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Let µ be a positive bounded Borel measure on a subsetI of the real line, andA = {α1, . . . ,αn} a
sequence of arbitrarycomplexpoles outsideI . Suppose{ϕ1, . . . ,ϕn} is the sequence of rational functions
with poles inA orthonormal onI with respect toµ. First, we are concerned with reducing the number
of different coefficients in the three term recurrence relation satisfied by these orthornormal rational
functions. Next, we consider the case in whichI = [−1,1] and µ satisfies the Erd̋os-Tuŕan condition
µ ′ > 0 a.e. onI (whereµ ′ is the Radon-Nikodym derivative of the measureµ with respect to the Lebesgue
measure), to discuss the convergence ofϕn+1(x)/ϕn(x) asn tends to infinity and to derive asymptotic
formulas for the recurrence coefficients in the three term recurrence relation. Finally, we give a strong
convergence result forϕn(x) under the more restrictive condition thatµ satisfies the Szegő condition
(1−x2)−1/2 logµ ′(x) ∈ L1([−1,1]).

Keywords: Orthogonal rational functions, complex poles, three term recurrence relation, asymptotics,
ratio convergence, strong convergence.

1. Introduction

By using the Joukowski Transformationx = (z+ z−1)/2, which maps the unit circle onto the interval
[−1,1], orthogonal polynomials (OPs) on the interval[−1,1] can be related to OPs on the unit circle.
In this way Szeg̋o [10] obtained convergence results for weights satisfying Szegő’s condition. Later on,
Rakhmanov [7, 8] derived asymptotic results for the weaker Erdős-Tuŕan condition, while Ĺopez [5, 6]
derived results for polynomials orthogonal with respect to varying measures.

Orthogonal rational functions (ORFs) are a generalisation of OPs in such a way that the OPs are
recovered if all the poles are at infinity. Asymptotics for ORFs on the unit circle (or, using a Cayley
Transformation, on the extended real line) are studied in [1]. Using a relation between ORFs on the unit
circle and ORFs on the interval with allreal poles, as described in [16], convergence results are derived
for ORFs on the interval as well, in [13].

Just as in the polynomial case, ORFs satisfy a three term recurrence relation. If all poles arereal,
the number of different recurrence coefficients can be reduced from three to two (see [1]), and asymp-
totics for these remaining recurrence coefficients have been derived in [13] from the results for the ratio
asymptotics of ORFs on the interval.

The aim of this paper is to generalise these results for ORFs whose poles are allreal to ORFs with
arbitrarycomplexpoles, based on the extended relation between ORFs on the unit circle and ORFs on the
interval, as described in [2]. After giving the necessary theoretical preliminaries in Section 2, Section 3
deals with reducing the number of different coefficients in the three term recurrence relation for ORFs
on a subset of the real line with arbitrarycomplexpoles. Section 4 then contains an extended result for
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ratio convergence and strong convergence in the case of ORFs on the interval. Next, in Section 5 we
derive asymptotic formulas for the recurrence coefficients. Finally, in Section 6 we give some numerical
examples.

2. Preliminaries

The field of complex numbers will be denoted byC and the Riemann sphere byC = C∪{∞}. For the
real line we use the symbolR and for the extended real lineR = R∪{∞}. The unit circle and the open
unit disc are denoted respectively by

T = {z : |z|= 1} and D = {z : |z|< 1}.

Let µ be a positive bounded Borel measure, with supp(µ)⊂R an infinite set, and assume a sequence
of polesA = {α1,α2, . . .} ⊂ C\{0} is given so thatA ∩supp(µ) = /0. The support of a measureµ is
defined here as the smallest closed set whose complement with respect toC hasµ-measure zero. Define
the factors

Zk(x) = Zαk(x) =
x

1−x/αk
, k = 1,2, . . . (2.1)

and the basis functions

b0 = 1, bk(x) = bk−1(x)Zk(x), k = 1,2, . . . . (2.2)

Then the space of rational functions with poles inA is defined as

Ln = span{b0, . . . ,bn}.

In the special case of allαk = ∞, the factor (2.1) becomesZk(x) = x and the basis functions (2.2) become
bk(x) = xk.

Orthonormalising the basis{b0,b1, . . . ,bn} with respect to the measureµ and inner product

〈 f ,g〉=
∫

f (x)g(x)dµ(x)

on a subset of the real line, we obtain the orthonormal rational functions (ORFs){ϕ0,ϕ1, . . . ,ϕn}. In the
case of orthogonality on a subset of the real line, we define the involution operation or substar conjugate
of a function f ∈Ln as

f∗(x) = f (x).

Supposeϕn(x) = pn(x)
πn(x) , thenϕn(x) is degenerate (respectively exceptional) iffpn(αn−1) = 0 (respec-

tively pn(αn−1) = 0). In [12, Thm. 2.1.1], and [1, Chapter 11.1] for the special case of allreal poles,
the following recurrence relation has been proven.

THEOREM 2.1 Take by conventionα−1 = α0 = ∞. Thenϕn−1(x) is not degenerate andϕn(x) is not
exceptional forn > 1 iff there exists a three term recurrence relation of the form

ϕn(x) =
(

EnZn(x)+Fn
Zn(x)

Zn−1(x)

)
ϕn−1(x)+Cn

Zn(x)
Zn−2∗(x)

ϕn−2(x), (2.3)

with En 6= 0 andCn 6= 0. The initial conditions areϕ−1(x)≡ 0 andϕ0(x)≡ 1√
µ0

with µ0 = µ(R). In the
special case of all real poles, it holds that

En =−CnEn−1. (2.4)
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When all the poles are chosen outside the convex hull of supp(µ), the zeros ofϕn are inside the
convex hull of supp(µ). Therefore, if supp(µ) is connected (a closed interval), the system{ϕn} will be
not degenerate and not exceptional and thus the recurrence relation will hold for everyn. Note that for
everya,b∈ R, with −∞ < a < b < ∞, the interval[a,b] can be mapped onto the interval[−1,1] using
the transformation

x =
2t−b−a

b−a
, t ∈ [a,b].

Even the case of orthogonality on a halfline can be completely reduced to the case of the interval, using
a suitable transformation (see [14]). Thus, when studying the asymptotic behaviour of ORFs on an
interval, we can restrict ourselves to the interval[−1,1].

In the case of ORFs on the intervalI = [−1,1] with arbitrarycomplexpoles outsideI , a relation
exists with ORFs on the unit circle. Given a sequence of complex numbersB = {β1,β2, . . .} ⊂ D,
define the Blaschke factors

ζk(z) =
z−βk

1−β kz
, k = 1,2, . . .

and the Blaschke products

B0 = 1, Bk(z) = Bk−1(z)ζk(z), k = 1,2, . . . .

Then the space of rational functions associated withB is defined as

L̇n = span{B0, . . . ,Bn}.

Orthonormalising this basis with respect toµ̇ and inner product

〈 f ,g〉T =
1

2π

∫
T

f (z)g(z)dµ̇(z),

we obtain the ORFs{φ0,φ1, . . . ,φn}. When considering the sequenceBc = {β 1, . . . ,β n}⊂D, instead of
B, we obtain the ORFs{φ c

0,φ c
1, . . . ,φ c

n} in L̇ c
n , whereφ c

n(z) = φn(z). And if we consider the sequence
B̃ = {β̃1, . . . , β̃2n} ⊂ D, with

β̃2k = βk andβ̃2k−1 = β k, k = 1, . . . ,n, (2.5)

we obtain the ORFs{φ̃0, φ̃1, . . . , φ̃2n} in L̃2n = L̇n · L̇ c
n . In the case of orthogonality on the unit circle,

we define the involution operation or substar conjugate of a functionf ∈ L̇n as

f∗(z) = f (1/z)

and the superstar transformation as
f ∗(z) = Bn(z) f∗(z).

Note that the factorBn(z) merely replaces the polynomial with zeros{βk}n
k=1 in the denominator of

f∗(z) by a polynomial with zeros
{

1/β k

}n

k=1
so thatL̇ ∗

n = L̇n.

The complement of the intervalI with respect to a setX will be given byXI , e.g.

CI = C\ I .
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Althoughx andzare both complex variables, we reserve the notationx for ORFs on the interval, andz for
ORFs on the unit circle. We denote the Joukowski Transformationx = 1

2(z+z−1) by x = J(z), mapping

the open unit discD onto the cut Riemann sphereCI
and the unit circleT onto the intervalI . When

z= eiθ , thenx= J(z) = cosθ . The inverse mapping is denoted byz= Jinv(x) and is chosen so thatz∈D
if x∈ CI

. With the sequenceA = {α1,α2, . . .} ⊂ CI
we associate the sequenceB = {β1,β2, . . .} ⊂ D

so thatβk = Jinv(αk).
Next, let the measurėµ onT be given by

µ̇(E) = µ ({cosθ ,θ ∈ E∩ [0,π)})+ µ ({cosθ ,θ ∈ E∩ [π,2π)}) , (2.6)

which can also be written aṡµ(E) =
∫

E |dµ(cosθ)|. Using the Lebesgue decomposition ofµ and the
change-of-variables theorem (see e.g. [9, p. 153]) it is not difficult to see thatµ̇ ′(θ) = µ ′(cosθ) |sinθ |.
Then the following theorem gives a relation between the ORFs onI and the ORFs onT, which has been
proven in [2, Thm. 4.2]1.

THEOREM 2.2 Let{ϕn} be a set of orthonormal rational functions onI with respect to the measureµ,
and{φn} the corresponding set of orthonormal rational functions onT with respect to the measureµ̇ as
defined above. Then they are related by

ϕn(x) =
ρn√
2π

[
1+ℜ

{
φ̃ c

2n(βn)
φ̃ ∗2n(βn)

}]− 1
2 φ̃ ∗2n(z)

Bn(z)

(
1+

φ̃ c
2n(z)

φ̃ ∗2n(z)

)
,

wherex = J(z), ρn is a unimodular constant that can be chosen arbitrarely, and the tilde refers to the
sequence of complex numbers given by (2.5).

The following two convergence results for ORFs on the unit circle can be found in [1, Chapter 9].
With µ̇ ′ (respectivelyµ ′) we denote the Radon-Nikodym derivative of the measureµ̇ (respectivelyµ)
with respect to the Lebesgue measure, and hence the ‘almost everywhere’ is also with respect to the
Lebesgue measure.

THEOREM 2.3 Let µ̇ satisfy the Erd̋os-Tuŕan conditionµ̇ ′ > 0 a.e. onT and assume that the sequence
B is compactly included inD. Then we have

lim
n→∞

φn(z)
φ ∗n (z)

= 0,

locally uniform inD.

THEOREM 2.4 Let µ̇ satisfy the Erd̋os-Tuŕan conditionµ̇ ′ > 0 a.e. onT and assume that the sequence
B is compactly included inD. Then we have

lim
n→∞

εn+1φ ∗n+1(z)(1−β n+1z)
√

1−|βn|2

εnφ ∗n (z)(1−β nz)
√

1−|βn+1|2
= 1,

whereεn is a unimodular normalisation constant such thatεnφ ∗n (0) > 0, i.e.εn = |φ ∗n (0)|/φ ∗n (0). Again
convergence is locally uniform inD.

1In [2] the measureµ was assumed to be absolutely continuous, but this can easily be extended to arbitrary positive Borel
measures whose support is an infinite set. See also [4, p. 190] for the polynomial case.



Recurrence and Asymptotics for Orthonormal Rational Functions on an Interval 5 of 22

Note that, ifµ̇ andµ are related through (2.6), the conditionµ̇ ′ > 0 a.e. onT is equivalent with the
conditionµ ′ > 0 a.e. onI .

Finally, the following strong convergence result for ORFs on the unit circle can also be found in [1,
Chapter 9].

THEOREM 2.5 Letµ̇ satisfy the Szeg̋o condition∫ 2π

0
logµ̇

′(θ)dθ >−∞

and assume that the sequenceB is compactly included inD. Then locally uniform inD

lim
n→∞

εn
φ ∗n (z)(1−β nz)√

1−|βn|2
=

1
σ(z)

,

whereεn is the same as in Theorem 2.4 andσ(z) is the Szeg̋o function given by

σ(z) = exp

{
1

4π

∫ 2π

0

eiθ +z
eiθ −z

logµ̇
′(θ)dθ

}
, z∈ D.

Note again that for the interval, withx= cosθ andµ̇ given by (2.6), the Szegő condition is equivalent
with the condition ∫ 1

−1

logµ ′(x)√
1−x2

dx>−∞.

3. Three term recurrence relation

In Theorem 2.1 a simple relation has been given between the third coefficientCn and the first coefficient
En for all real poles. Due to this relation, the number of coefficients can be reduced from three to two.
Equation (2.4), however, does not hold in general for arbitrarycomplexpoles. In this section we will
prove a slightly different, but still simple, relation betweenCn and the other two coefficientsEn and
Fn that holds in general. Next, withFn = EnF̂n, we will illustrate howEn, apart from a unimodular
normalisation constantηn, can be defined recursively in function ofF̂n as well, when the last pole in the
sequenceαn is not real. The special case in whichαn ∈ R \ ({0}∪ supp(µ)) will appear as a limiting
caseℑ{αn} → 0, whereℑ{.} refers to the imaginary part. We will conclude this section with a Favard
type theorem. First we will need the following partial results. The first lemma is easily verified, and
hence we will omit the proof.

LEMMA 3.1 LetA(α,β ) be given by

A(α,β ) =
1

Zα(x)
− 1

Zβ (x)
.

Then the following statements hold:

1. A(α,β ) = 1
Zα (β ) and hence is independent ofx,

2. A(α,β ) =−A(β ,α),

3. A(α,β ) = A(α,β ),
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4. A(α,β )−A(γ,β ) = A(α,γ),

5. A(α,β )+A(α,γ) = 2A
(

α, 2βγ

β+γ

)
,

6.
Zβ (x)
Zα (x) = A(α,β )Zβ (x)+1,

7. bk(x)
Zα (x) = A(α,αk)bk(x)+bk−1(x) ∈

{
Lk \Lk−1, α 6= αk

Lk−1, α = αk
.

THEOREM 3.1 Supposeϕn(x) = κnbn(x)+ κ ′nbn−1(x)+ fn−2(x), whereκn,κ
′
n ∈ C, κn 6= 0 and fn−2 ∈

Ln−2. Then the following statements hold:

1. 〈bn,ϕn〉= 1
κn

= 〈ϕn,bn〉,

2.
[

ϕn(x)
bn(x)

]
x=αn

= κn,

3.
[

ϕn(x)
bn(x)

]
x=αn−1

= κn +κ ′nA(αn,αn−1),

4. En = κn+κ ′nA(αn,αn−1)
κn−1

.

Proof. First, note that

1 = 〈ϕn,ϕn〉= 〈κnbn,ϕn〉+
〈(

κ
′
nbn−1 + fn−2

)
,ϕn
〉

= κn 〈bn,ϕn〉 ,

which proves the first statement. Next, we have that[
ϕn(x)
bn(x)

]
x=αn

= κn +
[

1
Zn(x)

(
κ
′
n +

fn−2(x)
bn−1(x)

)]
x=αn

= κn,

and [
ϕn(x)
bn(x)

]
x=αn−1

= κn +
κ ′n

Zn(αn−1)
+
[

1
Zn(x)Zn−1(x)

(
fn−2(x)
bn−2(x)

)]
x=αn−1

= κn +κ
′
nA(αn,αn−1),

proving the second and third statement. Finally, it holds that[
ϕn(x)
bn(x)

]
x=αn−1

=
[(

En +
Fn

Zn−1(x)

)
ϕn−1(x)
bn−1(x)

]
x=αn−1

+
[(

Cn

Zn−2∗(x)

)
ϕn−2(x)
bn−1(x)

]
x=αn−1

= En

[
ϕn−1(x)
bn−1(x)

]
x=αn−1

.

Using the second and third statement then proves the last statement. �
In order to reduce the number of coefficients in Theorem 2.1, we are now able to prove our first main

result.
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THEOREM 3.2 The coefficientCn in (2.3) is given by

Cn =−En +FnA(αn−1,αn−1)
En−1

. (3.1)

Proof. From the last statement in Lemma 3.1 it follows thatbn−1(x)
Zn∗(x)

∈Ln−1, and hence

0 = 〈ϕn,bn−1/Zn∗〉= 〈ϕn/Zn,bn−1〉
= En 〈ϕn−1,bn−1〉+Fn 〈ϕn−1/Zn−1,bn−1〉+Cn 〈ϕn−2/Zn−2∗,bn−1〉

=
En

κn−1
+Fn 〈ϕn−1,bn−1/Zn−1∗〉+Cn 〈ϕn−2,bn−1/Zn−2〉

=
En

κn−1
+

FnA(αn−1,αn−1)
κn−1

+Cn

(
A(αn−2,αn−1)〈ϕn−2,bn−1〉+

1
κn−2

)
.

Furthermore, withbn−1(x) = 1
κn−1

(
ϕn−1(x)−κ ′n−1bn−2(x)− fn−3(x)

)
, we get that

0 =
1

κn−1

[
En +FnA(αn−1,αn−1)+Cn

(
κ
′
n−1A(αn−1,αn−2)

κn−2
+

κn−1

κn−2

)]
=

1
κn−1

[
En +FnA(αn−1,αn−1)+Cn

(
κn−1 +κ ′n−1A(αn−1,αn−2)

κn−2

)]

=
1

κn−1

[
En +FnA(αn−1,αn−1)+CnEn−1

]
.

�
Consequently, using the new parameterF̂n = Fn/En instead ofFn, we can now reformulate Theo-

rem 2.1 as follows.

THEOREM 3.3 Take by conventionα−1 = α0 = ∞. Thenϕn−1(x) is not degenerate andϕn(x) is not
exceptional forn > 1 iff there exists a three term recurrence relation of the form

ϕn(x) = EnZn(x)
([

1+
F̂n

Zn−1(x)

]
ϕn−1(x)−

1+ F̂nA(αn−1,αn−1)
En−1Zn−2∗(x)

ϕn−2(x)
)

= Enϕ̂n(x), (3.2)

with En 6= 0 and 1+ F̂nA(αn−1,αn−1) 6= 0. The initial conditions areϕ−1(x)≡ 0 andϕ0(x)≡ 1√
µ0

with

µ0 = µ(R).

Explicit expressions can easily be found for the recurrence coefficients, but first we will need the
following lemma.

LEMMA 3.2 Leta j(x),b j(x),c j(x),d j(x),A j ,B j andCj , with j = 1, . . . ,4, be given by Table 1. Then
for every functionf (x) andg(x) it holds that〈

a j

b j
f ,

c j

d j
g

〉
= A j

〈
a j f ,g

〉
+B j

〈
f ,c jg

〉
+Cj 〈 f ,g〉 . (3.3)

If α = γ in Table 1, then the equality holds in the sense that the limit of the right hand side for(α,γ)→
(a,a) tends to the left hand side withα = γ = a.
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TABLE 1 Definition of aj(x),b j(x),c j(x),d j(x),A j ,B j and Cj for j = 1, . . . ,4, with {α,β ,γ,δ} ⊂ C\
{0} and{α,γ}∩supp(µ) = /0.

j a j(x) b j(x) c j(x) d j(x) A j B j Cj

1 Zα(x) Zβ (x) 1 1 A(β ,α) 0 1
2 Zα(x) 1 Zγ(x) 1 1

A(γ,α)
1

A(α,γ) 0

3 Zα(x) Zβ (x) Zγ(x) 1 A(β ,α)
A(γ,α)

A(β ,γ)
A(α,γ) 0

4 Zα(x) Zβ (x) Zγ(x) Zδ (x) A(β ,α)A(δ ,α)
A(γ,α)

A(δ ,γ)A(β ,γ)
A(α,γ) 1

Proof. First, note that forj = 1, the equality directly follows from the sixth statement in Lemma 3.1.
Secondly, forj = 2 we have that

〈Zα f ,g〉 =
〈

Zα

Zγ∗
f ,Zγg

〉
=
〈
{A(γ,α)Zα +1} f ,Zγg

〉
= A(γ,α)

〈
Zα f ,Zγg

〉
+
〈

f ,Zγg
〉
,

so that 〈
Zα f ,Zγg

〉
=
〈Zα f ,g〉−

〈
f ,Zγg

〉
A(γ,α)

=
〈Zα f ,g〉
A(γ,α)

+

〈
f ,Zγg

〉
A(α,γ)

.

Thirdly, for j = 3 it holds that〈
Zα

Zβ

f ,Zγg

〉
= A(β ,α)

〈
Zα f ,Zγg

〉
+
〈

f ,Zγg
〉

= A(β ,α)

(
〈Zα f ,g〉
A(γ,α)

+

〈
f ,Zγg

〉
A(α,γ)

)
+
〈

f ,Zγg
〉

=
A(β ,α)
A(γ,α)

〈Zα f ,g〉+ A(β ,α)−A(γ,α)
A(α,γ)

〈
f ,Zγg

〉
=

A(β ,α)
A(γ,α)

〈Zα f ,g〉+ A(β ,γ)
A(α,γ)

〈
f ,Zγg

〉
.

Next, note that forj = 4 we get that〈
Zα

Zβ

f ,
Zγ

Zδ

g

〉
=
〈
{A(β ,α)Zα +1} f ,{A(γ,δ )Zγ +1}g

〉
.

Further computations, similarly as forj = 3, now prove the equality forj = 4.
Finally, because the functionsZα(x) and Zγ(x) are bounded forx ∈ supp(µ), andα and γ are in a
compact subset ofC \ ({0}∪ supp(µ)), the dominated convergence theorem implies that the left hand
side of (3.3) is continuous for anyα andγ in C \ ({0}∪ supp(µ)). Hence, the limit of the right hand
side must coincide with the limit of the left hand side at the points(α,γ) = (a,a), with a∈ C\ ({0}∪
supp(µ)), because these are the only points where the right hand side can not be evaluated due to the
denominatorsA(α,γ) andA(γ,α). �
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COROLLARY 3.1 In the special case off = g, α = γ andβ = δ , it holds for j = 2, respectivelyj = 4,
in Lemma 3.2 that

‖Zα f‖2 = 〈Zα f ,Zα f 〉= 2ℜ
{
〈Zα f , f 〉
A(α,α)

}
, (3.4)

respectively ∥∥∥∥Zα

Zβ

f

∥∥∥∥2

=
〈

Zα

Zβ

f ,
Zα

Zβ

f

〉
= 2ℜ

{
A(β ,α)A(β ,α)

A(α,α)
〈Zα f , f 〉

}
+‖ f‖2 , (3.5)

whereℜ{.} refers to the real part. Equation (3.4) and (3.5) also hold forα ∈R\ ({0}∪supp(µ)) in the
sense that the limit of the right hand side forℑ{α}→ 0 tends to the left hand side withℑ{α}= 0.

Explicit representations for the recurrence coefficients in terms of inner products are now given by
the following theorem.

THEOREM 3.4 The coefficientsEn and F̂n in the recurrence relation (3.2) have the following explicit
representation in terms of inner products:

En =
ηn

‖ϕ̂n‖
, ηn ∈ T (3.6)

and

F̂n =
Kn,k−Ln,k

A(αn−1,αn)Ln,k−A(αn−1,αn−1)Kn,k +δn−1,kEn−1
, k < n (3.7)

where

Kn,k = A(αn−2,αn)〈Znϕn−2,ϕk〉+δn−2,k

Ln,k = En−1 〈Znϕn−1,ϕk〉 ,

and
δn,k = 〈ϕn,ϕk〉 .

Proof. Using the fact that〈ϕn,ϕn〉= 1 yields the first equation. Next, when taking the inner product on
both sides of (3.2) withϕk for k < n and solving forF̂n, we get that

F̂n =

〈
Zn

Zn−2∗
ϕn−2,ϕk

〉
−En−1 〈Znϕn−1,ϕk〉

En−1

〈
Zn

Zn−1
ϕn−1,ϕk

〉
−A(αn−1,αn−1)

〈
Zn

Zn−2∗
ϕn−2,ϕk

〉 .

Using the results from Lemma 3.2 then completes the proof. �
As a consequence of Theorem 3.4, we have the following corollary.

COROLLARY 3.2 LetMn be given by

Mn =
En−1

[
1+ F̂nA(αn−1,αn)

][
1+ F̂nA(αn−1,αn−1)

] .

Then it holds that

A(αn−2,αn)〈Znϕn−2,ϕn−2〉= Mn 〈Znϕn−1,ϕn−2〉−δn−2,n−2
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and

〈Znϕn−1,ϕn−1〉=
A(αn−2,αn)〈Znϕn−2,ϕn−1〉

Mn
− F̂n

1+ F̂nA(αn−1,αn)
.

The following theorem now illustrates howEn, apart from a unimodular normalisation constant, can
be defined recursively in function of̂Fn whenαn is not real.

THEOREM 3.5 The coefficientEn = ηn|En| in the recurrence relation (3.2) is given by

|En|2 =
|En−1|2

2ℜ{an}
, (3.8)

where

an =
|En−1|2 F̂n

[
1+ F̂nA(αn−1,ωn)

]
+
∣∣1+ F̂nA(αn−1,αn−1)

∣∣2A(αn−2,ωn)

A(αn,αn)

andωn = |αn|2
ℜ{αn} . If αn is real, the equality holds in the sense that the limit of the right hand side for

ℑ{αn}→ 0 tends to the left hand side.

Proof. From Equation (3.6) and (3.2) it follows that

|En|−2 =
∥∥∥∥Zn

(
1+

F̂n

Zn−1

)
ϕn−1

∥∥∥∥2

+
∣∣∣∣1+ F̂nA(αn−1,αn−1)

En−1

∣∣∣∣2∥∥∥∥ Zn

Zn−2∗
ϕn−2

∥∥∥∥2

−2ℜ
{(

1+ F̂nA(αn−1,αn−1)
En−1

)〈
Zn

Zn−2∗
ϕn−2,Zn

(
1+

F̂n

Zn−1

)
ϕn−1

〉}
. (3.9)

Based on the results in Lemma 3.1 and 3.2, together with Corollary 3.1 and 3.2, we get that

1. ∥∥∥∥Zn

(
1+

F̂n

Zn−1

)
ϕn−1

∥∥∥∥2

=
∥∥{Zn

(
1+ F̂nA(αn−1,αn)

)
+ F̂n

}
ϕn−1

∥∥2

= 2
∣∣1+ F̂nA(αn−1,αn)

∣∣2 ℜ
{
〈Znϕn−1,ϕn−1〉

A(αn,αn)

}
+
∣∣F̂n
∣∣2

+2ℜ
{(

1+ F̂nA(αn−1,αn)
)

F̂n 〈Znϕn−1,ϕn−1〉
}

= 2ℜ


[
1+ F̂nA(αn−1,αn)

][
1+ F̂nA(αn−1,αn)

]
A(αn,αn)

〈Znϕn−1,ϕn−1〉

+
∣∣F̂n
∣∣2

= 2ℜ
{

bn1 〈Znϕn−2,ϕn−1〉−
F̂n

A(αn,αn)

[
1+ F̂nA(αn−1,ωn)

]}
where

bn1 =
(

1+ F̂nA(αn−1,αn−1)
En−1

) A(αn−2,αn)
[
1+ F̂nA(αn−1,αn)

]
A(αn,αn)

.
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2. ∥∥∥∥ Zn

Zn−2∗
ϕn−2

∥∥∥∥2

= 2ℜ
{

A(αn−2,αn)A(αn−2,αn)
A(αn,αn)

〈Znϕn−2,ϕn−2〉
}

+δn−2,n−2,

so that∣∣∣∣1+ F̂nA(αn−1,αn−1)
En−1

∣∣∣∣2∥∥∥∥ Zn

Zn−2∗
ϕn−2

∥∥∥∥2

=

2ℜ

{
bn2 〈Znϕn−1,ϕn−2〉−δn−2,n−2

∣∣∣∣1+ F̂nA(αn−1,αn−1)
En−1

∣∣∣∣2 A(αn−2,ωn)
A(αn,αn)

}

where

bn2 =

(
1+ F̂nA(αn−1,αn−1)

En−1

)
A(αn−2,αn)

[
1+ F̂nA(αn−1,αn)

]
A(αn,αn)

.

3. 〈
Zn

Zn−2∗
ϕn−2,Zn

(
1+

F̂n

Zn−1

)
ϕn−1

〉
=

A(αn−2,αn)
[
1+ F̂nA(αn−1,αn)

]
A(αn,αn)

〈Znϕn−2,ϕn−1〉+

A(αn−2,αn)
[
1+ F̂nA(αn−1,αn)

]
A(αn,αn)

〈ϕn−2,Znϕn−1〉 ,

so that

−2ℜ
{(

1+ F̂nA(αn−1,αn−1)
En−1

)〈
Zn

Zn−2∗
ϕn−2,Zn

(
1+

F̂n

Zn−1

)
ϕn−1

〉}
=−2ℜ{bn1 〈Znϕn−2,ϕn−1〉}−2ℜ

{
bn2 〈Znϕn−1,ϕn−2〉

}
.

Substituting this back into (3.9), taking into account thatℜ
{

A(α−1,ω1)
A(α1,α1)

}
= 0 so thatδn−2,n−2 can be

replaced with 1 even forn = 1, completes the proof. �
Clearly, the relation betweenEn andF̂n is not as simple anymore as it is for the relation betweenCn,

andEn andFn = EnF̂n. It can, however, be simplified a little bit further by noticing thatA(α,α) = i 2ℑ{α}
|α|2 ,

and thatℑ{A(α,β )}= ℑ{α}
|α|2 whenβ is real. This way we get that

2ℜ{an}=

[
ℑ{F̂n}−

∣∣F̂n
∣∣2 ℑ{αn−1}

|αn−1|2

][
|En−1|2−4ℑ{αn−1}

|αn−1|2
ℑ{αn−2}
|αn−2|2

]
+ ℑ{αn−2}

|αn−2|2

ℑ{αn}
|αn|2

. (3.10)

Finally, we have the following Favard type theorem. For the complete proof, we refer to [1, p.
307–319].
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THEOREM 3.1 Let{ϕn} be a sequence of rational functions, and assume that the following conditions
are satisfied:

1. αk 6= 0, k = 1,2, . . .;

2. ϕn is generated by the recurrence (3.2);

3. ϕn ∈Ln\Ln−1, n = 1,2, . . ., andφ0 6= 0;

4. En 6= 0, n = 1,2, . . .;

5. 1+ F̂nA(αn−1,αn−1) 6= 0, n = 2,3, . . ..

Then there exists a functionalM onL∞ ·L∞∗ so that

〈 f ,g〉= M{ f g∗}

defines a real positive inner product onL∞ for which theϕn form an orthonormal system.

Proof. The outline of the proof is exactly the same as in the case of all real poles (see [1, p. 307–319]),
with the following adaptations:

1. the inner productsM{ f g} have to be replaced with the inner productsM{ f g∗};

2. the factors Zn(x)
Zn−2(x) in [1, Eq. (11.39) and (11.40)], respectivelyZn(x)

Z j (x)
in [1, Thm. 11.9.2] andZn(x)

Z j−1(x)

in [1, Thm. 11.9.3], have to be replaced with the factorsZn(x)
Zn−2∗(x)

, respectivelyZn(x)
Z j∗(x)

and Zn(x)
Z j−1∗(x)

;

3. the equality given by [1, Eq. (11.42)] becomes

M{|ϕn−1|2}=− CnEn−1

En(1+ F̂nA(αn−1,αn−1))
M{|ϕn−2|2};

4. in the proof by induction (see [1, p. 313–318]), the assumption thatϕnϕ j∗ ∈Rn, j−1∗ implies that
αm = αn (instead ofαm = αn) whenm> j +2.

�

4. Asymptotic behaviour

Ratio asymptotics and a strong convergence result for ORFs on the intervalI have been derived in [13,
Section 6] in the case of allreal poles outside the interval. These derivations were based on the relation
between ORFs on the interval and ORFs on the unit circle, a relation that was at that time only proven
for all real poles by Van gucht et al. in [16, Thm. 4.1]. With the generalisation of this relation to arbitrary
complexpoles in Theorem 2.2 we are able to extend these results to the case of arbitrarycomplexpoles
outside the interval. But we first need the following lemma.

LEMMA 4.1 Letµ̇ satisfy the Erd̋os-Tuŕan conditionµ̇ ′ > 0 a.e. onT and assume that the sequenceB
is compactly included inD. Then we have

lim
n→∞

φ̃ c
2n(z)

φ̃ ∗2n(z)
= 0,

locally uniform inD, where the tilde refers to the sequence of complex numbers given by (2.5).
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Proof. Note thatφ̃ c
2n ∈ L̃2n andφ̃ c

2n ⊥ L̃2n−2 so that

φ̃
c
2n(z) = a2nφ̃2n(z)+b2nφ̃2n−1(z),

where
a2n =

〈
φ̃

c
2n, φ̃2n

〉
T , b2n =

〈
φ̃

c
2n, φ̃2n−1

〉
T and 1= |a2n|2 + |b2n|2.

And hence
φ̃ c

2n(z)
φ̃ ∗2n(z)

= a2n
φ̃2n(z)
φ̃ ∗2n(z)

+b2n
φ̃2n−1(z)
φ̃ ∗2n(z)

.

Furthermore, we have that there exist functionsA2n(z) andB2n(z) with B2n(z) 6= 0 for z∈ D, so that
φ̃ ∗2n(z) = A2n(z)φ̃2n−1(z)+B2n(z)φ̃ ∗2n−1(z) (see [1, p. 77]). Thus, it holds that

φ̃ c
2n(z)

φ̃ ∗2n(z)
= a2n

φ̃2n(z)
φ̃ ∗2n(z)

+b2n
φ̃2n−1(z)

A2n(z)φ̃2n−1(z)+B2n(z)φ̃ ∗2n−1(z)

= a2n
φ̃2n(z)
φ̃ ∗2n(z)

+b2n

φ̃2n−1(z)
φ̃∗2n−1(z)

A2n(z)
φ̃2n−1(z)
φ̃∗2n−1(z) +B2n(z)

.

From Theorem 2.3 it now follows that

lim
n→∞

φ̃ c
2n(z)

φ̃ ∗2n(z)
= lim

n→∞

a2n
φ̃2n(z)
φ̃ ∗2n(z)

+b2n

φ̃2n−1(z)
φ̃∗2n−1(z)

A2n(z)
φ̃2n−1(z)
φ̃∗2n−1(z) +B2n(z)

= 0,

locally uniform inD. �
With this, we get the following results about the ratio convergence and strong convergence of ORFs

on I .

THEOREM 4.1 Assume the sequenceA = {α1,α2, . . .} ⊂ CI
is bounded away fromI and letµ be a

positive bounded Borel measure with supp(µ) = I , which satisfies the Erd̋os-Tuŕan conditionµ ′ > 0 a.e

on I . If {ϕn} are the ORFs onI associated withA andµ, then locally uniform inCI
we have

lim
n→∞

λn+1
z−βn+1

1−β nz

√
1−|βn|2

1−|βn+1|2
ϕn+1(x)
ϕn(x)

= 1,

wherez= Jinv(x), βk = Jinv(αk) for k = n,n+1, and

λn+1 =
ε̃2n+2

ε̃2n

ρn

ρn+1
∈ T,

with εn andρn the same as in Theorem 2.4, respectively Theorem 2.2, and the tilde referring to the
sequence of complex numbers given by (2.5).

Proof. Defineµ̇ onT by (2.6) and use Theorem 2.2 to write

ϕn+1(x)
ϕn(x)

=
ρn+1

ρn

1
ζn+1(z)

φ̃ ∗2n+2(z)
φ̃ ∗2n(z)

√√√√√√ 1+ℜ
{

φ̃c
2n(βn)

φ̃∗2n(βn)

}
1+ℜ

{
φ̃c

2n+2(βn+1)
φ̃∗2n+2(βn+1)

} 1+
φ̃c

2n+2(z)
φ̃∗2n+2(z)

1+ φ̃c
2n(z)

φ̃∗2n(z)

.
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Using Lemma 4.1 and Theorem 2.4 we then obtain

lim
n→∞

ε̃2n+2

ε̃2n

ρn

ρn+1

z−βn+1

1−β nz

√
1−|βn|2

1−|βn+1|2
ϕn+1(x)
ϕn(x)

= 1,

locally uniform inCI
. �

THEOREM 4.2 Assume the sequenceA = {α1,α2, . . .} ⊂ CI
is bounded away fromI and letµ be a

positive bounded Borel measure with supp(µ) = I , which satisfies the Szegő condition

∫ 1

−1

logµ ′(x)√
1−x2

dx>−∞.

Let µ̇ be given by (2.6) and supposeσ(z) is the associated Szegő function as defined in Section 2. If

{ϕn} are the ORFs onI associated withA andµ, then locally uniform inCI
we have

lim
n→∞

λnBn(z)
1−β nz√
1−|βn|2

ϕn(x) =
1√

2πσ(z)
,

wherez = Jinv(x), βk = Jinv(αk) and λn = ε̃2n
ρn

∈ T, with εn and ρn the same as in Theorem 2.4, re-
spectively Theorem 2.2, and the tilde referring to the sequence of complex numbers given by (2.5). In
particular we have

lim
n→∞

ϕn(x) = ∞

pointwise forx∈ CI
.

Proof. From Theorem 2.2, 2.5 and Lemma 4.1 it follows that

lim
n→∞

λnBn(z)
1−β nz√
1−|βn|2

ϕn(x) = lim
n→∞

ε̃2n√
2π

φ̃ ∗2n(z)(1−β nz)√
1−|βn|2

=
1√

2πσ(z)
,

locally uniform inD. The last statement in the theorem follows from the fact that the Blaschke product
Bn(z) diverges to zero forz∈ D. �

5. Asymptotics for En and Fn

In this section we wish to derive asymptotic formulas for the recurrence coefficientsEn andFn = EnF̂n.
Explicit formulas for the coefficients in terms of the ORFsϕn are given in the next theorem.

THEOREM 5.1 The explicit formulas for the recurrence coefficientsEn andFn = EnF̂n in terms of the
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orthonormal rational functionsϕn are given by

En = lim
x→αn−1

ϕn(x)
Zn(x)ϕn−1(x)

Fn = lim
x→αn−2

(
Zn−1(x)ϕn(x)
Zn(x)ϕn−1(x)

−EnZn−1(x)
)

= lim
x→α

[
ϕn(x)

Zn(x)ϕn−1(x) −En

(
1− ϕn−2(x)

En−1Zn−2∗(x)ϕn−1(x)

)]
[

1
Zn−1∗(x)

− 1
Zn−1∗(αn−1)

(
1− ϕn−2(x)

En−1Zn−2∗(x)ϕn−1(x)

)] , ∀α ∈ C.

Proof. Using Theorem 2.1 we obtain that

lim
x→αn−1

ϕn(x)
Zn(x)ϕn−1(x)

= En + lim
x→αn−1

(
Fn

Zn−1(x)
+Cn

ϕn−2(x)
Zn−2∗(x)ϕn−1(x)

)
= En +0,

and

lim
x→αn−2

(
Zn−1(x)ϕn(x)
Zn(x)ϕn−1(x)

−EnZn−1(x)
)

= Fn +Cn lim
x→αn−2

Zn−1(x)ϕn−2(x)
Zn−2∗(x)ϕn−1(x)

= Fn +0.

Finally, the last equality forFn directly follows from Theorem 3.3, withFn = EnF̂n, and from the fact
that

1
Zn−1(x)

−A(αn−1,αn−1) =
1

Zn−1∗(x)

A(αn−1,αn−1) = − 1
Zn−1∗(αn−1)

.

�
Now we can use Theorem 4.1 to find the asymptotic formulas forEn andFn.

THEOREM 5.2 Letβk = Jinv(αk) for k = n,n−1,n−2. Under the assumptions of Theorem 4.1, the
following relation holds forEn in the sense that the ratio of the left hand side and the right hand side
tends to 1 asn tends to infinity,

En ∼ 2λ n

√
(1−|βn−1|2)(1−|βn|2)(1−βn−1βn)(

1+β 2
n−1

)
(1+β 2

n )
. (5.1)

Further, the following relation holds forFn,

lim
n→∞

Fn +λ n

√
(1−|βn|2)

(1−|βn−1|2)

(
1−|βn−1|2

)(
βn +β n−2

)
+2ℜ{βn−1}

(
1−βnβ n−2

)
(1+β 2

n )
(

1−βn−1β n−2

)
= 0. (5.2)

In the special case in which

∃N ∈ N : ∀n > N : |
(
1−|βn−1|2

)(
βn +β n−2

)
+2ℜ{βn−1}

(
1−βnβ n−2

)
|> δ > 0, (5.3)
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the relation given by (5.2) is equivalent with

Fn ∼−λ n

√
(1−|βn|2)

(1−|βn−1|2)

(
1−|βn−1|2

)(
βn +β n−2

)
+2ℜ{βn−1}

(
1−βnβ n−2

)
(1+β 2

n )
(

1−βn−1β n−2

) . (5.4)

Proof. It holds that

Zα(x) =
αx

α −x
=

1
2

(1+β 2)(1+z2)
z(β 2 +1)−β (z2 +1))

=
(1+β 2)(1+z2)
2(z−β )(1−βz)

,

Further, note that the uniform convergence ensured by Theorem 4.1 permits us to interchange the limits
x→ αn−1 andn→ ∞. Consequently, we can substituteϕn(x)/ϕn−1(x) in the expression ofEn, given by
Theorem 5.1, by its asymptotic equivalent expression, given by Theorem 4.1, to find that

lim
x→αn−1

ϕn(x)
Zn(x)ϕn−1(x)

∼ 2λ n

√
1−|βn|2

1−|βn−1|2
lim

z→βn−1

[
(1−β n−1z)(1−βnz)

(1+β 2
n )(1+z2)

]
.

ForFn, it follows from Theorem 5.1 that

Fn = lim
z→β

An(z)−EnBn(z)
1

Zn−1∗(x)
− 1

Zn−1∗(αn−1)Bn(z)
, β = Jinv(α),

where

An(z) =
ϕn(x)

Zn(x)ϕn−1(x)
, Bn(z) = 1− ϕn−2(x)

En−1Zn−2∗(x)ϕn−1(x)
,

andz= Jinv(x). Next, letA′n(z) andB′n(z) be given by

A′n(z) = 2λ n

√
1−|βn|2

1−|βn−1|2
(1−β n−1z)(1−βnz)

(1+β 2
n )(1+z2)

B′n(z) =
(1−β n−1z)

[
2ℜ{βn−1}(z−β n−2)+(1−|βn−1|2)(1+β n−2z)

]
(1−|βn−1|2)(1−β n−2β n−1)(1+z2)

.

Supposing thatβk, with k = n−2,n−1,n, andzare compactly included inD, it holds that 06 |A′n(z)|<
∞ and 06 |B′n(z)|< ∞. From Theorem 4.1 it now follows thatAn(z)−A′n(z)→ 0 andBn(z)−B′n(z)→ 0.
Further, with

E′
n = 2λ n

√
(1−|βn−1|2)(1−|βn|2)(1−βn−1βn)(

1+β 2
n−1

)
(1+β 2

n )

and
Vn = (1−|βn−1|2)(βn +β n−2)+2ℜ{βn−1}(1−βnβ n−2),

it holds that

A′n(z)−E′
nB′n(z) =−

2λ n

√
1−|βn|2

1−|βn−1|2
(z−βn−1)(1−β n−1z)Vn

(1+β 2
n−1)(1−β n−2β n−1)(1+β 2

n )(1+z2)
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and

1/Zn−1∗(x)−B′n(z)/Zn−1∗(αn−1) =
2(z−βn−1)(1−β n−1z)(1−βn−1β n−2)

(1+z2)(1+β 2
n−1)(1−β n−2β n−1)

.

We now have that 06 |A′n(z)−E′
nB′n(z)|< ∞ and 06 |1/Zn−1∗(x)−B′n(z)/Zn−1∗(αn−1)|< ∞, so that

[An(z)−EnBn(z)]− [A′n(z)−E′
nB′n(z)] → 0[

1
Zn−1∗(x)

− 1
Zn−1∗(αn−1)

Bn(z)
]
−
[

1
Zn−1∗(x)

− 1
Zn−1∗(αn−1)

Bn(z)
]

→ 0. (5.5)

Furthermore, ifz is bounded away fromβn−1, the relation given by (5.5) is equivalent with

1
Zn−1∗(x)

− 1
Zn−1∗(αn−1)

Bn(z)∼
1

Zn−1∗(x)
− 1

Zn−1∗(αn−1)
B′n(z).

Consequently, supposing thatz is bounded away fromβn−1, we find that

Fn− lim
z→β

A′n(z)−E′
nB′n(z)

1
Zn−1∗(x)

− 1
Zn−1∗(αn−1)B

′
n(z)

→ 0

⇒ Fn + lim
z→β

λ n

√
1−|βn|2

1−|βn−1|2
Vn

(1+β 2
n )(1−βn−1β n−2)

→ 0

⇒ Fn +λ n

√
1−|βn|2

1−|βn−1|2
Vn

(1+β 2
n )(1−βn−1β n−2)

→ 0.

Finally, if Vn is bounded away from zero, we get that

Fn ∼−λ n

√
1−|βn|2

1−|βn−1|2
Vn

(1+β 2
n )(1−βn−1β n−2)

.

�
Note that forn large enough the coefficientsEn andFn will only depend on respectively the last

two or three poles. If the last two poles arereal, En is bounded by 0< En 6 2, but this will not be the
case for|En| if these two poles arecomplex. Take for exampleβn−1 = βn = ±(1− ε)i, whereε is a
small positive number. Then for largen we have that|En| ≈ 2

ε
. Nevertheless, assuming thatβn−1 and

βn are compactly included inD, it follows that there exists aβ ∈ [0,1) so that|βn−1|< β and|βn|< β .
Consequently, for largen, it follows from (5.1) that

2

(
1−β 2

1+β 2

)2

< |En|<
2(1+β 2)
(1−β 2)2 . (5.6)

Finally, asymptotic formulas for̂Fn = Fn
En

andCn, given by (3.1), can be found as well. Depending

on whether condition (5.3) is satisfied, we get forF̂n that

F̂n ∼−
(1+β 2

n−1)
[(

1−|βn−1|2
)(

βn +β n−2

)
+2ℜ{βn−1}

(
1−βnβ n−2

)]
2(1−βn−1βn)(1−|βn−1|2)

(
1−βn−1β n−2

) (5.7)
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or

lim
n→∞

F̂n +
(1+β 2

n−1)
[(

1−|βn−1|2
)(

βn +β n−2

)
+2ℜ{βn−1}

(
1−βnβ n−2

)]
2(1−βn−1βn)(1−|βn−1|2)

(
1−βn−1β n−2

)
= 0, (5.8)

which can be readily obtained from the previous theorem. While forCn a series of computations even-
tually leads to

Cn ∼− λ n

λn−1

√
1−|βn|2

1−|βn−2|2
(1+β

2
n−2)(1−βnβ n−1)

(1+β 2
n )(1−β n−2β n−1)

. (5.9)

Note that the asymptotic formula forCn holds as well if condition (5.3) is not satisfied, due to the fact
that the right hand side of (5.9) is bounded from above and bounded away from zero for everyβk,
k = n−2,n−1,n, compactly included inD.

6. Numerical examples

Explicit expressions are known for the so-called Chebyshev ORFs onI with respect to the weight func-
tion µ ′(x) = (1− x)a(1+ x)b, wherea,b∈

{
±1

2

}
, and are given in [3, Thm. 3.2]. It has been proven

(first in [15, Thm. 3.5] for allreal poles and afterwards, only forµ ′(x) = 1/
√

1−x2, in [11, Section
4] for complexconjugate poles2) that for everyn > 1 the recurrence coefficientsEn, Fn andCn are
given by respectively the right hand side of (5.1), (5.4) and (5.9). This allows us to compute|En| with
Equation (5.1) and Equation (3.8), and to compare the results. From now on, we will assume thatEn is
positive real forn = 1,2, . . .. Furthermore, withEn(i) we denote the result forEn whenEn is computed
with Equation (i), wherei = 3.6, 3.8 or 5.1. The computations in the examples that follow are performed
in Maple 83 with 10 digits.

EXAMPLE 6.1 Assume thatµ ′(x) = (1− x)a(1+ x)b so that ’∼’ can be replaced with ’=’ in the
asymptotic formulas for the recurrence coefficients whenn > 1, and letβ1 = −β2 = 0.3+ 0.2i and
β3 = Cr +Cimi, with |β3| 6 0.99. Figure 1 then shows the graph ofE3(5.1), while Figure 2 shows the
graph ofE3(3.8). For the latter,F̂3 andE2 are computed using Equation (5.7) and (5.1). These graphs
clearly illustrate that the result forE3 is the same for both formulas as long asβ3 (and hence,α3 = J(β3)
as well) is not real.

To get a better idea of what happens ifα3 is real, we take a closer look at the case in whichℜ{β3}
is constant (Figure 3 and 4) orℑ{β3} is constant (Figure 5 and 6). Note that

ℑ{α}
|α|2

=−
2ℑ{β}

(
1−|β |2

)
(1+ |β |2)2−4[ℑ{β}]2

,

so thatℑ{α}/|α|2 is (close to) zero iffβ is (close to) real or|β | is (close to) one. The figures on the
right show the relative error ofE3(3.8) compared toE3(5.1), given by

rE =
∣∣∣∣1− E3(3.8)

E3(5.1)

∣∣∣∣ . (6.1)

2Neither the restriction to the weight functionµ ′(x) = 1/
√

1−x2, nor the restriction to complex conjugate poles is in fact
necessary, and hence we may assume thatµ ′(x) = (1−x)a(1+x)b, with a,b∈

{
± 1

2

}
, and that the poles are arbitrary complex as

well.
3Maple and Maple V are registered trademarks of Waterloo Maple Inc.
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FIG. 1. Graph ofE3(5.1) in function of β3 = Cr +Cimi. The figure on the left gives a 3D representation of the graph, while the
figure on the right shows the contoursE3(5.1) = 0.1(1+2k) for k = 0, . . . ,12.
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FIG. 2. Graph ofE3(3.8) in function of β3 = Cr +Cimi. The figure on the left gives a 3D representation of the graph, while the
figure on the right shows the contoursE3(3.8) = 0.1(1+2k) for k = 0, . . . ,12.
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FIG. 3. Figure on the left: Graph ofE3(3.8) in function ofℑ{β3} with ℜ{β3} = 0. Figure on the right: The relative error given
by (6.1).
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FIG. 4. Figure on the left: Graph ofE3(3.8) in function ofℑ{β3} with ℜ{β3}= 0.5. Figure on the right: The relative error given
by (6.1).
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FIG. 5. Figure on the left: Graph ofE3(3.8) in function ofℜ{β3} with ℑ{β3}= 10−2. Figure on the right: The relative error given
by (6.1).
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by (6.1).
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TABLE 2 Results for En(3.8) and F̂n, with n= 1, . . . ,9, whenµ ′(x) = [arccos(x)]2 and αn =
(−1)n+1i.

n F̂n En |〈ϕn,ϕ0〉|
1 0.4110241305+0.1725060290i 2.407674987 2.8×10−10

2 0.07063851560−0.1925226262i 2.064699855 1.7×10−10

3 0.01806270322+0.003063182959i 2.036303603 3.7×10−10

4 0.01137541442−0.001494840571i 2.022945557 3.4×10−10

5 0.007764863080+0.0008250747269i 2.015731886 2.6×10−10

6 0.005620120537−0.0004991519144i 2.011430574 6.8×10−10

7 0.004250190603+0.0003236351299i 2.008670444 1.0×10−9

8 0.003324576249−0.0002213314747i 2.006797426 4.9×10−10

9 0.002670807580+0.0001578585701i 2.005469615 6.1×10−10

TABLE 3 Results for En(3.6) and F̂n, with n= 1, . . . ,9, whenµ ′(x) = [arccos(x)]2 and αn =
(−1)n+1i.

n F̂n En |〈ϕn,ϕ0〉|
1 0.4110241305+0.1725060290i 2.407674987 2.8×10−10

2 0.07063851560−0.1925226262i 2.064699855 1.7×10−10

3 0.01806270322+0.003063182959i 2.036303604 3.7×10−10

4 0.01137541444−0.001494840915i 2.022945556 3.4×10−10

5 0.007764863061+0.0008250744303i 2.015731888 2.5×10−10

6 0.005620120577−0.0004991523606i 2.011430573 2.9×10−10

7 0.004250190558+0.0003236348818i 2.008670444 6.8×10−10

8 0.003324576292−0.0002213314742i 2.006797427 5.0×10−10

9 0.002670807541+0.0001578587700i 2.005469613 2.7×10−11

Repeating the computations in Example 6.1 with other values forβ1 andβ2 gives similar results as
long asβ1 and/orβ2 are not too close to±i. And hence we may assume that for more general weight
functions, satisfying the assumptions in Theorem 4.1, Equation (3.8) is a fast but reliable way to get
accurate results forEn, with n large enough so that the ratios in Theorem 5.1 are close to one, as long
asℑ{βn} is not too close to zero, andβn−2 andβn−1 are not too close to±i. In other words,ℑ{αn}

|αn|2
may

not be too small, whileℑ{αn−2}
|αn−2|2

and ℑ{αn−1}
|αn−1|2

may not be too large.

EXAMPLE 6.2 Consider the weight functionµ ′(x) = [arccos(x)]2 and letαn = (−1)n+1i (or equivalently
βn = (−1)n+1(1−

√
2)i) for n= 1,2, . . .. From (5.1) and (5.8) we can deduce thatEn tends to 2 and that

F̂n tends to 0 asn tends to infinity. Table 2, respectively Table 3, shows the results forEn(3.8), respectively
En(3.6), andF̂n (using Equation (3.7) withk = n−1), for n = 1, . . . ,9. To verify the correctness of the
results,|〈ϕn,ϕ0〉| (which has to equal zero) is computed as well. These tables confirm thatEn tends to 2
and thatF̂n tends to 0 with increasingn.
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