleco2-1 co2-2 doubleco2-2 co2-3 double. . . . . . . . .A possible classi�cation problem here is to classify unseen molecules into organicand inorganic molecules, based on their chemical structure.Notice that this representation of examples and background knowledge upgradesthe typical attribute value learning representation in two respects. First, in attrib-ute value learning an example corresponds to a single tuple for a single relation.Our representation allows for multiple tuples in multiple relations. Second, it alsoallows for using background knowledge.By joining all the relations in a database into one huge relation, one can of courseeliminate the need for learning from multiple relations. The above example shouldmake clear that in many cases this is not an option. The information in Mendelev'stable, for instance, would be duplicated many times. Moreover, unless a multiple-instance learner is used (see e.g. (Dietterich et al., 1997)) all the atoms a moleculeconsists of, together with their properties, have to be stored in one tuple, so that aninde�nite number of attributes is needed; see (De Raedt, 1998) for a more detaileddiscussion.While mining such a database is not feasible using propositional techniques, it isfeasible using learning from interpretations. We proceed to show how a relationaldatabase can be converted into a suitable format.Conversion from relational database to interpretations Converting a relationaldatabase to a set of interpretations can be done easily and in a semi-automatedway, as follows:1. Decide which relations are background knowledge.2. Let DB be the original database without the background relations.3. Choose an attribute in a relation that uniquely identi�es the examples.4. For each value i of that attribute:5. S := set of all tuples in DB containing that value6. repeat7. S := S [ set of all tuples in DB referred to by a foreign key in S8. until S does not change anymore9. Si := S



7The tuples in S are here assumed to be labelled with the name of the relation theyare part of. A tuple (attr1; : : : ; attrn) of a relation R can trivially be converted to afact R(attr1; : : : ; attrn). By doing this conversion for all Si, each Si becomes a set offacts describing an individual example i. The extensional background relations canbe converted in the same manner into one set of facts that forms the backgroundknowledge. Background relations de�ned by views can be converted to equivalentProlog programs.The only parts in this conversion process that are hard to automate are theselection of the background knowledge (typically, one selects those relations whereeach tuple can be relevant for many examples) and the conversion of view de�nitionsto Prolog programs. Also, the user must indicate which attribute should be chosenas an example identi�er, as this depends on the learning task.Example: In the chemical database, we choose as example identi�er the molecularformula. The background knowledge consists of the table MENDELEV. In orderto build a description of H2O, one �rst collects the tuples containing H2O; theseare present in MOLECULES and CONTAINS. These tuples contain references toatom id's h2o-i, i = 1; 2; 3, so the tuples containing those symbols are also collected(tuples from ATOMS and BONDS). These again refer to the elements H and O,which are foreign keys for the MENDELEV relation. Since this relation is in thebackground, no further tuples are collected. Converting the tuples to facts, we getthe following description of H2O:fmolecules('H2O', water, inorganic), contains('H2O', h2o-1), contains('H2O', h2o-2), contains('H2O', h2o-3), atoms(h2o-1, 'H'), atoms(h2o-2, 'O'), atoms(h2o-3, 'H'),bonds(h2o-1, h2o-2, single), bonds(h2o-2, h2o-3, single)gSome variations of this algorithm can be considered. For instance, when theexample identi�er has no meaning except that it identi�es the example (as thepicture numbers 1 and 2 for the Bongard example), this attribute can be left outfrom the example description.The key notion in this conversion process is localization of information. It is as-sumed that for each example only a relatively small part of the database is relevant,and that this part can be localized and extracted. From now on, we will refer tothis assumption as the locality assumption.2.3. The standard ILP settingWe now brie
y discuss the standard ILP setting and how it di�ers from our setting.For a more thorough discussion of di�erent ILP settings and the relationships amongthem we refer to (De Raedt, 1997).The standard ILP setting (also known as learning from entailment) is usuallyformulated as follows:Given:� a set of positive examples E+ and a set of negative examples E�



8 � and a background theory B,Find: a hypothesis H (a Prolog program), such that� 8e 2 E+ : H ^ B j= e, and� 8e 2 E� : H ^ B 6j= eNote that in this setting, an example e is a fact (or clause) that is to be ex-plained by H ^ B, while in the learning from interpretations setting a propertyof the example (its class) is to be explained by H ^ B ^ e. Thus, the latter set-ting explicitates the separation between example-speci�c information and generalbackground information.The problem speci�cation as given above is natural for the standard ILP setting,where one could, for instance, give the following examples for the predicate member:+ : member(a, [a,b,c]).+ : member(d, [e,d,c,b]).+ : member(d, [d,c,b]).- : member(b, [a,c,d]).- : member(a, []).- : member(d, [c,b]).and expect the ILP system to come up with the following de�nition:member(X, [X|Y]).member(X, [Y|Z]) :- member(X,Z).Note that the class of an example (i.e., its truth value) now depends on the classof other examples; e.g., the class of member(d, [e,d,c,b]) depends on the classof member(d, [d,c,b]), which is a di�erent example. Because of this property, itis in general not possible to �nd a small subset of the database that is relevant fora single example, i.e., local coverage tests cannot be used. Results from computa-tional learning theory con�rm that learning hypotheses in this setting generally isintractable (see e.g. (D�zeroski et al., 1992; Cohen, 1995; Cohen and Page, 1995)).Since in learning from interpretations the class of an example is assumed to beindependent of other examples, this setting is less powerful than the standard ILPsetting (e.g., for what concerns recursion). With this loss of power comes a gainin e�ciency, through local coverage tests. The interesting point is that the fullpower of standard ILP is not used for most practical applications, and learningfrom interpretations usually turns out to be su�cient for practical applications, seee.g. the proceedings of the ILP workshops and conferences of the last few years(De Raedt, 1996; Muggleton, 1997; Lavra�c and D�zeroski, 1997; Page, 1998).3. Tilde: Induction of First-Order Logical Decision TreesIn this section, we discuss one speci�c ILP system that learns from interpretations,called Tilde (which stands for Top-down Induction of Logical DEcision trees).This system will be used to illustrate the topics discussed in the following sections.



9We �rst introduce the hypothesis representation formalism used by Tilde, thendiscuss an algorithm for the induction of hypotheses in this formalism.3.1. First order logical decision treesWe will use �rst order logical decision trees for representing hypotheses. These arean upgrade of the well-known propositional decision trees to �rst order learning.A �rst order logical decision tree (FOLDT) is a binary decision tree in which� the nodes of the tree contain a conjunction of literals� di�erent nodes may share variables, under the following restriction: a variablethat is introduced in a node (which means that it does not occur in higher nodes)must not occur in the right branch of that node. The need for this restrictionfollows from the semantics of the tree. A variable X that is introduced in anode, is quanti�ed existentially within the conjunction of that node. The rightsubtree is only relevant when the conjunction fails (\there is no such X"), inwhich case further reference to X is meaningless.An example of such a tree is shown in Figure 2.First order logical decision trees can be converted to normal logic programs (i.e.logic programs that allow negated literals in the body of a clause) and to Prologprograms. In the latter case the Prolog program represents a �rst order decisionlist, i.e. an ordered set of rules where a rule is only relevant if none of the rulesbefore it succeed. Each clause in such a Prolog program ends with a cut. We referto (Blockeel and De Raedt, 1998) for more information on the relationship between�rst order decision trees, �rst order decision lists and logic programs.The Prolog program equivalent to the tree in Figure 2 is2class(pos) :- triangle(X), inside(X,Y), !.class(neg) :- triangle(X), !.class(neg).Figure 3 shows how to use FOLDTs for classi�cation. We use the followingnotation: a tree T is either a leaf with class c, in which case we write T = leaf(c),or it is an internal node with conjunction conj, left branch left and right branchright, in which case we write T = inode(conj, left, right).Because an example e is a Prolog program, a test in a node corresponds to checkingwhether a query  C succeeds in e^B (with B the background knowledge). Notethat it is not su�cient to use for C the conjunction conj in the node itself. Since conjmay share variables with nodes higher in the tree, C consists of several conjunctionsthat occur in the path from the root to the current node. More speci�cally, C isof the form Q ^ conj, where Q is the conjunction of all the conditions that occurin those nodes on the path from the root to this node where the left branch waschosen. We call  Q the associated query of the node.When an example is sorted to the left, Q is updated by adding conj to it. Whensorting an example to the right, Q need not be updated: a failed test never intro-duces new variables. E.g., if in Figure 2 an example is sorted down the tree, in the
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triangle(X)

inside(X,Y)

Figure 2. A �rst order logical decision tree that allows to discriminate the two classes for theBongard problem shown in Figure 1.1. procedure classify(e : example) returns class:2. Q := true3. N := root4. while N 6= leaf(c) do5. let N = inode(conj; left; right)6. if Q ^ conj succeeds in e ^B7. then Q := Q ^ conj8. N := left9. else N := right10. return cFigure 3. Classi�cation of an example using an FOLDT (with background knowledge B)node containing inside(X,Y) the correct test is triangle(X), inside(X,Y); it isnot correct to test inside(X,Y) on its own.3.2. The Tilde systemFirst order logical decision trees can be induced in very much the same manner aspropositional decision trees. The generic algorithm for this is usually referred toas TDIDT: top-down induction of decision trees. Examples of systems using thisapproach are C4.5 (Quinlan, 1993a) and CART (Breiman et al., 1984).The algorithm we use for inducing �rst order decision trees is shown in Figure 4.The Tilde system (Blockeel and De Raedt, 1998) is an implementation of this



111. procedure buildtree(T : tree, E: set of examples, Q: query):2.  Qb := element of �( Q) with highest gain (or gain ratio)3. if  Qb is not good /* e.g. does not yield any gain at all */4. then T := leaf(majority class(E))5. else6. conj := Qb �Q7. E1 := fe 2 Ej  Qb succeeds in e ^ Bg8. E2 := fe 2 Ej  Qb fails in e ^ Bg9. buildtree(left, E1, Qb)10. buildtree(right, E2, Q)11. T := inode(conj, left, right)12. procedure Tilde(T : tree, E: set of examples):13. buildtree(T , E, true)Figure 4. Algorithm for �rst-order logical decision tree inductionalgorithm that is based on C4.5. It uses the same heuristics, the same post-pruningalgorithm, etc.The main point where our algorithm di�ers from C4.5 is in the computation ofthe set of tests to be considered at a node. C4.5 only considers tests comparingan attribute with a value. Tilde, on the other hand, generates possible tests bymeans of a user-de�ned re�nement operator. Roughly, this operator speci�es, giventhe associated query of a node, which literals or conjunctions can be added to thequery.More speci�cally, the re�nement operator is a re�nement operator under �-sub-sumption (Plotkin, 1970; Muggleton and De Raedt, 1994). Such an operator �maps clauses onto sets of clauses, such that for any clause c and 8c0 2 �(c), c �-subsumes c0. A clause c1 �-subsumes another clause c2 if and only if there existsa variable substitution � such that c1� � c2. The operator could for instance addliterals to the clause, or unify several variables in it. The use of such re�nementoperators is standard practice in ILP.In order to re�ne a node with associated query  Q, Tilde computes �( Q)and chooses the query Qb 2 �( Q) that results in the best split. The best splitis the one that maximizes a certain quality criterion; in the case of Tilde this is bydefault the information gain ratio, as de�ned by Quinlan (1993a). The conjunctionput in the node consists of Qb �Q, i.e., the literals that have been added to Q inorder to produce Qb.Example: Consider the tree in Figure 2. Assuming that the root node has alreadybeen �lled in with the test triangle(X), how does Tilde process the left child ofit? This child has as associated query  triangle(X). Tilde now generates �( 



12triangle(X)). According to the language bias speci�ed by the user (see below), apossible result could be (we use semicolons to separate the elements of �, as thecomma denotes a conjunction in Prolog)�( triangle(X)) = f  triangle(X), inside(X,Y); triangle(X), inside(Y,X); triangle(X), square(Y); triangle(X), circle(Y) gAssuming the best of these re�nements is Qb = triangle(X), inside(X,Y) theconjunction put in the node is Qb �Q = inside(X,Y).Language bias While propositional systems usually have a �xed language bias,most ILP systems make use of a language bias that has been provided by the user.The language bias speci�es what kind of hypotheses are allowed; in the case ofTilde: what kind of literals or conjunctions of literals can be put in the nodesof the tree. This bias follows from the re�nement operator, so it is su�cient tospecify the latter. The speci�c re�nement operator that is to be used is de�ned bythe user in a Progol-like manner (Muggleton, 1995). A set of facts of the formrmode(n: conjunction) is provided, indicating which conjunctions can be added to aquery, the maximal number of times the conjunction can be added (i.e. the maximalnumber of times it can occur in any path from root to leaf, n), and the modes andtypes of its variables.To illustrate this, we return to the example of the Bongard problems. A suitablere�nement operator de�nition in this case would bermode(5: triangle(+-V)).rmode(5: square(+-V)).rmode(5: circle(+-V)).rmode(5: inside(+V,+-W)).rmode(5: inside(-V,+W)).rmode(5: config(+V,up)).rmode(5: config(+V,down)).The mode of an argument is indicated by a +, � or +� sign before a variable.3+ stands for input: the variable should already occur in the associated query of thenode where the test is put. � stands for output: the variable has to be one thatdoes not occur yet. +� means that the argument can be both input and output;i.e. the variable can be a new one or an already existing one. Note that the namesof the variables in the rmode facts are formal names; when the literal is added toa clause actual variable names are substituted for them. Also note that a literalcan have multiple modes, e.g. the above facts specify that at least one of the twoarguments of inside has to be input.This rmode de�nition tells Tilde that a test in a node may consist of check-ing whether an object that has already been referred to has a certain shape (e.g.triangle(X) with X an already existing variable), checking whether there exists an



13object with a certain shape in the picture (e.g. triangle(Y) with Y not occurringin the associated query), testing the con�guration (up or down) of a certain object,and so on. At most 5 literals of a certain type can occur on any path from root toleaf (this is indicated by the 5 in the rmode facts).The decision tree shown in Figure 2 conforms to this speci�cation. When Tildebuilds this tree, in the root node only the tests triangle(X), square(X) andcircle(X) are considered, because each other test requires some variable to oc-cur in the associated query of the node (which for the root node is true). The leftchild node of the root has as associated query triangle(X), which contains onevariable X, hence the tests that are considered for this node are:triangle(X) triangle(Y) inside(X,Y) points(X,up)square(X) square(Y) inside(Y,X) points(X,down)circle(X) circle(Y)Assuming that inside(X,Y) yields the best split, this literal is put in the node.In addition to rmodes, so-called lookahead speci�cations can be provided. Theseallow Tilde to perform several successive re�nement steps at once. This alleviatesthe well-known problem in ILP (see e.g. (Quinlan, 1993b)) that a re�nement maynot yield any gain, but may introduce new variables that are crucial for classi�ca-tion. By performing successive re�nement steps at once, Tilde can look ahead inthe re�nement lattice and discover such situations.For instance, lookahead(triangle(T), points(T,up)) speci�es that wheneverthe literal triangle(T) is considered as possible addition to the current associ-ated query, additional re�nement by adding points(T,up) should be tried in thesame re�nement step. Thus, both triangle(T) and triangle(T), points(T,up)would be considered as possible addition. This is useful because normallyTilde canconstruct the test triangle(T), points(T,up) only by �rst putting triangle(T)in the node, then putting points(T,up) in its left child node. But if triangle(X)already occurs in the associated query, then triangle(T) cannot yield any gain (ifyou already know that there is a triangle, the question \is there a triangle" willnot give you new information) and hence would never be selected, and this wouldprevent points(T,up) from being added as well.This lookahead method is very similar to lookahead methods that have beenproposed for propositional decision tree learners. While for propositional systemsthe advantage of lookahead is generally considered to be marginal, it is much greaterin ILP because of the occurrence of variables.We �nally mention that Tilde handles numerical data by means of a discretiz-ation algorithm that is based on Fayyad and Irani's (1993) and Dougherty et al.'s(1995) work, but extends it to �rst order logic (Van Laer et al., 1997). The al-gorithm accepts input of the form discretize(Query, Var), with Var a variableoccurring in Query. It runs Query in all the examples, collecting all instantiationsof Var that can be found, and �nally generates discretization thresholds based onthis set of instantiations. Since this discretization procedure is not crucial to thispaper, we refer to (Van Laer et al., 1997; Blockeel and De Raedt, 1997) for moredetails.



14Input Format A data set is presented to Tilde in the form of a set of interpret-ations. Each interpretation consists of a number of Prolog facts, surrounded bya begin and end line. The background knowledge is simply a Prolog program.Examples of this will be shown in Section 5.Applications of Tilde Although the above discussion of Tilde takes the view-point of induction of classi�ers, the use of �rst order logical decision trees is notlimited to classi�cation. Numerical predictions can be made by storing numbersinstead of classes in the leaves; such trees are usually called regression trees. An-other task that is important for data mining, is clustering. Induction of clusterhierarchies can also be done using a TDIDT approach, as is explained in (Blockeelet al., 1998).It should be clear, therefore, that the techniques that will be described later inthis text should not be seen as speci�c for the classi�cation context. They have amuch broader application domain.4. Upgrading Propositional KDD Techniques for TildeIn this section we discuss how existing propositional KDD techniques can be up-graded to �rst order learning in our setting. The Tilde system will serve as a casestudy here. Indeed, all of the techniques proposed below (except sampling) havebeen implemented in Tilde. We stress, however, that the methodology of upgrad-ing KDD techniques is not speci�c for Tilde, nor for induction of decision trees.It can also be used for rule induction, discovery of association rules, and otherkinds of discovery. Systems such as Claudien (De Raedt and Dehaspe, 1997),ICL (De Raedt and Van Laer, 1995) and Warmr (Dehaspe and De Raedt, 1997)are illustrations of this. Both learn from interpretations and upgrade propositionaltechniques. ICL learns �rst order rule sets, upgrading the techniques used in CN2,and Warmr learns a �rst order equivalent of association rules (\association rulesover multiple relations"). Warmr has been designed speci�cally for large databasesand employs an e�cient algorithm that is an upgrade of Apriori (Agrawal et al.,1996).4.1. Di�erent Implementations of TildeWe discuss two di�erent implementations of Tilde: one is a straightforward im-plementation, following closely the TDIDT algorithm. The other is a more soph-isticated implementation that aims speci�cally at handling large data sets; it isbased on work by Mehta et al. (1996) , and as such is our �rst example of howpropositional techniques can be upgraded.4.1.1. A straightforward implementation: Tildeclassic The original Tilde im-plementation, which we will refer to as Tildeclassic, is based on the algorithmshown in Figure 4. This is the most straightforward way of implementing TDIDT.



151. for each re�nement  Qi:2. /* counter[true] and counter[false] are class distributions,3. i.e. arrays mapping classes onto their frequencies */4. for each class c : counter[true][c] := 0, counter[false][c] := 05. for each example e:6. if  Qi succeeds in e7. then increase counter[true][class(e)] by 18. else increase counter[false][class(e)] by 19. si := weighted average class entropy(counter[true], counter[false])10. Qb := that Qi for which si is minimal /* highest gain */Figure 5. Computation of the best test Qb in Tildeclassic.Noteworthy characteristics are that the tree is built depth-�rst, and that the besttest is chosen by enumerating the possible tests and for each test computing itsquality (to this aim the test needs to be evaluated on every single example), as isshown in Figure 5. This algorithm should be seen as a detailed description of line6 in Figure 4.Note that with this implementation, it is crucial that fetching an example fromthe database in order to query it is done as e�ciently as possible, because thisoperation is inside the innermost loop. For this reason, Tildeclassic loads all datainto main memory when it starts up. Localization is then achieved by using themodule system of the Prolog engine in which Tilde runs. Each example is loadedinto a di�erent module, and accessing an example is done by changing the currentlyactive module, which is a very cheap operation. One could also load all the examplesinto one module; no example selection is necessary then, and all data can alwaysbe accessed directly. The disadvantage is that the relevant data needs to be lookedup in a large set of data, so that a good indexing scheme is necessary in order tomake this approach e�cient. We will return to this in the section on experiments.We point out that, when examples are loaded into di�erent modules, Tildeclassicpartially exploits the locality assumption (in that it handles each individual exampleindependently from the others, but still loads all the examples in main memory).It does not exploit this assumption at all when all the examples are loaded into onemodule.4.1.2. A more sophisticated implementation: TildeLDS Mehta et al. (1996)proposed an alternative implementation of TDIDT that is oriented towards mininglarge databases. With their approach, the database is accessed less intensively,which results in an important e�ciency gain. We have adopted this approach foran alternative implementation of Tilde, which we call TildeLDS (LDS stands forLarge Data Sets).



161. procedure TildeLDS:2. S := frootg3. while S 6= � do4. /* add one level to the tree */5. for each example e that is not covered by a leaf node:6. load e7. N := the node in S that covers e8.  Q := associated query(N)9. for each re�nement  Qi of  Q:10. if  Qi succeeds in e11. then increase counter[N ,i,true][class(e)] by 112. else increase counter[N ,i,false][class(e)] by 113. for each node N 2 S :14. remove N from S15.  Qb := best test(N)16. if  Qb is not good17. then N := leaf(majority class(N))18. else19.  Q := associated query(N)20. conj := Qb �Q21. N := inode(conj, left, right)22. add left and right to S23. function best test(N : node) returns query:24.  Q := associated query(N)25. for each re�nement  Qi of  Q:26. CDl := counter[N ,i,true]27. CDr := counter[N ,i,false]28. si := weighted average class entropy(CDl, CDr)29. Qb := that Qi for which si is minimal30. return  QbFigure 6. The TildeLDS algorithmThe alternative algorithm is shown in Figure 6. It di�ers from Tildeclassic inthat the tree is now built breadth-�rst, and examples are loaded into main memoryone at a time.



17The algorithm works level-wise. Each iteration through the while loop will ex-pand one level of the decision tree. S contains all nodes at the current level ofthe decision tree. To expand this level, the algorithm considers all nodes N inS. For each node and for each re�nement in that node, a separate counter (tocompute class distributions) is kept. The algorithms makes one pass through thedata, during which for each example that belongs to a non-leaf node N it tests allre�nements for N on the example and updates the corresponding counters.Note that while for Tildeclassic the example loop was inside the re�nementloop, the opposite is true now. This minimizes the number of times a new examplemust be loaded, which is an expensive operation (in contrast with the previousapproach where all examples were in main memory and examples only had to be\selected" in order to access them, examples are now loaded from disk). In thecurrent implementation each example needs to be loaded at most once per level ofthe tree (\at most" because once it is in a leaf it need not be loaded anymore),hence the total number of passes through the data �le is equal to the depth ofthe tree, which is the same as was obtained for propositional learning algorithms(Mehta et al., 1996).The disadvantage of this algorithm is that a four-dimensional array of countersneeds to be stored instead of a two-dimensional one (as in Tildeclassic), becausedi�erent counters are kept for each node and for each re�nement.Care has been taken to implement TildeLDS in such a way that the size of thedata set that can be handled is not restricted by internal memory (in contrast toTildeclassic). Whenever information needs to be stored the size of which dependson the size of the data set, this information is stored on disk.4 When processinga certain level of the tree, the space complexity of TildeLDS therefore contains acomponent O(r � n) with n the number of nodes on that level and r the (average)number of re�nements of those nodes (because counters are kept for each re�ne-ment in each node), but is constant in the number of examples. This contrastswith Tildeclassic where space complexity contains a component O(m) with m thenumber of examples (because all examples are loaded at once).While memory now restricts the number of re�nements that can be consideredin each node and the maximal size of the tree, this restriction is unimportant inpractice, as the number of re�nements and the tree size are usually much smallerthan the upper bounds imposed by the available memory. Therefore TildeLDStypically consumes less memory than Tildeclassic, and may be preferable evenwhen the whole data set can be loaded into main memory.4.2. SamplingWhile the above implementation is one step towards handling large data sets, therewill always be data sets that are too large to handle. An approach that is often takenby data mining systems when there are too many examples, is to select a samplefrom the data and learn from that sample. Such techniques are incorporated in e.g.C4.5 (Quinlan, 1993a) and CART (Breiman et al., 1984).



18In the standard ILP context there are some di�culties with sampling, whichcan be ascribed to the lack of a locality assumption. When one example containsinformation that is relevant for another example, either both examples have to beincluded together in the sample, or none of them should. Otherwise, one obtainsa sample in which some examples have an incomplete description (and hence arenoisy). It is even possible that no good sample can be drawn because all theexamples are related to one another. To the best of our knowledge sampling hasreceived little attention inside ILP, as is also noted by F�urnkranz (1997a) andSrinivasan (1998).If the locality assumption can be made, such sampling problems do not occur.Picking individual examples from the population in a random fashion, independ-ently from one another, is su�cient to create a good sample.Automatic sampling has not been included in the current Tilde implementations.We do not give this high priority because Tilde learns from a 
at �le of datawhich is produced by extracting information from a database and putting relatedinformation together (as explained earlier in this text). Sampling should be done atthe level of the extraction of information, not by Tilde itself. It is rather ine�cientto convert the whole database into a 
at �le and then use only a part of that �le,instead of only converting the part of the database that will be used.We do not present experiments with sampling, as the e�ect of sampling in datamining is out of the scope of this paper; instead we refer to the already existingstudies on this subject (see e.g. (Muggleton, 1993; F�urnkranz, 1997b; Srinivasan,1999)).4.3. Internal ValidationInternal validation means that a part of the learning set (the validation set) is keptapart for validation purposes, and the rest is used as the training set for buildingthe hypothesis. Such a methodology is often followed for tuning parameters of asystem or for pruning. Similar to sampling, partitioning the learning set is easyif the locality assumption holds, otherwise it may be hard; hence learning frominterpretations makes it easier to incorporate validation based techniques in anILP system.4.4. ScalabilityDe Raedt and D�zeroski (1994) have shown that in the learning from interpretationssetting, learning �rst-order clausal theories is tractable. More speci�cally, given�xed bounds on the maximal length of clauses and the maximal arity of literals,such theories are polynomial-sample polynomial-time PAC-learnable. This positiveresult is related directly to the learning from interpretations setting.Quinlan (1986) has shown that induction of decision trees has time complexityO(a �N � n) where a is the number of attributes of each example, N is the numberof examples and n is the number of nodes in the tree. Since Tilde uses basicallythe same algorithm as Quinlan, it inherits the linearity in the number of examples



19and in the number of nodes. The main di�erence between Tilde and C4.5, as wealready noted, is the generation of tests in a node.The number of tests to be considered in a node depends on the re�nement oper-ator. There is no theoretical bound on this, as it is possible to de�ne re�nementoperators that cause an in�nite branching factor. In practice, useful re�nement op-erators always generate a �nite number of re�nements, but even then this numbermay not be bounded: the number of re�nements typically increases with the lengthof the associated query of the node. Also, the time for performing one single teston a single example depends on the complexity of that test (it is in the worst caseexponential in the length of the conjunction).Thus, we can say that induction of �rst order decision trees has time complexityO(N � n � t � c) with t the average number of tests performed in each node and c theaverage time complexity of performing one test for one example, if those averagesexist. If one is willing to accept an upper bound on the complexity of the theorythat is to be learned (which was done for the PAC-learning results) and de�nesa �nite re�nement operator, both the complexity of performing a single test on asingle example and the number of tests are bounded and the averages do exist.Our main conclusion from this is that the time complexity of Tilde is linear in thenumber of examples. This is a stronger claim than can be made for the standard ILPsetting. The time complexity also depends on the global complexity of the theoryand the branching factor of the re�nement operator, which are domain-dependentparameters.5. ExperimentsIn this experimental section we try to validate our claims about time complexityempirically, and explore some in
uences on scalability. More speci�cally, we wantto:� validate the claim that when the localization assumption is exploited, inductiontime is linear in the number of examples (all other things being equal, i.e. wecontrol for other in
uences on induction time such as the size of the tree)� study the in
uence of localization on induction time (by quantifying the amountof localization and investigating its e�ect on the time complexity)� investigate how the induction time varies with the size of the data set in morepractical situations (if we do not control other in
uences; i.e. a larger data setmay cause the learner to induce a more complex theory, which in itself has ane�ect on the induction time)Before discussing the experiments themselves, we describe the data sets that wehave used.



205.1. Description of the Data Sets5.1.1. RoboCup Data Set This is a data set containing data about soccer gamesplayed by software agents training for the RoboCup competition (Kitano et al.,1997). It contains 88594 examples and is 100MB large. Each example consists of adescription of the state of the soccer terrain as observed by one speci�c player on asingle moment. This description includes the identity of the player, the positions ofall players and of the ball, the time at which the example was recorded, the actionthe player performed, and the time at which this action was executed. Figure 7shows one example.While this data set would allow rather complicated theories to be constructed, forour experiments the language bias was very simple and consisted of a propositionallanguage (only high-level commands are learned). This use of the data set re
ectsthe learning tasks considered up till now by the people who are using it, see (Jacobset al., 1998). This does not in
uence the validity of our results for relationallanguages, because the propositions are de�ned by the background knowledge andtheir truth values are computed at runtime, so the query that is really executedis relational. For instance, the proposition have ball, indicating whether someplayer of the team has the ball in its possession, is computed from the position ofthe player and of the ball.5.1.2. Poker Data Sets The Poker data sets are arti�cially created data setswhere each example is a description of a hand of �ve cards, together with a name forthe hand (pair, three of a kind, . . . ). The aim is to learn de�nitions for several pokerconcepts from a set of examples. The classes that are considered here are nothing,pair, two pairs, three of a kind, full house and four of a kind. This is,of course, a simpli�cation of the real poker domain, where more classes exist andit is necessary to distinguish between e.g. a pair of queens and a pair of kings; butthis simpli�ed version su�ces to illustrate the relevant topics and keeps learningtimes su�ciently low to allow for reasonably extensive experiments.Figure 8 illustrates how one example in the poker domain can be represented. Wehave created the data sets for this domain using a program that randomly generatesexamples for this domain. The advantage of this approach is its 
exibility: it iseasy to create multiple training sets of increasing size, as well as an independenttest set.An interesting property of this data set is that some classes, e.g. four of a kind,are very rare, hence a large data set is needed to learn these classes (assuming thedata are generated randomly).5.1.3. Mutagenesis Data Set The Mutagenesis dataset (Srinivasan et al., 1996)is a classic benchmark in Inductive Logic Programming. The set that has beenused most often in the literature consists of 188 examples. Each example describes amolecule. Some of these molecules are mutagenic (i.e., may cause DNA mutations),
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begin(model(e71)).player(my,1,-48.804436,-0.16494742,339).player(my,2,-34.39789,1.0097091,362).player(my,3,-32.628735,-18.981379,304).player(my,4,-27.1478,1.3262547,362).player(my,5,-31.55078,18.985638,362).player(my,6,-41.653893,15.659259,357).player(my,7,-48.964966,25.731588,352).player(my,8,-18.363993,3.815975,362).player(my,9,-22.757153,32.208805,347).player(my,10,-12.914384,11.456045,362).player(my,11,-10.190831,14.468359,18).player(other,1,-4.242554,11.635328,314).player(other,2,0.0,0.0,0).player(other,3,-13.048958,23.604038,299).player(other,4,0.0,0.0,0).player(other,5,2.4806643,9.412553,341).player(other,6,-9.907758,2.6764495,362).player(other,7,0.0,0.0,0).player(other,8,0.0,0.0,0).player(other,9,-4.2189126,9.296844,339).player(other,10,0.4492856,11.43235,158).player(other,11,0.0,0.0,0).ball(-32.503292,0.81057936,362).mynumber(5).rctime(362).turn(137.4931640625).actiontime(362).end(model(e71)).Figure 7. The Prolog representation of one example in the RoboCup data set. A fact suchas player(other,3,-13.048958,23.604038,299) means that player 3 of the other team was lastseen at position (-13,23.6) at time 299. A position of (0,0) means that that player has never beenobserved by the player that has generated this model. The action performed currently by thisplayer is turn(137.4931640625): it is turning towards the ball.



22begin(model(4)).card(7,spades).card(queen,hearts).card(9,clubs).card(9,spades).card(ace,diamonds).pair.end(model(4)).Figure 8. An example from the Poker data set.others are not. The task is to predict the mutagenicity of a molecule from itsdescription.The data set is a typical ILP data set in that the example descriptions are highlystructured, and there is background knowledge about the domain. Several levelsof background knowledge have been studied in the literature (see again Srinivasanet al. (1996)); for our experiments we have always used the simplest backgroundknowledge, i.e. only structural information about the molecules (the atoms andbonds occurring in them) are available.Figure 9 shows a part of the description of one molecule.5.2. Materials and SettingsAll experiments were performed with the two implementations of Tilde we dis-cussed: Tildeclassic and TildeLDS. These programs are implemented in Prologand run under the MasterProlog engine (formerly named ProLog-by-BIM). Thehardware we used is a Sun Ultra-2 at 167 MHz, running the Solaris system (exceptwhen stated otherwise).Both Tildeclassic and TildeLDS o�er the possibility to precompile the data�le. We exploited this feature for all our experiments. For TildeLDS this raisesthe problem that in order to load one example at a time, a di�erent object �le hasto be created for each example (MasterProlog o�ers no predicates for loading onlya part of an object �le). This can be rather impractical. For this reason severalexamples are usually compiled into one object �le; a parameter called granularity(G) controls how many examples can be included in one object �le.Object �les are then loaded one by one by TildeLDS, which means that Gexamples at a time are loaded into main memory (instead of one). Because of this,the granularity parameter can a�ect the e�ciency ofTildeLDS. This is investigatedin our experiments.By default, a value of 10 was used for G.
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begin(model(1)).pos.atom(d1_1,c,22,-0.117).atom(d1_2,c,22,-0.117).atom(d1_3,c,22,-0.117).atom(d1_4,c,195,-0.087).atom(d1_5,c,195,0.013).atom(d1_6,c,22,-0.117).(...)atom(d1_25,o,40,-0.388).atom(d1_26,o,40,-0.388).bond(d1_1,d1_2,7).bond(d1_2,d1_3,7).bond(d1_3,d1_4,7).bond(d1_4,d1_5,7).bond(d1_5,d1_6,7).bond(d1_6,d1_1,7).bond(d1_1,d1_7,1).bond(d1_2,d1_8,1).bond(d1_3,d1_9,1).(...)bond(d1_24,d1_19,1).bond(d1_24,d1_25,2).bond(d1_24,d1_26,2).end(model(1)).Figure 9. The Prolog representation of one example in the Mutagenesis data set. The atomfacts enumerate the atoms in the molecule. For each atom its element (e.g. carbon), type (e.g.carbon can occur in several con�gurations; each type corresponds to one speci�c con�guration)and partial charge. The bond facts enumerate all the bonds between the atoms (the last argumentis the type of the bond: single, double, aromatic, etc.). pos denotes that the molecule belongs tothe positive class (i.e. is mutagenic).



245.3. Experiment 1: Time Complexity5.3.1. Aim of the Experiment As mentioned before, induction of trees withTildeLDS should in principle have a time complexity that is linear in the numberof examples. With our �rst experiment we empirically test whether our imple-mentation indeed exhibits this property. We also compare it with other approacheswhere the locality assumption is exploited less or not at all.We distinguish the following approaches:� loading all data at once in main memory without exploiting the locality as-sumption (the standard ILP approach)� loading all data at once in main memory, exploiting the locality assumption;this is what Tildeclassic does� loading examples one at a time in main memory; this is what TildeLDS doesTo the best of our knowledge all ILP systems that do not learn from interpret-ations follow the �rst approach (with the exception of a few systems that accessan external database directly instead of loading the data into main memory, e.g.Rdt/db (Morik and Brockhausen, 1997) ; but these systems still do not make alocality assumption). We can easily simulate this approach with Tildeclassic byspecifying all information about the examples as background knowledge. For thebackground knowledge no locality assumption can be made, since all backgroundknowledge is potentially relevant for each example.The performance of a Prolog system that works with a large database is improvedsigni�cantly if indexes are built for the predicates. On the other hand, adding in-dexes for predicates creates some overhead with respect to the internal space that isneeded, and a lot of overhead for the compiler. The MasterProlog system by defaultindexes all predicates, but this indexing can be switched o�. We have performedexperiments for the standard ILP approach both with and without indexing (thus,the �rst approach in the above list is actually subdivided into \indexed" and \notindexed").5.3.2. Methodology Since the aim of this experiment is to determine the in
uenceof the number of examples (and only that) on time complexity, we want to controlas much as possible other factors that might also have an in
uence. We have seenin Section 4.4 that these other factors include the number of nodes n, the averagenumber of tests per node t and the average complexity of performing one test onone single example c. c depends on both the complexity of the queries themselvesand on the example sizes.When varying the number of examples for our experiments, we want to keep thesefactors constant. This means that �rst of all the re�nement operator should be thesame for all the experiments. This is automatically the case if the user does notchange the re�nement operator speci�cation (the rmode facts) between consecutiveexperiments.



25The other factors can be kept constant by ensuring that the same tree is built ineach experiment, and that the average complexity of the examples does not change.In order to achieve this, we adopt the following methodology. We create, from asmall data set, larger data sets by including each single example several times. Byensuring that all the examples occur an equal number of times in the resulting dataset, the class distribution, average complexity of testing a query on an example etc.are all kept constant. In other words, all variation due to the in
uence of individualexamples is removed.Because the class distribution stays the same, the test that is chosen in each nodealso stays the same. This is necessary to ensure that the same tree is grown, butnot su�cient: the stopping criterion needs to be adapted as well so that a node thatcannot be split further for the small data set is not split when using the larger dataset either. In order to achieve this, the minimal number of examples that have tobe covered by each leaf (which is a parameter of Tilde) is increased proportionallyto the size of the data set.By following this methodology, the mentioned unwanted in
uences are �lteredout of the results.5.3.3. Materials We used the Mutagenesis data set for this experiment. Othermaterials are as described in Section 5.2.5.3.4. Setup of the Experiment Four di�erent versions of Tilde are compared:� Tildeclassic without locality assumption, without indexing� Tildeclassic without locality assumption, with indexing� Tildeclassic with locality assumption� TildeLDSThe �rst three \versions" are actually the same version of Tilde as far as theimplementation of the learning algorithm is concerned, but di�er in the way thedata are represented and in the way the underlying Prolog system handles them.Each Tilde version was �rst run on the original data set, then on data setsthat contain each original example 2n times, with n ranging from 1 to 9. Table 1summarizes some properties of the data sets that were obtained in this fashion.For each run on each data set we have recorded the following:� the time needed for the induction process itself (in CPU-seconds)� the time needed to compile the data (in CPU-seconds). The di�erent systemscompile the data in di�erent ways (e.g. according to whether indexes need tobe built). As compilation of the data need only be done once, even if afterwardsseveral runs of the induction system are done, compilation time may seem lessrelevant. Still, it is important to see how the compilation scales up, since it isnot really useful to have an induction method that scales linearly if it needs apreprocessing step that scales super-linearly.



26 Table 1. Properties of the example setsmultiplication factor #examples #facts size (MB)1 188 10512 0.252 376 21024 0.54 752 42048 18 1504 84096 216 3008 168192 432 6016 336384 864 12032 672768 16128 24064 1,345,536 32256 48128 2,691,072 65512 96256 5,382,144 130Table 2. Scaling properties of TildeLDS interms of the number of examplesmultiplication time (CPU seconds)factor induction compilation1 123 32 245 6.34 496 12.78 992 2516 2026 5032 3980 9764 7816 194128 15794 391256 32634 799512 76138 16195.3.5. Discussion of the Results Tables 2, 3, 4 and 5 give an overview of thetime each Tilde version needed to induce a tree for each set, as well as the time ittook to compile the data into the correct format. The results are shown graphicallyin Figure 10. Note that both the number of examples and time are indicatedon a logarithmic scale. Care must be taken when interpreting these graphs: astraight line does not indicate a linear relationship between the variables. Indeed,if log y = n � logx, then y = xn. This means the slope of the line should be 1 inorder to have a linear relationship, while 2 indicates a quadratic relationship, andso on. In order to make it easier to recognize a linear relationship (slope 1), thefunction y = x has been drawn on the graphs as a reference.Note that only TildeLDS scales up well to large data sets. The other versionsof Tilde had problems loading or compiling the data from a multiplication factorof 16 or 32 on.The graphs and tables show that induction time is linear in the number of ex-amples for TildeLDS, for Tildeclassic with locality, and for Tildeclassic withoutlocality but with indexing. For Tildeclassic without locality or indexing the in-duction time increases quadratically with the number of examples. This is not



27Table 3. Scaling properties of Tildeclassic interms of the number of examplesmultiplication time (CPU seconds)factor induction compilation1 26.3 6.82 42.5 13.74 75.4 27.18 148.7 54.216 296.1 110.132 ?* 217.1* Prolog engine failed to load the dataTable 4. Scaling properties of Tilde withoutlocality assumption, with indexing, in terms ofnumber of examplesmultiplication time (CPU seconds)factor induction compilation1 26.1 20.62 45.2 2934 83.9 5728 176.7 164016 ?* 538132 ?* 18388* Prolog engine failed to load the dataTable 5. Scaling properties of Tilde withoutlocality assumption, without indexing, in termsof number of examplesmultiplication time (CPU seconds)factor induction compilation1 2501 2.852 12385 5.914 51953 12.218 207966 25.4716 ?* 52.2532 ?*** Prolog engine failed to load the data** Prolog compiler failed to compile the data
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Figure 10. Scaling properties of TildeLDS in terms of number of examples



29unexpected, as in this setting the time needed to run a test on one single exampleincreases with the size of the dataset.With respect to compilation times, we note that all are linear in the size ofthe data set, except Tildeclassic without locality and with indexing. This is incorrespondence with the fact that building an index for the predicates in a deductivedatabase is an expensive operation, super-linear in the size of the database.Furthermore, the experiments con�rm that Tildeclassic with locality scales aswell as TildeLDS with respect to time complexity, but for large data sets runs intoproblems because it cannot load all the data.Observing that without indexing induction time increases quadratically, and withindexing compilation time increases quadratically, we conclude that the localityassumption is indeed crucial to our linearity results, and that loading only a fewexamples at a time in main memory makes it possible to handle much larger datasets.5.4. Experiment 2: The E�ect of Localization5.4.1. Aim of the experiment In the previous experiment we studied the e�ectof the number of examples on time complexity, and observed that this e�ect isdi�erent according to whether the locality assumption is made. In this experimentwe do not just distinguish between localized and not localized, but consider gradualchanges in localization, and thus try to quantify the e�ect of localization on theinduction time.5.4.2. Methodology We can test the in
uence of localization on the e�ciency ofTildeLDS by varying the granularity parameter G in TildeLDS. G is the numberof examples that are loaded into main memory at the same time. Localization ofinformation is stronger when G is smaller.The e�ect of G was tested by running TildeLDS successively on the same dataset, under the same circumstances, but with di�erent values for G. In these experi-ments G ranged from 1 to 200. For each value of G both compilation and inductionwere performed ten times; the reported times are the means of these ten runs.5.4.3. Materials We have used three data sets: a RoboCup data set with 10000examples, a Poker data set containing 3000 examples, and the Mutagenesis data setwith a multiplication factor of 8 (i.e. 1504 examples). The data sets were chosento contain a su�cient number of examples to make it possible to let G vary over arelatively broad range, but not more (to limit the experimentation time).Other materials are as described in Section 5.2.5.4.4. Discussion of the Results Induction times and compilation times are plot-ted versus granularity in Figure 11. It can be seen from these plots that inductiontime increases approximately linearly with granularity. For very small granularities,



30too, the induction time can increase. We suspect that this e�ect can be attributedto an overhead of disk access (loading many small �les, instead of fewer larger �les).A similar e�ect is seen when we look at the compilation times: these decrease whenthe granularity increases, but asymptotically approach a constant. This again sug-gests an overhead caused by compiling many small �les instead of one large �le. Thefact that the observed e�ect is smallest for Mutagenesis, where individual examplesare larger, increases the plausibility of this explanation.This experiment clearly shows that the performance of TildeLDS strongly de-pends on G, and that a reasonably small value for G is preferable. It thus con�rmsthe hypothesis that localization of information is advantageous with respect to timecomplexity.5.5. Experiment 3: Practical Scaling Properties5.5.1. Aim of the experiment With this experiment we want to measure how wellTildeLDS scales up in practice, without controlling any in
uences. This meansthat the tree that is induced is not guaranteed to be the same one or have the samesize, and that a natural variation is allowed with respect to the complexity of theexamples as well as the complexity of the queries. This experiment is thus meantto mimic the situations that arise in practice.Since di�erent trees may be grown on di�erent data sets, the quality of these treesmay di�er. We investigate this as well.5.5.2. Methodology The methodology we follow is to choose some domain andthen create data sets with di�erent sizes for this domain. TildeLDS is then runon each data set, and for each run the induction time is recorded, as well as thequality of the tree (according to di�erent criteria, see below).5.5.3. Materials Data sets from two domains were used: RoboCup and Poker.These domains were chosen because large data sets were available for them. Foreach domain several data sets of increasing size were created.Whereas induction times have been measured on both data sets, predictive accur-acy has been measured only for the Poker data set. This was done using a separatetest set of 100,000 examples, which was the same for all the hypotheses.For the RoboCup data set interpretability of the hypotheses by domain expertsis the main evaluation criterion (because these theories are used for veri�cation ofthe behavior of agents, see (Jacobs et al., 1998)).The RoboCup experiments have been run on a SUN SPARCstation-20 at 100MHz; for the Poker experiments a SUN Ultra-2 at 167 MHz was used.5.5.4. Discussion of the Results Table 6 shows the consumed CPU-times in func-tion of the number of examples, as well as the predictive accuracy. These �gures are
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Figure 11. The e�ect of granularity on induction time (full range, and zoomed in on interval[0� 30]) and compilation time



32 Table 6. Consumed CPU-time and accuracy of hypotheses producedby TildeLDS in the Poker domain#examples compilation induction accuracy(CPU-seconds) (CPU-seconds)300 1.36 288 0.988221000 4.20 1021 0.998443000 12.36 3231 0.9984410000 41.94 12325 0.9997630000 125.47 33394 0.99976100000 402.63 121266 1.0Table 7. Consumed CPU-time of hypothesesproduced by TildeLDS in the RoboCup domain#examples compilation induction10000 274 1448 � 4420000 522 4429 � 8330000 862 7678 � 15440000 1120 9285 � 55250000 1302 6607 � 70460000 1793 13665 � 44170000 1964 29113 � 30480000 2373 28504 � 65788594 2615 50353 � 3063plotted in Figure 12. Note that the CPU-time graph is again plotted on a doublelogarithmic scale.With respect to accuracy, the Poker hypotheses show the expected behavior:when more data are available, the hypotheses can predict very rare classes (forwhich no examples occur in smaller data sets), which results in higher accuracy.The graphs further show that in the Poker domain, TildeLDS scales up linearly,even though more accurate (and slightly more complex) theories are found for largerdata sets.In the RoboCup domain, the induced hypotheses were the same for all runs exceptthe 10000 examples run. In this single case the hypothesis was more simple and,according to the domain expert, less informative than for the other runs. Thissuggests that in this domain a relatively small set of examples (20000) su�ces tolearn from.It is harder to see how TildeLDS scales up for the RoboCup data. Since the sametree is returned in all runs except the 10000 examples run, one would expect theinduction times to grow linearly. However, the observed curve does not seem linear,although it does not show a clear tendency to be super-linear either. Because largevariations in induction time were observed, we performed these runs 10 times; theestimated mean induction times are reported together with their standard errors.The standard errors alone cannot explain the observed deviations, nor can variationsin example complexity (all examples are of equal complexity in this domain).
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Figure 13. Consumed CPU-time for TildeLDS in the RoboCup domain, plotted against thenumber of examplesA possible explanation is the fact that the Prolog engine performs a number oftasks that are not controlled by Tilde, such as garbage collection. In speci�ccases, the Prolog engine may perform many garbage collections before expandingits memory space (this happens when the amount of free memory after garbagecollection is always just above some threshold), and the time needed for thesegarbage collections is included in the measured CPU-times. The MasterPrologengine is known to sometimes exhibit such behavior.In order to sort this out, TildeLDS would have to be reimplemented in a lower-level language than Prolog, where one has full control over all computations thatoccur. Such a reimplementation is planned.Due to the domain-dependent character of these complexity results, one shouldbe careful when generalizing them; it seems safe to conclude, however, that thelinear scaling property has at least a reasonable chance of occurring in practice.6. Related WorkOur work is closely related to e�orts in the propositional learning �eld to increasethe capability of machine learning systems to handle large databases. It has beenin
uenced more speci�cally by a tutorial on data mining by Usama Fayyad, inwhich the work of Mehta and others was mentioned (Mehta et al., 1996; Shafer etal., 1996). They were the �rst to propose the level-wise tree building algorithm weadopted, and to implement it in the SLIQ (Mehta et al., 1996) and SPRINT (Shaferet al., 1996) systems. The main di�erence with our approach is that SLIQ andSPRINT learn from one single relation, while TildeLDS can learn from multiplerelations.



35Related work inside ILP includes the Rdt/db system (Morik and Brockhausen,1997), which presents the �rst approach to coupling an ILP system with a relationaldatabase management system (RDBMS). Being an ILP system, Rdt/db also learnsfrom multiple relations. The approach followed is that a logical test that is tobe performed is converted into an SQL query and sent to an external relationaldatabase management system. This approach is essentially di�erent from ours, inthat it exploits as much as possible the power of the RDBMS to e�ciently evaluatequeries. Also, there is no need for preprocessing the data. Disadvantages are thatfor each query an external database is accessed, which is relatively slow, and that itis less 
exible with respect to background knowledge. Furthermore, to obtain goodperformance complex modi�cations to the RDBMS system (tailoring it towardsdata mining) are needed. Preliminary experiments with coupling Claudien andTilde to an Oracle RDBMS con�rmed these claims and caused us to abandon suchan approach.We also mention the KEPLER system (Wrobel et al., 1996) , a data mining toolthat provides a framework for applying a broad range of data mining systems todata sets; this includes ILP systems. KEPLER was deliberately designed to be veryopen, and systems using the learning from interpretations setting can be pluggedinto it as easily as other systems.At this moment few systems use the learning from interpretations setting (DeRaedt and Van Laer, 1995; De Raedt and Dehaspe, 1997; Dehaspe and De Raedt,1997). Of these the research described in (Dehaspe and De Raedt, 1997) (theWarmr system: �nding association rules over multiple relations; see also Dehaspeand Toivonen's contribution in this issue) is most closely related to the work de-scribed in this paper, in the sense that there, too, an e�ort was made to adaptthe system for large databases. The focus of that text is not on the advantages oflearning from interpretations in general, however, but on the power of �rst orderassociation rules.More loosely related work inside ILP would include all e�orts to make ILP systemsmore e�cient. Since most of this work concerns ILP systems that work in theclassical ILP setting, the ways in which this is done usually di�er substantially fromwhat we describe in this paper. For instance, the well-known ILP system Progol(Muggleton, 1995) has recently been extended with caching and other e�ciencyimprovements (Cussens, 1997). Other directions are the use of sampling techniquesand stochastic methods, such as proposed by, e.g., Srinivasan (1999) and Sebag(1998).Finally, the Tilde system is related to other systems that induce �rst orderdecision trees, such as the Struct system (Watanabe and Rendell, 1991) (whichuses a less explicitly logic-based approach) and the regression tree learner SRT(Kramer, 1996).



367. ConclusionsWe have argued and demonstrated empirically that the use of ILP is not limitedto small databases, as is often assumed. Mining databases of a hundred megabyteswas shown to be feasible, and this does not seem to be a limit.The positive results that have been obtained are due mainly to the use of thelearning from interpretations setting, which is more scalable than the classical ILPsetting and makes the link with propositional learning more clear. This meansthat a lot of results obtained for propositional learning can be extrapolated tolearning from interpretations. We have discussed a number of such upgrades, usingthe TildeLDS system as an illustration. The possibility to upgrade the work byMehta et al. (1996) has turned out to be crucial for handling large data sets. Itis not clear how the same technique could be incorporated in a system using theclassical ILP setting.Although we obtained speci�c results only for a speci�c kind of data mining (in-duction of decision trees), the results are generalizable not only to other approacheswithin the classi�cation context (e.g. rule based approaches) but also to other in-ductive tasks within the learning from interpretations setting, such as clustering,regression and induction of association rules.AcknowledgmentsNico Jacobs and Hendrik Blockeel are supported by the Flemish Institute for thePromotion of Scienti�c and Technological Research in the Industry (IWT). Luc DeRaedt is supported by the Fund for Scienti�c Research, Flanders. This work isalso part of the European Community Esprit project no. 20237, Inductive LogicProgramming 2.The authors thank Luc Dehaspe, Kurt Driessens, H�el�ene Legras and Jan Ramonfor proofreading this text, as well as the anonymous reviewers and Sa�so D�zeroskifor their very valuable comments on an earlier draft.Notes1. E.g., testing the coverage of member(a; [b; a]) may depend on member(a; [a]).2. The Prolog program entails class(c) instead of c, in order to ensure that the cuts have theintended meaning; this is a merely syntactical di�erence with the original task formulation.3. The syntax used here di�ers from the actual syntax used by current implementations of Tilde,as it was also mentioned in e.g. (Blockeel and De Raedt, 1998). We feel that the one that isused here is clearer, and plan to use it in future implementations of Tilde.4. The results of all queries for each example are stored in this manner, so that when the bestquery is chosen after one pass through the data, these results can be retrieved from the auxiliary�le, avoiding a second pass through the data.References
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