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Let u be a positive bounded Borel measure on a subs#tthe real line, and = {as,...,an} a
sequence of arbitragomplexpoles outsidé. Supposd ¢, ..., ¢n} is the sequence of rational functions

with poles ine/ orthonormal orl with respect tqu. First, we are concerned with reducing the number

of different coefficients in the three term recurrence relation satisfied by these orthornormal rational
functions. Next, we consider the case in whick [—1,1] and u satisfies the Erfis-Tu@n condition
u'>0a.e.on (whereu' is the Radon-Nikodym derivative of the measuraith respect to the Lebesgue
measure), to discuss the convergencegfi(x)/¢n(X) asn tends to infinity and to derive asymptotic
formulas for the recurrence coefficients in the three term recurrence relation. Finally, we give a strong
convergence result fop,(x) under the more restrictive condition thatsatisfies the Szégcondition
(1) Y2logp/ (x) € L1([~1,1)).

Keywords Orthogonal rational functions, complex poles, three term recurrence relation, asymptotics,
ratio convergence, strong convergence.

1. Introduction

By using the Joukowski Transformation= (z+ z1)/2, which maps the unit circle onto the interval
[—1,1], orthogonal polynomials (OPs) on the interyall, 1] can be related to OPs on the unit circle.
In this way Szeg [10] obtained convergence results for weights satisfying &gegpndition. Later on,
Rakhmanov [7, 8] derived asymptotic results for the weakeb&ftuan condition, while bpez [5, 6]
derived results for polynomials orthogonal with respect to varying measures.

Orthogonal rational functions (ORFs) are a generalisation of OPs in such a way that the OPs are
recovered if all the poles are at infinity. Asymptotics for ORFs on the unit circle (or, using a Cayley
Transformation, on the extended real line) are studied in [1]. Using a relation between ORFs on the unit
circle and ORFs on the interval with a#lal poles, as described in [16], convergence results are derived
for ORFs on the interval as well, in [13].

Just as in the polynomial case, ORFs satisfy a three term recurrence relation. If all patesl,are
the number of different recurrence coefficients can be reduced from three to two (see [1]), and asymp-
totics for these remaining recurrence coefficients have been derived in [13] from the results for the ratio
asymptotics of ORFs on the interval.

The aim of this paper is to generalise these results for ORFs whose polesrasd @lORFs with
arbitrarycomplexpoles, based on the extended relation between ORFs on the unit circle and ORFs on the
interval, as described in [2]. After giving the necessary theoretical preliminaries in Section 2, Section 3
deals with reducing the number of different coefficients in the three term recurrence relation for ORFs
on a subset of the real line with arbitractgmplexpoles. Section 4 then contains an extended result for
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ratio convergence and strong convergence in the case of ORFs on the interval. Next, in Section 5 we
derive asymptotic formulas for the recurrence coefficients. Finally, in Section 6 we give some numerical
examples.

2. Preliminaries

The field of complex numbers will be denoted Gyand the Riemann sphere y= C U {»}. For the
real line we use the symb®& and for the extended real life= R U {e}. The unit circle and the open
unit disc are denoted respectively by

T={z:|7=1} and D={z:|7 < 1}.

Let u be a positive bounded Borel measure, with ugpC R an infinite set, and assume a sequence
of polese = {ay, &z, ...} C C\ {0} is given so that Nsupd i) = 0. The support of a measueis
defined here as the smallest closed set whose complement with respdwda-measure zero. Define
the factors

X
and the basis functions
bo = :|.7 bk(X) = bk,l(X)Zk(X)7 k= 1, 2, e (2.2)

Then the space of rational functions with polesihis defined as
%h=sparby,...,bn}.

In the special case of alf = o, the factor (2.1) become&%(x) = x and the basis functions (2.2) become
by (x) = XX,
Orthonormalising the basigy, b, ..., bn} with respect to the measugeand inner product

(1.9) = [ 109g0du )

on a subset of the real line, we obtain the orthonormal rational functions (QRES)1, . .., ¢n}. In the
case of orthogonality on a subset of the real line, we define the involution operation or substar conjugate
of a functionf € .4, as

f.(x) = T(%).

Suppose,(x) = 2:83 , thengy(x) is degenerate (respectively exceptionalpiffa, 1) = 0 (respec-

tively pn(an-1) = 0). In [12, Thm. 2.1.1], and [1, Chapter 11.1] for the special case aéallpoles,
the following recurrence relation has been proven.

THEOREM 2.1 Take by conventiow_; = ap = . Then@,_1(x) is not degenerate anph(x) is not
exceptional fon > 1 iff there exists a three term recurrence relation of the form

Zn(X) Za(%)
anl(x) ) ‘Pn—l(X) +Cnm (Pnfz(X), (2.3)

with E, # 0 andCy, # 0. The initial conditions are_1(x) = 0 andgp(X) =
special case of all real poles, it holds that

En == —Cn Enfl. (24)

on(X) = (Enzn(x) +Fn

L

s With 1o = u(R). Inthe
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When all the poles are chosen outside the convex hull of (gupgthe zeros ofp, are inside the
convex hull of supfie). Therefore, if supf) is connected (a closed interval), the systepa} will be
not degenerate and not exceptional and thus the recurrence relation will hold fonewate that for
everya,b € R, with —o < a < b < =, the interval[a, b] can be mapped onto the interyall, 1] using
the transformation

_2t-b-a

= Tb_a

Even the case of orthogonality on a halfline can be completely reduced to the case of the interval, using

a suitable transformation (see [14]). Thus, when studying the asymptotic behaviour of ORFs on an
interval, we can restrict ourselves to the interval, 1].

In the case of ORFs on the interMak [—1,1] with arbitrary complexpoles outsidd, a relation
exists with ORFs on the unit circle. Given a sequence of complex nunsBers{fi, B,...} C D,
define the Blaschke factors

G(2)= 2P 1o
1-Byz

t € [ab].

and the Blaschke products
Bo=1, Bk(2=Bc1(9k(z), k=12...

Then the space of rational functions associated wtls defined as

%n=sparBy,...,Bn}.

Orthonormalising this basis with respectitand inner product

(1.9 =57 [ @@,

we obtain the ORF§¢o, ¢1, ..., ¢n}. When considering the sequenee = {B1,.--,B,} CD, instead of
2, we obtain the ORF$¢g, 91, ..., 95} in 7, wheregi(z) = ¢n(2). And if we consider the sequence
PB={B1,...,Pan} CD, with

ﬁzk = ﬁk andﬁ2kfl :Bk7 k: 17'“7”7 (25)

we obtain the ORF$do, §1,. .., §on} In Lon = Zn- ZE. In the case of orthogonality on the unit circle,
we define the involution operation or substar conjugate of a fundtions, as

f.(2) = T(1/2)

and the superstar transformation as
f*(2) = Bn(2) f(2).
Note that the factoB(z) merely replaces the polynomial with zerffq}z_; in the denominator of
f.(z) by a polynomial with zero{ 1/Bk}: /SO thatZ; = %,
The complement of the intervaith respect to a séX will be given byX', e.g.

T =T\l
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Althoughx andzare both complex variables, we reserve the notatimn ORFs on the interval, arefor
ORFs on the unit circle. We denote the Joukowski Transforma(ti@r%(ZJr z1) by x= J(2), mapping

the open unit dis@ onto the cut Riemann sphe@I and the unit circlel onto the interval. When
z=¢€"?, thenx=J(z) = cosh. The inverse mapping is denoted by J™(x) and is chosen so that D
if xeC . With the sequence/ = {o, az,...} C T' we associate the sequenge= {fB1,Bz,...} C D
so thatfx = I™ ().

Next, let the measurg on T be given by

L(E)=pu({cosh,0 c EN[O,7)})+p({cosh,0 e EN[m,27)}), (2.6)

which can also be written gs(E) = J¢ |du(cos6)|. Using the Lebesgue decompositioniofind the
change-of-variables theorem (see e.g. [9, p. 153]) it is not difficult to se@tt@t = u’(cose) |sinb)|.
Then the following theorem gives a relation between the ORHsamil the ORFs offf, which has been
proven in [2, Thm. 4.2}.

THEOREM2.2 Let{¢,} be a set of orthonormal rational functions lowith respect to the measute
and{¢n} the corresponding set of orthonormal rational function& awith respect to the measugeas
defined above. Then they are related by

o oo (B B B

wherex = J(z), pn is @ unimodular constant that can be chosen arbitrarely, and the tilde refers to the
sequence of complex numbers given by (2.5).

1
2

The following two convergence results for ORFs on the unit circle can be found in [1, Chapter 9].
With (i’ (respectivelyu’) we denote the Radon-Nikodym derivative of the meagu(esspectivelyu)
with respect to the Lebesgue measure, and hence the ‘almost everywhere’ is also with respect to the
Lebesgue measure.

THEOREM 2.3 Letjt satisfy the Er@s-Tuién conditionit’ > 0 a.e. oril' and assume that the sequence
A is compactly included ifd. Then we have

w2
" 052

:O’

locally uniform inD.

THEOREM 2.4 Letj satisfy the Er8s-Tui@n conditionit’ > 0 a.e. oril' and assume that the sequence
A is compactly included ifd. Then we have

lim 3n+1¢§+1(2)(1*3n+1z)\/ 1—[Bnf? 1

o b (2)(1— Br2)v/1— [Bnsal? ’

whereg, is a unimodular normalisation constant such #hat (0) > 0, i.e.e, = |9, (0)| /92 (0). Again
convergence is locally uniform iB.

1In [2] the measurg: was assumed to be absolutely continuous, but this can easily be extended to arbitrary positive Borel
measures whose support is an infinite set. See also [4, p. 190] for the polynomial case.
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Note that, ifit andu are related through (2.6), the conditigh> 0 a.e. orT is equivalent with the
conditiony’ >0 a.e. on.

Finally, the following strong convergence result for ORFs on the unit circle can also be found in [1,
Chapter 9].

THEOREM2.5 Letj satisfy the Sze@jcondition
2T .
/ logit'(0)d6 > —o
0

and assume that the sequenéés compactly included if>. Then locally uniform irD

i 51-B2) 1

TR 0@

whereg, is the same as in Theorem 2.4 am(}) is the Szeg function given by

m b4z
o(z) =ex p{47r T Iogu()de}, zeD.

Note again that for the interval, with= cosf andut given by (2.6), the Szécondition is equivalent
with the condition
———2dXx> —o,

/1 logu’(x)

1v1-x2

3. Three term recurrence relation

In Theorem 2.1 a simple relation has been given between the third coeftigiant the first coefficient

E, for all real poles. Due to this relation, the number of coefficients can be reduced from three to two.
Equation (2.4), however, does not hold in general for arbitcamyplexpoles. In this section we will
prove a slightly different, but still simple, relation betwe@pand the other two coefficients, and

Fn that holds in general. Next, with, = E.Fn, we will illustrate howE,, apart from a unimodular
normalisation constant,, can be defined recursively in functionf as well, when the last pole in the
sequencex, is not real. The special case in which € R\ ({0} Usupgu)) will appear as a limiting
case{on} — 0, where[J{.} refers to the imaginary part. We will conclude this section with a Favard
type theorem. First we will need the following partial results. The first lemma is easily verified, and
hence we will omit the proof.

LEMMA 3.1 LetA(a, ) be given by

A((X,ﬁ) =

Then the foIIowing statements hold:

1. Ala,B) =

Ale,p) = - (B ),

and hence is independentxf

m
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A((X,B) _A(%ﬁ) = A(“?Y)!

5. A(a,B) +Aa,y) =2A(°‘7§L+yy)’

Zg(x)
6. 2o = Al B)Zg(x) +1,

o

L\ L1, aF o
L1, o=0

7. gz((f()) = A, o) b (X) + b —1(X) e{

THEOREM 3.1 Suppos@n(X) = knbn(X) + Kbn—1(X) + fn_2(X), whereky, K, € C, kn # 0 andfp_, €
Zn—2. Then the following statements hold:

1. (bn,¢n) = <‘Pn7bn>

[

} x_ocn

} = Kn+ K)A(Cn, 0th-1),
X=0n-1

4. E,= K'r1+’cn A(0n,0n 1)
Kn-1 ’

Proof. First, note that

1= (¢n, ¢n) = (Knbn, ¢n) + <(Kébn71+ fnfz) 7(PI"I> = Kn (bn, ¢n) ,

which proves the first statement. Next, we have that

B N RO

“j((:;] - "”*zn(Zil)*[zn(x)zlnﬂx)(kz:_zg;)}xa“

- Kn+ KAA(an,an71)7

and

proving the second and third statement. Finally, it holds that
- n
bn(x) X=0p_1 Zn-1(X) ) bn-1(X) X=0lh_1

* KanzZ<x>) ﬁ:fég ]

. [cp“(x)]
= E, .
bn*l(x) X=0p_1
Using the second and third statement then proves the last statement. O

In order to reduce the number of coefficients in Theorem 2.1, we are now able to prove our first main
result.
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THEOREM 3.2 The coefficienC, in (2.3) is given by

En+ FhA(on-1,0n-
Co=— n+ nian 1,0n 1). (3.1)
En1

Proof. From the last statement in Lemma 3.1 it follows t 1(%) € %1, and hence

0 = <(Pn>bn—1/zn*> = <(Pn/zn; bn-1)
= En(¢n-1, bn—:l.> +Fn <(Pn—l/zn—1, bn—l> +GC, (‘Pn—z/zn—2*7 bn—1>

E
= Z nl + Fn<(Pn—lybn—1/Zn—l*> +GCn <(Pn—2;bn—l/zn—2>
e
E FA(oth-1,0n— _ _ 1
= — 40 ( il 1,0n-1) +GCq (A(OﬂnZaanl) (@Pn—2,bn_1) + = )
Kn-1 Kn—1 Kn—2
Furthermore, witho,_1(x) = anl (@n-1(X) — K,_1bn_2(x) — fn_3(x)), we get that
1 _ %1 A(0n—_1, Cn K
0 = = [En"anA(anLanl)‘f'Cn( n-1 (—n Lo 2)_|_7n 1)]
Kn—1 Kn—2 Kn-2
1 _ Kn_1+ K. _;A(0n_1,0n_
= = EnJanA(anlaanl)JrCn( -l n-1 (G100 2))
Kn-1 Kn—2
1 _ _
= — I:En+FnA(an71,an71) +CnEn71:| .
Kn—-1

O
Consequently, using the new paramd%ei: Fn/En instead off,, we can now reformulate Theo-
rem 2.1 as follows.

THEOREM 3.3 Take by conventiom_; = ap = . Then@,_1(x) is not degenerate anph(x) is not
exceptional fom > 1 iff there exists a three term recurrence relation of the form

FAn 1+ FAnA(anfjnanfl)
EnZ 1 _ e _
2l ({ i znl(x>] P Z(X)>
= Ea¢n(x), (3-2)
with En # 0 and 1+ FpA(on_1,%,_1) # 0. The initial conditions are_1(x) = 0 andgo(x) = \/% with
Ho = H(R).

Explicit expressions can easily be found for the recurrence coefficients, but first we will need the
following lemma.

LEMMA 3.2 Letaj(x),bj(x),cj(x),dj(x),A;,Bj andC;, with j = 1,...,4, be given by Table 1. Then
for every functionf (x) andg(x) it holds that

¢n(X)

ai Cj
<Qﬁdﬁ>—AK%ﬁ®+BKﬁQ®+CMﬁ®- (3.3)

If a =7in Table 1, then the equality holds in the sense that the limit of the right hand si¢ie,fpr —
(a,3) tends to the left hand side wita=y =a.
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TaBLE 1 Definition of g(x),bj(x),cj(x),dj(x),A;,B; and G for j = 1,....4, with {e, 8,7,6} C C\
{0} and{c, 7} N supr(u) = 0.

j aj(x) bj(x) cj(X) d; (x) Aj Bj Ci
1 Zo(X) Zs(x) 1 1 A(B, o) 0 1
2 Zo(X) 1 Zy(x) 1 A(?l,oc) A(olc 7 0
s aw amwoozw o A Ao
R O - -

Proof. First, note that foj = 1, the equality directly follows from the sixth statement in Lemma 3.1.
Secondly, forj = 2 we have that

2t = (351.20) = (AT.0Z+1)1.20)
= AT, a)(Z.f,Z,9)+(f,Z,9),
so that
(Zaf.2,0) = (Zaf,0)—(f,Z49)  (Zaf,Q) n (f.Zy9)

A7) CATa) Ay
Thirdly, for j = 3 it holds that

<Z‘f,zyg> = AB.@)(Zaf 2/9) +(1.2,0)

- A(ﬁ,a)<<Z“f’g>+<f’ZYg>>+<f,zyg>

Alr,a)  Ale,7y)

BT T PR E R

AB,7)
Ala,7)

A o (ZafiO)+

(f,249).

Next, note that folj = 4 we get that

<§Z ZG> = ({A(B, &) Z + 1} 1 {A(Y,8)Z, + 1}g) .

Further computations, similarly as fpe= 3, now prove the equality foy = 4.

Finally, because the functiori,(x) and Z,(x) are bounded fox € supgu), ando andy are in a
compact subset of \ ({0} Usupgu)), the dominated convergence theorem implies that the left hand
side of (3.3) is continuous for any andy in C\ ({0} Usupgu)). Hence, the limit of the right hand

side must coincide with the limit of the left hand side at the pointsy) = (a,a), withac C\ ({0} U
supfu)), because these are the only points where the right hand side can not be evaluated due to the
denominatoré\(c,7) andA(7, ). O
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COROLLARY 3.1 In the special case df=g, a = yand = §, it holds for j = 2, respectively] = 4,
in Lemma 3.2 that

2 B (Zyf, 1)
respectively
Zy 2_ Zo o Zo o\ A(B,a)AB, o) 2
‘Zﬁf _<Zﬁf’zﬁf>_zm{/wm<z"‘f’f> I 9

where[1{.} refers to the real part. Equation (3.4) and (3.5) also holdderR \ ({0} Usupgu)) in the
sense that the limit of the right hand side fofo } — 0 tends to the left hand side witf{a} = 0.

Explicit representations for the recurrence coefficients in terms of inner products are now given by
the following theorem.

THEOREM 3.4 The coefficient&, andF, in the recurrence relation (3.2) have the following explicit
representation in terms of inner products:

Mn
En=——, MeT (3.6)
" (| @nll "
and K L
F = nk — —nk — . k<n (3.7)
A(tn—1, 0n)Lnk — A(0h—1, 0h—1)Knk + 6n—1kEn-1
where
Knk = A(0h—2,0n) (ZnPn—2, ) + 5n—2,k
Lhk = En71<zn(Pnfl,(Pk>7
and

Onk = (Pn, Pk) -

Proof. Using the fact thaf,, ¢,) = 1 yields the first equation. Next, when taking the inner product on
both sides of (3.2) withyy for k < n and solving for,, we get that

~ <znzjz* Pn-2, (Pk> *Enfl <Zn(Pn71, (Pk>
Fn = .
En-1 < Zfil ®n-1, (Pk> - A((Xn—laan—l) <znzjz* Pn—2, (Pk>

Using the results from Lemma 3.2 then completes the proof. O
As a consequence of Theorem 3.4, we have the following corollary.

COROLLARY 3.2 LetM, be given by

_ Enfl [1"‘ FAnA(anfl, an)]
" [1+ 'an(anflvanfl)]

Then it holds that

A(ﬁn—z, an) <Zn(Pn—2, (Pn—2> =M <Zn(Pn—17 (Pn—2> - 5n—2,n—2
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and R
Ao -2, Z —2, Pn-1 F
(ZaPn-1,¢n-1) = (@ ) ZnPn-2 ¢n-1) - — .
Mn 1+ FA(on-1, o)
The following theorem now illustrates hd, apart from a unimodular normalisation constant, can
be defined recursively in function &, whena, is not real.

THEOREM 3.5 The coefficienE, = nn|En| in the recurrence relation (3.2) is given by

|Enf? = En-s : (3.8)
20{an}

where
~ = o ~ — 2
[En_1/*Fa [1+ FrA(®n-1, wn)} + |14 FrA(0t -1, Tn-1) | A(0t—2, @n)
Ao, @n)

an:

and o, = Dl?(;c‘:} If oy is real, the equality holds in the sense that the limit of the right hand side for

O{an} — 0 tends to the left hand side.

2 2

Proof. From Equation (3.6) and (3.2) it follows that
1+ FAnA(anfhanfl)

Fn
Znl 1+ _
" ( Zn—1> -1 En-1

1+ FA(0h_1, Gn_ Z =
_ZD{( z (—n sl 1)>< " ¢n-2,Zn (1+ . )¢n—1>}- (3.9)
En-1 Zn 2 Zn1

Based on the results in Lemma 3.1 and 3.2, together with Corollary 3.1 and 3.2, we get that

Zy
Zn— 2«

2
e \

Pn-2

1.

2
= |[{Zn (1+ FA(an-1,00)) + Fn} (pn,lﬂz

Fn
Zn (1+ an> On-1

- 2 Zn®n—1, Pn— -2
= 2[1+ B0 1, o) D{M}ﬂm
n; ¥“n

+20 { (14 FoA(an-1, o)) Fr{(Za@n-1,0n-1) }

{ (14 FaA(on-1, on)] [1+EnA(ﬁn—1van)}
=20

| 2

ZnPn_1, On_ =
A(ﬁn;an) < n(pn 17(pn l>}+| "

Fn

=20 {bnl <Zn(Pn—27 ‘Pn—1> - W
ny, “n

1+ Fonan s 0] |

where

oy = (1+ F“nA(anl,anl)> A2, o) [1+Fo(@n1. o)
niL — .

En1 A(Cn, o)
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2.
Z 2 A(Cn_2, 0n)A(an_2, 0
‘ Zn_nz* n-2 _ZD{ o ZA(;)n,((xn)n 2.00) <Z”(P”Z’(Pn2>}"‘5n2,n2,
so that
- - ) )
’1+ FnA(0th—1, 0h—1) ‘ Zn On_z
El’Fl Zn_2. "
2
1+ FnA(0n_1, 0n A(an—2,®
o2 )
where _ )
14+ FnA(@n-1,0n-1) | Alan-2,0n) [1+FaA(an-1, )]
bn2 = — .
En-1 A(Tn, otn)
3.

Zn Fq
Znl 1 1) =
<Zn 2*(Pn 2, n( +Zn l) ®n 1>

A(Cn_2, an) [1 + EnA(anfla an)}

<Zn(Pn72a (Pn71> +

A(Tn, o)
A(@n2,n) [1+FA@n-1,@n)| ,
A(Cm, i) (Pn—2,ZnPn-1),
so that
1+ 'an(an—l7an—1)>< Zn ( 'f ) >}
—20 — 2,70 1+ _
{( E . Z ®n—2,4n Z 1 ®Pn-1

=-20 {bnl <Zn§0n—2> (Pn—1>} -20 {bnz <Zn§0n—17 (Pn—2>} .

Substituting this back into (3.9), taking into account tﬁa{ (o 1.01) } =0 so thaté,_2n_» can be

051 OC

replaced with 1 even fan= 1, completes the proof. O
Clearly, the relation betwedfy, andF, is not as simple anymore as it is for the relation betw@gn

andE, andF, = E,F. It can, however, be simplified a little bit further by noticing thét:, o) =i Zlm{‘“}

and that0{A(a, )} = D{“} whenp is real. This way we get that
2 O{on-1} EIO‘n—}DO‘n—]’ B{on—2}
2] _ [D{Fn |Fn| { : } [‘Em | |l‘£fn71\12 \infz\zz ] * ‘amzfz 3.10
{an} = o . @10
On

Finally, we have the following Favard type theorem. For the complete proof, we refer to [1, p.
307-319].
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THEOREM3.1 Let{¢,} be a sequence of rational functions, and assume that the following conditions
are satisfied:

1. o #0,k=1,2,..;

2. ¢, is generated by the recurrence (3.2);

3. oh €L\ Lh-1,n=12,..., andgg # 0;

4. En#0,n=1,2,..;

5. 1+ FoA(on_1,0n 1) #0,n=23,....
Then there exists a functionsl on %, - Z%w. so that

(f,g) =M{fg.}

defines a real positive inner product &y, for which theg, form an orthonormal system.

Proof. The outline of the proof is exactly the same as in the case of all real poles (see [1, p. 307-319)),
with the following adaptations:

1. the inner product®{ fg} have to be replaced with the inner produetéfg, };

2. the factors,2%)- in [1, Eq. (11.39) and (11.40)], respectiv% in[1, Thm. 11.9.2] an jzfg’&)

in [1, Thm. 11.9.3], have to be replaced with the factﬂ%, respectivelyzzj“*—((xx)) and%;

3. the equality given by [1, Eq. (11.42)] becomes

_ CnEn-1
En(1+FA(0n-1,%n-1))

M{|pn-1*} = M{|@n-2|};

4. in the proof by induction (see [1, p. 313-318]), the assumptionghpyt. € %, j—1. implies that
Om = 0y, (instead ofom = o) whenm > j + 2.

O

4. Asymptotic behaviour

Ratio asymptotics and a strong convergence result for ORFs on the intéiaed been derived in [13,
Section 6] in the case of akkal poles outside the interval. These derivations were based on the relation
between ORFs on the interval and ORFs on the unit circle, a relation that was at that time only proven
for all real poles by Van gucht et al. in [16, Thm. 4.1]. With the generalisation of this relation to arbitrary
complexpoles in Theorem 2.2 we are able to extend these results to the case of adutrguigxpoles
outside the interval. But we first need the following lemma.

LEMMA 4.1 Letpu satisfy the Er@s-Tu@n conditionit’ > 0 a.e. oril and assume that the sequerée
is compactly included ifd. Then we have
9502 _

lim =
noe gl (z)

locally uniform inID, where the tilde refers to the sequence of complex numbers given by (2.5).
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Proof. Note that@$, € %5, and@s, | %o 7 so that
¢;2Cn(z) = aZnQ;Zn(Z) + b2n¢;2n71(z)a

where o o
aon = <¢§n7¢2n>1ra bon = <¢§na¢2n—l>1~ and 1= |3-2n|2+ |b2n|2~
And hence

95.(2) Pan(2) Pon-1(2)

= = apn + bon—= .

0@ @ b
Eurthermore, we have that the~re exist functidngs(z) and Ban(2) with Ban(2) # O for z€ D, so that
03:(2) = Aon(2) P2n—1(2) + Bon(2) 95,1 (2) (see [1, p. 77]). Thus, it holds that

0@ _ o @ dma(d)
(P;n(Z) ¢2n( ) A2n(2)¢2n_1(2) + an(z) ¢5n—1(z)
don-1(2)
¢2n (Z) ¢5n—1 @
= a2 + by - .
@ A 22 1 Bon(2)

From Theorem 2.3 it now follows that

~c - don1(2)
lim “‘in(Z) — lim aon ?in(z) + bZn ¢¢2n J_Z()Z) _ 07
oo gon(z)  noe $2n(2) Aon(2) ¢5n l(z) +Ban(2)
locally uniform inDD. O

With this, we get the following results about the ratio convergence and strong convergence of ORFs
onl.

THEOREM 4.1 Assume the sequeneé = {1, 0,...} C T' is bounded away from and letu be a
positive bounded Borel measure with sgpp= I, which satisfies the Efis-Tué&n conditionu’ > 0 a.e

onl. If {g,} are the ORFs ohassociated withy andp, then locally uniform inC' we have

. z—Bny1 1—[Bn2 @ni1(x)
lim A — =1,
e M g o\ T Bt gn)

wherez = J"(x), B = J™(ay) for k=n,n+1, and

Eni2 Pn
2’I’Pr - p € Ta
En Pni1

with &, and p,, the same as in Theorem 2.4, respectively Theorem 2.2, and the tilde referring to the
sequence of complex numbers given by (2.5).

Proof. Defineft onT by (2.6) and use Theorem 2.2 to write

~ 95,(Bn) 9% 5(2)
Pnt1(X) _ Pnt1 1 93,202 1+0 {¢2n Bn) } 1+ P3n+2(2)
B

(
(Pn(x) Pn CnJrl(Z) [P‘z*n(z) 1+0 {¢2n+2( n+1)} 1+ q;ZCn(Z) )
(

3o (Pre) 9n(2
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Using Lemma 4.1 and Theorem 2.4 we then obtain

i Ent2 Pn Z—Prsr 1—Bnl? Pnya(X) _
im —< = 5 =1
n—e En Pni1 1— B,z || 1= [Bnial® ¢n(X)

locally uniform inC . O

THEOREM 4.2 Assume the sequeneg = {as, o,...} C C' is bounded away frorh and letu be a
positive bounded Borel measure with sgpp= I, which satisfies the Szégondition

dx> —oo,

/l logu’(x)

~1v1—x2

Let i1 be given by (2.6) and supposdz) is the associated Sz&dunction as defined in Section 2. If
{¢n} are the ORFs ohassociated witke7 andp, then locally uniform inC' we have

lim AnBn(2)——Pr%_ g (x) = \/27:6(2)

RV ¥

wherez = Ji”"(x), Bk = J‘“V(ock) and Ap = ‘2: e T, with & and py, the same as in Theorem 2.4, re-
spectively Theorem 2.2, and the tilde referring to the sequence of complex numbers given by (2.5). In
particular we have

lim @n(X) = oo

n—oo

pointwise forx € C.

Proof. From Theorem 2.2, 2.5 and Lemma 4.1 it follows that

| 1Bz B G3@(1— B2
lim 2nBn(2) 1_|/3n|2‘p”(x) - r!mo\/ﬂ V1=1Bal?
1

V2ro(2)’

locally uniform inDD. The last statement in the theorem follows from the fact that the Blaschke product
Bn(z) diverges to zero foz € D. O

5. Asymptotics for E, and F,

In this section we wish to derive asymptotic formulas for the recurrence coeffiéigatsdF, = ==
Explicit formulas for the coefficients in terms of the ORfsare given in the next theorem.

THEOREM 5.1 The explicit formulas for the recurrence coefficieBisandF, = E,F, in terms of the
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orthonormal rational functiong, are given by

. ¢n(X)
E im —————
n x—0n-1 Zn(X) Pn—1(X)
. anl(x)(Pn(X)
F — | _— E Z _
" T o (zn<x><pn_1<x> a2l
om0 R ¢
[zn<x><pn71<x> En (1 Enflzn—2*<X>‘Pnfl<X>)} va e C.

= lim
X—0o 1 _ 1 _ ¢n-2(X) ’
[znfmx) Zo (D) (1 Enflznfzxanfl(x)ﬂ

Proof. Using Theorem 2.1 we obtain that

¢n(X) — Bt lim < Fn o #n2(¥) )

x=an-1 Zn(X) Pn-1(X) x=an-1 \ Zn-1(X) "Zy 2. (X)Pn-1(X)
= En + 07
and
, Zn-1(X)¢n(X) )  Zna(X)@n_2(X)
lim ————— —EpZn_1(X = FR{+C lim ———=—~
X—0n-2 <Zn(X) (Pn*l(x) i 1( ) " nX—’Hn—Z Zn_2« (X) (Pn—l(x)

Finally, the last equality foF, directly follows from Theorem 3.3, with, = EnFn, and from the fact
that

1 1
A 1.0 —
anl(X) (an 1,xn 1) anl*(X)
_ 1
Altn-1,0n-1) =~z

O
Now we can use Theorem 4.1 to find the asymptotic formulagf@andF,.

THEOREM 5.2 LetB¢ = J™ (o) for k=n,n—1,n—2. Under the assumptions of Theorem 4.1, the
following relation holds foiE, in the sense that the ratio of the left hand side and the right hand side

tends to 1 as tends to infinity,

V(13— 1Bn-1[%) (1= [Bn[?) (1 — Br-1Pn)
(1+B21) (1+57)

(5.1)

En ~ an

Further, the following relation holds fdt,,
1—|Bn-1/?) (Bn+ B 20{Bn-1} (1-BnBn
im L E AT (17\/3n|2)2( B 1I)(B +B z)+ {f 1}< P 2) o 62
e (1= [Bn-al?) (1+82) (1-Br1Bn )
In the special case in which

INENVN>N:| (1= Boa?) (But B 2) +20{Bn-1} (1-BiBn o) 28>0, (53)
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the relation given by (5.2) is equivalent with

i ) () 20 ) (81

Fo~—2n 5.4
(1—1Bn-1/?) (1+2) (l_ﬁn—lﬁn—Z) o9
Proof. It holds that
Zog— X L Q+pI+Z)  (14p)(1+2)

a—x 2zB2+1)-B(2+1) 2z-p)(1-B2)’

Further, note that the uniform convergence ensured by Theorem 4.1 permits us to interchange the limits
X — ap—1 andn — co. Consequently, we can substityig(X) /@n—1(x) in the expression dE,, given by
Theorem 5.1, by its asymptotic equivalent expression, given by Theorem 4.1, to find that

_ _ 2
lim (pn(X) ~ Zln 1 ‘ﬁn|

x—0n_1 Zn(X) Pn—1(X) 1—[Bn-12 z-pn1

(1- anlz)(l — pBn2)
(1+B85(1+2) |

For F,, it follows from Theorem 5.1 that

An(2) —EnBn(2)

Fo= lim — : , B=3"a),
z=p Zn .00 Zn1.(on-1) Bn(Z)
where
X (X
@) =20 g1 o2

Zo(X)@n-1(X)’
andz=J"(x). Next, letA,(z) andB},(z) be given by

/ o7 1—[Bnf? (1*Bn—12)(1*ﬁnz>

S A (R [

(1~ Bo-12) [20{Br-1}(z— Bo_z) + (1~ |Br-12)(2+ By 22)|
(1= [Br-1P) (L~ BnBn 1)(1+2) |

Supposing thaBy, with k=n—2,n—1,n, andzare compactly included iB, it holds that 0< |A,(2)| <
oo and 0< |By,(z)| < ». From Theorem 4.1 it now follows tha,(z) — Aj,(z2) — 0 andBn(z) — B (z) — 0.

Further, with
E — 21 \/(l_ ‘ﬁnfl‘z) (1_ |Bn‘2) (1_ﬁnflﬁn)
no (1+B2,) (1+5)

Bn(2) =

and

Vi = (L= [Ba-1/*) (Bn+ Bn_2) +20{Bn-1} (1 — BB 2),

Py [ 2 o)1 B 12N

(1+BF 1) (1= B 2Bn 1)1+ BR)(1+2)

it holds that

Ay(2) —EnBq(2) = —
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and _ —
2(z—Pn-1)(1— ﬁn71z)(1: ﬁnilﬁ n—2)
(1+2)(1+ B2 )1 —Bn 2Bn 1)
We now have that & |A,(z) — E[\Bp(2)] <« and 0< |1/Zn_1.(X) — Br(2) /Zn—1.(0tn—1)| < o0, so that
[An(2) — EnBn(2)] — [A(2) —EB(2)] — O

Zn-1(0  Zn-1.(on-1) Bn(Z)} - {an* (X)  Zn-1.(0n-1) B(2)] — O (5-5)

Furthermore, izis bounded away from8,_1, the relation given by (5.5) is equivalent with
1 1 1 1
_ B (7) ~ — B.(2).

Zn_1« (X) Zn—l*(an—l) n( ) Zn_1. (X) Zn—l*(an—l) n( )

Consequently, supposing thais bounded away fron,_1, we find that
. ' (z) —E/B!
o lim MO EB@

z=p Zn_14(X) " Zn_1(on-1) Bn(Z)
1—|Bnf? Vi
~|Bn-1? (14 B2)(1~ Bn-1Bn_2)

_ 1—|Bnl? Vi -
- FnMnm(Hﬁ@(l—ﬁn—lﬁnz) ’

Finally, if Vi, is bounded away from zero, we get that

[ A 1B Vo
n l“\/m (1+B2) (1~ Pn-1Bn o)
|

Note that forn large enough the coefficienE, and F, will only depend on respectively the last
two or three poles. If the last two poles aeal, E, is bounded by 6 E, < 2, but this will not be the
case for|E,| if these two poles areomplex Take for examplgB,_1 = Bn = £(1— €)i, wheree is a
small positive number. Then for largewe have thatEp| = % Nevertheless, assuming thf 1 and
Bn are compactly included iB, it follows that there exists A € [0,1) so that|fn—1] < B and|Bn| < B.
Consequently, for largs, it follows from (5.1) that

1-B2\? 2(1+ B2
2<1+g2> <E”|<(i—+[3€)3' (5.6)

Finally, asymptotic formulas foif, = F—g andC,, given by (3.1), can be found as well. Depending
on whether condition (5.3) is satisfied, we getFgrthat

(1482 1) [(1=1Bo-112) (Ba+Bn-2) +20 {Bo-1} (1~ BuBi2) |
2(1~ Bn-1Bn) (1~ Br-1?) (1~ Bn-1Bn »)

1/Zn1.(4) — By(2) /Zn-1.(0_1) =

—0

= Fy+lim2,
n+Z*>B " 1

FAnN_

(5.7)
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or
lim Ifn+(l+ﬁ ) [(1_‘[3"—1‘2) (ﬁ”ﬁ”2>+2D{ﬁn_l}(l_ﬁnﬁ”” =0, (58
o, 201~ Pr-1Bn) (L |Br-1f?) (1 o-1Br o)

which can be readily obtained from the previous theorem. Whil€faa series of computations even-

tually leads to
A [1-1B2 (1+Boo)(—BuByy)
- ’“ﬂ—l\/J(Hﬁg)(l_gn_zgn_l)' (5.9)

Note that the asymptotic formula f@; holds as well if condition (5.3) is not satisfied, due to the fact
that the right hand side of (5.9) is bounded from above and bounded away from zero forgvery
k=n—2,n—1n, compactly included if.

6. Numerical examples

Explicit expressions are known for the so-called Chebyshev ORFsvith respect to the weight func-
tion u'(x) = (1—x)3(1+x)°, wherea,b € {£3}, and are given in [3, Thm. 3.2]. It has been proven
(first in [15, Thm. 3.5] for allreal poles and afterwards, only far'(x) = 1/v/1—x2, in [11, Section

4] for complexconjugate pole$) that for everyn > 1 the recurrence coefficieng,, F, andC, are
given by respectively the right hand side of (5.1), (5.4) and (5.9). This allows us to cofiplteith
Equation (5.1) and Equation (3.8), and to compare the results. From now on, we will assugishat
positive real fom = 1,2,.... Furthermore, wittg,;, we denote the result fdt, whenE, is computed

with Equation {), wherei = 3.6, 3.8 or 5.1. The computations in the examples that follow are performed
in Maple 83 with 10 digits.

EXAMPLE 6.1 Assume thap/(x) = (1—x)3(1+ x)® so that ~’ can be replaced with=" in the
asymptotic formulas for the recurrence coefficients when 1, and letf; = —f, = 0.3+ 0.2i and
B3 = C; + Cimi, with |B3| < 0.99. Figure 1 then shows the graph&fs 1), while Figure 2 shows the
graph ofEzz.g, For the latterfs andE, are computed using Equation (5.7) and (5.1). These graphs
clearly illustrate that the result fé; is the same for both formulas as longfgand hencegs = J(S3)
as well) is not real.

To get a better idea of what happensfis real, we take a closer look at the case in wHitfBs}
is constant (Figure 3 and 4) 8 33} is constant (Figure 5 and 6). Note that

O{a} _ 20{B}(1-IBI*)

@l (1+|B[2)° - 4[D{B}]*

so thatO{a}/|a|? is (close to) zero iff3 is (close to) real ofB| is (close to) one. The figures on the
right show the relative error ds(3.g)compared tds(s 1), given by

E.
e — ‘1— 3(3.8)

. 6.1
Ess.) ©.1

2Neither the restriction to the weight functiqr (x) = 1/v/1— x2, nor the restriction to complex conjugate poles is in fact
necessary, and hence we may assumegtt{a = (1—x)2(1+x)?, witha,b e {i% }, and that the poles are arbitrary complex as
well.

SMaple and Maple V are registered trademarks of Waterloo Maple Inc.
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FiG. 1. Graph ofE(s 1) in function of B3 = C; +Cimi. The figure on the left gives a 3D representation of the graph, while the
figure on the right shows the contolgs 1y = 0.1(1+ 2Kk) fork=0,...,12.

[ L]

\—q'.s Fole fola 0.2
‘ ]

\ “ ‘

\

~0.5

FIG. 2. Graph ofE3(3.g) in function of B3 = C; + Cimi. The figure on the left gives a 3D representation of the graph, while the
figure on the right shows the contolEgs gy= 0.1(1+ 2k) fork=0,...,12.

2e-07
147
\ 129 1.5e~07
‘\ 101 }‘
;\ 8] “ 1e-07
\
g |
5e-08
4 /
—08-06-04-02 0 02 04 0.6 0.8 -0.8-0.6-0.4-0.2 0.2 04 06 08
Cim Cim

FiG. 3. Figure on the left: Graph di3(3.g) in function of O{Bs} with O{B3} = 0. Figure on the right: The relative error given
by (6.1).
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/ 0.8 \
| 0.6 \

| 0.4 \

0.8 -06 -04 -02 0 02 04 06 08
Cim

.

8e—08

6e—08

4e-08

Cim

FiG. 4. Figure on the left: Graph d33.g) in function of 0{ s} with O{f3} = 0.5. Figure on the right: The relative error given
by (6.1).

08-06-04-02 0 02 o.‘i 06 08
r

3.5e-08

20.8-0.6 0.4 -02

02 04 06 08
Cr

FiG. 5. Figure on the left: Graph ds3 g)in function of 0{Bs} with O{Bs} = 10-2. Figure on the right: The relative error given
by (6.1).
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0.4
0.2

208-06-04-02 0 02 0.‘4{\ 0.6 0.8
r

-0.8-0.6-0.4-0.2

0.2 04 06 08
Cr

FIG. 6. Figure on the left: Graph d&3(3.8) in function of 0{B3} with O{fs} = 10-5. Figure on the right: The relative error given
by (6.1).
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TABLE 2 Results for 3 g) and Fn, With n=1,...,9, whenp/(x) = [arcco$x)]? and a, =
(71)n+1i_

n F En |(¢n, @0)]
1 0.4110241305-0.172506029D 2.407674987 Bx 1010
2 0.07063851560- 0.192522626P 2.064699855 T x 1010
3 0.01806270322- 0.003063182959 2.036303603 Fx10°10
4 0.01137541442-0.00149484057i1 2.022945557 Ax 1010
5 0.007764863080-0.0008250747269 2.015731886 Bx 1010
6 0.005620120537 0.0004991519144 2.011430574 @B x 1010
7 0.004250190603- 0.0003236351299 2.008670444 Dx10°
8 0.003324576249 0.0002213314747 2.006797426 MHx 1010
9 0.002670807580-0.0001578585701 2.005469615 Bl x 1010
TABLE 3 Results for Fz6) and Fo, withn=1,....9, whenp'(x) = [arcco$x)]2 and ap =
(_1)n+1i_

n Fn En [(¢n, @o)|
1 0.4110241305-0.172506029D 2.407674987 Bx 1010
2 0.07063851560- 0.192522626P 2.064699855 T x1010
3 0.01806270322- 0.003063182959 2.036303604 Fx10°10
4 0.01137541444-0.001494840915 2.022945556 Ax10°10
5 0.00776486306% 0.0008250744303 2.015731888 5x 10710
6 0.005620120577 0.0004991523606 2.011430573 Dx 1010
7 0.004250190558- 0.0003236348818 2.008670444 B x 10710
8 0.003324576292 0.0002213314742 2.006797427 P x 1010
9 0.00267080754% 0.0001578587700 2.005469613 Zx1011

Repeating the computations in Example 6.1 with other valuefifand 3, gives similar results as
long asp; and/orf, are not too close te-i. And hence we may assume that for more general weight
functions, satisfying the assumptions in Theorem 4.1, Equation (3.8) is a fast but reliable way to get
accurate results fdg,, with n large enough so that the ratios in Theorem 5.1 are close to one, as long

as[{Bn} is not too close to zero, arf$h_, andf,_1 are not too close te-i. In other words,D‘i‘:“;} may

not be too small, Whl|(.%{a# and D{O‘” ‘12} may not be too large.
on_2

EXAMPLE 6.2 Consider the weight functiqrf (x) = [arcco$x)]? and letoy, = (—1)™i (or equivalently
Bn= (=)™ (1—-+/2)i) forn=1,2,.... From (5.1) and (5.8) we can deduce tEatends to 2 and that
F, tends to 0 as tends to infinity. Table 2, respectively Table 3, shows the resulBek), respectively
Enz.6y and Fn (using Equation (3.7) withk = n— 1), forn = .,9. To verify the correctness of the
results,|{¢n, @o)| (which has to equal zero) is computed as weII. These tables confirthends to 2
and that5, tends to 0 with increasing.
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