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Abstract: A major issue in systems biology, which is well studied in control theory, is the
analysis of feedback circuits in a dynamical system. These circuits endow biological systems with
required functional properties. We give an overview on recent research results for the analysis
of feedback circuits in cell-biological systems using methods from control theory. Starting from
the known functional roles of feedback circuits, we summarize the biological questions that
motivate a control theoretical analysis and perspective. Then, suitable methods for such an
analysis are presented. We discuss how to apply these methods to biological research problems
by summarizing different research projects that deal with feedback circuits in cell-biological
systems. Copyright c© 2008 IFAC.

1. INTRODUCTION

The complex behavior of a living cell is generated by
the interactions among thousands of different components.
The complexity and precision of cellular behavior rely
heavily on the existence of feedback circuits in the un-
derlying interaction networks (Araujo and Liotta, 2006).
Thus, understanding the role and functions of feedback
circuits in cellular biological systems is a major issue in
post-genomic biology.

In this review, we summarize recent research results that
use mathematical methods, partly supported by experi-
mental data, to show that and how feedback circuits in cell-
biological systems generate many of the diverse functions
that a living organism requires. Moreover, we want to
show with these results that control theory provides useful
theoretical tools to derive relevant conclusions about the
function of feedback circuits in cellular systems.

We limit the scope of this review to intracellular, non-
spatial processes, where cellular compartments are essen-
tially considered as well-mixed chemical reactors. Mathe-
matical modeling of these processes still remains a difficult
and time-consuming task, although one can typically make
use of some established methodological approaches. The
resulting models are usually given by systems of ordinary
differential equations (ODEs). Although other modelling
methods are used, ODEs are by far the most common for
intracellular processes.

There is a large number of systems within living cells
that fall into the scope of this paper. Metabolic reaction
networks contain a lot of feedback circuits, and in par-
ticular the interactions between the levels of mass flow
and information flow often go beyond classical studies
conducted in the 1970s and 80s.

Another important domain is cellular signalling systems,
ranging from simple environmental response systems that

bacteria use to adapt to their environment to the complex
gene regulation systems involving intercellular communi-
cation in higher organisms. Also, a number of internal cel-
lular mechanisms make intensive use of feedback circuits.
Prominent examples are the circadian clock or the cell-
cycle oscillator.

The paper is structured as follows. In Section 2, we first
introduce special properties of the models that are used in
computational cell biology. Then, the problem of how to
define feedback circuits is discussed. Finally, the roles of
feedback circuits in the cell and related analysis goals from
a theoretical perspective are summarized. In Section 3, we
give an overview on control-theoretic methods that have
been used to analyse feedback circuits. Due to the wide
range of topics, the overview is certainly not exhaustive.
Citing four research projects in the area, we show how
biological questions motivated the application of control-
theoretic methods. We conclude with a short outlook.

2. PROPERTIES OF BIOLOGICAL FEEDBACK

2.1 Typical problem setups

As discussed in the introduction, mathematical models for
a cell-biological system often take the form of an ordinary
differential equation

ẋ = f(x, p), (1)
where x is the concentration vector, f describes the
reaction rates, and p is a vector of reaction parameters
like kinetic constants.

A different formulation of the same model is given by the
differential equation

ẋ = Sv(x, p), (2)
which is based directly on the reaction network that
underlies the considered system. In this formulation, the
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structural and dynamical parts are separated: S is the
stoichiometric matrix and is based solely on the structure
of the chemical reactions, whereas v(x, p) is a vector
of reaction rates, corresponding to the dynamics of the
system (Heinrich and Schuster, 1996).

Models for cell-biological feedback systems share special
properties that are relevant for the application of analysis
tools. Due to the inherent nonlinearities in the reaction
rates v(x, p), the classical methods for linear systems are
typically insufficient to solve a given problem. Yet, not
any type of nonlinearity needs to be considered, as the
reaction rates are generally described by polynomial or
rational functions. Adding further complexity, time delays
are often used when modelling gene expression processes
such as transcription or translation.

A frequent situation for biochemical reaction networks in
cells is that their structure, represented by the stoichio-
metric matrix S, is much better known than the exact
reaction mechanism, which determines the reaction rate
v(x). Also, reaction parameters are uncertain, often up
to several orders of magnitude. Thus, large uncertainties
have always to be taken into account in the analysis of a
biological system.

A structural feature that can be exploited for analysis is
that cell-biological systems are often made up of inter-
connections of smaller input–output systems (or modules)
(Saez-Rodriguez et al., 2004). Techniques from control
theory that make use of the modular composition are
therefore often beneficial for analysis (Angeli et al., 2004;
Kurata et al., 2006).

2.2 How to define feedback in cell biology

Research results in computational cell biology often lack
a precise mathematical definition of what is meant by
feedback, even if specifically studying feedback effects in
biological systems. The traditional biochemist’s view on
feedback arises from metabolic pathways, where the end
product often influences the activity of an enzyme that
catalyzes an upstream reaction (Tyson and Othmer, 1978).
In that view, feedback is restricted to information flow
that modifies upstream mass flow. However, the distinction
between mass and information flow is often not possible,
in particular in signal transduction, and the term feedback
is often used quite vaguely in systems biology. The lack
of a precise definition of feedback may easily induce
misunderstandings. Circuits that are actually present in
a system might not be apparent in cartoon models, and
this may lead to wrong conclusions about the effects of
feedback circuits.

A precise definition of feedback that is useful in our frame-
work builds upon the ODE model ẋ = f(x) describing
the biological system. Feedback circuits in such a system
are identified with circuits in the interaction graph of the
Jacobian ∂f/∂x (see e.g. Cinquin and Demongeot (2002)
for the technical definition). This definition of feedback has
proven very useful in several theoretical investigations of
biological systems. A potential drawback is the large num-
ber of feedback circuits that the definition gives already
for small to medium size systems. Therefore methods to
evaluate the relevance of individual feedback circuits or

to find a subsystem decomposition that hides irrelevant
feedbacks are required (Angeli et al., 2004; Schmidt and
Jacobsen, 2004).

2.3 Analysis goals for biological feedback circuits

In this section, we outline some frequent biological ques-
tions that mainly concern systems with feedback circuits.
Later in this paper, they are used as examples to show
how methods from control theory can help to gain bio-
logical insight. We focus on five frequent functional roles
of biological feedback: stability, complex behavior, signal
sensitivity, robustness and optimality. An illustration of
these functional roles is shown in Figure 1. The questions
arising typically concern the functional role of feedback
circuits: which mechanisms ensure the system’s function,
and how various external or internal perturbations may
influence this function.

One role of feedback circuits in cell-biological systems is
very familiar to the control engineer: it is the stabilization
of a steady state, in particular the ability to counteract
disturbances without directly measuring them. In fact
there are several biological functions that require a steady
state to be maintained despite external perturbations.
Also among biologists, it is widely accepted that feedback
mechanisms can be used to achieve or improve stability.

A special case is the maintenance of the steady state under
the influence of noise. This is of particular importance for
biological systems, which typically face considerable noise
both from the environment and from the discrete nature
of the underlying biochemical reactions (Paulsson, 2004).
The effects of feedback in this case have been shown in
a nice experiment, where a negative feedback circuit has
been constructed in the genetic regulation of a cell by
Becskei and Serrano (2000). This feedback circuit could
efficiently reduce fluctuations from internal noise.

In view of the diverse functions that biological systems
may have, stability can not be the only relevant dynamical
property. More complex patterns of qualitative behavior
like multistability or oscillations are also of interest. Feed-
back circuits in the definition discussed in Section 2.2
have been shown mathematically to be required for a
system to display complex dynamical behavior (Cinquin
and Demongeot, 2002). Two frequently encountered ex-
amples are bistability, i.e. the existence of two stable
equilibrium points, and sustained (limit cycle) oscillations.
This observation has also been made in various biological
systems. Bistable switches based on a positive feedback
circuit have been found for example in the maturation of
frog eggs (Ferrell and Machleder, 1998) and the process of
programmed cell death (Eißing et al., 2004). Also, several
types of oscillatory behavior in biological feedback systems
have been studied extensively (Goldbeter, 2002).

Even more than maintaining steady state values, living
systems need to maintain complex functionality, as e.g.
represented by their qualitative dynamical behavior, under
environmental and internal perturbations. Thus, robust-
ness is a highly important property of all cellular func-
tions (Kitano, 2004). Generally, a system is said to be
robust if it does not loose its function under any allowed
perturbation. Note that both the function and the allowed
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Fig. 1. Functional roles of feedback circuits in cell-biological systems

perturbations have to be well defined for any reasonable ro-
bustness analysis, which is often challenging for biological
systems. One of the basic functions for which robustness
can be studied is stability, such as in the adaptation of
a signalling system to a basal stimulus of uncertain and
varying magnitude. This plays a role in cellular sensing
of chemical concentration gradients (Barkai and Leibler,
1997). An example for a more sophisticated function is
the signalling network involved in apoptosis, where the
decision whether to initiate programmed cell death should
be taken reliably under noisy external signals and inter-
nal perturbations. In this case, the biological function
can be traced to bistability in the system, a property
for which robustness measures can be formulated in a
straightforward way (Eißing et al., 2005). In most cases,
perturbations are defined such that parameter values are
uncertain within a given range. However, also dynamic
perturbations are relevant in several cases (Jacobsen and
Cedersund, 2005). For many cellular functions, feedback
circuits are used to provide or increase robustness (Araujo
and Liotta, 2006). Relevant research questions are how
robust important properties of the system are against
different perturbations, which specific mechanisms provide
robustness, and what modifications in the system might
change the robustness.

In sensitivity analysis, the main question is how the re-
sponse of the cell is modulated by variations in parameters
or external signals. Although the basic function may be
robust with respect to these variations, cells typically show
a quantitative change in their behavior in response to the
variations. In fact, feedback circuits in signaling pathways
can be used by cellular systems to modulate responses and
to distinguish between different external signals (Bright-
man and Fell, 2000). The type of feedback that may be
used ranges from simple phosphorylation cycles as studied
by Levine et al. (2007) to complex combinations of dif-
ferent feedback connections that ensure both precise and
robust signaling (Kurata et al., 2006).

Even more than being robust and yet sensitive to external
signals, biological systems always need to optimize their
behavior with respect to some performance criteria. Al-
though the exact criteria are typically not easy to decipher

(Doyle III and Stelling, 2006), it is clear that the process
of natural selection drives living organisms to some form
of optimality. However, there are very often conflicting
aims for a biological system, which makes multi-objective
optimization essential. Again, feedback circuits play a cru-
cial role in this optimization task. Biological systems from
the organism level down to the level of individual cellular
pathways (El-Samad et al., 2005) make use of feedback
circuits to increase their performance in a multi-objective
surrounding. Supporting this view, theoretical studies for
simple cellular systems show the efficiency of feedback to
increase performance (Liebermeister et al., 2004).

3. ANALYSIS OF BIOLOGICAL FEEDBACK

3.1 Suitable analysis methods from control theory

The problem setup that one typically faces when dealing
with the analysis of cell-biological systems calls for an
appropriate selection of control theoretical methods. In
this section, several methods that are suitable for analysis
of feedback circuits in cell-biological systems are discussed.

We have argued in Section 2.1 that the models we deal
with often use polynomial or rational equations. There-
fore, polynomial-type methods such as the sum of squares
decomposition are sometimes useful for studying cell-
biological systems. In a stationary framework, this ap-
proach can be applied to obtain bounds on steady state
values under highly uncertain parameters (Waldherr et al.,
2008). For dynamical properties, polynomial methods may
help to construct a Lypunov function and to analyze ro-
bustness of stability with respect to parameter variations
in biological systems (El-Samad et al., 2003).

Several cellular signalling pathways can be modelled as
monotone systems, or systems that are composed of a
monotone control system with a positive or negative
feedback interconnection. There are sound mathematical
methods that can be used to study monotone systems
(Angeli and Sontag, 2003). A particular relevant applica-
tion for cell-biological systems is the analysis of complex
dynamical behavior like bistability arising from positive
feedback (Angeli et al., 2004) or oscillations arising from
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negative feedback (Wang et al., 2005; Angeli and Sontag,
2008). These methods can also be applied to systems that
are monotone after singular perturbation (Wang and Son-
tag, 2007), thus extending the methods to systems where
non-monotone effects act on a fast time scale.

Several types of cell-biological systems contain only few
nonlinearities. One example are regulatory networks for
gene expression, where constitutive transcription, trans-
lation and degradation of mRNA and proteins are often
modelled linearly, and only regulatory interactions are
represented by nonlinear functions. The regulatory inter-
actions are conveniently considered as feedback path, and
the model is easily transformed to a so-called Lur’e system.
Existing methods of stability analysis for these systems can
be combined with powerful computational tools to study
stability of gene regulatory networks (Li et al., 2006).
Concerning complex dynamical behavior, Sepulchre and
Stan (2005) presented a Lur’e system based approach to
study oscillations in feedback systems, which is also useful
for the analysis of biological oscillators (Stan et al., 2007).

Considering the importance of robustness analysis for cell-
biological systems, it is not surprising that the sophis-
ticated approaches that have been developed in control
theory are applied to these problems. One issue is the ro-
bust stability of an equilibrium point with respect to para-
metric uncertainties. Polynomial methods have already
been quoted as possible tools, but also approaches which
consider only a linear approximation of the system close to
an equilibrium point can provide valuable insight. More-
over, often also structural uncertainties need to be taken
into account. For this setup, µ-analysis is an efficient tool
that has been applied successfully to establish robustness
results for cell-biological systems under both parametric
uncertainty (Kim et al., 2006) and structural uncertainty
(Jacobsen and Cedersund, 2005). Interestingly, in both
cases the authors extend the classical µ-analysis to check
for robustness of complex behavior, in that case limit cycle
oscillations.

Although this summary shows that several approaches
from control theory have already been used for biological
research, suitable general analysis methods in control the-
ory have not yet emerged for the issues concerning signal
sensitivity and optimality. Therefore, one can anticipate
that research motivated from biological questions will also
contribute new theoretical results to the field of control.
The case studies which we present in the next section show
how questions that are specific to a biological system may
also provide general theoretical results.

3.2 Applications of feedback circuit analysis

In this section, we describe four research projects that use
methods from control theory to answer biologically rele-
vant research questions. Each research project considers
a specific biological system, and the different systems are
not directly related. However, one of the first steps in each
of the research projects was to perceive feedback circuits
as the major reason for the observed behavior of the bio-
logical system under consideration. Moreover, theoretical
methods as described in Section 3.1 have been selected
or even newly developed to obtain biologically meaningful
results and insights. Table 1 shows schematically which

feedback circuit related issues arise in each of the four
research projects and which methods were used to address
them.

The heat shock response. A problem where stability is
of major concern is the heat shock response of bacteria.
Increased temperature is a major stress factor for living
organisms, as it makes proteins unfold and loose their
functionality. Cells use so called chaperones to stabilize
proteins, and the signalling system that controls the activ-
ity of chaperones is very sophisticated, containing several
feedback circuits. Based on a mathematical model, one
of the first steps in the analysis was to establish robust
stability of the folded protein state with respect to param-
eter uncertainties (El-Samad et al., 2003). A Lyapunov
function and sum of squares techniques have been used as
theoretical tools.

There are several results concerning the role of different
feedback circuits in the heat shock system. A modular
decomposition identified different feedback circuits and
showed how they act together to provide robustness, noise
rejection and fast convergence to equilibrium (Kurata
et al., 2006). Moreover, a dynamic optimization revealed
that the complex feedback structures are used to obtain
Pareto-optimal performance for the conflicting objectives
of keeping proteins folded and minimizing energy costs (El-
Samad et al., 2005).

Chemotaxis. Living cells can direct their movement ac-
cording to concentration gradients of substrates in their
environment by chemotaxis. A particular feature of the
chemotactic system is that its response has to adopt to
the basal substrate concentration in order to provide a
high sensitivity to gradients over a wide range of basal
concentrations. Since the system adapts exactly to the
basal concentration, this feature is called perfect adapta-
tion. It has been shown that this feature is robust: despite
variations in reaction rates and enzyme concentrations,
adaptation remains perfect (Barkai and Leibler, 1997). A
control-theoretic interpretation based on a mathematical
model of the chemotactic system has been given by Yi
et al. (2000). They showed that under suitable assump-
tions, the mechanism by which cells achieve this can be
formulated as integral feedback control. Cells thus exploit
an effect that is well known in control engineering as the
internal model principle (Sontag, 2003).

Apart from perfect adaptation, the high signal sensitivity
in chemotaxis is an important issue on its own. Cells
are able to respond to very weak concentration gradients,
and the mechanism by which they transform such a weak
signal to a reliable response are not clear (Bray, 2002).
Control theoretical approaches are however promising to
contribute to the elucidation of that mechanism (Paliwal
et al., 2004).

Programmed cell death. The third research project deals
with programmed cell death. As a mechanism that is
present in every cell, it gives multicellular organisms the
means to remove unneeded or malfunctioning cells by
applying appropriate cellular signals. There are conflicting
requirements in that the living state should be stable
against small signal fluctuations, whereas cell death should
be executed quickly upon a stimulus that exceeds some
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Heat shock response Chemotaxis Cell death Circadian clock

Stability Lyapunov function linear approximation

Dynamical behavior Bifurcation analysis Monotone systems

Robustness Sum of squares
Internal model principle

(integral feedback)
µ-analysis parameter sensitivity

Table 1. Properties of feedback circuits relevant to the research projects under consideration and methods
that have been used to evaluate them. For signal sensitivity and optimality, generally applicable
methods have not yet emerged and this topics are dealt with on an individual basis for each
biological system.

threshold. Bifurcation analysis showed that a bistable
switch based on a positive feedback circuit can provide this
behavior (Eißing et al., 2004). Due to the lack of appropri-
ate methods from control theory, robustness of bistability
with respect to parameter uncertainties was first studied
via statistical methods (Eißing et al., 2005). Later on, µ-
analysis was applied to evaluate robust stability of either
the state where the cell is alive (Shoemaker and Doyle III,
2007), or alternatively of the state where the cell is dying
(Shoemaker and Doyle III, 2006).

A different approach to robustness of bistability was used
by Chaves et al. (2008). By assuming general uncertain
activation and inhibition functions, they could establish
robustness of bistability with respect to uncertainties in
both parameters and kinetic mechanisms. Forward invari-
ant sets in state space have been used as a theoretical tool
in that study. An analysis based on the feedback structure
of the system also allowed to reveal the relevant com-
ponents and hinted at possible roles of feedback circuits
(Waldherr et al., 2007).

The circadian clock. As a system where feedback circuits
generate sustained oscillations, the next case study consid-
ers the circadian clock. This system is essential for most
organisms to adopt efficiently to environmental changes
that occur regularly each day. To date, several mathemat-
ical models have been constructed for this system. These
have been used mainly for sensitivity analysis, which also
allows to evaluate robustness of properties like oscillation
period and amplitude (Stelling et al., 2004). Also based
on sensitivity analysis, Rand et al. (2006) have defined the
flexibility of a system as a measure of how system charac-
teristics can be changed by changing system parameters.
They find that flexibility is coupled to the complexity of
feedback structures in the circadian clock.

Recently, Angeli and Sontag (2008) have applied the the-
ory of monotone systems to the circadian clock. They could
derive conditions for oscillatory behavior on parameter
values, while also considering time delays. The method
is applicable to a larger class of biological oscillators. A
similar approach was taken by Wang et al. (2005), who in
addition give an explicit formula for the value of the time
delay at which sustained oscillations start to occur. Both
approaches make direct use of the fact that the circadian
clock can be decomposed into a monotone control system
with a negative feedback interconnection.

4. DISCUSSION AND OUTLOOK

The ODE modelling framework considered in this paper
is the most common road to mathematical models of cell-
biological systems. The concept of a feedback circuit can

be defined in this approach such that both biologists and
engineers can easily understand and use it. This definition
can readily be applied to show that feedback circuits are
required to generate complex dynamical behavior. More-
over, biological experiments and theoretical analyses have
shown that cellular systems make use of feedback circuits
to achieve a wide range of goals that are important for a
living organism, such as robustness against perturbations
and the closely connected signal sensitivity or optimality
of their function with respect to relevant performance
criteria.

Control theory has a successfull history in the analysis
and design of feedback circuits. Starting from biologically
motivated research issues, we have discussed general meth-
ods and approaches from control theory that have been
useful for the analysis of cell-biological feedback circuits.
In summary, a number of biological research issues can be
dealt with using established control theoretic methods and
slight extensions. Also, several approaches used in control
theory fit naturally to the problem setup one encounters
in cell-biological systems.

Using four case studies, we have shown how these methods
have been applied to study originally biological problems,
and thus enabled deeper biological insights into the role of
feedback circuits. Cell biology has a lot of problems which
have not yet been studied with a control-theoretic analysis.
Our expectation is that in the near future, research in
cell biology will profit highly from the use of methods
transfered from control engineering to systems biology.

However, there are also open problems in understanding
cell-biological feedback systems for which suitable general
methods in control theory are currently not available.
Evaluating robustness of complex dynamical behavior like
limit cycle oscillations, which is relevant e.g. for the cir-
cadian clock, remains difficult. Trade-offs between perfor-
mance or signal sensitivity and robustness in nonlinear
biochemical systems, as analysed by Levine et al. (2007),
have not been studied within a formal framework. Noise
in signals may be beneficial, or even required, for certain
cellular functions (Rao et al., 2002). This observation
is probably unlike anything that may be experienced in
technical systems, and general system-theoretic methods
to study this effect remain to be developped (Kim et al.,
2007). Thus, open problems in cell biology are likely to
incite the development of new general methods and ap-
proaches in the field of control theory.
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