
Direct Mining of
Subjectively Interesting Relational Patterns

Tias Guns
DTAI, KU Leuven
Leuven, Belgium

tias.guns@cs.kuleuven.be

Achille Aknin
ENS Ulm

Paris, France
achille.aknin@ens.fr

Jefrey Lijffijt, Tijl De Bie
IDLab, Ghent University – iMinds

Ghent, Belgium
{jefrey.lijffijt,tijl.debie}@ugent.be

Abstract—Data is typically complex and relational. Therefore,
the development of relational data mining methods is an in-
creasingly active topic of research. Recent work has resulted in
new formalisations of patterns in relational data and in a way
to quantify their interestingness in a subjective manner, taking
into account the data analyst’s prior beliefs about the data. Yet,
a scalable algorithm to find such most interesting patterns is
lacking. We introduce a new algorithm based on two notions: (1)
the use of Constraint Programming, which results in a notably
shorter development time, faster runtimes, and more flexibility
for extensions such as branch-and-bound search; and (2), the
direct search for the most interesting patterns only, instead
of exhaustive enumeration of patterns before ranking them.
Through empirical evaluation, we find that our novel bounds
yield speedups up to several orders of magnitude, especially on
dense data with a simple schema. This makes it possible to mine
the most subjectively-interesting relational patterns present in
databases where this was previously impractical or impossible.

Index Terms—Data mining, Relational databases

I. INTRODUCTION

Many data mining methods require the data to be in a
particular simple form, often a tabular one. As data rarely
occurs in tabular form, the data mining process often starts
with data selection, preprocessing, and transformation steps to
make existing methods applicable. Yet, in this process valuable
information may be irretrievably lost [1].

Relational pattern mining Research into relational pat-
tern mining aims to make these steps unnecessary by develop-
ing methods that find patterns directly in relational data in its
full complexity. This poses a conceptual challenge: how can
relational patterns be defined in a generic and yet intuitive
manner, and how do we quantify how interesting they are
to the data analyst? The work in [1] provides a first answer
to these questions, in proposing a novel relational pattern
syntax called Complete Connected Subsets, and in developing
a measure of subjective interestingness for such patterns.

In that work, relational data is modelled in terms of a set
E of entities of different types and a relational schema R that
determines what types of entities may be related. Additionally,
a set of relationship instances R is given, which are pairs of
entities that are actually related. Fig. 1 shows a toy database
that has the above relational schema. A Complete Connected
Subset (CCS) in this data is a pattern characterized by a set
of entities, where all entities whose type share a relation have
to be connected. For example, in Fig. 1, {U1,M1,M2, G1}

is a CCS. Fig. 2 gives an example of a CCS found in a real
database with 5 users, 13 action movies, and 1 genre.

The challenge An important open challenge is how the
most interesting patterns can be found efficiently. The dedi-
cated RMiner algorithm [1] exhaustively enumerates all (max-
imal) CCS patterns present in the data, before ranking them
according to interestingness. However, as commonly the case
in pattern mining, the number of patterns quickly blows up
for large or dense data. This makes an enumerate-and-rank
approach infeasible for many datasets.

Contributions In this paper we propose a new algorithmic
strategy based on two high-level innovations. The first inno-
vation is the reformulation of the CCS mining problem within
the Constraint Programming (CP) paradigm. CP is a powerful
search paradigm for combinatorial optimisation or constraint
satisfaction problems, and highly optimised CP frameworks
are readily available. We propose a decomposition of the CSS
problem formulation in terms of constraints.

Moreover, the use of CP makes our second innovation
readily achievable: search directly only for the most interesting
CCS. To find the global optimum, CP algorithms make use of
a branch-and-bound strategy. Thus their efficiency depends on
the availability of tight yet efficiently computable bounds on
the objective function for all solutions in a certain subtree of
the search space. We developed a range of such bounds with
varying trade-off between computational cost and tightness.

Results The best of these bounds often results in a speed-
up of several orders of magnitude, and allows us to find the
most interesting CCSs on data well beyond the capabilities of
RMiner. We also compared the direct approach on traditional

F 3

4

31
6

1

1

2

2

User Movie GenreType :

U1

U2

M1

M2

M3

G1

G2

Fig. 1. An example relational database with 3 entity types (‘User’, ‘Movie’,
and ‘Genre’) and 2 relations (users may like movies, and movies may belong
to a particular genre). The edges represent the relationship instances, and these
are annotated with their information content.

5 users liked of genre
Star Wars

Sudden Death
The Matrix

10 James Bond Movies

Action

Fig. 2. Best pattern found for the Rotten Tomatoes dataset.

single-relation datasets from the itemset mining community. In
that case, a maximal CSS corresponds to a closed itemset. Our
direct approach is able to find the most interesting patterns on
datasets with too many patterns to be enumerated even with
the best closed itemset mining algorithms, like LCM [2].

II. PRELIMINARIES

In this section we recall the main definitions and prior
results required to understand the contributions of this paper.

A. Relational data and Complete Connected Subsets

Relational data We use the formalisation of relational
data from [1]. To summarise, a relational database is defined
as a tuple D = (E, t,R, R). E denotes the set of entities,
and t : E → {1, . . . , k} is a function that maps an entity
onto its type (assuming k types). For example, for the toy
database in Fig. 1, k = 3 with 1 = User, 2 = Movies and
3 = Genre and t(U1) = t(U2) = 1 (User). R denotes
the set of all relationship instances, which are unordered
pairs of entities that are related. In a relational database1,
a pair of entities may be related only if allowed by the
relational schema R ⊆ {1, . . . , k} × {1, . . . , k}. For our
toy dataset, R = {(1, 2), (2, 3)} that is, user is connected
to movies and movies to genre and (M1, G1) ∈ R with
(t(M1), t(G1)) = (2, 3) ∈ R. Note that since the pairs in
R and R are unordered, (e, f) ∈ R ≡ (f, e) ∈ R and
(t1, t2) ∈ R ≡ (t2, t1) ∈ R. We write Rr to denote all
relationship instances (e, f) ∈ R of type r = (t(e), t(f)).

Complete Connected Subsets (CCSs) A CCS is defined
as a subset F ⊆ E that is (1) complete: for all e, e′ ∈ F
with (t(e), t(e′)) ∈ R, it holds that (e, e′) ∈ R; that is, all
entities whose types are related in the schema must have an
edge between them in the data; and (2) connected: for all
e, e′ ∈ F , there exists a sequence (e = e1, e2, . . . , el = e′)
such that (ei, ei+1) ∈ R for all i ∈ {1, . . . , l − 1}.

Furthermore a CCS is maximal (i.e., an MCCS) if it is not
a strict subset of another CCS. Intuitively, an MCCS is a CCS
to which no other entity can be added without violating either
completeness or connectedness. In Figure 1, {U1,M1,M2}
is a CCS but not an MCCS, while {U1,M1,M2, G1} is an
MCCS. {U1,M1,M2, G2} is not a CCS because it is not
complete, and {U1, G1} is not connected.

An entity e is said to be compatible with a CCS F if it is
related in R to every entity in F allowed by the schema:

∀e′ ∈ F, (t(e), t(e′)) ∈ R⇒ (e, e′) ∈ R.

Intuitively, e is compatible with F if F ∪ {e} is a CSS.

1Actually the database need not be a relational DB, i.e., a NoSQL DB is
also fine, but we assume that the schema of the data is provided.

The subjective interestingness of a CCS Formalising
the interestingness2 of patterns in data is a conceptually
challenging problem. In [3] it was argued that interestingness
is ideally quantified in a subjective manner, by contrasting
the pattern’s presence with these prior beliefs. This strategy
requires the user to state their expectations about the data.
Then, the prior beliefs are formalised as a distribution over the
set of possible data sets, which is estimated as the maximum
entropy distribution given the prior belief constraints. This
distribution is referred to as the background distribution.

Self-information The self-information of a pattern is then
defined as minus the logarithm of the probability that the
pattern is present, computed w.r.t. this background distribution.
In the particular context of relational data, the prior beliefs
could include an expectation about the total number of re-
lationship instances, about the number relationship instances
per relationship type, or about the number of relationship
instances of each particular entity within each relationship
type it participates in. Conveniently, the maximum entropy
distribution takes the same parametric form for all these prior
belief types, albeit with different values for the parameters. In
particular, it is a product of independent Bernoulli distributions
for each pair (e, e′) for which (t(e), t(e′)) ∈ R. Denoting the
probability of an edge (e, e′) to be present in R as pe,e′ , this
means that the self-information of a CCS pattern over the set
F ⊆ E is given as:

SI(F) =
∑

e,e′∈F,t(e)<t(e′),
(t(e),t(e′))∈R

− log(pe,e′).

Each −log(pe,e′) is called the contribution of the edge (e, e′).
Description length The larger SI(F), the more informa-

tive (or surprising) the CCS pattern is to the user. Yet, it also
becomes harder for the user to assimilate it as its description
grows larger. In [4] it is proposed to model this description
length as an affine function of the cardinality of F :

DL(F) = a+ γ × |F |

with a = |E| log
(

1
1−p

)
, γ = log

(
1−p
p

)
and p ∈ (0, 1) a

parameter that is typically set equal to the edge density of the
database (see [4] for details).

The subjective interestingness The final interestingness
measure is the Information Ratio, formalised as the density of
information compressed within the pattern [4]:

InformationRatio(F) =
SI(F)
DL(F)

.

Iterative data mining Our algorithm directly extracts the
most interesting MCCS in the data. Yet, a single MCCS pattern
may not be sufficient for the data analyst: they may also want
to see other MCCSs to further enhance their understanding
of the data. An elegant way to achieve this is to adjust
the background distribution, accounting for the data analyst’s

2In some areas of data mining better known as quality, objective, or
conversely, the cost function.

knowledge of the first MCCS. With F the previous MCCS, this
can be done by setting pe,e′ = 1 for all e, e′ ∈ F , to reflect the
user now knows with certainty that e and e′ are related. Then
the most interesting MCCS can be sought again, which will
provide the maximum amount of non-redundant information.
The process can of course be iterated.

B. Constraint Programming

A Constraint Satisfaction Problem (CSP) P = (V,D,C)
consists of a set of variables V , a domain D that specifies the
set of allowed values D(v) for each variable v ∈ V , and a set
of constraints C over (a subset of) the variables V . A solution
to a CSP is an assignment S to the variables of V such that
∀v ∈ V, S(v) ∈ D(V) and all constraints are satisfied.

Constraint solving is a generic methodology for solving
CSPs. It reasons over partial solutions, where a partial solution
is a domain D′ such that ∀v ∈ V : D′(v) ⊆ D(V). If the
domain of a variable consists of just one value, |D′(v)| = 1,
we say that variable is assigned. A key principle is that during
solving, values can only be removed from the domain; which
is executed repeatedly until all variables are assigned.

At their core, most CP solvers are generic depth-first
search frameworks, with a branch-and-propagate mechanism.
Branching consists of choosing one unassigned variable and
either removing one value from its domain, or removing all
but one value (i.e., assigning it to that value). Propagation is
the use of a constraint to infer that certain values in the domain
are infeasible for this constraint, and hence infeasible in the
entire CSP. For example, let X,Y, Z be three variables with
domain D(X) = D(Y) = {0, 1} and D(Z) = {1}. Then,
constraint X = Y ∨Z can be used to infer that D(X) = {1}.

In a CP framework, every constraint is implemented through
a propagator that does this inference. At each node in the
search tree, the solver will call each of the propagators until
fixpoint, that is, until the domain no longer changes. Constraint
solvers can also be used to solve constraint optimisation
problems (V,D,C, f) where f is a function that needs to be
minimized or maximized. For this, solvers use branch-and-
bound (see Section IV).

III. A CP APPROACH TO ENUMERATING MCCSS

We first explain how the MCCS conditions can be formu-
lated through constraints. We show that the completeness and
maximality conditions are related and can be expressed as a
constraint over every individual entity.

A. Reformulating the MCCS conditions as constraints

Completeness for a single relation For now, let r =
(t, t′) ∈ R be the only relation in the relational schema. Let
F be an MCCS, and let e ∈ F be any entity with t(e) = t.3

The completeness requirement of an MCCS states that e
should be connected to all entities in F that are of type t′—
the other type in r. To reformulate this requirement in a form

3Note we overload t to signify a function that returns the type of an entity,
or a constant type—which of these is meant should be clear from the context.

usable in a CP framework, we define Nr(e) as the set of
entities of type t′ that are connected to e in relation r:

Nr(e) ≡ {e′ ∈ E | (e, e′) ∈ Rr}.

Additionally, we define Or(t) as the set of all entities of the
other type t′ in r:

Or(t) ≡ {e′ ∈ E|(t, t(e′)) = r}.

and hence (F ∩ Or(t)) is the set of all entities in F that are
of that other type.

With these two definitions, the completeness requirement
can now be reformulated as follows for a given r = (t, t′):

e ∈ F ⇒ (F ∩Or(t(e))) ⊆ Nr(e).

That is, if an entity e is in the CCS, then all entities in the
CCS of a type t′ that are adjacent to t(e) in the relational
schema must be related to e in Rr.

Maximality and completeness for a single relation Max-
imality states that if an entity can be added to the CCS while
respecting connectedness and completeness, it must be added.
For simplicity, we again study this first for a schema R = {r}
with a single relation r = (t, t′). In this special case, the
maximality requirement can be reformulated as:

(F ∩Or(t(e))) ⊆ Nr(e)⇒ e ∈ F.

Combining maximality and completeness, we get:

e ∈ F ⇔ (F ∩Or(t(e))) ⊆ Nr(e).

This is precisely the coverage requirement in frequent
itemset mining, which computes the transaction entities e that
are covered by a given set of item entities Or(t(e)). Enforcing
coverage on both items and transactions corresponds to finding
all closed itemsets, which are a special case of CCSs [1].

Maximality and completeness in the general case First,
denote with Q(t) ≡ {r ∈ R|∃t′, (t, t′) = r} the set of all
relations involving entity type t. The joint completeness and
maximality requirement can be stated for each entity e over
all its relations r ∈ Q(t(e)):

e ∈ F ⇔ ∀r ∈ Q(t(e)), (F ∩Or(t(e))) ⊆ Nr(e). (1)

In other words, each entity must be completely connected to
the entities in F for all relations that its type participates in,
and all such entities must be part of the CCS.

Connectedness While the above ensures that all entities
that share a relation are connected, it does not require that
entities whose types do not share a relation are connected;
for example, {D1, G1} in Fig. 1. We wish to formulate this
requirement as a constraint in a CSP, but not over every
possible pair of entities as the number of entities can be huge.
Instead, we formulate it over every pair of entity types: let
h(t, F) ≡ (∃e ∈ F, t(e) = t) be a function that checks
whether a CCS F contains an entity of type t. Furthermore,
let MR(t, t

′) be a function that returns the multi-set of all sets
of types that are on a path from t to t′ in R. Connectivity is
enforced by requiring that if two different entity types have at

least one entity in F , there must exists a path in the relational
schema R between the two types, such that each entity type
on the path has an entity in F :

∀t, t′ : h(t, F) ∧ h(t′, F)→
∃S ∈MR(t, t

′) such that ∀t′′ ∈ S, h(t′′, F). (2)

Together with the completeness constraint above, this formu-
lation will ensure that there exists a path in R from each entity
to each other entity.

B. MCCS in a constraint solver

Our model of the problem is inspired by how itemset
and multi-relational mining [5] are modelled in the CP4IM
framework [6]. We introduce an array of Boolean variables
for each entity type, with one Boolean variable for each
entity. Each Boolean variable indicates whether the entity
is part of the MCCS or not, and hence one solution to
the CSP will correspond to one maximal CCS. Within the
CP4IM framework, it was shown that the coverage relation
e ∈ F ⇔ (F ∩ Or(t(e))) ⊆ Nr(e) for a single relation
r = (t, t′) can be modelled as a reified linear sum over
Boolean variables X , one variable for each entity of type t,
and Boolean variables Y for each entity of type t′ as such:

coverage(X,Y, r) ≡ ∀x,

X[x]⇔
∑
y

: (Y [y] ∗ (y /∈ Nr(x))) = 0,

that is, x is in the CCS iff the sum of Boolean variables
corresponding to entities y that are not connected to x is zero.

The multi-relation case (Eq. 1) can be transformed to the
single-relation case by defining O(t(e)) = ∪r∈Q(t(e))Or(t(e))
and N(t(e)) = ∪r∈Q(t(e))Nr(t(e)). Because each entity be-
longs to only one type, the sets are non-overlapping and hence
the joint completeness and maximality requirement simplifies
to: e ∈ F ⇔ (F ∩ O(t(e))) ⊆ N(e) which can be modelled
in the same way as the single-relation case.

The connectivity requirement can be decomposed into
an auxiliary Boolean variable for every h(t, F) ≡ (∃e ∈
F, t(e) = t) relation and the formula in Equation 2 where
the multi sets MR(t, t

′) are pre-computed.
Using the above formulation of variables and constraints,

all solutions to this CSP will correspond to all MCCSs.

IV. BOUNDS ON INFORMATIONRATIO TO DIRECTLY MINE
THE MOST INTERESTING MCCSS

To do branch-and-bound, we need a propagator that com-
putes a bound on the InformationRatio given the current
domain D that represents a partial solution. For conciseness,
let F denote the entities assigned to 1 (i.e., the current
CCS, and equivalently {e ∈ E|D(e) = 1}). Let C =
{e ∈ E|D(e) = {0, 1}} be the unassigned entities, and let
B = {e ∈ E|D(e) = 0} be the set of entities assigned
to 0, e.g. because the constraints determined that they are
incompatible with the current pattern or because they were

assigned to 0 due to branching. We also use Ft to denote the
set of entities in F of type t, and similarly for Ct and Bt.

We want to formulate an upper bound U(F,C) on the
maximal interestingness of any CCS reachable from this state.
A branch-and-bound can then verify whether the best value
achievable by the partial solution is worse than the best CCS
F ∗ found so far. If so, this entire branch (and domain) can be
pruned away from the search tree and backtracking occurs.

Recall that each (e, e′) ∈ R has a contribution − log(pe,e′)
as determined from the maximum entropy distribution. We
denote by v the array of the contributions of all edges between
entities of F and C, and C and C, sorted in decreasing order.
If r = (t1, t2) ∈ R is a relation, then vr ≡ v(t1,t2) is the
subset of v containing only contributions of edges between
an entity of type t1 and an entity of type t2.

We will use as an example the dataset in Fig. 1 where each
edge is labelled by its (fictional) contribution, and the current
pattern F is highlighted in a dashed box.

A. Naive bound : estimating the number of edges
The most straightforward bound is the following: the max-

imum self-information is the self-information of F ∪ C and
the minimum description length is the description length of
F . Then the upper bound on the self-information is the self-
information of F plus the sum of all remaining contributions,
stored in v. We can improve on this by observing that unless
F ∪ C forms a clique, not all entities can be added into a
single pattern, and hence not all edges in v can be added.
If we can hence derive the maximum number of edges nbr

for each relation r ∈ R that can be added to F , then we
have a valid upper bound if we only count the nbr biggest
contributions (recall that we assume v is sorted):

Unaive(F,C) =

SI(F) +
∑
r∈R

nbr−1∑
i=0

vr [i]

DL(F)
(3)

The maximum number of edges nbr of relation r = (t1, t2)
that can be included in any extension of F can be estimated
based on the degrees of the entities in the relation as follows.
Let dt1→t2 (resp. dt2→t1) be the decreasingly ordered set of
the number of edges from an entity of type t1 (resp. t2) in C
to any entity of type t2 (resp. t1) in C, that is, the degrees of
the nodes in C when counting only edges to other nodes in
C. Let 0 ≤ nt1 ≤ |Ct1 | be any number of entities of type t1
that can possibly be added to F , and similarly for nt2 , then
we have the following inequalities when nt1 6= 0 and nt2 6= 0:

nt1 ≤ dt2→t1 [nt2 − 1] and nt2 ≤ dt1→t2 [nt1 − 1] . (4)

Intuitively, for an nt1 let the nt1 -th largest degree of the
entities in C be y, then the minimal degree of the nt1 elements
in C is less than y, so we can conclude that there can only be
fewer than y entities of type t2 added to this CCS, because
the CCS has to be complete. An upper bound on nbr for use
in Eq. (3) is then obtained by taking the maximum value of

nb(t1,t2)(n1, n2) = n1 × n2 + n1 × |Ft2 |+ |Ft1 | × n2
for all tuples (n1, n2) that satisfy the inequalities of Eq. (4).

B. Enumerating all denominators

The previous bound is easy to compute but loose because
the nominator assumes as many entities as possible are in-
cluded and the denominator assumes no additional entities
are included. Instead, we will compute an upper bound for
each possible combination (n1, · · · , nk) with nt the number
of entities of type t and take the maximum value of those as
(tighter) upper bound.

While this may sound computationally expensive, namely
O(maxt(nt)

k) combinations to check, we can use the inequal-
ities of Eq. (4) to avoid many impossible combinations.

Consider the set S of all combination (n1, · · · , nk) such
that the inequalities in Eq. (4) are verified for every relation;

Udenom(F,C) =

max
(n1,··· ,nk)∈S

SI(F) +
∑

(t1,t2)∈R,
t1<t2

SumContr(t1, t2)

DL(F) + γ × (n1 + · · ·+ nk)

To compute SumContr, we first observe there are three differ-
ent groups of possible contributions in every relation r ∈ R:
• vCC

(t1,t2)
, the array of decreasingly ordered contributions

of edges between entities in Ct1 and entities in Ct2 .
• vFC

(t1,t2)
between entities in Ft1 and entities in Ct2 .

• vCF
(t1,t2)

between entities in Ct1 and entities in Ft2 .
Leading to

SumContr(t1, t2) =
nt1
×nt2

−1∑
i=0

vCC
(t1,t2)

[i]

+

|Ft1 |×nt2−1∑
i=0

vFC
(t1,t2)

[i] +

nt1×|Ft2 |−1∑
i=0

vCF
(t1,t2)

[i] (5)

C. All denominators and pruning non-improving entities

Attempts to further improve this bound let to dispropor-
tionate computation costs. However, we can improve search
by pruning entities for which we know they will not lead to
a better MCCS than the currently best found. Let MaxInt be
the interestingness of this current best one.

In the previous bound, we compute a value for each possible
combination n = (n1, · · · , nk). If we know, using these
values, that there exists a type t and a size m such that for
every combination (n1, · · · , nk) where nt < m, the value
obtained is less than MaxInt, then there is no CCS with strictly
less than m entities of type t that has an InformationRatio
greater than MaxInt. That can be used to prune those entities
that, if they would be set to 1, would prevent having more
than m additional entities of type t. These are the entities
connected to less than m entities in Ct.

Given a specific entity type t and an integer x, we can,
during the computation of the previous bound, compute
bestval [t] [x], the maximal interestingness reached with nt =
x. Then, for each entity type t, let minsize [t] = min{0 ≤
x ≤ |Ct| s.t. bestval [t] [x] ≥ MaxInt}, with minsize [t] = +∞
if there is no size x such that bestval [t] [x] ≥ MaxInt.

Theorem 1. For each type t1 and each entity e of type t1, if
there exists t2 such that (t1, t2) ∈ R and degreet1→t2

[x] <
minsize [t2] then we can prune entity e : D(e) = D(e) \ {1}
(assigned to 0)

If we have a relation (t1, t2) ∈ R and an entity e of type t1
such that e is related to strictly less than minsize [t2] entities
of type t2, then any MCCS containing F and e must contain
less than minsize [t2] entities of type t2. Due to the property of
minsize, we can prune the entity e as there will be no MCCS
containing e and F that are more interesting than the best
MCCS we have so far.

V. EXPERIMENTS

The experiments investigate how the CP algorithm compares
to RMiner when enumerating all MCCSs, and the speed up
achieved by directly searching for the most interesting MCCSs
using the proposed bounds. We conducted experiments on a
range of datasets: various sizes of the IMDB dataset (as in [1])
with 3 entity types (Director, Movies, Genres); rottentomatoes
with 3 entity types (User, Movies, Genres); DBLP/chain with
4 entity types, (Author 1, related to Paper1s they authored,
related to Paper2s it cites, related to those Author2s); and
DBLP/star with 4 entities (Paper, Venue, Authors, Year of
publication). Also datasets from the FIMI repository were
used, as well as the FourSquare check-ins data [7], as used
in [8]. Basic statistics of the datasets are given in Table I.

Fig. 2 gives an example of the type of pattern found. This is,
according to the background distribution that takes the row and
column marginals into account, the most interesting pattern in
the rottentomatoes dataset, showing 5 users that all liked the
same 10 James Bond movies along with 3 other movies of the
action genre.

All experiments were run on quad-core Intel Xeon Ubuntu
14.04 servers with 32Gb RAM. We terminated any ex-
periment after 5 hours. The Gecode CP solver was used
(http://gecode.org) and our software is available on
https://bitbucket.org/ghentdatascience/cp

Results The runtimes of the exhaustive enumeration al-
gorithms and the direct search CP variants are presented in
Table I. The number of solutions for exhaustive search is
shown as well; solutions with a + indicate how many CP-
closed found before it timed out.

Exhaustive CP versus RMiner On all but three datasets,
RMiner timed out, while the CP approach completed on almost
half the datasets included. For the dataset (imdb/1year) on
which RMiner did not time out, CP was three orders of magni-
tude faster than RMiner, and for three of the four other datasets
on which RMiner timed out, CP was two (imdb/5years,
fimi/mushroom) and one (imdb/10years) orders of magnitude
faster than the timeout limit. For the dblp-star dataset involving
3 relations, RMiner and CP perform similarly, while for the
more complex dblp-chain dataset RMiner was significantly
faster. This may indicate that the current CP decomposition
of the completeness constraint for every relation separately is
less efficient than RMiner’s dedicated methods for enforcing
completeness and connectivity across multiple relations.

TABLE I
RUNTIMES IN SECONDS, WITH A TIMEOUT OF 5 HRS. THE FIRST THREE COLUMNS GIVE BASIC STATISTICS OF THE DATASETS (NUMBER OF RELATIONS;

TOTAL NUMBER OF ENTITIES; AND OVERALL DENSITY). THE SECOND THREE COLUMNS SHOW RUNTIMES FOR THE EXHAUSTIVE ENUMERATION
ALGORITHMS (LCM, WHICH IS APPLICABLE ONLY TO SINGLE-RELATIONAL DATA; RMINER; AND THE PROPOSED CP ALGORITHM). THE FINAL THREE

COLUMNS GIVES RUNTIMES FOR DIRECTLY SEARCHING FOR THE MOST INTERESTING PATTERN USING THE THREE PROPOSED BOUNDS.

#Rels #Ent. Dens. #Sols. LCM RMiner CP-closed CP-naive CP-denom CP-prune
fimi/mushroom 1 8243 19.33% 238 709 4.55 timeout 110.5 10.3 4.89 2.33

fimi/chess 1 3271 49.33% 411 000 000+ timeout timeout timeout 16.4 16.2 14.9
fimi/T10I4D100K 1 100870 1.16% 359 000+ 10.9 timeout timeout 3915 468 87

fimi/T40I10D100K 1 100942 4.20% 1 000 000+ timeout timeout timeout timeout 7643 224
fimi/connect 1 67686 33.33% 13 000 000+ timeout timeout timeout 2754 2097 1640

fimi/retail 1 104632 0.06% 3 000+ 11.5 timeout timeout timeout timeout 1421
foursquare/checkins 1 224947 2.11% 232 747 0.6 timeout 7296 255 35.5 16.8

imdb/1year 2 3291 0.97% 583 - 2128 1.05 1.26 0.4 0.1
imdb/5years 2 30131 0.24% 3 887 - timeout 208 242 26.2 5.06

imdb/10years 2 51203 0.12% 8 704 - timeout 1764 1618 127.9 8.36
imdb/40years 2 111320 0.03% 15 900+ - timeout timeout timeout 990 9.18

imdb/100years 2 514323 0.002% 15 900+ - timeout timeout timeout timeout 290
rottentomatos 2 12263 0.44% 13 000 000+ - timeout timeout timeout 2986 279

dblp-star 3 8279 0.10% 7 699 - 207 269 305 19 3
dblp-chain 3 13862 0.09% 30 629 - 76 5423 9141 939 107

Exhaustive CP versus LCM MCCSs are equivalent with
closed itemsets with a minimum frequency of 1 in single-
relational data. Thus, a computational comparison of the CP
approach with LCM, the state-of-the-art method for closed
itemset mining on single-relational data, can give an idea of the
optimality of the approach. Columns ‘LCM’ and ‘CP-closed’
in Tab. I show that the price paid for the generality of CP
and multi-relational mining as compared to LCM is one to
four orders of magnitude. However, on three of the datasets
even LCM times out, underscoring that the generate-and-rank
approach is simply impractical for such datasets.

Direct search versus exhaustive enumeration The last
three columns in Tab. I show that, with the exception of the
dblp-star and dblp-schema datasets, direct search using any
bound is always faster then enumerating all patterns first,
even when the search space consists of millions of patterns.
Datasets, such as dense FIMI datasets, for which no generate-
and-rank approach is feasible can now be solved. Furthermore,
stronger bounds always lead to faster runtimes. Indeed, the
difference is especially dramatic for CP-prune, which prunes
away entities that can not lead to a better MCCS. On most
datasets, using this bound is two orders of magnitude faster
then enumerating all patterns and can be an order of magnitude
faster or more than the CP-denom bound. We do observe
that for all FIMI datasets on which LCM terminates, a post-
processing of its output would be a faster approach. For
the dblp-chain dataset, using RMiner and its post-processing
mechanism would be faster too. For the other datasets, clearly
the direct approach with the pruning bound is recommended.

Finally, experiments (not shown) demonstrate that the run-
ning time grows only very slowly over subsequent iterations,
such that the proposed approach is computationally attractive
even if more than just the most interesting pattern is required.

VI. CONCLUSION

We have addressed the challenging problems of (1) exhaus-
tively enumerating all so-called MCCS patterns in a relational

database using a novel CP formulation, and (2) directly
searching for just the most interesting MCCS pattern through
the use of a range of novel interestingness upper bounds
in a branch-and-bound variant of this CP formulation. This
results in speed-ups of several orders of magnitudes on a range
of real-life datasets. These contributions make it possible to
search for the most interesting relational patterns in relational
databases beyond the capabilities of previous methods.

Looking forward, we see a number of possible innovations.
The first is additional user-specified constraints on the MCCS
patterns, limiting the search space, potentially at the cost of
losing the most informative patterns. This strategy is used
succesfully in RMiner to achieve dramatic speed-ups. Sec-
ondly, for larger number of relations, a propagator that can
reason over multiple relations may be needed. Finally, it may
be possible to speed-up subsequent iterations in the iterative
mining process by exploiting intermediate results.

Acknowledgements: ERC Consolidator Grant FORSIED
(ref. 615517) and Research Foundation, Flanders (postdoc).

REFERENCES

[1] E. Spyropoulou, T. De Bie, and M. Boley, “Interesting pattern mining in
multi-relational data,” DMKD, vol. 28, no. 3, pp. 808–849, 2014.

[2] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient algorithm for
enumerating closed patterns in transaction databases,” in Proc. of DS,
2004, pp. 16–31.

[3] T. De Bie, “An information-theoretic framework for data mining,” in Proc.
of KDD, 2011, pp. 564–572.

[4] E. Spyropoulou, T. De Bie, and M. Boley, “Mining interesting patterns
in multi-relational data with N-ary relationships,” in Proc. of DS, 2013,
pp. 217–232.

[5] S. Nijssen, A. Jimenez, and T. Guns, “Constraint-based pattern mining
in multi-relational databases,” in Proc. of ICDM Workshops, 2011, pp.
1120–1127.

[6] L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming for
itemset mining,” in Proc. of KDD, 2008, pp. 204–212.

[7] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring millions of
footprints in location sharing services,” in Proc. of ICWSM, 2011, pp.
81–88.

[8] J. Lijffijt, E. Spyropoulou, B. Kang, and T. De Bie, “P-N-RMiner: A
generic framework for mining interesting structured relational patterns,”
IJDSA, vol. 1, no. 1, pp. 61–76, 2016.

