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Abstract 

Abnormal abdominal pain perception is the most bothersome and difficult to treat symptom 

of functional gastrointestinal disorders (FGIDs). Visceral pain stimuli are perceived and 

transmitted by afferent neurons residing in the dorsal root ganglia that have sensory nerve 

endings in the gut wall and mesentery. Accumulating evidence indicates that peripheral 

activation and sensitization of these sensory nerve endings by bioactive mediators released 

by activated immune cells, in particular mast cells, can lead to aberrant neuro-immune 

interactions and the development and maintenance of visceral hypersensitivity. Besides 

direct neuronal activation, low concentrations of proteases, histamine and serotonin can 

chronically sensitize nociceptors such as TRP channels, leading to persistent aberrant pain 

perception. This review discusses the potential mechanisms underlying aberrant neuro-

immune interactions in peripheral sensitization of sensory nerves. A better understanding of 

the cells, mediators and molecular mechanisms triggering persistent aberrant neuro-

immune interactions brings new insights into their contribution to the physiology and 

pathophysiology of visceral pain perception and provides novel opportunities for more 

efficient therapeutic treatments for these disorders. 

 

 

Keywords: Pain, TRP channels, (low-grade) inflammation, food antigens  
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Functional gastrointestinal (GI) disorders (FGIDs) affect the esophagus, gastroduodenum, small and 

large bowel and are characterized by recurring GI symptoms that cannot be attributed to structural 

or biochemical abnormalities 
1
. Currently, applied classifications of functional GI disorders (FGIDs) are 

almost entirely symptom based and diagnosed by Rome IV criteria (overview classification system for 

FGIDs in 
2
). The most common symptoms reported by this largest group of GI patients include 

abnormal pain perception, altered bowel habit or stool form, defecatory dysfunction, abdominal 

distension/bloating, nausea, early satiety, epigastric pain, postprandial fullness and heartburn. So far, 

FGIDs are extremely difficult to treat due to our limited understanding of their biological basis 

explaining why current therapies are simply symptomatic but do not actually cure the disease.  

Of all symptoms, aberrant abdominal pain perception is the most bothersome and difficult to treat 

symptom. The gold standard to assess visceral sensitivity and pain is the barostat technique where a 

balloon is inserted in the lumen of the intestinal segment of interest. Patients rate their pain score 

during gradual inflation of the balloon on a visual analogue score. Depending on the threshold used, 

at least 50% of FGID patients suffer from mechanical hypersensitivity to balloon distention 
3-6

. Not 

only sensitivity to mechanical but also to chemical stimuli such as lipids, acid or capsaicin, which 

activate the nociceptor transient receptor potential cation channel subfamily V member 1 (TrpV1), 

can be abnormal. For example, we recently demonstrated that 48% of IBS patients display an 

increased pain response to rectal application of capsaicin 
7
 while patients with functional dyspepsia 

reported more pain following acid infusion directly into the stomach 
8
 compared to healthy 

volunteers.  

Visceral (nociceptive) sensations from the gut are provided by distinct populations of neurons. 

Nociceptive signals originating in the gut are transmitted via first order sensory neurons with their 

cell body in the dorsal root ganglion and synapsing with second order neurons in the dorsal horn of 

the spinal cord. This sensory information is subsequently transmitted to autonomic and satiety 

centers in the thalamus and the brain stem and third order neurons leading to conscious perception.  

Based on the current scientific evidence, the mechanisms underlying visceral hypersensitivity include 

(1) peripheral activation and sensitization of visceral afferent neurons; (2) the sensitization of spinal 

cord dorsal horn neurons; (3) altered brain processing and/or impaired descending inhibitory 

pathways from the brain. The exact contribution of these mechanisms in visceral hypersensitivity and 

how they may interact is still unclear, but most likely they are rather complementary than mutually 

exclusive. This review will mainly focus on peripheral mechanisms, in particular on the role of neuro-

immune interactions, in the pathophysiology of IBS. 

Peripheral alterations underlying visceral hypersensitivity in IBS preclinical models 

As stated above, nerve terminals of extrinsic afferents reside within the gut wall and the mesentery 

where they sense and mediate transmission of (pain) signals to the brain. They are equipped with a 

wide range of either activating or inhibiting cell surface receptors and channels 
9
 that determine the 

final activation and signaling properties of these nociceptive afferents. These nerve terminals reside 

in a complex signaling environment in which they are subjected to mechanical distortion during 

distention or contraction and are exposed to a continuously changing milieu containing a mixture of 

neuroactive signaling molecules. Changes in this local environment by f.e. aberrant immune 

activation can not only trigger activation of these nociceptive nerve endings but also alter their 

sensitivity, leading to long-term aberrant pain perception and abdominal symptoms 
9, 10

.  
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Our current insight in the role of neuro-immune mechanisms in visceral hypersensitivity is mainly 

obtained from preclinical IBS models 
9
. In these models, a variety of triggers have been implied to 

trigger abnormal pain perception, including chronic exposure to stress 
11, 12

, infection 
13-16

, 

inflammation 
17-19

, neonatal colonic irritation 
20, 21

 or maternal separation 
22

. To date, mainly changes 

in activation of voltage gated sodium channels 
20, 23, 24

, ATP-gated and acid-sensing ion channels 
17, 21, 

25-31
, protease-activated and histamine receptors 

18, 32-34
 and transient reporter potential channels 

35-40
 

have been proposed to be involved in visceral hypersensitivity. Especially mast cell activation and 

persistent low grade inflammation leading to the release of mast cell mediators, cytokines and 

opioids changing the performance of the above mentioned receptors and ion channels have been 

identified as main mechanisms involved in visceral hypersensitivity in these preclinical models. 

However, even though these preclinical models have provided important insight in the mechanisms 

and the role of immune activation in the maintenance of chronic visceral hypersensitivity (for 

excellent reviews, see 
41-43

), these mechanisms may be dependent on the model used and not 

necessarily translate to the human situation. Therefore, this review will discuss the current 

knowledge on the molecular triggers and specific immune cell types involved in the development and 

maintenance of visceral hypersensitivity in man.   

Evidence for low grade inflammation in IBS 

Although the exact etiology of IBS is very heterogeneous and not fully understood, the best studied 

triggers for the development of IBS are adverse early life events, chronic exposure to stress and 

infectious gastroenteritis (post-infectious IBS, PI-IBS). Numerous clinical studies attribute IBS 

symptom development in 3-36% of individuals to gastrointestinal infection with bacteria, viruses or 

parasites 
44, 45

. As the onset of IBS is best defined after an infectious gastroenteritis, this subgroup of 

patients is considered as a more homogenous group with similar underlying mechanisms that allows 

studying the pathogenesis of IBS. As such, the most compelling evidence for chronic low-grade 

inflammation, long after the initial infection has cleared, has been obtained in PI-IBS patients, who 

had no significant prior gut symptoms and in whom gut function was assumed to be normal before a 

defined episode of bacterial gastroenteritis 
46-49

. Significant increases in the number of T-

lymphocytes, macrophages and mast cells, enteroendocrine cells and IL-1β mRNA expression were 

observed in submucosal biopsies of PI-IBS patients 
48-51

 compared to healthy volunteers. But data on 

immune cell infiltration are conflicting as others found no evidence for inflammatory cell infiltrates or 

increased cytokine expression in the colonic mucosa of PI-IBS patients compared to post-infected 

individuals who did not develop IBS symptoms 
52, 53

.  

Also in classical or non PI-IBS, evidence has been reported suggesting an association with persistent 

low-grade inflammation within the gut wall. Increased numbers of mucosal mast cells, eosinophils 

and (intra-epithelial) T lymphocytes were detected in intestinal tissues of adult and pediatric IBS 

patients compared to healthy volunteers 
54-57

. The increased numbers of T and mast cells in mucosal 

biopsies of IBS patients significantly correlated with abdominal bloating frequency and symptoms of 

dysmotility-like dyspepsia 
54, 55

. Additionally, mast cells were found to be located in closer proximity 

to nerve fibers in IBS patients versus controls while the number of mast cells in close proximity to 

nerves significantly correlated with the severity and frequency of abdominal pain and discomfort 
54

.  

Although the evidence for aberrant immune activation seems overwhelming in (PI-)IBS, care must be 

taken when interpreting these results as the evidence supporting persistent immune cell infiltration 

or low-grade inflammation in IBS is conflicting. Various research groups found no differences in 
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immune cell numbers or cytokine mRNA expression in mucosal biopsies of PI-IBS 
52, 53

 and IBS 
58-63

 

patients compared to healthy volunteers. Braak et al. even reported decreased numbers of mast 

cells, macrophages, T cells and λFLC-positive mast cells in the colonic mucosa of 66 IBS patients 

compared to 20 HV 
58

. Also at mRNA level, decreased levels of genes linked to chemokine function or 

IL-10 were detected among IBS patients 
60, 61

. More recently, Bennet et al. found no differences in 

cytokine mRNA expression levels in sigmoid colon biopsies when analyzing 109 IBS patients versus 

healthy volunteers 
62

. Not only do these reports fail to demonstrate immune infiltration in the 

colorectal mucosa of (PI-)IBS patients, they also fail to demonstrate a correlation between immune 

infiltration and visceral pain perception 
58

. For example, in PI-IBS, Mearin et al. found no differences 

in the number of T lymphocytes or pro-inflammatory cytokines between PI-IBS patients and infected 

control subjects three years after a Salmonella infection, even though only PI-IBS patients were 

hypersensitive to rectal distention 
53

. Also in non PI-IBS, we found no evidence for submucosal 

immune infiltration while submucosal neurons in rectal biopsies of IBS patients but not healthy 

volunteers revealed increased sensitivity to capsaicin 
64

. 

In summary, the current evidence supporting mucosal immune infiltration in IBS is conflicting and 

potentially reflects patient selection bias, geographical differences or differences in diet. The 

discrepancies observed for mucosal infiltration of immune cells in the gut wall of PI-IBS patients may 

reflect differences in the time between infection and sample analysis (varies between 3 months up to 

8 years post-infection) or differences in the characteristics of the initiating pathogen. Nevertheless, 

these study results clearly question the role of mucosal immune infiltration as a causal factor for 

visceral hypersensitivity.   

Role for aberrant neuro-immune interactions in visceral hypersensitivity 

Based on recent data, it seems more plausible that the activation status of immune cells in the 

mucosa, rather than an increase in their absolute number, plays a crucial role in the maintenance of 

visceral hypersensitivity. Electron microscopy studies demonstrated that the number of degranulated 

mast cells in close proximity to enteric nerves was significantly increased in the descending colon of 

IBS patients when compared to healthy controls 
54

, implying a functional interaction between 

mucosal mast cells, enteric nerves and extrinsic sensory neurons. As such, inflammatory mediators 

potentially contribute to the mechanisms underlying abdominal pain and dysmotility in patients with 

IBS. Mucosal intestinal biopsy supernatants serve as an excellent tool to assess the effect of 

alterations in the local micro-environment on peripheral nociceptive signaling mechanisms in IBS 

patients 
65-69

. IBS mucosal biopsy supernatants produce an enhanced calcium influx after acute 

application to isolated primary afferents 
69, 70

 or submucosal enteric neurons 
66-68

, or enhanced firing 

rates in rat mesenteric afferents upon injection into mesenteric arteries 
69

. Of note, supernatants 

from IBS patients who are hypersensitive to colorectal distention caused stronger activation of 

guinea pig enteric and mouse DRG neurons compared to supernatants of normosensitive patients 
68

, 

indicating that neuronal activation responses in vitro seem to correlate with the individual pain 

threshold pressure values.  

Analysis of the supernatants obtained after incubation of mucosal biopsies revealed that the 

supernatants from IBS patients contained increased amounts of pro-inflammatory mediators such as 

histamine, serotonin, polyunsaturated fatty acid metabolites 
36, 54, 66, 71

 and proteases 
70, 71

. Each of 

these mediators can contribute to aberrant visceral pain perception as in vitro studies revealed that 

the marked increase in intracellular calcium in rat DRG neurons was at least partially inhibited by the 
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application of a 5-HT3 antagonist, histamine 1 or 2 receptor antagonists and a protease antagonist 
66, 

67
 (for review, see 

65
). Cenac et al. recently provided breaking evidence for the role of 

polyunsaturated fatty acid metabolites in visceral hypersensitivity. In particular 5,6-EET was 

upregulated in colonic biopsies but not supernatants from patients with IBS and acts as an 

endogenous agonist of TRPV4 to induce hypersensitivity. Of interest, upon exposure to supernatants 

from IBS biopsies, mouse sensory neurons produced 5,6-EET via a mechanism that involved the 

proteinase-activated receptor-2 (PAR-2) and cytochrome epoxygenase (Fig. 1). 5,6 EET then 

stimulates TRPV4 on sensory neurons to generate visceral hypersensitivity 
71

. Finally, in vivo, 

supernatants from colonic biopsies of IBS patients, but not controls, caused somatic and visceral 

hyperalgesia and allodynia in mice, when administered into the paw or colon respectively 
70

. This 

pro-nociceptive effect was inhibited by serine protease inhibitors and a PAR-2 antagonist and was 

absent in PAR-2-deficient mice 
70

, underscoring the role of protease in the maintenance of visceral 

hypersensitivity. Besides direct neuronal activation, Dothel et al. recently reported that mucosal 

biopsy supernatants from patients with IBS trigger nerve sprouting of primary enteric neurons and 

enteric cell lines 
72

, potentially contributing to neuronal plasticity and visceral hypersensitivity. More 

research assessing neuronal markers or nociceptor expression are required to explore this 

hypothesis.  

Others suggested that changes in immune parameters are also evident in peripheral blood 

mononuclear cell (PBMC), as opposed to biopsy supernatants, from patients with IBS.  In particular, 

evidence indicates increased activation of T cells 
73, 74

 and correlation of pain with levels of several 

pro-inflammatory cytokines including in TNF-α, IL-1β and IL-6 in the supernatants of PBMCs from 

diarrhea predominant IBS patients 
73, 75

. PBMC supernatants from IBS patients evoked mechanical 

hypersensitivity of colonic afferents from mice 
75

, an effect that is most likely mediated by TNF-α in 

diarrhea predominant IBS patients or IL-1β in constipation predominant IBS patients 
75

. However, 

additional evidence on systemic immune activation is conflicting as others found no differences in 

cytokine levels in PBMC supernatant (basal and stimulated, 
52

) or serum cytokine levels 
62

. It should 

also be pointed out that the immune subsets in PBMCs have a completely different phenotype and 

are actually not representative for the immune cells residing in intestinal tissue 
76

. Finally, it is not 

clear why a systemic increased release of cytokines would only sensitize visceral afferents in IBS 

patients while leaving other organs unaffected.  

Altogether there is a general consensus on the role of bio-active mediators released in the colorectal 

micro-environment on sensory neuron activation and subsequent increased visceral pain perception 

in IBS patients. More studies are warranted to explore the potential role of systemically released 

bioactive mediators in visceral hypersensitivity.  

Evidence for peripheral sensitization in IBS 

Besides direct neuronal activation, the bio-active mediators that are chronically released in the gut 

wall may also act as neuronal sensitizers. Basically, the same mediators do not only acutely activate 

sensory nerves but also trigger downstream signaling cascades favoring increased nociceptor 

excitability as has been shown for kinins, e.g. bradykinin, histamine and serotonin, prostanoids, e.g. 

prostaglandin E2 growth factors (NGF and GDNF), proteases, chemokines and cytokines as well as 

reduction in pH and increase in ATP 
77

.  
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Previously, we showed increased pain responses to rectal application of the TRPV1 agonist capsaicin 

in IBS patients that are hypersensitive for barostat distention, but we failed to detect upregulation of 

TRPV1 mRNA or protein expression 
7
, indicating that sensitization rather than up-regulation of TRPV1 

may occur in IBS. We then directly studied intestinal neuronal activity in IBS patients by performing 

live calcium imaging of rectal biopsies 
64, 78

. Exposure of submucosal neurons of IBS patients (rectal 

biopsies) to the TRPV1 agonist capsaicin induced greater intracellular calcium (Ca
2+

) responses and 

activated more neurons compared with healthy control while TRPV1 messenger RNA or protein 

levels were comparable 
64

, providing functional evidence for local neuronal sensitization in IBS.  

Although the majority of studies using supernatants obtained from biopsies focused on direct 

neuronal activation (see above), to date only very few studies assessed the mechanisms underlying 

nociceptor sensitization following chronic exposure to IBS supernatants. Overnight incubation of 

murine sensory dorsal root ganglion neurons with supernatants from IBS-D patients elicited a marked 

increase in neuronal excitability compared with controls, underscoring the capacity of IBS 

supernatants to increase the intrinsic excitability of sensory neurons. The increased excitability seen 

with IBS-D supernatant was dependent on proteases and activation of the protease receptor PAR-2 
13

.  

Besides proteases, also pre-incubation of human submucosal neurons and murine DRG neurons with 

the mast cell mediator histamine (nM range) potentiated TRPV1 responses via activation of the 

histamine 1 receptor (Hrh1) 
64

. This increased neuronal response was blocked by the Hrh1 receptor 

antagonist pyrilamine or in mice deficient for Hrh1, further underscoring the role of histamine and 

Hrh1 activation in TRPV1 and neuronal sensitization. Of note, no differences were detected when 

assessing histamine concentrations in colonic biopsy supernatant of IBS patients versus healthy 

volunteers. Instead, the histamine metabolite and Hrh1 agonist imidazole acetaldehyde also 

sensitized TRPV1, even though no differences in imidazole acetaldehyde levels were found between 

supernatants of biopsies from patients with IBS and controls. Based on these data, one can speculate 

that the TRPV1 sensitizing agent may be present at extremely low levels, is another downstream 

metabolite, or is a mixture of various bio-active mediators and metabolites that are only marginally 

increased. Examples of neurosensitizing agents include proteases, oxidized linoleic acid metabolites 

or arachidonic acid metabolites which can all sensitize TRP channels. More studies are needed in IBS 

patients to assess if a panel of bio-active compounds rather than one mediator should be quantified 

to identify subgroups of IBS patients.   

Besides excitation of viscerosensory nerves by immune derived mediators, visceral hypersensitivity 

can result from diminished neuronal inhibition by opioids, in particular in IBS-C patients 
75

. 

Interestingly, Hughes et al. showed that the supernatant of PBMCs isolated from healthy controls 

dampens mechanosensation of visceral afferents, an effect mediated by b-endorphins. Of note, this 

inhibitory effect of PBMC supernatants is lost in IBS-C patients, potentially contributing to a 

dysbalance between pro- and nociceptive signals leading to visceral hypersensitivity 
75, 79

. The source 

of b-endorphins was shown to be predominantly in monocytes and macrophages relative to T or B 

cells in human PBMCs and colonic lamina propria. In the lamina propria of colonic biopsies, nearly all 

CD68 macrophages expressed b-endorphin. In patients with IBS, however, b-endorphin levels in 

unstimulated monocytes were lower than in healthy controls, while the number of CD68 cells in the 

lamina propria of IBS biopsies were lower compared to controls. These data would suggest that a 

reduction in endogenous b-endorphin levels in IBS patients (IBS-C only?) could contribute to 
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abnormal pain perception. Of interest, the same authors noted that k-opioid receptor expression is 

increased in a mouse model of chronic visceral hypersensitivity, leading to a more pronounced 

analgesic effect of PBMC supernatant. This finding is of interest as this suggests that k-opioid agonists 

can be particularly effective dependent on the expression of this receptor, as shown by the dose 

dependently inhibition of colonic nociceptors with asimadoline, a peripherally restricted selective k-

opioid agonist 
80

. These studies introduce a new and interesting concept that abnormalities in the 

secretion of endogenous opioids by immune cells may contribute to visceral hypersensitivity in IBS, a 

concept that definitely deserves further study.  

 

Current therapies 

Current therapeutic options for IBS are restricted to symptomatic treatment leaving visceral 

hypersensitivity untreated. Although there is some evidence for improvement with antidiarrhoeals, 

antispasmodics, bulking agents, laxatives, tricyclic antidepressants and behavioural therapy 
81-83

, we 

will only highlight therapies targeting peripheral neuro-immune dysfunction. 

Based on the hypothesis that microscopic inflammation may be involved in the pathogenesis of IBS, 

two larger clinical trials have been recently performed evaluating mesalazine. This compound is an 

anti-inflammatory drug used to treat patients with inflammatory bowel disease. Although initial 

studies suggested it may be beneficial to patients with diarrhoea-predominant IBS 
84

, these findings 

were not confirmed in these 2 larger trials 
85, 86

. Also prednisone treatment in a reasonably large 

cohort of PI-IBS patients decreased the lamina propria T lymphocyte counts and probably other 

inflammatory cells but failed to improve abdominal pain, diarrhea, or urgency. Taken together, these 

clinical trials all strongly argue against the hypothesis that low-grade inflammation is the underlying 

factor in pain and IBS symptoms 
47

. 

More promising results were obtained with the mast cell stabilizer ketotifen 
59

. Although this 

compound improved symptoms and visceral pain perception in IBS, it possess central side effects and 

is therefore a less attractive therapeutic option. Moreover, as no mast cell stabilizing effects were 

observed in this trial, we further evaluated if its histamine receptor 1 (Hrh1) antagonistic properties 

could have mediated the beneficial effect. In a preclinical model, similar to ketotifen, Hrh1 

antagonism reversed visceral hypersensitivity in a rat model of maternal separation 
34

. Based on 

these observations, we designed a proof-of-concept clinical trial evaluating the effect of 12 week 

treatment with the Hrh1 antagonist ebastine in 55 IBS patients. We showed that ebastine decreased 

visceral hypersensitivity, increased symptom relief and reduced abdominal pain scores compared 

with placebo, an effect that was lost during the washout period 
64

.  

Besides histamine receptor antagonists, also serotonin (5-hydroxytryptamine [5-HT])3 receptor 

antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome 
87

, 

showing  efficacy in abdominal pain, discomfort, urgency, stool frequency and consistency. However, 

significant constipation occurred in approximately 25% of patients, leading to withdrawal in up to 

10% of patients in clinical trials. Attenuation of 5-HT3 activity without completely abolishing its 

function may normalize diarrhea without leading to severe constipation, and thus is of great interest 

to further explore 
87, 88

. 
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On the other hand, linaclotide is a drug with proven visceral analgesic properties in constipation 

predominant IBS patients. In phase II and III studies, linaclotide accelerated colonic transit and 

improved abdominal pain and constipation associated with constipation predominant IBS 
89-92

. In 

addition, linaclotide has been shown to elicit analgesic effects in several animal models of visceral 

pain 
93

. Castro et al. identified the unique analgesic mechanism of linaclotide using in vitro and in vivo 

studies.  It acts as a guanylate cyclase C (GC-C) agonist expressed on mucosal epithelial cells, resulting 

in the production and release of cyclic GMP. This extracellular cGMP inhibits nociceptors, thereby 

reducing nociception 
94

. 

Finally, several phase 2 and 3 clinical trials assessed the efficacy and safety of compounds that 

modulate opioid receptor (µ, δ and ĸ) activity. The mechanism of action of opioid agonists is complex 

because of various receptor subtypes and central versus peripheral action sites, but these agents 

generally mediate inhibitory effects that interrupt neuro-neuronal and neuro-effector transmission. 

Peripherally restricted µ-opioid receptor agonists such as loperamide are powerful antidiarrheal 

agents but do not show convincing analgesic activity 
95

 and are associated with constipation 
96

. These 

agents are therefore less attractive in the treatment of hyperalgesia in IBS-D. The ĸ-opioid receptor 

agonist asimadoline on the other hand produces both analgesic and antidiarrheal effects, presumably 

via a peripheral action 
97, 98

. An on-demand dosis schedule of asimadoline was not effective in 

reducing the severity of abdominal pain in a single-center study in females with IBS 
99

, but post-hoc 

analysis suggested asimadoline was effective in IBS-mixed. It should be noted that the experimental 

design used does not exclude the potential benefit of asimadoline if administered daily over a longer 

term. More recently, Lembo et al. evaluated the clinical response of IBS-D patients to eluxadoline, a 

mixed peripherally acting µ-opioid receptor agonist, δ-opioid receptor antagonist and k-opioid 

receptor agonist with minimal oral bioavailability 
100

. A total of 2427 IBS-D patients were enrolled and 

received 75 or 100 mg eluxadoline twice daily for 26 or 52 weeks. Patients who received eluxadoline 

reported a decrease in stool frequency and urgency while no significant improvement was seen in 

the mean scores for the worst abdominal pain or in the percentage of patients who reported 

improvement of 30% or more in the score for the worst abdominal pain 
100

. Altogether, there is some 

evidence for efficacy of opioid receptor agonists in IBS patients with diarrhea or alternating bowel 

function. Further studies are warranted to explore the subpopulations of patients that may benefit 

the most from these compounds. 

Despite promising evidence that some pharmaceutical agents benefit the treatment of IBS in the 

short term, there is no medical intervention that has been proven to alter the long-term natural 

history of this condition. Novel insight into the molecular neuro-immune mechanisms underlying 

visceral hypersensitivity may potentially lead to the identification of novel therapeutic pathways that 

may even cure IBS.  

 

Perspectives 

Accepting that aberrant mast cell activation and increased neuro-immune interactions at the 

submucosal level trigger and maintain afferent neuronal activation and sensitization, it remains to be 

elucidated which triggers can lead to chronic mast cell activation. Central factors such as 

psychological stress can modulate mast cell activation (Fig. 1). In preclinical studies, several types of 
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stresses and stress mediators such as corticotrophin releasing hormone indeed have been shown to 

modulate gastro-intestinal permeability and concomitantly colorectal sensitivity 
101-103

.  

Besides stress, an aberrant adaptive immune response targeting food or microbial antigens may 

sensitize mast cells leading to their activation upon re-exposure. This hypothesis is supported by 

various reports documenting increased numbers and activation of B or plasma cells in IBS patients 
104, 

105
. In addition, IBS patients have increased serum antibody titers directed against certain 

components of the microbiome, such as flagellin (the primary structural component of bacterial 

flagella), an observation that was even more pronounced in PI-IBS patients 
106, 107

. Finally, when 

candidate food antigens are directly applied to the duodenal mucosa of IBS patients with suspected 

food intolerance through an endoscope, it caused immediate breaks, increased intervillous spaces 

and an increase in intraepithelial lymphocytes in the intestinal mucosa and an individualized 

exclusion diet improved symptoms in 74% of patients at 1 year follow-up 
108

. These data support the 

concept that humoral immune reactivity to luminal antigens may have a putative role in the 

development of IBS symptoms (Fig. 1). Evidence for aberrant immune responses targeting food 

antigens has also recently been provided in a somewhat different patient population, i.e. patients 

reporting sensitivity to wheat in the absence of celiac disease, but presenting with very similar 

abdominal complaints 
109

. These individuals also display antibody reactivity to bacterial LPS and 

flagellin in conjunction with a compromised intestinal epithelium. Of note, all individuals reported 

symptom improvement and immune activation markers returned to normal 6 months after initiation 

of a diet free of wheat and related cereals 
109

. To what extent similar mechanisms also play a role in 

IBS and whether genetically predisposed individuals may become sensitized to food and microbial 

antigens during an acute insult of the intestinal barrier (f.e. during an infectious gastroenteritis, 

inflammation or an episode of stress) remains to be established 
110

.  

As current therapies are merely symptomatic, understanding the complex interaction between food 

and microbial antigens in immune activation and functional symptoms may lead to better 

therapeutic strategies that may potentially even cure IBS. Exclusion diets such as a FODMAP diet or a 

standard exclusion diet frequently recommended for patients with IBS (ie, a regular meal pattern; 

avoidance of large meals; and reduced intake of fat, insoluble fibers, caffeine, and gas-producing 

foods, such as beans, cabbage, and onions) reduce IBS symptoms 
111

. Metabolic profiling of urine 

showed that patients with IBS on a low FODMAP diet for 3 weeks differed significantly after the diet. 

Amongst others, the mast cell mediator histamine was reduced eightfold in the low FODMAP group 
112

, indicating that diet can alter mast cell activation. However, the exact underlying mechanisms and 

potential role of mast cell activation have not been explored yet. The challenge therefore will be to i) 

identify the subgroup of patients that suffer from persistent immune activation by food antigens and 

ii) to identify a panel of antigens of interest together with immune markers to identify affected 

individuals and to monitor the response to specific treatment strategies.  

Conclusions 

Our insight in the pathophysiology of visceral hypersensitivity has significantly expanded over recent 

years. Accumulating evidence unequivocally supports the contention that peripheral mechanisms 

can contribute to IBS. A variety of preclinical models based on diverse triggers of visceral 

hypersensitivity, each with their own limitations, already provided some insight into the receptors, 

cells and molecular pathways involved in aberrant neuro-immune interactions and visceral 

hypersensitivity. In man, not immune cell numbers but rather the release of pro-inflammatory 
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mediators by persistently activated immune cells such as mast cells seems crucial in the development 

of visceral hypersensitivity. As such, increased levels of bioactive mediators and their metabolites are 

released in the submucosa that do not only activate but also sensitize sensory neurons, leading to 

visceral hypersensitivity. To better understand the mechanistic pathways involved, more detailed 

phenotyping of patients and longitudinal studies will be important in future studies using IBS mucosal 

biopsies. Another and potentially more important remaining gap is the identification of the triggers 

that maintain this condition of aberrant immune activation. A better understanding of the factors 

(diet, stress, infection) involved may provide novel therapeutic strategies that not only elevate 

symptoms but may even cure a subpopulation of patients with IBS. 

 

 

 

 

 

 

Figure 1. Cartoon on potential mechanisms underlying visceral hypersensitivity 

Figure 1. Mast cell activation in response to chronic stress or cross-linking of IgG through food or 

microbial antigens triggers the release of pro-inflammatory mediators that directly activate sensory 

neurons. In addition, these mediators may act as neurosensitizers via activation of a cellular signaling 

cascade downstream of their respective nociceptive G protein coupled receptor (GPCR) that 

subsequently activate, translocate or sensitize nociceptors, leading to visceral hypersensitivity. The 

best studied nociceptor is TRPV1 but other TRP or ion channels can be involved. Furthermore, 

proteases deriving from the microbiome, pancreatic juice, epithelium or activated mast cells activate 

PAR2, leading to direct neuronal activation, sensitization and the release of 5,6EET leading to 

neuronal activation in a TRPV4 dependent manner. By contrast, activation of another set of channels 

and/or receptors by f.e. opioids can result in reduced neuronal excitability and subsequent anti-

nociceptive effects (analgesic GPCR). In IBS, pro-nociceptive mechanisms seem to be upregulated 

while anti-nociceptive mechanisms are downregulated. 

Abbreviations: corticotrophin releasing hormone (CRH); mast cell (MC); phospholipase C (PLC), 

adenylate cyclase (AC); protein kinase A and C (PKA, PKC), polyunsaturated fatty acids (PUFA); 

transient receptor potential (TRP); proteinase-activated receptor-2 (PAR-2) 
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