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Abstract

With hyperspectral sensor technology evolving and be-
coming more cost-effective, it is likely we will see hyper-
spectral cameras replace standard RGB cameras in a mul-
titude of applications beyond these traditional niches of
medical and aerial image segmentation in the near future.
Rather than generating an image that is optimal for the hu-
man eye, responses of these new cameras will be tuned to-
wards specific computer vision algorithms. This calls for
new methods for hyperspectral band selection, optimized
for those tasks. In this work, we present a novel pipeline for
discriminative band selection in hyperspectral images for
the task of image-level classification. It is based on a con-
volutional neural network to learn appropriate representa-
tions combined with AdaBoostSVM for band selection. We
test our method on two standard hyperspectral face datasets
in the context of face recognition. Our exhaustive experi-
ments show that the proposed method outperforms the ex-
isting state-of-the-art methods.

1. Introduction

For each pixel in an image, a hyperspectral camera ac-
quires the light intensity for a large number of contiguous
spectral bands. Every pixel in the image contains a contin-
uous spectrum, which can be used to characterize the ob-
jects in the scene with great precision and detail. Following
the recent advances in sensor development and computa-
tional power, hyperspectral imaging has moved from rather
slow and unreliable experimental prototypes to reliable and
accurate analytical instruments. The rich spectral informa-
tion contained in the hyperspectral image or hyperspectral
cube (HSI) makes them well suited not just for pixel-level
classification in medical or aerial images, but also for ac-
curate classification of objects in computer vision tasks like
scene recognition [3], pedestrian detection [16, 27], medi-
cal imaging [32, 50], and more. However, the large volume
of hyperspectral image is considered a strong drawback.

In this paper, we propose a framework for HSI classifica-
tion and band selection to find potentially uncorrelated, and
discriminative wavelengths in combination with a powerful
representation of their content that characterize the object
and improve the classification performance using end-to-
end learning. We investigate in the visible (380 — 700nm)
to near-infrared (750 — 1100nm) spectral range (V-NIR).

Silicon sensors are naturally sensitive up until 900nm,
but even able to capture wavelengths up to 1200nm. Com-
mercial digital cameras use a infrared blocking filter to pre-
vent an unwanted NIR response. Nowadays, cameras in
cars exploit V-NIR range for pedestrian detection in night
vision [27]. Likewise, in mammography, single-shot spec-
tral imaging is used for breast tumour and developing can-
cer detection [32]. We foresee that in the near future, task-
specific consumer cameras will take over RGB cameras. As
task-specific wavelengths pertinent to objects are found, we
can use a color filter array for capturing those wavelengths
only. This can lead to more accurate classification than what
can be obtained with visible RGB image. The photocells
are only sensitive to the spectrum of our interest, limited to
a specific range. This makes the imaging system compact,
computationally efficient, cost-effective, and a perfect fit for
real-time applications.

In a HSI, the adjacent neighboring spectral bands are
highly correlated, and it has been observed that high redun-
dancy leads to poor generalization capabilities of the clas-
sifier [15]. To the best of our knowledge, only pixel-level
band selection and classification [4, 5, 38] have been ad-
dressed so far for hyperspectral imaging, where principal
component analysis [18] and vector quantization [13] are
the most commonly used techniques for dimensionality re-
duction in hyperspectral data. The high dimensionality of
hyperspectral images makes it difficult to separate the dis-
criminative bands using statistical methods [21, 35] due to
the high computational burden at the pixel-level. However,
in our method the band selection and classification is done
at the image-level, where each band in a hyperspectral cube
can be considered as a separate image. We target the band
selection problem at the image-level because we believe that



this allows to exploit high-level information from shapes
and abstract concepts from images in comparison to pix-
elwise selected bands. To this end, we use state-of-the-art
methods for image classification, i.e. convolutional neural
networks [6, 20, 22, 43] (CNN). We propose a new frame-
work to learn a spectral CNN for obtaining a new feature
space using V-NIR information in images. The proposed
scheme for training this CNN helps to handle the require-
ment of many images in training process. Additionally, we
use AdaBoostSVM [23, 34] for band selection based on
image-level classification. We choose AdaBoostSVM be-
cause of several reasons: (i) high performance in remote
sensing literature [23, 34]; (ii) excellent generalization in
imbalanced classification problems [46]; and (iii) ability
to distinguish highly uncorrelated and discriminative fea-
tures [23, 34, 46]. This makes AdaBoostSVM very promis-
ing for classification of hyperspectral data.

We have evaluated our proposed methods using two stan-
dard hyperspectral face datasets [9, 11] for face recognition.
In summary, we have the following contributions: (i) We
propose a scheme for training a CNN for hyperspectral im-
age classification; (ii) We propose a new effective approach
to exploit CNN features for discriminative band selection
using AdaBoostSVM; (iii) Our proposed method outper-
forms state-of-the-art methods and traditional hand-crafted
features on both datasets.

The remainder of the paper is structured as follows. In
Section 2, we discuss the related work. Section 3 describes
our proposed method. Results and experimental evaluation
are given in Section 4. Finally, in Section 5 we conclude the

paper .
2. Related Work

This section first discusses band selection techniques. It
then continues with a short description of face recognition
in the hyperspectral domain. Finally, we show the impact of
multispectral information in the computer vision domain.

Band selection techniques: Discriminative spectral
band selection in a hyperspectral cube is a fundamental
problem. Maximally discriminative wavelengths increase
the recognition accuracy. Therefore, it is advantageous to
drop the least discriminative bands from the hyperspec-
tral cube. This reduces the data redundancy, computa-
tion complexity, and the acquisition time of the hyper-
spectral cube, which is very good for real-time applica-
tions. In the last two decades, many band selection tech-
niques have been proposed in a remote sensing context,
but in this community the band selection and classifica-
tion problems are done at the pixel-level. The different
band selection techniques are: exhaustive search [12, 17],
branch-and-bound search [29], best individual features [19],
sequential forward/backward selection [17, 19], sequen-
tial forward/backward floating search [33], and more. All

of these band selection methods use a criterion function
that is usually linked to some performance metric, either
based on a distance metric (e.g. Jeffries-Matusita dis-
tance, Bhattacharyya distance [37]) or on information mea-
sure (mutual-information or entropy [4]). In our work, we
show how AdaBoostSVM can be applied to this setting for
band selection based on image-level classification. We fol-
low [19] as baselines for band selection.

For compact representation, a panchromatic image,
which is a well-known single channel grayscale represen-
tation of a hyperspectral image is often used. In literature
good results have been demonstrated using panchromatic
images for classification [7]. For comparison, we also ob-
tain the panchromatic and RGB images as baselines.

Hyperspectral image classification using CNN: While
most previous work in remote sensing using CNNs [14, 49,
42] consider pixel-level classification. We propose image-
level classification that allows us to exploit higher-level in-
formation like shapes and abstract concepts from images:
making it more suitable for high-level visual recognition
tasks, similar is not possible at pixel-level. Also, classifi-
cation at the pixel-level (think of raw pixel values) comes at
high computational burden, and it turns out that, it is diffi-
cult to disambiguate objects with large classes dataset.

Hyperspectral image classification for face recogni-
tion:  Several hyperspectral feature extraction methods
have been proposed lately for face recognition [25, 40, 44,
45]. They transform the high-dimensional space to a low-
dimensional space, and exploit this low-dimensional space
for classification. Shen et al. [40] utilize 3D Gabor wavelets
to extract orientation, scale, and wavelength-dependent fea-
tures from the hyperspectral images. Liang et al. [25] fo-
cus on 3D texture pattern descriptors based on local deriva-
tive patterns as features. Uzair et al. [44] use the encoded
low-frequency components of the 3D discrete cosine trans-
formation as features for face recognition. Further in [45],
Uzair et al. extract the spatiospectral covariance features us-
ing 3D cubelets. Bianco [2] performs 1D projections along
the spectral dimension using an unbounded linear combina-
tion (ULC), and obtains the optimal projection using Parti-
cle Optimal Optimization (PSO) as features. Also recently
the traditional hand-crafted feature descriptors (HOG, LBP,
SIFT) are explored by Sharma et al. [39]. We compare
against these methods in our experimental section.

Vision: A lot of recent applications have been demon-
strated in computer vision that exploits multispectral in-
formation in V-NIR and SWIR (1400 — 3000nm) range.
They report high detection and recognition rates for differ-
ent tasks in these ranges. Such as, scene recognition [3],
predicting clinical outcomes [50], 3D reconstruction [52],
salient object detection [24], pedestrian tracking [16, 27],
eye tracking [51], material classification [36, 41], cultural
heritage [1] and so on. All of them have reported a promi-
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Figure 1: S-CNN architecture for hyperspectral image classification. At a time, one spectral image (or band) is fed to the
network for training. S-CNN consists of three convolutional and two fully-connected layers, with a final C-way softmax.
Note how a single network is learned that is applied to all the different bands.

nent improvement in classification. In our work we not
only improve the classification performance, but also find
the most discriminative bands that play a role behind it.

3. Method

In this section, we go through our scheme for training
a CNN for hyperspectral image classification and also a
new approach to exploit CNN features for discriminative
and complementary band selection using AdaBoostSVM.
In the first part of this section we describe our proposed
hyperspectral CNN for image classification. Second part
of the section introduces our proposed discriminative band
selection technique using CNN and AdaBoostSVM. For the
full pipeline of the proposed method of hyperspectral image
classification and band selection, refer to the supplimentary
material.

3.1. Hyperspectral CNN for Image Classification

In the last decade, many works in the computer vision
community have focused on feature designing and descrip-
tor engineering. Hand-crafted descriptors (like SIFT, HOG,
...) are popular in many computer vision domains, but none
of them are trainable for new problems and different tasks.
Recently, features derived from learning-based representa-
tion have been shown to outperform these engineered de-
scriptors, because they have the power of discovering and
optimizing visual description for the specific task to be
solved. In this context, convolutional neural networks are
leader in the field of learning-based feature extraction meth-
ods [20, 22, 43]. With variations in architecture of these
network, researchers can obtain new models which are well
fitted for their desired problem. In this work, we propose
a scheme for training a CNN for hyperspectral image clas-
sification. This network can capture discriminative visual
information in useful bands for our task.

We will now describe our CNN architecture for hyper-

spectral image classification. For our convenience, we refer
to our CNN as S-CNN (see Fig. 1). In our scheme we make
this hyperspectral cube flat by treating each band as a sepa-
rate image. Each of these images has the same class as the
hyperspectral cube it was extracted from. Having the CNN
work on a single band as a generic CNN helps to improve
the classification performance: treating the data in this flat
way handles the requirement of many images in the CNN
training process. We design our network to have 3 con-
volution layers (conv 1-3), followed by 2 fully-connected
layers (fc 1-2) with a final C-way softmax. The softmax
output layer produces a distribution over the C' output class
labels using softmax loss function, where C' is the num-
ber of classes. All the convolution layers are followed by
a batch normalization layer (bnorm), a rectification linear
unit layer (ReLU), and a max pooling layer. The ReLU and
a dropout layer are applied to the output of fcl.

Notation: We start from a hyperspectral image (or hy-
perspectral cube) with a size of A xw xn where 7 is the num-
ber of wavelengths (or bands), h and w are the height and
width of the frame, respectively. In our work, each frame
(h x w)y,, ¢ € [1...n] of the hyperspectral cube is treated
as a separate image T(hxw)y, OF Tx, (e.g. grayscale image)
for image classification and recognition tasks.

Architecture Study: We train our hyperspectral CNN
architecture (S-CNN) for face recognition. The key rea-
son behind training our own network rather than using a
pretrained one is to enable our S-CNN to learn representa-
tions of discriminative texture patterns in the NIR range,
that is unavailable in the visible range. From the litera-
ture [6, 20, 43], we exploited a lot of insights about good
architectures. For small datasets, it is highly recommended
to train small networks. It turns out that deep networks
have many parameters to learn and an insufficient number
of training samples leads to over-fitting.

Figure 2 shows the accuracy of different architectures
on the CMU-HSFD dataset [9]. The 5-layer network of
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Figure 2: S-CNN architecture study. Face recognition per-
formance on CMU validation dataset for different network
architectures. The 5-layer network performs the best among
all other networks.

Fig. 1 described before performs the best when compared
with other networks. Note that the 3-layer network per-
forms the worst, and the 6-layer one shows similar perfor-
mance as our 5-layer network. In the 3-layer network we
have 2 convolutional and 1 fully-connected layers, while
the 6-layer network consists of 3 convolutional and 3 fully-
connected layers. Using the 5-layer network is computa-
tionally more time efficient over the 6-layer network. So
we use the 5-layer network as S-CNN network. The num-
ber of parameters for 5-layer network is 20 million. We also
trained Alexnet [20] (60 million parameters) and VGG [6]
(99-144 million parameters) architectures from scratch, but
we found that these networks were very deep and are not
suitable for small datasets: the huge number of parameters
quickly led to over-fitting (see Sec. 4.3).

We also tried to train S-CNN with more complex archi-
tectures, such as by passing the whole cube as an input, but
we found that the model was underperforming for the given
limited number of sample set.

3.2. Discriminative Band Selection Using S-CNN

Next, we describe the discriminative band selection at
image-level in the hyperspectral image through S-CNN. For
this purpose, we use AdaBoostSVM [23, 34, 46] for image-
level band selection. We believe that AdaBoostSVM is most
suitable for our task. Each band is an independent diverse
feature set. AdaBoost depends on diversity, and demon-
strates excellent generalization performance for combining
the complementary relationships between different bands.
Thus using it will help us to select and combine the best
bands. We choose SVM as a learner because of their lower
sensitivity to imbalanced datasets, which is very promising
for classification of hyperspectral data.

Using our trained S-CNN, for a given wavelength \;, 7 €
[1...n], we extract S-CNN features: activations of first fully-
connected layer fc1 for each image, followed by L2 normal-
ization. Once we have extracted the normalized features for
all bands, we assign the S-CNN features of the i-th band to a
SVM learner in AdaBoost (see Algorithm 1). We use multi-
class weighted SVM (with the RBF kernel) as a learner in

Data: Input training data: {(z(|x, ... x,],¢), ¥i)}>
i=1.Mandy; € {1,...,C}. Number of
required complimentary bands, K

Result: Output: weight of K learned models, W

1 Initialization:

2 Weights: w; :=1/M. Bands: B:=1:7

3 Buffer for Accuracy: T <« ;

4 fork=11t K do

5 for b = B do

6 Dy = {(x(x,.1), Y1) (T (0,000, Y1) 1

7 learn model hy, from Dj, with w;, using SVM,;
8 Accy, = Classification accuracy of model hy;
9 T :=TU{Accp};

10 end

11 Calculate argmax T',/. Band b' € B for which
b'eB
maximum accuracy is obtained;

12 €y 1= Zhb’ (‘T“b’ )y Wis

13 By =y /(1 —ey);
4 | fori=1toM: if hy(z(s, )=y thenw; =

Wy * 51,’;
15 si=, W
16 for all w;: w; := w;/s;

17 Wy, :=1log(1/8y);

18 B:=B\{b'};

19 end

2o return: W= Wy, W, ..., W]
Algorithm 1: Discriminative band selection in the hy-
perspectral image using AdaBoostSVM with S-CNN
features.

AdaBoost.

Given that we are interested in finding K complementary
bands out of 7 bands in the hyperspectral image. We initial-
ize each training sample z with a weight of 1/M. M is the
number of training samples. The train/test set samples are
the same for all bands. In the first iteration of AdaBoost,
the best performing band is chosen. The weight of each
sample in the training set is updated depending on whether
the predicted label is correctly classified or misclassified. If
correctly classified x gets lower weights, otherwise higher
weights. In the second iteration, the second best performing
band is chosen that is complementary to the first one. This
time AdaBoost focuses on the training samples which were
misclassified previously (i.e. training samples with higher
weights). After the second band is chosen, the weights of x
are again re-weighted, and the same process continues for
K iterations. Finally, AdaBoost combines all the K -learned
models together as an ensemble. The predictions of this
ensemble are combined through a weighted majority vote
among the prediction of the different models. These models



correspond to the most K discriminative and complemen-
tary spectral wavelengths in the hyperspectral cube which
can be used for accurate classification. Figure. 3 shows the
accuracy of S-CNN+AdaBoostSVM for K complimentary
bands on CMU-HSFD and PolyU-HSFD datasets.

4. Experiments

We evaluate our proposed method on two datasets for
face recognition. Our experiments consist of four parts (i)
Comparison of our proposed method with state-of-the-art
methods (Sec. 4.2); (ii) Comparison of our proposed image-
level band selection method with other methods for band
selection (Sec. 4.2); (iii) Comparison of S-CNN feature
with the traditional hand-crafted features (Sec. 4.3); (iv)
Comparison of S-CNN best bands with RGB and panchro-
matic image representations (Sec. 4.3); (v) Comparison of
S-CNN architecture with other state-of-the-art architectures
(Sec. 4.3). In Section 4.1, we first explain the experimental
details with dataset, implementation details, training proto-
col, and baselines.

4.1. Experimental details

All experiments were performed using the publicly avail-
able vlfeat library [47] and matconvnet framework [48].

Hyperspectral datasets: For training a CNN, we need
to have a hyperspectral dataset with enough training sam-
ples per object class. To the best of our knowledge,
there are only two publicly available hyperspectral datasets,
which contain enough samples per subject. Both are face
datasets [9, 11]. Therefore, our experiments and evaluations
are conducted on these two datasets. They are Carnegie
Mellon University [9] (CMU-HSFD) and Hong Kong Poly-
technic University [11] (PolyU-HSFD) hyperspectral face
datasets.

PolyU-HSFD (see Fig. 4) is acquired with the CRI’s
VariSpec Liquid-Crystal-Tuneable-Filter (LCTF) with a
halogen light. Each hyperspectral cube contains 33 bands
covering the visible range of 400-720nm with a step size
of 10 nm. For each individual, frontal, left and right views
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Figure 3: S-CNN+AdaBoostSVM: Accuracy vs # of com-
plimentary bands (see Table 2). Figure shows that using
K complimentary bands, the misclassified samples are cor-
rectly classified when trained and tested on train set.

with neutral-expression for multiple sessions were acquired.
Each subject has 1-7 cubes-per-view. The database contains
48 subjects with 3-21 cubes-per-subject over all sessions.
Following the experimental protocol of [25, 44, 45], we use
25 subjects for our experiments. The captured images are
quite noisy, and have a low signal-to-noise ratio for the first
6 and the last 3 bands of the spectral range. Following the
same protocol, we have discarded them. The relative pro-
portion of signal-to-noise ratio is low in this dataset. This
implies the shot noise is high. Therefore, we apply a median
filter to remove shot noise as a preprocessing step.

CMU-HSFD (see Fig. 4) is acquired with the CMU-
developed Acousto-Optic-Tunable-Filter (AOTF) with
three 600W halogen bulbs. Each hyperspectral cube
contains 65 bands covering the V-NIR range of 450-
1090nm with a step size of 10 nm. For each individual,
frontal, left and right views with neutral-expression for
multiple sessions were acquired. Each subject has 1-5
cubes-per-view. The database contains 54 subjects with
4-20 cubes-per-subject over all sessions. Following the
experimental protocol of [25, 44, 45], we use 48 subjects
for our experiments. We also apply a median filter in this
dataset to remove shot noise.

Training Protocol for S-CNN: Following the experi-
mental protocol of [25, 44, 45], we use only the frontal
views, so we can compare our technique with state-of-the-
art methods for hyperspectral face recognition. For the
evaluation using the defined protocol, the gallery set (train-
ing set) is constructed by randomly selecting one cube-
per-subject, while the probe set (test set) is constructed by
randomly selecting two cubes-per-subject. The remaining
cubes are used for training the S-CNN for both datasets.
We use this setup in Sec. 4.2.

In our second setup, we use frontal, left and right views
for comparison of our technique with the traditional hand-
crafted features. We construct the gallery, probe, and S-
CNN training set in the same way as in the first setup, but
this time we use also left and right views. We use this setup
in Sec. 4.3.

Once we have trained our S-CNN, we extract the S-CNN
features (fc1) for the gallery and the probe set images. Then,
a multi-class linear SVM is trained on S-CNN gallery set
and tested on the S-CNN probe set, and then we report the
recognition accuracy using majority voting.

Data preprocessing: We use flip augmentation, mirror-
ing images about the x-axis and y-axis, thus generating hor-
izontal and vertical reflections for each image. This allows
us to train deeper network and avoid over-fitting. Augmen-
tation consistently improves performance [6]. All images
were cropped and resized to 263 x 263 for S-CNN training.

S-CNN implementation details: An input image of size
263 x 263 pixels is fed to convl with 96 kernels of size
6 X 6 x 96 with a stride of 2 pixels. The conv2 takes as
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(a) PolyU-HSFD: Visible Range (440-690nm). Bands with a
step-size of 40nm are shown.
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(b) CMU-HSFD: V-NIR Range (450-1090nm). Bands with a
step-size of 50nm are shown.

Figure 4: Example hyperspectral image for a subject with its corresponding RGB and panchromatic images. For the detailed
explanation of the conversion of HSI to RGB and panchromatic images, we encourage the reader to visit the supplementary

material.

input the (bnorm, ReLU, pooled) output feature maps of
convl and filters it with 256 kernels of size 3 x 3 x 256 with
a stride of 2 pixels. This is followed by conv3 which takes
as input the (bnorm, ReLLU, pooled) output feature maps of
conv?2 and filters it with 512 kernels of size 3 x 3 x 512 with
a stride of 1 pixel. The fc1 has 1024 outputs, where dropout
was applied after fc1 with a rate of 0.5. Each output of the
fc is connected to all the inputs. The resulting output of fc2
is fed to a C-way softmax to compute the class posterior
probabilities.

S-CNN details for training: We train our S-CNN from
scratch using stochastic gradient descent with momentum
set to 0.9, weight decay of 0.0005, and with a batch size
of 60. We initialize an equal learning rate for all train-
able layers to 0.05, which is manually decreased by a factor
of 10 when the validation error stopped decreasing. Prior
to the termination the learning rate was reduced two times
at 15th and 25th epoch. We initialize the weights of the
network with normally distributed random numbers. We
trained the network for 30 epochs which took 6 hours on a
single NVIDIA GTX 980 4GB GPUs.

Baseline features: We compare S-CNN feature with a
few baselines: the traditional hand-crafted features, namely
SIFT [26], HOG [8], and LBP [30]. For HOG and LBP, we
use a cell-size of 8 x 8, and number of oriented histogram
bins is 9 for HOG. For SIFT, we use a bin-size of 8 and
step-size of 4, then we Fisher encode the extracted SIFT
features and return the L2-normalized feature vector. To
compute Fisher encoding, we need to obtain a visual word
dictionary, for that we use a GMM with 100 clusters. We
denote dense SIFT Fisher vectors by DSIFT-FVs. For all
computation and training of methods based on hand-crafted
features, we keep these parameters fixed.

4.2. Frontal View Experiments

Evaluation of our S-CNN features: In order to evaluate
the performance of S-CNN, we compare it with state-of-the-
art methods on both datasets. For a fair comparison, we use
the same baseline as in [25, 44, 45] and use only the frontal

view for training and testing over all the bands. In this ex-
periment, we do not perform any band selection yet, but use
all available bands. To evaluate the quality of the feature we
use a simple linear SVM classifier. We extract the S-CNN
features and feed band-by-band to a multi-class linear SVM.
The decisions of the different bands are merged using ma-
jority voting. In Table 1, we report the recognition accuracy
of S-CNN and compare it with the best results reported in
the literature. Our S-CNN classification results outperform
all the state-of-the-art methods, and traditional hand-crafted
features for hyperspectral face recognition on both datasets.
Our method achieved the highest recognition accuracy, ex-
ceeding DSIFT-FVs [39], Band fusion+PLS [45], and 1D
ULC+PSO [2].

Comparison of band selection methods: We compare
our proposed discriminative band selection in Section 3.2
with the best individual bands [19], randomly selected band
subsets, and gradual band removal band selection methods.
In the best individual bands method, we obtain the classi-
fication accuracy for each individual band, and a subset of
best bands with maximum performance are chosen. In ran-
domly selected bands method, we randomly select a num-
ber of disjoint band subsets from the whole spectral range.
Gradual band removal method involves successively remov-
ing one band at a time, whose removal increases the accu-

Methods | Accuracy
PolyU-HSFD CMU-HSFD
3D DCT [44] | 84.0 88.6
3D Gabor Wavelets [40] | 90.1 91.6
3D LDP [25] | 95.3 94.8
Band fusion+PLS [45] | 95.2 99.1
1D ULC+PSO [2] | 99.1 —
LBP[39] | 85.6 86.1
HOG [39] | 92.3 91.5
DSIFT-FVs [39] | 96.1 96.9
S-CNN: Majority-Voting (ours) | 97.2 98.8
S-CNN+SVM: Majority-Voting (ours) | 99.3 99.2

Table 1: Comparison of S-CNN with state-of-the-art meth-
ods using all bands.



Band Selection Methods | PolyU-HSFD CMU-HSFD
Best Individual Bands [19] | [560, 640, 490, 500, 630]  [650, 660, 720, 910]
Gradual Band Removal | [490, 530, 570, 630, 690]  [850, 930, 990, 1050]
S-CNN+AdaBoostSVM (ours) | [640, 470, 590, 570, 520]  [1010, 900, 970, 730]

Table 2: Selected bands for S-CNN and other methods for
band selection.

racy of the remaining bands most. We do it repeatedly, until
we are left with the bands with maximum accuracy.

For a fair comparison, we use the same baseline as
in [45] and select the best 5 bands for PolyU-HSFD and
best 4 bands for CMU-HSFD. Table 2 shows the selected
best subset of bands chosen by the different band selection
methods. In Table 3, we compare the recognition accuracy
of selected bands by different methods on both datasets.
This shows that classification using our selected bands out-
performs significantly the other methods. It appears clear
that our proposed method, S-CNN+AdaBoostSVM out-
performs significantly the other methods with 99.6% on
PolyU-HSFD and 99.4% on CMU-HSFD datasets. Note
that NIR range (700-1090nm) is present only in CMU-
HSFD database. The blue wavelength bands of electromag-
netic spectrum are consistently discarded on both datasets
showing that they are less informative and discriminative
in comparison to green, red and NIR wavelength bands for
face recognition. Also we should note that our method finds
maximally discriminative bands in the hyperspectral cube,
and it very well takes into account the complementary re-
lationships between different bands for image classification
task.

Table 4 presents the accuracy results of our
S-CNN+AdaBoostSVM  compared  with  Bandfu-
sion+PLS [45]. For both datasets, our method outperforms
Bandfusion+PLS and achieves state-of-the-art accuracy,
which is currently the best published result, by 4.7% on
PolyU-HSFD and 0.6% on CMU-HSFD datasets. The
selected subset of bands chosen by Uzair et al. in [45] were
{530, 540, 550, 630, 670}nm for PolyU-HSFD and {570,
640, 720, 1000}nm for CMU-HSFD.

Band Selection Methods | PolyU-HSFD CMU-HSFD
Best Individual Bands [19] | 88.9 97.6
Randomly Selected Bands | 72.7 78.3
Gradual Band Removal | 88.8 97.2
S-CNN+AdaBoostSVM (ours) | 99.6 99.4

Table 3: Comparison of our method with other band se-
lection methods using their corresponding best bands com-
bined with our S-CNN features and linear SVM shown in
Table 2 for both datasets.

Methods | PolyU-HSFD CMU-HSFD
Bandfusion+PLS [45] | 94.9 98.8
S-CNN+AdaBoostSVM (ours) | 99.6 99.4

Table 4: Comparison of our method with state-of-the-
art [45] using the same number of selected bands shown
in Table 2 for both datasets.

HOG LBP DSIFT-FVs S-CNN (ours)
PolyU-HSFD | [460, 510, 570] [560, 650, 510]  [460, 640, 520]  [590, 570, 520]
CMU-HSFD | [1030, 1010, 1050]  [720, 730, 650]  [630, 680, 690] [900, 970, 730]

Table 5: Selected best 3 bands for S-CNN+AdaBoostSVM
and hand-crafted features+AdaBoostSVM.

4.3. All Views Experiments

Comparison of S-CNN with baseline features: For this
evaluation, we extract the HOG, LBP and DSIFT-FVs fea-
tures for each individual band in the hyperspectral cube.
Then, we apply the hyperspectral AdaBoostSVM algorithm
in the same way as we applied to S-CNN features, discussed
earlier in Section 3.2 for finding the best bands for each
hand-crafted feature. For this evaluation, we select only 3
bands (Best-3-Bands). Table 5 shows the best 3 bands se-
lected by each feature extraction method by AdaBoostSVM
on both datasets. For evaluation, we extract the features
for the chosen 3 bands and feed them band-by-band to a
multi-class linear SVM and the decisions are merged using
AdaBoost weighted majority voting.

In Table 6, we compare the recognition accuracy of Best-
3-Bands selected for S-CNN with the Best-3-Bands se-
lected for baseline features. We observe that the accuracy
of S-CNN outperforms all the baseline features listed in
Table 6 and achieves state-of-the-art accuracy with 99.4%
on PolyU-HSFD and 99.2% on CMU-HSFD datasets for
all views. We can say that, S-CNN learns the high-level
abstract/semantic representations, in comparison to hand-
crafted features that are designed to work well on visible
range.

Comparison with RGB and panchromatic image rep-
resentation: We generate the RGB and panchromatic im-
ages for HSI. Then, we fine-tune the S-CNN trained net-
work on the target images. We extract S-CNN: fc1 features
for each image, and then train a multi-class linear SVM and
we report the recognition accuracy. For a fair comparison

HOG LBP DSIFT-FVs S-CNN+AdaBoostSVM
PolyU-HSFDpest—3-Banas | 80.0  79.4  88.3 99.4
CMU-HSFDpgest—3—Bandas | 91.5  99.6 984 99.2

Table 6: Comparison of S-CNN+AdaBoostSVM with base-
line features using their corresponding Best-3-Bands shown
in Table 5.



RGB Best-3-Bands Panchromatic  Best-1-Band
(ours) (ours)
PolyU-HSFD | 86.0 99.4 88.0 91.3
CMU-HSFD | 839 99.2 89.2 93.0

Table 7: Comparison of S-CNN+AdaBoostSVM: Best-3-
Bands (shown in Table 5) with RGB and panchromatic im-
ages.

with 3-channel RGB image, we select only three bands for
evaluation.

In Table 7, we compare the recognition accuracy of best-
3 and best-1 bands selected for S-CNN (Table 5), with the
RGB image and a single-channel panchromatic image rep-
resentations. We observe that the accuracy of S-CNN out-
performs the RGB image by a significant margin. It has
been reported by Pan et al. [31], using NIR range for face
recognition gives higher accuracy in comparison to visible
range. The reason being, in NIR range the subsurface tissue
features are more discriminative due to larger penetration
depth in the human skin. Also, NIR images are to a great
degree invariant to illumination, and have discriminative
texture patterns that characterize the object [41] and scene
recognition [3] better than the computed features in the R,
G, and B color channels directly. S-CNN (Best-3-Bands)
also performs better than single-channel panchromatic im-
age, by 11.4% on PolyU-HSFD, and 10% on CMU-HSFD.

To qualitatively evaluate the performance of our best
3 bands (Table 5), we compare it with RGB image fea-
tures. We visualize the learned S-CNN feature embedding
on both CMU-HSFD and PolyU-HSFD datasets. We ex-
tracted the 1024-dimensional S-CNN: fcl features for RGB
wevelengths and best 3 bands (i.e. {900, 970, 730}nm for
CMU-HSFD and {590, 570, 520}nm for PolyU-HSFD )
and then projected to 2-dimensional space using t-SNE [28].
Fig. 5 shows the learned feature embedding of the S-CNN
features for RGB and our best 3 bands on both datasets. We
can observer that our best 3 bands are qualitatively better
than the RGB wavelengths.

Comparison with other Architectures: In this experi-
ment, we show AlexNet [20] and VGG-M [6] architectures
trained on ImageNet [10] and fine-tuned on CMU-HSFD
and PolyU-HSFD underperform S-CNN network by a sig-
nificant margin. Here, we use all views for training and
testing over all the bands. For this evaluation, we extract
the features and feed band-by-band to a multi-class linear
SVM. The decisions of the different bands are merged us-
ing majority voting. In Table 8, we compare the recognition
accuracy of S-CNN with state-of-the-art architectures.

5. Conclusion

In this paper, we presented a scheme for training a CNN
for HSI, along with a new effective approach for discrim-

Methods | Accuracy
PolyU-HSFD CMU-HSFD

Parameters (million)

VGG-M [6]+SVM: Majority-Voting | 63.7 66.4 103
Alexnet [20]+SVM: Majority-Voting | 74.3 80.9 60
S-CNN+SVM: Majority-Voting (ours) | 99.3 99.2 20

Table 8: Comparison of S-CNN with current state-of-the-art
architectures.

(a) CMU-HSFD. S-CNN: RGB (b) CMU-HSFD. S-CNN: best
features 3 bands features

(¢) PolyU-HSFD.
RGB features

S-CNN: (d) PolyU-HSFD. S-CNN: best
3 bands features

Figure 5: t-SNE visualization of S-CNN features. Feature
embedding visualizations of S-CNN RGB and best 3 bands
features on both datasets. We can observe that the S-CNN
best 3 bands are semantically separated better compared to
the S-CNN RGB image features. Each class (subject) has a
separate color for the map points.

inative and complimentary band selection in HSI for the
task of image- level classification. Our proposed methods
are evaluated on hyperspectral face datasets for the task
of face recognition. The proposed methods significantly
outperform state-of-the-art methods and methods based on
hand-crafted features. Even though in this paper we have
focussed on the face recognition task. Our method has the
potential to generalize to other object classes, given that
the HSI literature has shown that spectral information cap-
tured by hyperspectral cameras produces better results than
RGB cameras in a multitude of applications. Furthermore
with the increasing deployment of the HSI devices e.g. car-
mounted cameras, cameras for medical applications, pre-
cision farming, new datasets will be available. Using our
approach, wavelengths pertinent to objects of different cat-
egories can be found in the HSI, thus leading to more accu-
rate classification.
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1. Supplementary Material
1.1. Pipeline

Fig. 9 shows an overview of the proposed discrimina-
tive band selection technique in the hyperspectral images,
as discussed in Section 3.2.

1.2. Standard Image Representation of HSI

In this section, we explain the conversion of HSI to RGB
and panchromatic images. We obtain these images since
they are the standard image representation of HSI. Also, we
use these images as baselines for comparison.

1.2.1 Conversion of HSI to RGB image

In order to apply existing classification methods on the RGB
color space of the hyperspectral image, we transform each
hyperspectral image in to a 3-channel RGB image using
CIE 2006 tristimulus color matching functions [2]. Now,
we describe the steps in details.

Let I(X) be the spectral power distribution of the CIE
standard daylight illuminant (Dgs). 7(\), G()), and b(\) are
the color matching functions for CIE 2006, that represent
the human vision [3], and R()) is the spectral reflectance
of the object surface (Fig. 7). The CIE tristimulus values
X, Y, and Z for each spatial location (m,n) of a reflecting
object can be obtained by

X(m,n) =k Z I(X)R(m,n, A)F(N),
Y(m,n) =k > I(A)R(m,n, \)g(\),
=1

Z(m,n) =k Z I(\)R(m,n, Ni)Z(Nq)
i—1

where k& is a normalization

100/ 327, I(A:)(Ni), and 7' is the number of bands

factor given by

in the visible range (380-700nm) in the hyperspectral
cube. Similar expressions are used for the computation of
Y (m,n) and Z(m,n), by replacing 7()\;) with g(\;) and

b(\;) respectively. The CIE X, Y, and Z tristimulus values
are transformed into SRGB color space (Fig. 4) using

R 3.2404542  —1.5371385 —0.4985314| | X
G| = [—0.9692660 1.8760108 0.0415560 Y
B 0.0556434  —0.2040259  1.0572252 Z

This is how we obtain a RGB image from a hyperspectral
image.

1.2.2 Conversion of HSI to Panchromatic Image

In a conventional imaging system, a color filter array is
placed in front of the sensor. This array limits the sensi-
tivity of each photocell to a certain range of the spectrum.
Such that, at each pixel of the sensor output image the ob-
ject characteristic in only one channel is captured. Such a
system is a panchromatic imaging system [1] (see Fig. 8).
We simulate a panchromatic imaging system which is sensi-
tive over a V-NIR range of approximately 440-1000nm and
records the total intensity of radiance falling on each pixel.

Let I(X) be the spectral power distribution of the CIE
standard daylight illuminant (Dgs), R(A) is the spectral re-
flectance of the object surface, spectral transmittance of the
V-NIR filter response by T'(\), and spectral response of the
silicon sensor by S(\) (see Fig. 7). We capture a single
exposure using V-NIR filters for modulating wavelengths
in 440-1000nm (77”). The panchromatic camera sensor re-
sponse for the V-NIR capture for each spatial location (m,n)
(Fig. 4) of a reflecting object is obtained by

1"

,0(777,7 n) = Z I()\Z)R(m, n, )\Z)S()\l)T(/\Z)

i=1
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Figure 7: Characteristic curves of the different components of hyperspectral imaging system for the image acquisition.
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Figure 8: Components of a panchromatic image acquisition
system.
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