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Decoding of Repeated Objects from Local Field Potentials
in Macaque Inferior Temporal Cortex

Dzmitry A.e Kaliukhovich, Rufin Vogels®

Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium

Abstract

Stimulus repetition produces a decrease of the response and affects neuronal synchronization of macaque inferior
temporal (IT) neurons. Previously we showed that such stimulus-specific adaptation results in a decreased accuracy
by which IT neurons encode repeated compared to non-repeated objects. Not only spiking activity, but also local field
potentials (LFPs) are affected by repetition. Here we ask how the repetition-induced changes in IT LFPs affect object
decoding accuracy. To answer this, we recorded local field potentials using a laminar microelectrode in macaque IT.
We presented two familiar stimuli each for 500 ms successively with an inter-stimulus interval of 500 ms. Trials
consisted either of a repetition of the same stimulus or of their alternation. Machine learning-based classifier was
employed to decode stimulus identity from the LFP power in different frequency bands of each penetration. We found
that the object classification accuracy depended strongly on spectral frequency, with frequencies below 30 Hz (alpha
and beta) producing greater accuracies than gamma bands. However, the effect of repetition on classification
accuracy was stronger at the gamma frequencies, showing a decrease in classification accuracy for repeated stimuli
and a tendency for an improved object encoding when the stimulus was preceded by a different stimulus. The
present results demonstrate that due to adapting input, stimulus encoding in IT (1) can be more accurate for stimuli
that differ from recently preceding ones while being impaired for stimuli that are repeated, and (2) these effects are
more pronounced at high spectral frequencies of the LFP.
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Introduction

The average response of macaque inferior temporal (IT)
neurons decreases with stimulus repetition [1-15]. This
“repetition suppression” [16] or “adaptation” effect [17] has
aroused recent interest because of the widespread use of
adaptation paradigms in human fMRI studies [18,19].

Recently, we examined how the repetition-induced changes
in IT spiking activity affect the accuracy by which IT neurons
encode objects [20]. We compared the discriminability of
stimuli presented in either the first (adapter) or second (test)
position in sequences of two serially presented stimuli. We
found that the single unit discriminability of repeated familiar
stimuli was reduced compared to non-repeated stimuli.
However, in some conditions for which adapter and test shapes
differed, the cross-adaptation resulted in an enhanced
discriminability. This decreased discrimination accuracy for
repeated compared to non-repeated stimuli was confirmed
when examining the multi-unit activity (MUA) to repeated and
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non-repeated presentations to two familiar stimuli. Using the
spiking activity of the neuronal populations, recorded with a
laminar electrode, we showed a decreased classification
accuracy for repeated compared to non-repeated test stimuli,
but classification was enhanced for the test compared to
adapter stimuli when the test stimulus differed from recently
seen stimuli. These findings suggested that adaptation in IT
supports efficient coding of stimuli that differ from recently seen
ones but impairs the coding of repeated stimuli. Note that these
effects of repetition on object classification accuracy may hold
only for short duration adaptation and/or short delay intervals
between adapter and test stimulus, i.e. for short-term
adaptation.

Here, we examine the effects of such short-term adaptation
on the classification accuracy for a second measure of neural
activity, local field potentials (LFPs). LFPs represent a
population measure of neuronal, mainly synaptic and dendritic,
activity in the local cortical network [21-23]. Measuring
adaptation in LFPs and comparing adaptation effects for LFPs
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and spiking activity is important for at least three reasons. First,
since adaptation affects response to a stimulus within an entire
network of neurons, and may alter network properties [15,24], it
is of interest to examine how adaptation affects the population
encoding accuracy as captured by LFPs. Second, studies
suggest that LFPs are better correlated with BOLD than is
spiking activity [25-28] and thus knowledge of how repetition
affects object encoding by LFPs is relevant for understanding
the neural correlate of adaptation-induced changes of BOLD-
based object classifications using multi-voxel pattern analysis
tools [29]. Thus far no study examined the effect of short-term
adaptation on LFP-based object classification. Third, LFPs are
believed to reflect an input signal to the neurons at least for
frequencies <50 Hz [23,30]. Thus, the classification of stimulus
identity from LFPs can provide an insight into the adaptation
effects on stimulus coding of the neuronal input. This in turn will
complement the stimulus coding results observed for the
neuronal output as captured by MUA [20].

Previous studies observed repetition suppression for both
spiking activity and LFPs, particularly for the spectral
frequencies above 60 Hz [13—15]. LFPs represent a population
measure of mainly synaptic activity with different underlying
processes for low and high frequency bands [31,32]. Hence,
we classified the LFP power to the adapter and test stimuli of
different frequency bands (ranging from alpha to high gamma
bands), allowing a comparison between repetition effects on
the classification accuracies computed from the frequency
band-limited LFP power.

Materials and Methods

Subjects

Two rhesus macaques (Macaca mulatta; male monkey G
and female monkey K, weighing 7.2 and 7.6 kg, respectively,
both left hemisphere) served as subjects. Animal care and
experimental procedures met the national and European
guidelines and were approved by the Ethical Committee of the
KU Leuven Medical School.

Details about implants and surgery can be found in [20]. The
localization of the plastic recording chamber was guided and
verified by magnetic resonance imaging (MRI) scans.
Recording positions were estimated based on the MRI
visualization of glass capillaries filled with the MRI opaque
copper sulfate (CuSQO,) inserted into the recording chamber
grid at predetermined positions combined with the microdrive
depth readings of the white/gray matter transitions relative to
the grid base.

Recordings were made from the lower bank of the superior
temporal sulcus (STS). The anterior—posterior coordinates of
the estimated recording positions ranged between 16 and 18
mm, and 15 and 17 mm anterior to the auditory meatus in
monkeys G and K, respectively. The medial-lateral coordinates
ranged between 22 and 24 mm, and 20 and 21 mm lateral to
the midline in monkeys G and K, respectively. These are the
same penetrations which were originally made to study the
effect of stimulus repetition on the synchrony of macaque IT
cortical activity [15] and in addition were used to address the
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question how adaptation affects object representation accuracy
at the level of MUA in macaque IT cortex [20].

Recordings

LFPs were recorded using a 16-channel Plextrode U-Probe
(Plexon Inc.). The inter-contact (channel) spacing was 100 pm
with electrode sites linearly arranged on a single shaft (outer
diameter of 185 um). The U-Probe was lowered with a
Narishige microdrive through a guide tube. The grounded guide
tube and metal shaft served as the reference. Recordings were
made using a Plexon data acquisition system. Recorded
signals were preamplified with a headstage having an input
impedance of >1GQ. The signals were split into spiking activity
(band-passed signal between 250 Hz and 8 kHz) and LFPs
(band-passed signal between 0.7 and 170 Hz obtained by
applying to the signal a high-pass two-pole Butterworth filter
with a cut-off frequency of 0.7 Hz and a low-pass four-pole
Butterworth filter with a cut-off frequency of 170 Hz and
followed by digitization at 1 kHz).

The U-Probe was positioned so that visually-driven MUA was
present on most if not all channels and LFP response to the
presented stimuli was clearly visible for each channel. After
positioning the U-Probe in the STS, we waited for
approximately 2 hours before performing the recordings to
ensure good recording stability.

Eye position was measured online with an infrared-based
eye tracking system (ISCAN EC-240A, ISCAN Inc.; 120 Hz
sampling rate). The analog eye movement signal was saved
using a sampling frequency of 1 kHz. Eye positions, stimulus
and behavioral events were stored for later off-line analysis on
a computer which was synchronized with the Plexon data
acquisition system.

Stimuli and tests

The stimulus set consisted of 52 color images including
human and monkey faces, human and monkey bodies, body
parts, mammals, birds, fish, snakes, spiders, trees, fruits,
fractals and manmade objects. The maximum size of the
objects was approximately 5° of visual angle. The stimuli were
presented on a uniform gray background with their centers of
mass positioned in the center of a CRT display (frame rate 60
Hz) located 61 cm from the subject’s eyes.

The two images to be used during the adaptation test were
selected by means of a preliminary test. We presented the 52
images while the animal was performing the passive fixation
task during which the stimuli were shown for a duration of 500
ms. Based on the spiking responses to the stimuli in the
different channels, we selected in each penetration two images
which elicited a response in most of the 16 channels
throughout the thickness of cortex. Next, using these two
selected images, A and B, we ran the adaptation test ( [15];
Figure 1) in which two stimuli, adapter and test, were presented
for 500 ms each, separated by a blank screen (ISlI) for 500 ms.
The stimuli within a trial were either the same (AA or BB trials,
repetition trials) or different (AB or BA trials, alternation trials)
images. Subjects were required to maintain fixation from 500
ms prior to the adapter stimulus onset until 475 ms after the
test stimulus offset. Continuous fixation in this 2475 ms interval
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was followed by a fluid reward. Any break in fixation during this
interval aborted the trial.

The fixation window sizes ranged from 1.1 to 1.8°
horizontally and 1.6 to 2.6° vertically across the monkeys.
Aborted trials were not analyzed further. The time interval
between the test stimulus offset and the adapter stimulus onset
for the next trial or, in the case of aborts, between the end of
the aborted stimulus and the beginning of the adapter stimulus
of the next trial varied across trials since it depended on the
oculomotor behavior of the animal. The medians of these time
intervals ranged from 3326 to 3494 ms across monkeys, with
minima ranging from 2856 to 2923 ms. These values are well
above the 500-ms ISI of a stimulus sequence. The order of the
four different trial sequences (AA, BB, AB and BA) was
pseudorandomized with the constraint that the adapter image
of a trial always differed from the last presented image of the
preceding unaborted or aborted trial. The proportion of AA, BB,
AB and BA unaborted trials was similar. The mean number of
trials per condition across penetrations was 123.5 (minimum =
86 trials, maximum = 156 trials).

Data analysis

LFPs were filtered offline with a digital 50-Hz notch filter
(48-52 Hz fourth-order Butterworth FIR filter; Fieldtrip Toolbox,
F.C. Donders Centre for Cognitive Neuroimaging, Nijmegen,
The Netherlands; http://www.ru.nl/fcdonders/fieldtrip). Trials in
which the signal was <1% or >99% of the total input range
were excluded (median % removed trials across all conditions
and animals: 0.4%). By convolving single-trial data using
complex Morlet wavelets and taking the square of the
convolution between the wavelet and signal [33], the time-
varying power of the signal for every frequency was obtained.
The complex Morlet wavelets had a constant center frequency-
spectral bandwidth ratio (f, / o;) of 7, with f, ranging from 1 to
170 Hz in steps of 1 Hz. Only sites for which the spiking activity
showed a significant response to either A or B presented as
adapter or test stimulus entered further LFP analysis (see 20).
Since a previous analysis of the same recordings [15] showed
that the adaptation was stronger in the early than in the late
phase of the response to a stimulus, we employed an early
analysis window that ranged from 60 till 310 ms poststimulus
onset. We refer to [15] for an in-depth analysis of the power
spectra of the LFPs of the same data.

The spectral power of each trial was averaged within the
early analysis window and each of the following frequency
bands: 8-12 Hz (labeled “alpha”), 13-30 Hz (“beta”), 31-60 Hz
(“low gamma”), 61-100 Hz (“middle gamma”) and 101-170 Hz
(“high gamma”).

Stimulus decoding from the LFPs spectral power

We classified the two stimuli, A and B, using LFPs’ spectral
power. The classification analysis was performed for the
following conditions: (1) adapter stimuli, separately for
repetition and alternation trials (labeled “Adapter”), (2) test
stimuli in repetition trials (“Test(AA, BB)”), (3) test stimuli in
alternation trials (“Test(AB, BA)”), and (4) test stimuli following
the same adapter stimulus (e.g. A following A versus B
following A; “Test(AA, AB)”). The classification analysis of the
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latter condition was performed separately for the AA versus AB
and BB versus BA trial combinations. Since the classification
scores did not differ for the adapter stimulus in repetition and
alternation trials as well as for the test stimuli in AA versus AB
and BB versus BA trial combinations in either monkey (two-
sided Wilcoxon matched pairs test, Bonferroni-corrected for
two monkeys per frequency band p < 0.025), we averaged
those per condition. Because of the constraint that the adapter
stimulus needed to differ from a lastly presented stimulus of the
preceding trial, the AB and BA sequences were likely to occur
further apart in time compared to the AA and BB sequences.
Note that the absence of a difference in the classification
scores for the adapter stimulus in repetition and alternation
trials also implies no effect of the difference in the conditional
probabilities of these two types of sequences.

For each condition and penetration, we made a neuronal
population consisting of the simultaneously recorded sites of
that penetration (median number of sites per penetration =
15.5; range: 11-16). In order to compare classification
accuracies across the four conditions, we equated the number
of trials per stimulus for these conditions that were used to train
and test the classifiers. Thus, for each penetration, the number
of trials per stimulus (N,) that entered the classifier was equal
to the smallest even number of trials per stimulus of the four
conditions of that penetration. The mean N,,, was 112 trials and
ranged from 84 to 122. Half of the N, trials were used for
training, while the remaining half of the trials was used for
testing the classifier. All the reported classification accuracies
are based on the classifications obtained during testing (cross-
validated classification scores). For each condition and
penetration, we trained and tested 1000 classifiers by randomly
drawing for each classifier the training and test trials from the
pool of all available trials. The classification scores of a
population of sites of a penetration are the averages of these
1000 classification scores.

We employed Support Vector Machines (SVM; [34,35])
which perform classifications by constructing a hyperplane in a
multidimensional space that separates items, here single-trial
LFP power of a particular frequency band, of different class
labels, here A and B stimuli. We used a linear SVM since it is a
relatively simple classifier and less susceptible to overfitting
than non-linear SVM (e.g. [36]). The SVMs were performed
using the Matlab “svmtrain” function with default parameters
(quadratic programming method was used in order to find the
separating hyperplane) of the Matlab Bioinformatics toolbox.
The training and test data for each site were standardized by
subtracting the mean (averaged across both stimuli for the
training trials) from each response and dividing this difference
by the standard deviation of the responses of the training data
(z-normalization).

As a control, we ran the classifiers on the label-shuffled data
in which the stimulus labels (A or B) were randomly permuted
across the trials. This permutation of the stimulus labels was
performed 1000 times and 1000 classifiers were trained. As
expected, the mean percent correct classification performance
for the shuffled data was 50%.

To compare the results of classification of stimulus identity
from LFPs for different frequency bands to those when using
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Figure 1. Adaptation test. Trials consisted of the successive presentations of either two identical (repetition trials, AA and BB) or
two different (alternation trials, AB and BA) stimuli, each presented for 500 ms and separated by a blank screen for 500 ms.
Monkeys initiated a trial by passively fixating for 500 ms a red target square (size: 0.17°, here shown not to scale), which was
presented in the center of the monitor and remained visible throughout an entire trial. Continuous fixation on the target square
during the stimulus presentations and 475 ms after the test stimulus offset resulted in a fluid reward delivered to the monkeys.

doi: 10.1371/journal.pone.0074665.g001
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MUA [20], we ran the SVM classification analysis for MUA of
the same penetrations. This classification analysis for MUA
was identical to that used for the decoding of stimulus identity
from the LFPs spectral power. Instead of using the averaged
power in a particular frequency band as the response to a
stimulus, the classification analysis for MUA was based on raw
spike counts in the early analysis window.

Power in spectral frequencies above 50 Hz can be
contaminated by low frequency residuals of simultaneously
recorded spikes. As in the large majority of other LFP studies
(e.g. [37-41]), we did not attempt to remove those spikes
residuals for several reasons. First, we feel that in order to link
LFPs to the BOLD signal, one should consider the full LFP
signal and not one in which spikes residuals are removed. The
second and most important reason is that by removing spikes
from the LFPs we would have considerably deteriorated the
signal, since we recorded multi-unit activity [20]. Indeed,
applying any known method to remove spike residuals from the
LFP signal would be rather detrimental that beneficial for our
data set. Each such method operates by extrapolating the LFP
signal in a small window around detected spikes. The span of
this window varies from 1.5 to 3 ms (e.g. [42,43]). Given the
high firing rates in our data (peak values were approximately
75 and 85 spikes/sec in monkeys G and K, respectively; for
details, see 20) we believe that such extensive interpolation of
LFPs will considerably deteriorate the signal. Third, spike
removal procedures are essential when computing spike-
triggered LFP averages, phase locking of spikes and spike-LFP
coherence where spikes and LFPs are measured with the
same electrode [43]. We did not apply any of these analyses.

Analysis of eye movements

The results of analyses of eye movements, including
microsaccade rates, are reported in [15]. They demonstrated
that the stimulus-selective repetition suppression of the neural
responses cannot be explained by eye movement differences
between adapter and test stimuli.

Results

We recorded LFPs using a laminar electrode located in IT
during an adaptation paradigm in which repetitions of the same
images (AA or BB sequences) were randomly interleaved with
successive presentations of different images (AB or BA
sequences). We made 21 and 11 penetrations in monkeys G
and K, respectively, yielding 319 and 149 sites with responsive
MUA to either stimulus A or B in monkeys G and K,
respectively. The LFPs from these responsive sites were
analyzed further (only MUA-responsive sites were employed
for the analyses, ensuring that the recordings were performed
in the gray matter).

After Morlet wavelet transform, we averaged the spectral
power in each of the five frequency bands and in the response
window. SVM classifiers were trained and tested for each band
and stimulus condition separately. Figure 2 shows the mean
classification scores for each frequency band as a function of
stimulus condition. Classifiers were trained separately for each
simultaneously recorded population of sites per penetration.
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Thus, the mean classification scores refer to the classification
scores, averaged across the penetrations. For each frequency
band, the classification scores were well above the chance
level (50%). However, the classification scores strongly
depended on the frequency band (repeated measures ANOVA
with frequency band and stimulus condition as factors; F(4,120)
=51.156, p < 0.0001) with a significant interaction of frequency
band and stimulus condition (F(12,360) = 7.0320, p < 0.00001).
The highest classification scores were obtained for the alpha
band, followed closely by the beta band (Figure 2). The high
accuracy for these low frequency bands is not that surprising
since the LFP waveforms differed between stimuli (see 15) and
these differences in waveforms are reflected in the power at
these low frequencies. For comparison with the classification
scores obtained for the LPFs spectral power, Figure 2 also
shows the mean classification scores for the MUA (in red)
recorded from the same sites of the same penetrations.

The alpha, beta and low gamma band classifications showed
a significant effect of stimulus condition (one-way repeated
measures ANOVA,; alpha: F(3,93) = 9.2488, p < 0.00002; beta:
F(3,93) = 3.2921, p < 0.05; low gamma: F(3,93) = 6.8069, p <
0.0005) with the mean classification scores for the test stimulus
in the alternation trials (Test(AB, BA)) and in the Test(AA, AB)
condition both larger than those for the adapter and the test
stimulus in repetition trials (Test(AA, BB)). However, these
effects were numerically small (about 2-3% difference; Figure
2) and survived Bonferroni Post Hoc testing only for the alpha
band (p < 0.05). For the low gamma, Bonferroni Post Hoc
testing showed significant effects only for the Adapter condition
versus Test(AB, BA) and Test(AA, AB) (p <0.01).

The middle gamma band classification accuracies also
showed a significant effect of stimulus condition (one-way
repeated measures ANOVA; F(3,93) = 32.609, p < 0.00001).
As for the lower frequency bands, the classification scores for
the test stimulus in the alternation trials (Test(AB, BA)) and in
the Test(AA, AB) condition were larger than those for the test
stimulus in repetition trials (Test(AA, BB); Bonferroni Post Hoc
test, each p < 0.0005). However, the most remarkable effect
was the significantly higher accuracy score for the test stimulus
in the Test(AA, AB) condition compared to the other three
conditions (each p < 0.00005), including the test stimulus in
alternation trials (Test(AB, BA)). This higher accuracy for the
Test(AA, AB) condition was present in each animal (Figure
3A,B).

The high gamma band classification showed numerically the
strongest effect (11% difference) of stimulus condition (one-
way repeated measures ANOVA; F(3,93) = 34.967, p <
0.00001). Similar to the effects seen for the middle gamma
band, the highest mean classification accuracy for the high
gamma power was observed for the test stimuli in the Test(AA,
AB) condition, which differed significantly from the three other
conditions (Bonferroni Post Hoc test, each p < 0.001). Contrary
to the lower frequency bands but similar to what we observed
when classifying the spiking activity at the same sites [20], the
classification accuracy was significantly lower for the test
stimulus in repetition trials (Test(AA, BB)) compared to the
adapter (p < 0.005) and the test stimuli in the two other
conditions (Test(AB, BA) and Test(AA, AB); p < 0.000001).
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Figure 2. Classification accuracies for the multi-unit
activity (in red) and frequency band-limited LFP power (in
black). Mean classification accuracies (N = 32 penetrations)
for the four stimulus conditions listed on the abscissa are
plotted for five frequency bands: (A) alpha (8-12 Hz), (B) beta
(13-30 Hz), (C) low gamma (31-60 Hz), (D) middle gamma
(61-100 Hz) and (E) high gamma (101-170 Hz). Support Vector
Machines were trained and tested for each condition and
frequency band separately. Error bars indicate standard error
of the mean.

doi: 10.1371/journal.pone.0074665.g002
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Thus, stimulus repetition reduced the classification accuracy in
this high frequency band. The classification accuracy for the
adapter and test stimuli in alternation trials (Test(AB, BA)) did
not differ significantly. Thus, the effects for the high gamma
band were similar to those observed for the spiking activity,
except for the relatively high classification scores for the test
stimuli in the Test(AA, AB) condition. However, unlike the other
effects, this increase for the Test(AA, AB) condition was
present in monkey G but not in the other animal (Figure 3C,D;
repeated measures ANOVA with monkey and stimulus
condition as factors; interaction monkey and stimulus condition:
F(3,90) = 9.2102, p < 0.00005).

In our analyses of classification accuracy, we decoded
stimulus identity based on the responses to a presented
stimulus (A or B) at each analyzed electrode site per
penetration. Given that the maximum distance between the
sites was 1.5 mm while similar LFPs selectivity has been
observed in a larger area (e.g. [44]), it is possible that
information on stimulus identity distributed across all analyzed
sites per penetration is redundant due to this shared LFPs
selectivity across sites. If the responses to a stimulus were
correlated across sites, one would expect to achieve similar
classification accuracy when reducing the number of analyzed
sites per penetration. On the contrary, if reducing the number
of sites resulted in a decrease of classification accuracy, this
would indicate that despite the shared LFPs selectivity each
site provided additional information on stimulus identity. To test
this hypothesis, we classified the identity of the adapter
stimulus in repetition trials employing only 1/3 of the electrode
sites per penetration that entered the original analysis (median
number of sites per penetration = 5.0; range: 3-5). For all
frequency bands, we observed a significant decrease in
classification accuracy when reducing the number of analyzed
sites (mean classification accuracy across both monkeys for
the whole and reduced sets of analyzed sites per penetration,
respectively: alpha: 78.1% versus 71.2%, p < 0.000005, two-
sided Wilcoxon matched pairs test; beta: 75.9% versus 72.4%,
p < 0.000005; low gamma: 62.4% versus 60.6%, p < 0.005;
middle gamma: 60.2% versus 58.1%, p < 0.0005; high gamma:
66.0% versus 62.7%, p < 0.00005). These findings show that
the LFP signals per site were at least to some extent
independent.

Discussion

Classification accuracy for the alpha and beta bands was
comparable to that of the MUA measured at the same sites
( [20]; compare black bars in Figure 2A,B with red bars in
Figure 2E) and higher than that obtained for the higher
frequency bands. This greater classification accuracy for low
compared to high frequencies has also been observed in
anesthetized macaque V1 using natural movies as stimuli [32].
It may at least partially be due to differences in luminance and
contrast and hence overall stimulus drive. Indeed, in our and
the V1 study [32], stimuli differed in luminance. It still remains
to be examined whether such high classification accuracies for
the low frequency bands are also present when employing
stimuli equated for these low-level image properties.
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Figure 3. Classification accuracies for the multi-unit activity (in red) and the middle and high gamma LFP power (in black)

in each of the two monkeys.

(A,C) Monkey G, (B,D) monkey K.N indicates the number of penetrations, the sites of which (up to

16 per penetration) were employed for classifications. Error bars indicate standard error of the mean.

doi: 10.1371/journal.pone.0074665.g003

To our knowledge, we present here the first analysis of
stimulus classification of LFP power in an adaptation paradigm.
For the alpha, beta, low and middle gamma bands,
classification accuracy was statistically indistinguishable for the
adapter and test stimuli in repetition trials. This novel finding
suggests that classification accuracy based on low spectral
frequency LFP signals is not reduced when repeating a
stimulus, which contrasts with the marked decrease in
classification accuracy of MUA ( [20]; red bars in Figure 2E) for
the test stimulus in the same repetition trials. However, a
significant decrease in classification accuracy for repeated
stimuli was present for the high gamma band in both animals,
which agrees with previous observations of a correlation
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between high gamma power and MUA ( [45-47]; compare
black and red bars in Figure 3C,D).

We wish to stress that the adaptation paradigm we employed
assesses short-term repetition or adaptation effects. Such
short-term adaptation effects may well differ from those seen
after long duration adaptation (e.g. [29,48,49]) or after long
delays. Furthermore, the stimuli employed in the present study
were all familiar to the monkey since they were employed to
search for responsive units. Interestingly, in a study from
Sheinberg’s group [50] classification accuracy based on LFPs
recorded in macaque IT was found to be higher for familiar
compared to novel stimuli. This contrasts with our finding of
lower classification accuracy in the middle and high gamma
bands for repeated versus non-repeated stimuli, indicating that
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the short-term adaptation effects differ from
learning-related familiarity effects.

The higher classification accuracy for the Test(AA, AB)
condition compared to the other conditions for higher
frequencies is noteworthy and unexpected. It was present in
both animals for the middle gamma frequencies but present
only in one animal for the high gamma frequencies. The
classification accuracy in the Test(AA, AB) is the average of
classification scores for the test stimuli across AA versus AB
and BB versus BA trial combinations (see Materials and
Methods). For the sake of argument, assume that stimulus A
evokes a higher response than stimulus B. Repetitions of
stimulus A (AA trial sequence) will result in a decreased
response to the repeated A while largely preserving the
response to stimulus B following A. This will decrease the
difference in response between those stimuli and, when
assuming this difference to be a major determinant for the
decoding of stimulus identity, result in a poorer classification
accuracy compared to that for the adapter. On the other hand,
the reduced response to the repeated B (BB trial sequence)
and the largely unchanged response to A when preceded by B
will lead to a greater difference in response between these
stimuli and result in a better classification accuracy compared
to that for the adapter. Thus, the increased classification
accuracy in the Test(AA, AB) condition is not trivial.

Although this increase was only present in one animal for the
high gamma frequencies (Figure 3), it does suggest that the
power in those high frequency bands, even above 100 Hz,
does not merely reflect MUA. Thus, classification of MUA in
adaptation paradigms does not always produce the same
effects as those seen in high frequency LFP power, although in
many studies both measures were well correlated. A
discrepancy between spiking activity and high gamma tuning
has also been observed in MT and MST [51]. One possibility is
that the high gamma power — as does the low frequency power
—also reflects synaptic activity and that this input shows a high
sensitivity for a repeated versus a non-repeated test stimulus.
Whatever the reasons for the discrepancy between MUA and
high gamma power are, our data demonstrate that it is
informative to examine high frequency LFP power in addition to
MUA.

Because the fMRI BOLD response correlates with LFPs
[25-28], the present data are relevant for a recent human fMRI

long-term,
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