
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Rank Matrix Factorisation and
its Applications

Thanh Le Van

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering
Science: Computer Science

January 2017

Supervisor:
Prof. dr. Luc De Raedt
Co-supervisors:
Prof. dr. Kathleen Marchal
Prof. dr. Siegfried Nijssen

Rank Matrix Factorisation and
its Applications

Thanh LE VAN

Examination committee:
Prof. dr. Paul Van Houtte, chair
Prof. dr. Luc De Raedt, supervisor
Prof. dr. Kathleen Marchal, co-supervisor
Prof. dr. Siegfried Nijssen, co-supervisor
Prof. dr. ir. Jan Ramon
Prof. dr. ir. Johan Suykens

Dr. Anna Carolina Fierro
(Biogazelle NV)

Prof. dr. ir. Tijl De Bie
(Ghent University)

Dr. Matthijs van Leeuwen
(Leiden University)

Prof. dr. Pierre Schaus
(Université catholique de Louvain)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in Engineering
Science: Computer Science

January 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Thanh Le Van, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Abstract

Rank data, in which each row is a complete or partial ranking of available items
(columns), is ubiquitous. It can be used to represent, for instance, preferences
of users, the levels of gene expression, and the outcomes of sports events. While
rank data has been analysed in the data mining literature, mining patterns
in such data has so far not received much attention. To alleviate this state of
affairs, in this thesis we study pattern set mining in rank data, i.e., the discovery
of a small set of patterns that can describe the structure of rank data, and its
applications in data mining and bioinformatics.

First, we propose a general framework based on matrix factorisation for mining
different types of patterns in rank data. Rather than relying on the traditional
linear algebra for matrix factorisation, we employ semiring theory, which results
in a more elegant way of aggregating rankings. Subsequently, we introduce two
instantiations of the framework: Sparse RMF and ranked tiling. We introduce
Sparse RMF to mine a set of sparse rank vectors that can be used to summarise
given rank matrices succinctly and show the main categories of rankings. We
introduce ranked tiling to discover a set of data regions in a rank matrix which
have high ranks. Such data regions are interesting as they can show local
associations between subsets of the rows and subsets of the columns of the given
matrices. Finally, we propose to use ranked tiling to formally define the concept
of driver pathways, which is the molecular mechanism driving tumorigenesis.
Given the discovered driver pathways, we can find cancer subtypes, which are
groups of tumour samples having a unique combination of driver pathways.

i

Beknopte samenvatting

Gerangschikte data, waarin elke rij een complete of partiële ranking voorstelt van
beschikbare items (kolommen), is alomtegenwoordig. Men kan er bijvoorbeeld
preferenties van eindgebruikers, de verschillende niveau’s van genexpressie, of
de resultaten van sportevenementen mee voorstellen. Desondanks het feit dat
gerangschikte data reeds worden geanalyseerd in de bestaande data mining
literatuur, is er tot op heden weinig aandacht voor pattern mining binnen
de context van gerangschikte data. Deze thesis vult deze schaarste in. Ze
bestudeert het zoeken naar patronen in gerangschikte data, met een nadruk
op het zoeken naar een kleine verzameling patronen. Verder worden enkele
toepassingen van deze technologie in data mining en bioinformatica onderzocht.

Vooreerst introduceren we een een algemeen raamwerk voor het identificeren
van verschillende types van patronen in gerangschikte data, gebaseerd op matrix
factorisatie. In plaats van terug te vallen op de traditionele lineaire algebra
voor matrix factorisatie, beroepen we ons op semiring theorie. Dit resulteert
in een meer elegante manier om rankings te aggregeren. Vervolgens breiden
we het framework uit met 2 instanties: Sparse RMF, en ranked tiling. We
gebruiken Sparse RMF om een set van sparse rank vectors te identificeren die
in staat zijn om gerangschikte matrices op een beknopte wijze samen te vatten.
Daarnaast beschrijven we de voornaamste categorieën van rankings. We wenden
ranked tiling aan voor de identificatie van een set van data regio’s met een hoge
rang in een gerangschikte matrix. Deze regio’s zijn interessant gezien het feit
dat ze lokale associaties tussen subsets van rijen en kolommen van de gegeven
matrices kunnen weergeven. Tot slot introduceren we het gebruik van ranked
tiling om driver pathways te definiëren. Dit zijn de moleculaire mechanismen
onderliggend aan tumorigenesis. Gegeven de ontdekte driver pathways, zijn we
in staat om verschillende kanker subtypes aan te duiden. Een kanker subtype
is een verzameling van tumor stalen gekenmerkt door een unieke combinatie
van driver pathways.

iii

Acknowledgements

My PhD research has been a long journey, which I could not have accomplished
without the help of many people. I would like to say a big THANK YOU to all
of you.

First of all, I would like to thank my supervisors, Luc De Raedt, Siegfried
Nijssen and Kathleen Marchal, for providing fundings and guiding me to do
research during the past years. Without their expertise, vision, patience and
support, I could not obtain this thesis text as it is today.

I am very grateful to Luc for offering me the opportunity to pursue a PhD
research in his group when I was in Vietnam and for cultivating me in the truly
friendly, supportive, honest and high-grade research environment that he has
been maintaining. I would like to especially thank Siegfried who tremendously
helped me to develop many research skills such as mathematical modelling. I
am very grateful to have both Luc and Siegfried as computer science supervisors:
Luc taught me to think critically about research problems, with the why, what
and how questions, and to be concise on defining problems, while Siegfried
taught me to be bold, to critically analyse algorithms to understand the intuition
of their behaviours and to be dedicated to our research questions. I am also
very grateful to Kathleen, my bioinformatics supervisor. I came to Leuven
to pursue a PhD research with almost zero biological knowledge. After years
of working with Kathleen, I now increasingly have the feeling that I can ask
biological questions by myself.

I would like to thank all members of my jury, Jan Ramon, Johan Suykens,
Anna Carolina Fierro, Tijl De Bie, Matthijs van Leeuwen, Pierre Schaus, for
their interesting and useful feedback, which helped me to improve my thesis.
Special thanks go to Matthijs and Carolina for the nice collaboration and help.
It was a great pleasure to share the office with Matthijs for a number of years,
where we could have a lot of coffee breaks and useful discussions. Together with
Siegfried, Matthijs also trained me how to give presentations, how to critically

v

vi ACKNOWLEDGEMENTS

evaluate the performance of algorithms, how to write research papers and many
other skills for data miners. Many thanks for the nights you stayed up late with
me and Siegfried to finish papers on time! Carolina has patiently explained
me many biological concepts, helped me to verify results and discussed with
me many bioinformatics papers, all of which laid the foundation for the cancer
research presented in this thesis when she left Kathleen’s group. I also would
like to thank Paul Van Houtte for chairing the committee.

I had the pleasure to share offices with many nice colleagues such as Tias,
Vladimir (Vova), Matthijs, Siegfried, Albrecht, Vincent, Laura, Bogdan, Parisa
and Martijn. Especially thanks to Tias and Vova for their help and discussions
which were definitely useful for me to overcome research and life challenges.
Many thanks to Vincent for translating the thesis abstract to Dutch. I also
would like to thank Bernd, Angelika, Davide, Ingo who helped me to play with
Problog when I was doing a pre-doc in the group. I have enjoyed ICON meetings
with Anton, Tias, Sergey, Behrouz, Benjamin, Vova, Matthijs, Siegfried, Vincent
and Samuel for the past years. It was also really fun to spend the 2013 summer
school with Antoine, Sergey, Jan, Vova, Irma in Spain. Many thanks to other
DTAI collegues such as Irma, Leander, Kurt, Jessa, Sebastijan, Francesco, Dries,
Toon, Tim, Jonas, Christop, Juan, Jérôme, Alex and many others for Alma
lunches, tea breaks, and discussions.

I also had the pleasure to collaborate and discuss with many bioinformatics
colleagues in Kathleen’s group: Carolina, Jimmy, Lieven, Dries, Sergio, Yan,
Lore, Mostafa. Many thanks to all of you!

I also would like to thank Bettina Berendt who offered me a chance to do the
teaching tasks. I enjoyed the course that I co-taught with Bettina for the Master
students of Digital Humanities. Bettina showed me how to engage students in
discussions and how to listen to students to get their ideas and then further
develop these ideas into useful cases for the class.

I would like to thank the OscaR team for developing the elegant OscaR solver
in Scala that I extensively used in my PhD research.

I would like to thank the Vietnamese Student Association in Leuven for
organising many social activities, such as our traditional New Year Eve,
barbecues and sports, for our family to join. Many thanks to the family
of Van-Duc who helped me to set up my life when I first came to Leuven, to
the family of Tam-Giang for countless number of sports activities, to Nga-Viet,
Hai-Trung, Nga-Chum, Dat, Hong Trang, Thanh, Quoc, Tuan Bui, Quynh,
Phuong Dong, Tung and many others.

I would like to thank the teachers in Sint Lambertus school in Heverlee, Juf
Ria, and other teachers in Logopedisch, who helped Mai, my daughter, to learn

ACKNOWLEDGEMENTS vii

Dutch and to integrate with the society here.

I would like to thank the Groot Begijnhof village for offering our family a chance
to stay in a beautiful place with multiple contract extensions.

I would like to thank Prof. Le Thi Hoai An for inviting me to visit her lab at
University of Lorraine in Metz in 2015. I would like to thank Prof. Trinh Xuan
Hoai and Dr. Pham Quang Dung for hosting my visit to Hanoi University and
Hanoi University of Technology in 2016.

I would not have come to Leuven to do PhD if I had not met Prof. Peter
Haddawy, my former advisor at AIT (Thailand) during 2005–2007. I would like
to thank Peter for encouraging me to do research and convincing me research is
an interesting career.

I am very grateful to the eye doctors in UZ Leuven hospital, who treated my
eye inflammation in 2013 and got my vision back. A million thanks to the
doctors! I also would like to thank other doctors in UZ Leuven, who took care
of my family’s health.

Finally, I would like to thank my family, my parents, my brother for their
unconditional and continuous support and encouragement. I would like to thank
my wife for understanding my interest in doing research and for supporting me
to pursue the PhD research.

Thanh Le Van
Leuven, December 2016

Abbreviations

BMF Boolean Matrix Factorisation

CP Constraint Programming
cpRMT CP-based approach to Rank Matrix Tiling

IP Integer Programming

mRMT Max-product Semiring Rank Matrix Tiling

NMF Non-Negative Matrix Factorisation

PCA Principal Component Analysis

RMF Rank Matrix Factorisation
RMT Rank Matrix Tiling

Sparse mRMF Sparse Max-product Semiring Rank Matrix
Factorisation

Sparse pRMF Sparse Plus-product Semiring Rank Matrix
Factorisation

Sparse RMF Sparse Rank Matrix Factorisation
SRF Subtyping Through Ranked Factors
sRMF Semiring Rank Matrix Factorisation
SVD Singular Value Decomposition

ix

Contents

Abstract i

Acknowledgements v

Contents xi

1 Introduction 1

1.1 Rank data . 1

1.2 Pattern set mining . 3

1.3 Bioinformatics . 4

1.4 Contributions . 5

1.5 Structure of the thesis . 7

2 Semiring Rank Matrix Factorisation 9

2.1 Introduction . 9

2.2 Semiring rank matrix factorisation (sRMF) 10

2.3 Rank pattern set mining using sRMF 16

2.4 Related work . 18

2.4.1 Rank pattern mining . 18

2.4.2 Semiring-based matrix factorisation 19

xi

xii CONTENTS

2.4.3 Boolean matrix factorisation 20

2.4.4 Real-valued matrix factorisation 21

2.4.5 Bi-clustering and tiling 22

2.4.6 Rank data analysis . 22

2.5 Conclusions . 23

3 Sparse RMF 25

3.1 Introduction . 25

3.2 Sparse plus-product semiring rank matrix factorisation (Sparse
pRMF) . 26

3.3 Sparse max-product semiring rank matrix factorisation (Sparse
mRMF) . 30

3.4 Sparse mRMF factorisation is not unique 31

3.5 Solving Sparse pRMF using IP 32

3.6 Solving Sparse mRMF using IP 35

3.7 Experiments with synthetic data 38

3.8 Real world case studies . 40

3.8.1 European Song Festival dataset 40

3.8.2 The Sushi dataset . 42

3.9 Related work . 44

3.10 Discussion . 46

3.11 Conclusions . 47

4 Ranked Tiling 49

4.1 Introduction . 50

4.2 One maximal ranked tile mining 51

4.2.1 One maximal ranked tile 51

4.2.2 Maximal ranked tile mining using CP 52

CONTENTS xiii

4.2.3 Maximal ranked tile mining using sRMF 56

4.3 Ranked tiling . 57

4.3.1 Ranked tiling using CP (cpRMT) 57

4.3.2 Ranked tiling using sRMF (mRMT) 58

4.3.3 Computational complexity of the mRMT problem . . . 59

4.3.4 mRMT factorisation is not unique 60

4.3.5 Solving mRMT using Integer Programming 61

4.4 Experiments with synthetic data 64

4.4.1 Synthetic data with implanted ranked tiles 64

4.4.2 Synthetic data with implanted orders 70

4.5 Real world case studies . 71

4.5.1 European Song Festival dataset 72

4.5.2 Discovering breast cancer subtypes 72

4.5.3 The Sushi dataset . 78

4.6 Discussion . 78

4.7 Conclusions . 80

5 Simultaneous Discovery of Cancer Subtypes and Subtype Features
using sRMF 81

5.1 Introduction . 82

5.2 The SRF algorithm . 84

5.2.1 Transforming input datasets into rank matrices 85

5.2.2 Mining k ranked factors using sRMF 87

5.2.3 Deriving cancer subtypes from ranked factors 89

5.3 Results . 90

5.3.1 Results on simulated datasets 90

5.3.2 Results on the TCGA breast cancer data 94

5.4 Materials and methods . 100

xiv CONTENTS

5.5 Discussion . 106

5.6 Conclusions . 107

6 Conclusions and Future Work 109

6.1 Summary and conclusions . 109

6.2 Future work . 111

Bibliography 115

List of publications 129

Curriculum Vitae 131

Chapter 1

Introduction

This thesis presents a framework for pattern set mining in rank data and its
applications in data mining and bioinformatics. We first introduce rank data
and pattern set mining. Then, we introduce motivations for a bioinformatics
problem that we address using our framework. Finally, we provide an overview
of the contributions of the thesis and its general structure.

1.1 Rank data

Data mining is the discovery of knowledge from data [113]. The discovered
knowledge can be a predictive model, which can be used to predict the outcome
of unseen instances, or a descriptive model, which can be used to describe what
is in the data. The main research theme of this thesis is to discover descriptive
data models. One typical example of this line of research is gene expression
analysis. In this problem, we are given a data matrix, in which rows are genes,
columns are samples and values are the gene expression values of the samples.
Given this data, we would like to identify a subset of the genes which are
consistently active (over-expressed) or inactive (under-expressed) in a subset
of the samples. The data region identified by the subset of the genes and the
subset of the samples is a descriptive model, which tells us the specific genes of
the group of the samples.

The type of data often determines the tools and techniques that can be used
for knowledge discovery. Much research focuses on data mining with Boolean
data, numeric data, graph data and sequence data. In this thesis, however, we

1

2 INTRODUCTION

study methods to discover descriptive models from rank data. In this type of
data, each row is a complete or partial ranking of the columns. That is, for
complete rankings, all of the columns are compared, and the most preferred
column will be assigned the highest value, which is the number of the column;
the least preferred column will be assigned the lowest value, which is 1. For
partial rankings, only a subset of the columns are compared. The uncompared
columns will be assigned 0. Note that the way the most/least preferred column
is assigned a value is a choice of this thesis; it might be different in other work.

To illustrate rank data, let us consider the SUSHI dataset [54], in which
customers are asked to rank 10 different types of sushis. The data can be
represented as a matrix as follows:

10 7 8 9 1 5 2 3 4 6
9 7 10 8 3 1 2 5 4 6
7 9 8 10 3 5 2 1 4 6
...

...
...

...
...

...
...

...
...

...

In this matrix, the first customer (row) likes the first sushi the most and likes
the fifth sushi the least. This data consists of complete rankings.

There are two main motivations to study data mining in rank data:

• Rank data is ubiquitous in many applications. In social sciences, rank
data has been used to represent users’ preferences over their favorite
countries [69], presidency candidates [26, 10] or products [54]. In biological
sciences, rank data has been used to represent the levels of gene expression
[7, 69, 67]. In sport analytics, rank data has been used to rank sport
teams/participants [92, 24, 60].

• Rank data is a useful concept to abstract numeric data. In many cases,
especially when data has rows at different scales, transforming the data
to rankings may result in a simpler representation [69, 68, 67].

Rank data analysis has been studied in machine learning with learning to
rank [75], in artificial intelligence with preference learning [34], in social science
with rank aggregation [73]. Surprisingly, so far descriptive data mining in rank
data has not gained much attention. Therefore, in this research, we develop
data mining tools to support knowledge discovery in this type of data.

PATTERN SET MINING 3

1.2 Pattern set mining

In this thesis, we only consider descriptive data mining models, as we would
like to gain insight in the regularities of the data, which can be used to describe
a concerned concept, for example, a disease mechanism.

Most approaches to descriptive data mining can be classified as either local
models or global models. Local models, also called patterns, produce descriptions
for only a particular region in the data. In contrast to local models, global
models result in succinct summarisation of the entire data.

One well-known instance of pattern mining is frequent itemset mining, which
was first introduced by Agrawal et al. (1993) [3]. In their work, they studied
transaction databases, in which each transaction consists of items purchased by
a customer. The pattern in their study is a set of items, also called an itemset,
which are frequently bought together. Later, Mannila and Toivonen (1997) [79]
developed a framework that generalises the frequent itemset mining problem for
the discovery of such local models. The framework is formally stated as follows.
Given a language L, the task is to identify all patterns in this language that
fulfil a given constraint Φ on a database D:

{p ∈ L | Φ(p,D)}

One of the biggest problems of local patterns such as frequent itemsets is the
exponential number of such patterns, which makes it hard to interpret them.
Hence, another approach that has been developed to overcome this challenge is
to find a small set of local patterns, which together can summarise the data
succinctly. In the data mining community, this line of research is often called
pattern set mining [86]. Formally, the task is to identify a subset S out of
all patterns in the pattern language L, such that every pattern X ∈ S fulfils
the given constraints Φ on a database D, while S is optimal with respect to a
scoring function Ψ on sets of patterns [86]:

argmax
S⊆F

Ψ(S,D)

with

F = {p ∈ L | Φ(p,D)}

In this thesis, we will study pattern set mining for rank data as it will avoid
exponential number of patterns. Moreover, we will see that such rank pattern
sets are generally interesting and useful.

4 INTRODUCTION

1.3 Bioinformatics

Most of the work in this thesis originates from the need to model a bioinformatics
problem called cancer subtyping. In this problem, we would like to discover
biologically meaningful groups of tumour samples called cancer subtypes as well
as the molecular mechanisms that drive their cancer development. To see why
this problem is worthy of investigation and how the rank pattern set mining
framework can help, we will first discuss the context of the problem.

DNA, which stands for deoxyribonucleic acid, encodes programs/instructions
that tell cells what to do. When those programs contain mistakes, their outputs,
including mRNA, miRNA, proteins and many others, can malfunction. Recent
advances in genetics technology can detect the changes of the programs at a
high resolution (at the nucleotide level) and collect many of the outputs which
correspond to the changed programs. By analysing such data, it is conjectured
that we can find changed programs and malfunctioning outputs that might
cause diseases. Indeed, if we could successfully analyse this data, we would not
only have a better understanding of the mechanisms of the diseases but also a
more precise way of prognosis and treatment for patients.

In practice, there have been reports maintaining that molecular information
provides a better prognosis and treatment than conventional methods. For
example, Emily Sohn [106] reported a case study that a patient had not known
her disease and how to treat her illness for 40 years until she had her genome
sequenced. The result of the sequencing revealed that she had a mutated gene,
from which doctors knew how to treat her effectively.

In cancer research, projects such as TCGA [116], ICGC [51] and the 100K
Genome Project [33] have been collecting many different molecular data
types, ranging from genomic variants in the genome to molecular phenotypes
downstream such as mRNA and other proteins, to realise the data analysis
idea discussed above. At the time of writing this thesis, the TCGA project
has sequenced the genome for more than 10000 tumour samples with 33 types
of cancer [70]; the ICGC project has done the same job for more than 25000
samples [51]. In general, for each cancer type, we have a few hundreds of
samples for which we have multiple types of information. From a computer
science perspective, we have multiple matrices, each of which has the same
set of columns. Each matrix can have a different data type depending on
the corresponding intrinsic molecular data and/or measurement techniques.
Analysing such heterogeneous data to discover the altered molecules driving
the tumorigenesis is challenging. This is mainly because:

1. Each cancer type can have many subgroups/subtypes with different

CONTRIBUTIONS 5

molecular mechanisms and hence different ways of treatment. For example,
in breast cancer, patients are typically divided into four subtypes, called
Basal, Her2, LumA and LumB, each of which has a different way of
treatment [119, 12].

2. There are passenger genes, which do not cause diseases when they are
changed, and there are driver genes, which cause diseases when they are
changed [126].

3. The data consists of many matrices at different scales due to the
characteristics of the molecular data and/or the measurement techniques.
For example, data related to genomic variances is typically Boolean while
data related to other molecular phenotypes such as mRNA, miRNA and
protein are usually numeric.

4. The data is high-dimensional: the number of features is usually much
larger than the number of samples. If we only consider protein-coding
genes, the number of features is approximately 20000 genes according to
the Human Genome Project [47].

The first two challenges obviously show that discovering meaningful cancer
subtypes and its underlying molecular mechanisms is an important problem.
It is key for precise prognosis and treatment. Furthermore, in this thesis, we
maintain that the two challenges should be ideally solved simultaneously. That
is, discovering driver genes driving tumorigenesis and subtyping tumour samples
are confounded problems. How subtypes are defined depends on the driver
genes used to group samples in subtypes. Conversely, the subtypes define which
driver genes are relevant for a certain sample grouping.

With regard to the third challenge, our discovery is that rankings are a good
abstraction to remove the scale differences of the data. Finally, our rank pattern
set framework helps us to overcome the last challenge by focusing on important
features in a global way.

1.4 Contributions

As rank data is ubiquitous in many applications, discovering regularities hidden
in this type of data is of interest. The main question is whether we can discover
interesting patterns in rank data? This thesis offers a positive answer to this
question. The main contributions of this thesis are the introduction of a
framework for rank pattern set mining using principles of matrix factorisation

6 INTRODUCTION

as well as the introduction of new types of rank patterns which can be used in
real life applications.

In this thesis, we focus on the following three research questions:

• Q1 How can we model rank pattern set mining?

• Q2 Which types of rank patterns are potentially interesting and useful?

• Q3 How useful are rank patterns in real life applications?

The main contributions and findings with respect to Q1, How can we model
rank pattern set mining, are the following:

• We contribute a matrix factorisation-based framework to mine rank
pattern sets. As we will show, the framework can be used to model
different types of rank patterns.

• The key insight of using matrix factorisation for rank pattern set mining
is the fact that the linear algebra traditionally used in matrix products is
not always appropriate for aggregating rankings. We therefore contribute
the idea of using semiring theory to generalise the matrix product and
propose to use other semirings, for example, the max-product semiring,
to handle rank data.

With regard to Q2, which types of rank patterns are potentially interesting and
useful, our main contributions are the introduction of two new data mining
problems, each of which corresponds to one new rank pattern:

• We introduce the Sparse Rank Matrix Factorisation (Sparse RMF)
problem, which studies how to discover a small set of sparse rank vectors
that can be used to succinctly summarise a given rank matrix.

• We introduce the ranked tiling problem, which studies how to discover a
small set of data rectangles in a rank matrix that have high ranks and
together cover the matrix as much as possible. The ranked tiling pattern
shows local associations among subsets of the columns and subsets of the
rows of the matrix.

• We demonstrate how to study the two different data mining problems using
the single framework that we propose. We also contribute algorithmic
ideas of how to solve the two problems in parallel.

With respect to Q3, how useful are rank patterns in real life applications, our
contributions are the following:

STRUCTURE OF THE THESIS 7

• We use rank-based transformation to integrate three main different data
types, including Boolean mutation data, numeric gene expression and
prior knowledge encoded as biological networks, for cancer subtyping. To
the best knowledge of the author, at the time of writing this thesis, we
were the first to integrate these data types to study the cancer subtyping
problem.

• We contribute a definition for cancer subtype, i.e., a group of tumour
samples having the same unique combination of driver pathways.

• We introduce a rank pattern set mining problem in a multi-view setting
using the ranked tiling pattern to formally define the concept of driver
pathways.

1.5 Structure of the thesis

Chapter 2 presents the general framework for rank pattern set mining based on
matrix factorisation. First, we will discuss our findings that the linear algebra
traditionally used in matrix products is not always appropriate for aggregating
rankings. Then, we show to how to generalise the matrix product using the
semiring theory to handle rank data. We discuss related work, which makes
clear there is a need for new methods.

This chapter is based on the following paper:

Le Van, T., Nijssen, S., van Leeuwen, M., and De Raedt, L. Semiring
rank matrix factorisation. IEEE Transactions on Knowledge and Data
Engineering, Under revision.

Chapter 3 introduces the Sparse RMF problem. This problem aims at
discovering k sparse rank vectors, i.e., having many 0s, which can be used
to succinctly summarise a given rank matrix. We will study how to formalise
the Sparse RMF problem using two different semirings, i.e., the plus-product
semiring and the max-product semiring, to see the effect of the semiring on the
modelling.

This chapter is based on the following two papers:

Le Van, T., Nijssen, S., van Leeuwen, M., and De Raedt, L. Semiring
rank matrix factorisation. IEEE Transactions on Knowledge and Data
Engineering, Under revision.

8 INTRODUCTION

Le Van, T., van Leeuwen, M., Nijssen, S., and De Raedt, L. Rank Matrix
Factorisation. In Proc. of the 19th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD-15), pp. 734–746. DOI: 10.1007/978-
3-319-18038-0_57.

Chapter 4 introduces the ranked tiling problem. It essentially aims at
discovering a set of data rectangles in a data matrix having high ranks with
respect to a user-defined threshold. We will first study how to discover one
maximal data rectangle that has high ranks. Then, we will study how to find a
set of such maximal data rectangles. In each case, we will show two different
approaches to modelling and solving. One approach is based on Constraint
Programming and the other is based on the rank matrix factorisation framework.

This chapter is based on the following two papers:

Le Van, T., Nijssen, S., van Leeuwen, M., and De Raedt, L. Semiring
rank matrix factorisation. IEEE Transactions on Knowledge and Data
Engineering, Under revision.

Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A. C., Marchal, K., and
De Raedt, L. Ranked tiling. In Proc. of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD-14) (2) (2014), pp. 98–113. DOI: 10.1007/978-
3-662-44851-9_7.

Chapter 5 studies an application of the ranked tiling pattern and the rank
matrix factorisation framework in the field of cancer research. We will study
how to use molecular data, including mutation data, gene expression data, and
biological networks (prior knowledge), to simultaneously cluster tumour samples
into biologically meaningful groups called cancer subtypes and identify their
specific features.

This chapter is based on the following paper:

• Le Van, T., van Leeuwen, M., Fierro, A. C., De Maeyer, D., Van
den Eynden, J., Verbeke, L., De Raedt, L., Marchal, K., and Nijssen,
S. Simultaneous discovery of cancer subtypes and subtype features by
molecular data integration. Bioinformatics 32 (2016), i445– i454. DOI:
10.1093/bioinformatics/btw434.

In the concluding chapter, we summarise the thesis and discuss opportunities
for future work.

Chapter 2

Semiring Rank Matrix
Factorisation

Rank data, in which each row is a complete or partial ranking of available items
(columns), is ubiquitous. It can be used to represent, for instance, preferences of
users [54, 26, 10, 69], the levels of gene expression [7, 69, 67], and the outcomes
of sports events [92, 24, 60]. While rank data has been analysed in data mining,
mining patterns in such data has so far not received much attention. To alleviate
this state of affairs, in this chapter1 we introduce a generic framework for rank
pattern set mining. It is based on a semiring matrix factorisation framework.
Rather than using the traditional linear algebra for matrix factorisation, we
employ semiring theory. In the following chapters, we will show how to use
the semiring rank matrix factorisation framework for a number of data mining
tasks in different domains, including bioinformatics.

2.1 Introduction

We develop a generic framework for the unsupervised discovery of regularities
(patterns) in rank data. In this type of data, each row (transaction) is a
complete or a partial ranking of the available columns (items). While rank data
is ubiquitous, only few data mining methods have been developed for rank data
analysis. Exceptions include the work by Ben-Dor et al. [7], who proposed a

1Based on the journal paper "Semiring rank matrix factorisation" [66], which is in turn
based on the conference paper [68].

9

10 SEMIRING RANK MATRIX FACTORISATION

probabilistic model to discover a fix-sized order-preserving rectangle; the work by
Calders et al. [11] who studied rank correlation models to mine frequent patterns
in the presence of rank data; the work by Ukkonen et al. [123] who studied the
problem of discovering a set of items that are ranked either distinctively high
or low in a cluster when compared to an aggregate representation of the entire
data set; and the work by Henzgen et al. [46], who proposed an algorithm to
enumerate frequent order-preserving items. Each of these works aimed at a
single type of rank pattern and they did not aim at a general framework for
different types of rank pattern set mining, i.e., a small, non-redundant, and
interesting set of patterns globally describing the structure of the data [127].

Matrix factorisation has been an appealing data mining method for pattern
set mining. It has been used in many fields such as data mining [105, 32],
recommender systems [64] and bioinformatics [9]. Depending on the constraints
on the data or the patterns users are interested in, one applies different forms
of matrix factorisation. For example, if the given data has non-negative value
constraints, non-negative matrix factorisation [71] can be employed; if the data
has Boolean data constraints, Boolean matrix factorisation [82] can be used; if
users are interested in sparse features, sparse dictionary learning [78] can be
considered. Though matrix factorisation has been extensively studied, it can
not be directly applicable to rank data due to the fact that the linear algebra
used in the traditional matrix factorisation methods does not provide a way to
aggregate/sum rankings over items (see Section 2.2).

Another class of methods that have been developed to find patterns in
numerical data are biclustering methods [77], which are particularly popular
in bioinformatics; however, biclustering algorithms for the rank data settings
studied in this thesis do not currently exist either.

The rest of the chapter is organised as followed. In Section 2.2, we introduce
a generic Semiring Rank Matrix Factorisation framework named sRMF for
mining sets of patterns in rank data. In Section 2.3, we discuss at a high level
how to use the sRMF framework to mine a set of rank patterns. Finally, we
discuss related work in Section 2.4.

2.2 Semiring rank matrix factorisation (sRMF)

In this section, we first illustrate the rank pattern set mining problem. Next,
we explain the reason why traditional matrix factorisation based on the linear
algebra cannot be directly used for mining rank data. Then, we introduce the
semiring rank matrix factorisation framework.

SEMIRING RANK MATRIX FACTORISATION (SRMF) 11

Definition 2.1 (Rank matrix). An m × n matrix M is a rank matrix iff
Mr,c ∈ σ, for all 1 ≤ r ≤ m and 1 ≤ c ≤ n, where σ = {1, 2, ..., n}.

In our setting, columns are items or products that need to be ranked; rows are
rankings of items. Matrix cell Mr,c indicates that column c is ranked Mr,cth
for row r. In this matrix, multiple items may have the same rank. Such cases
are named ties, which can be represented, for instance, by the minimum rank
of the items.

In this thesis, we only consider rank matrices that consists of full rankings.
Rank matrices containing unknown rankings are left for future work.

It is important to note that a rank matrix can be an abstraction of a numeric
matrix. Obviously, there are two ways to abstract a given numeric matrix to
obtain a rank matrix as defined in Definition 2.1. The first one is to perform a
complete ranking of the columns per row. The second one is to first rank the
rows per column and then transpose the resulting matrix. The question is when
we should rank per row and when we should rank per column? We suggest
that we should rank per row when the dataset consists of incomparable rows,
i.e., values in each row are in different scales. Datasets with incomparable rows
can occur when the rows are measured by different technologies. For example,
we might have a molecular dataset consisting of mRNA and miRNA for the
same set of samples, in which mRNA is measured by microarray and miRNA is
measured by RNA-Seq. Conversely, we suggest to rank per column when the
data contains incomparable columns. For instance, we might have a weather
dataset, in which the columns are winds, temperature, humidity, and the rows
are weather instances recorded at different time points or places. Obviously,
in this case values in each column are incomparable. Hence, we should rank
per column rather than per row. Finally, when the values of the entries in the
matrix are comparable, we can perform the ranking procedure in either of the
directions. In the case that we rank per row and the number of the columns is
much smaller than the number of rows, we will have a higher chance to see a
hidden data regularity, i.e., the data regularity appears in a large number of
rows.

Many different types of patterns can exist in rank matrices. We will first discuss
the intuitions behind two such pattern types.

Example 2.1 (Consistent Ranks). Consider the following rank matrix:

M =

1 2 3 4 5 6
1 2 3 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

12 SEMIRING RANK MATRIX FACTORISATION

In red and blue we indicated parts of the matrix in which the rank is consistent
for a subset of rows and columns of the matrix: for instance, in the first two
rows, the ranks of the items are identical. Red and blue here highlight patterns
in the matrix.

Example 2.2 (High Ranks). Consider the following rank matrix:

M =

1 2 5 4 6 3
1 2 3 4 5 6
1 3 2 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

In red and blue we indicated subsets of columns and rows in which the highest
ranks of the matrix occur. These subsets of rows and columns point towards
patterns in the data; while the rank within these patterns may be consistent, this
is not necessarily the case, as illustrated by the red pattern.

The aim of this thesis is to present a generic framework that is expressive and
flexible enough to model and discover small sets of these different types of rank
patterns. Our main observation is that finding such small sets of patterns can
be formalised as a rank factorisation problem.

Definition 2.2 (Rank matrix factorisation (RMF)). Given a rank matrix
M ∈ σm×n and an integer k, find a matrix C∗ ∈ {0, 1}m×k and a matrix
F∗ ∈ σk×n

p such that:

(C∗,F∗) ≡ argmax
C,F

f(M,C� F), (2.1)

where

• f(,) is a scoring function that measures the similarity between matrices;

• � is an operator that creates a data matrix based on two factor matrices;

• σp ⊆ σ∪{0} is a set of permissible values. 0s denote unconcerned rankings;

• possibly additional constraints for specifying the patterns users are
interested in.

Intuitively, in matrix F the rows Fi,: indicate partial rankings, i.e., rank vectors
that have 0s. ColumnsC:,i of matrixC indicate in which rows the corresponding
partial ranking appears. The following example illustrates this intuition for
Example 2.1.

SEMIRING RANK MATRIX FACTORISATION (SRMF) 13

Example 2.3 (Rank matrix factorisation). The patterns for Example 2.1 can
be represented as follows using two matrices C and F:

C =

1 0
1 0
0 1
0 1

 F =
(

1 2 3 4 5 6
2 3 5 6 0 0

)

This factorisation summarises matrix M with two rank vectors: one is the full
rank vector u = (1, 2, 3, 4, 5), which appears in row 1 and row 2 of the matrix,
and the other is the partial rank vector v = (2, 3, 5, 6, 0, 0), which appears in the
last two rows.

A first important choice that needs to be made in this framework concerns the
choice for the operator �. An obvious choice for this operator may be to use
the traditional matrix product. However, this choice can cause problems.

Example 2.4 (Overlapping rank profiles).
1 0
1 1
1 1
0 1
0 1

×
(

1 2 5 6 0 0
0 0 4 6 1 2

)
=

1 2 5 6 0 0
1 2 9 12 1 2
1 2 9 12 1 2
0 0 4 6 1 2
0 0 4 6 1 2

The factorisation in this example says that the two partial rank profiles are both
present in row 2 & 3. Using the normal matrix product, the combined rankings
for both row 2 and 3 become v = (1, 2, 9, 12, 1, 2). This is an invalid rank vector
as it violates the definition of a rank matrix (Definition 2.1), which requires
values in each row to belong to σ.

For this reason, we require a different choice for the � operator. In this thesis,
we will consider operators that are based on semirings [39] to ensure that the
output of a matrix product remains within the range of valid ranks.

Definition 2.3 (Semiring). A semiring (σ,⊕,⊗) is a set σ equipped with two
binary operations ⊕ and ⊗ satisfying the following properties:

• ⊕ is commutative: a⊕ b = b⊕ a;

• ⊗ and ⊕ are associative: a⊗ (b⊗ c) = (a⊗ b)⊗ c, a⊕ (b⊕ c) = (a⊕ b)⊕ c;

• σ has identity elements for ⊕ and ⊗, indicated with 0 and 1, such that
a⊗ 1 = a, 1⊗ a = a, and a⊕ 0 = a;

14 SEMIRING RANK MATRIX FACTORISATION

• ⊗ left and right distributes over ⊕: a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c),
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c);

• the 0 element annihilates for all elements in σ: 0⊗ a = a⊗ 0 = 0.

Semirings can be used to combine two matrices by generalising the matrix
product.

Definition 2.4 (Matrix product based on semirings). The matrix product for
two matrices C and F based on a semiring (σ,⊕,⊗) is defined as follows:

(C� F)r,c = ⊕i(Cr,i ⊗ Fi,c).

The traditional matrix product is the matrix product based on the plus-product
semiring (R,+,×) semiring, which is formally defined in the following definition.

Definition 2.5 (Plus-product semiring). The plus-product semiring is the
semiring (σ,⊕,⊗) in which a⊕ b = a+ b and a⊗ b = a× b.

As shown earlier, the plus-product semiring can cause problems as in the
resulting matrix the resulting values may not be valid.

Hence, we require a different semiring. In this thesis, we will mainly focus on
the max-product semiring, even though other choices are also possible, such as
the min-product semiring.

Definition 2.6 (Max-product semiring). The max-product semiring is the
semiring (σ,⊕,⊗) in which a⊕ b = max(a, b) and a⊗ b = a× b.

Example 2.5 (Max-product semiring).
1 0
1 1
1 1
0 1
0 1

�
(

1 2 5 6 0 0
0 0 4 6 1 2

)
≡

1 2 5 6 0 0
1 2 5 6 1 2
1 2 5 6 1 2
0 0 4 6 1 2
0 0 4 6 1 2

Using the max-product semiring, we can combine the two factorised matrices in
Example 2.4 into a single matrix; the two partial rank profiles are aggregated
for user 2 and 3 by taking the maximum (green values).

Note that the max-product semiring chooses the highest rank in case two
ranks overlap. Hence, the matrix product based on the max-product semiring

SEMIRING RANK MATRIX FACTORISATION (SRMF) 15

is best interpreted as an optimistic rank aggregation. That is, when a user
(row) has multiple ways of ranking items (multiple rank profiles), the consensus
way of ranking the items of that user is represented by an aggregated rank
vector, which is obtained by taking the maximum rank values for each item.
For example, in Example 2.5, User 2 has two ways of ranking the items:
f1 = (1, 2, 5, 6, 0, 0) and f2 = (0, 0, 4, 6, 1, 2). The aggregated rank vector
for User 2 is u = (max(f11, f21), ...,max(f16, f26) = (1, 2, 5, 6, 1, 2). With
a min-product semiring, the lowest value would be chosen, and hence the
matrix product based on that semiring can be interpreted as a pessimistic rank
aggregation.

Definition 2.7 (Semiring rank matrix factorisation - sRMF). Given a rank
matrix M ∈ σm×n and an integer k, find a matrix C∗ ∈ {0, 1}m×k and a matrix
F∗ ∈ σk×n

p such that:

(C∗,F∗) ≡ argmax
C,F

f(M,C� F), (2.2)

where

• f(,) is a scoring function that measures the similarity between matrices;

• � is a matrix product based on semirings. The default semiring for sRMF
in this thesis is the max-product semiring unless explicitly stated;

• σp ⊆ σ∪{0} is a set of permissible values. 0s denote unconcerned rankings;

• possibly additional constraints for specifying the patterns users are
interested in.

Another important choice in the semiring rank matrix framework is the choice
of the scoring function f . In this article we will limit our attention to additive
scoring functions.

Definition 2.8 (Additive scoring function). Given two matrices M and R, a
scoring function f(M,R) is additive if we can write the scoring function as
follows:

f(M,R) =
m∑

r=1

n∑
c=1

δ(Mr,c,Rr,c),

where δ : σ × σ → R scores the difference between values Mr,c and Rr,c.

The main arguments in favour of these choices are that they are conceptually
easy and that they enable more efficient algorithms.

16 SEMIRING RANK MATRIX FACTORISATION

2.3 Rank pattern set mining using sRMF

The sRMF framework provides a principled way to model and discover small sets
of different types of rank patterns. To use the framework to mine a particular
rank pattern set users are interested in, we follow the following steps:

• Choose a suitable semiring for the matrix product of the factorisation.
Note that the proposed semiring for rank matrix factorisation in this
thesis is in most cases the max-product semiring;

• Define the permissible set values for σp ⊆ σ ∪ {0} to define the type of
the pattern users want to discover;

• Design the scoring function in Equation (2.2) to measure the quality of
the factorisation.

In the next chapters, we will demonstrate how to use the sRMF framework to
mine three different types of rank patterns, namely Sparse RMF, ranked tilings
and ranked tilings in the multi-view setting [111, 134, 93, 130, 84].

Sparse RMF aims at discovering a set of partial rankings, i.e., rank vectors
with many zeros, which repeatedly occur in the data. Such set of rankings can
be interpreted as local patterns. In addition, they can be used to succinctly
summarise the given rank matrix and show main categories of rankings. An
example of this type of pattern is shown in Example 2.1 on page 11.

Ranked tiling aims at discovering a set of regions called ranked tiles that have
high ranks with respect to a user-defined threshold. Ranked tiling is interesting
as they show local associations among subsets of the rows and subsets of the
columns of a given matrix. Ranked tiling is also an important concept for the
cancer subtyping problem that we study in this thesis. An example of ranked
tiling is shown in Example 2.2 on page 12.

Ranked tiling in the multi-view setting. The last type of rank pattern
we study in this thesis is a set of ranked tiles that are related across multiple
matrices. Figure 2.1 shows an example of this setting. This problem stems from
an application in bioinformatics, in which we want to discover cancer subtypes
and subtype features from molecular data (Chapter 5).

RANK PATTERN SET MINING USING SRMF 17

Matrix D

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

6 3 4 2 5 1 7 8 9 10

3 2 1 6 4 5 10 9 7 8

6 7 9 5 8 4 1 1 10 3

7 10 9 6 3 8 4 5 2 1

8 10 9 4 2 6 1 7 3 5

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0

1 0 0 1 0 0 0 0 0 0

Tumor samples

M
u

ta
te

d
g

en
e

s

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

E1

E2

E3

E4

E5

1 1 1 4 12 1 11 12 10 12

9 9 10 1 1 10 1 1 1 1

9 9 12 1 1 10 1 1 1 1

12 11 11 3 3 12 3 3 3 3

3 3 3 7 5 9 5 5 5 5

3 3 3 7 5 3 5 5 11 5

3 3 3 7 5 3 5 5 5 5

8 12 9 5 4 8 4 4 4 4

3 3 3 12 5 3 5 11 5 5

3 3 3 7 5 3 5 5 5 5

2 2 2 6 11 2 12 10 12 11

11 8 8 11 10 7 10 9 9 10

Matrix M

Matrix E

Tumor samples

Tumor samples

M
u

ta
te

d
g

e
n

es
E

xp
re

s
se

d
g

en
e

s

Figure 2.1: Example of ranked tiling across multiple matrices. In this case,
matrix D,M and E contain molecular information of the same set of patients
{P1, . . . , P10}. In addition, matrix D and matrix M have the same set of
features {M1, . . . ,M12}, which can be different from those of matrix E. Each
column of matrix D is the rankings of the importance of the genes to a disease
w.r.t. some scoring function. Matrix M contains Boolean mutation information
of the considered genes. Each row of matrix E is the rankings of gene expression
of the patients. Given this data, we can discover two groups of patients, called
cancer subtypes, and their specific features (genes). The two subtypes are
painted in green and repsectively in yellow. Note that each subtype consists of
two ranked tiles, one in matrix D and the other in matrix E. The two tiles are
coupled by the same subset of the columns and are required to have high ranks.
In addition, each of the corresponding selected rows in matrix M should have
value 1 at least once in the selected columns of the tiles.

18 SEMIRING RANK MATRIX FACTORISATION

2.4 Related work

This section discusses prior work related to the research problems presented
in this thesis. The discussion in this section is more general, and some of the
more specific related works are discussed later in appropriate places.

2.4.1 Rank pattern mining

Ben-Door et al. [7] introduced the order-preserving submatrices (OPSMs)
problem, which aimed at discovering a data rectangle having a consistent
ordering of a subset of the columns. As this problem concerns the order of the
items, two rank vectors u = (1, 2, 3) and v = (4, 5, 6) are the same. Indeed, this
problem is related to the Sparse RMF problem that we introduce in this thesis.
To illustrate the difference between the two problems, consider the following
rank matrix:

M =

1 2 3 5 4
3 4 5 1 2
1 2 3 4 5
3 1 2 5 4

OPSM returns a data rectangle indicated by the rows R = {1, 2, 3} and the
columns C = {1, 2, 3}, while Sparse RMF returns a smaller rectangle, which
is indicated by the rows R′ = {1, 3} and the columns C ′ = {1, 2, 3}. In other
words, in Sparse RMF, the absolute rank values matter, while in OPSM the
order of the rank values is considered.

Henzgen et al. [46] studied the frequent subranking problem, which they
introduced to discover subrankings of a subset of items supported by a minimum
number of transactions (rows). There are two fundamental differences between
their work and our proposed patterns. First, the pattern they studied is actually
similar to the one in the OPSM problem [7] that we discuss above. That is the
order of the items is important rather than the rank values as we study in the
Sparse RMF problem. Second, their work is in the direction of frequent pattern
mining [2] while our work is a type of pattern set mining [86]. Frequent pattern
mining methods often result in exponential number of patterns, which make it
hard to interprete, while pattern set mining methods result in a small set of
patterns.

Calders et al. [11] studied the problem of discovering rank-correlated itemsets,
which tend to have consistent ranks. Indeed, the pattern they studied is similar

RELATED WORK 19

to Sparse RMF. However, their scoring functions were derived from statistics [59]
and they follow the frequent pattern mining method [2]. In Sparse RMF, we
propose a different scoring function (see Chapter 3) and we follow the direction
of pattern set mining [86].

Ukkonen et al. [123] studied the problem of discovering outlying items, i.e., items
that are ranked either distinctively high or low in a cluster when compared to
an aggregate representation of the entire data set. This problem is related to
the ranked tiling problem that we introduce in this thesis. However, we have
different ways of measuring how high the ranks should be: their work uses a
randomisation algorithm to determine how surprising a pattern is; our work uses
a scoring function based on an optimisation problem. The other difference is the
algorithm proposed by Ukkonen et al. [123] could not find overlapping patterns
in term of rows while our method can. In general, Ukkonen et al. [123] did
not aim to do tiling rank matrices, i.e., discovering local associations between
subsets of rows and subsets of columns, which is quite different from our work.
Finally, they can handle partial rankings while we have not considered this type
of data in our studies.

2.4.2 Semiring-based matrix factorisation

Our rank matrix factorisation framework uses semirings [39] to define the matrix
product to factorise rank matrices. Karaev et al. [57, 56] also used this idea
to factorise non-negative real-valued matrices. However, Karaev et al. [57, 56]
aimed at a factorisation of which the reconstructed matrix is as close to the
original matrix as possible. In other words, given a matrix A ∈ Rm×n and
positive integer k, they try to find two matrices B ∈ Rm×k and C ∈ Rk×n such
that the following function is minimised:

∑
i,j

|Ai,j − (B�m C)i,j |p, (2.3)

where �m is the matrix product based on the max-product semiring2 and p can
be either 1 [57] or 2 [56].

There are two main differences between our sRMF framework and the works by
Karaev et al. [57, 56]. First, our sRMF framework is open for data miners to
define the scoring function and to constrain the values of the factorised matrices.
In other words, sRMF provides a principled way, i.e., through the algebra and
the format of the factorisation, to discover different types of pattern while their

2Karaev et al. [57, 56] used different terminologies, namely max-times algebra and
subtropical algebra, to mention the max-product semiring used in this thesis.

20 SEMIRING RANK MATRIX FACTORISATION

works focus on a specific one. Second, our framework typically does not aim
at such a factorisation that the reconstructed matrix resembles the original
matrix as long as the factorisation can capture the structure of the data. In
contrast, their works do. Consequently, our results are typically sparse, i.e., the
factorised matrices contain many 0s, and can be interpreted as local patterns
while theirs are usually dense, i.e., many non-zeros in the factorised matrices,
and lack such an interpretation.

In the literature, there has been work on using other semirings for matrix
factorisation. De Schutter et al. [99] studied the Max-plus semiring (R,⊕,⊗),
in which a⊕ b = max(a, b) and a⊗ b = a+ b, for Singular-Value Decomposition.
Their work applied to numeric matrices, which are quite different from the
discrete setting that we consider for rank matrices in this thesis. More
importantly, the Max-plus semiring is not applicable to the semantics of the
rank matrix factorisation framework that we propose. In our work, we factorise
a given rank matrix M into a product of two smaller matrices, i.e., M ∼ C�F,
where C is a Boolean matrix and F is typically a sparse rank matrix. The 0s and
1s in a particular row (user) of matrix C indicate which rank profiles in matrix
F can be applied to that row. This can be only obtained using multiplication,
i.e., a⊗ b = ab. If we use the Max-plus semiring, in which a⊗ b = a+ b, it will
not have the effect of selecting rank profiles as we want.

2.4.3 Boolean matrix factorisation

Boolean matrix factorisation (BMF) studies how to decompose Boolean matrices.
Many methods have been proposed to approximate Boolean matrices, to name
just a few, exact methods described in Kim’s textbook [61], probabilistic methods
such as topic models [100] and logistic PCA [98]. Probably, the work by
Miettinen et al. [82] is the one that is most relevant to the work done in this
thesis. It works as follows. Given a m-by-n Boolean matrix C and an integer
k, find an m-by-k Boolean matrix B and a k-by-n Boolean matrix X that
minimises:

m∑
i=1

n∑
i=1
|Ci,j − (B ◦X)i,j |, (2.4)

where ◦ is the Boolean matrix product.

Note that the Boolean matrix product in Equation (2.4) is the matrix product
based on the semiring ({0, 1},

∨
,
∧

). Therefore, it is a special case of our sRMF
framework, where we set σp = {0, 1} and the matrix product is based on the

RELATED WORK 21

max-product semiring. In addition, Miettinen et al. [82] showed that BMF is
NP-complete.

2.4.4 Real-valued matrix factorisation

Matrix factorisation methods are popular for numerical data analysis [41] and
data mining [105, 32, 17, 94]. Some widely-used matrix factorisation methods for
descriptive data mining include the Singular Value Decomposition (SVD) [35],
the Non-Negative Matrix Factorisation (NMF) [88, 71].

Singular Value Decomposition (SVD). The SVD of a matrix A with m
rows and n columns is

A = UΣVT (2.5)
with the following properties [94]:

1. U is a m× r column-orthonormal matrix ; that is, each of its columns is a
unit vector and the dot product of any two columns is 0.

2. V is an n× r column-orthonormal matrix.

3. Σ is a diagonal matrix; that is, all elements not on the main diagonal are
0. The elements of Σ are called the singular values of A.

SVD is useful when there are a small number of concepts that connect the rows
and columns of the original matrix [94]. Typically, V represents concepts, Σ
represents the strength of the concepts and U connects rows to the concepts.
SVD has been used for, e.g., network analysis [30], document analysis [23] and
gene expression studies [129].

Non-Negative Matrix Factorisation (NMF). The NMF of a non-negative
matrix A with m rows and n columns is

A = UV (2.6)

with additional constraints that both U and V contain non-negative values.
Typically, V represents prominent profiles of the columns and U represents
weights for the linear combination the profiles. NMF is interesting because the
non-negativity constraints make the representation purely additive [50], which
often results in sparse representation. In addition, it is shown that NMF is
equivalent to k-means clustering [27], Probabilistic Latent Semantic Analysis
[36, 28]. In practice, NMF is used in a large number of applications: text mining
[135], community detection [131], gene expression analysis [9], multi-omics data
integration [132, 128, 137], to name just a few.

22 SEMIRING RANK MATRIX FACTORISATION

In general, the matrix factorisation methods discussed above and many others
such the Principal Component Analysis (PCA) [90] use the plus-product semiring
to calculate the product of the factorisation. However, that semiring is not
suitable for the rank data studied in this thesis (see Section 2.2).

2.4.5 Bi-clustering and tiling

Bi-clustering methods [77] aims at clustering simultaneously both dimensions of
a matrix. A bi-cluster is a data rectangle identified by a subset of the column
indexes and a subset of the row indexes. In addition, the data in the bi-cluster
should possess some desired data regularity, for example, constant value [77].
Hence, bi-clustering is related to our work as sRMF factorises rank matrices to
identify (sparse) rank profiles occuring in a number of rows, of which goal is
also to discover local associations between subsets of the columns and subsets of
the rows. However, up to best knowledge of the author, bi-clustering methods
for the rank data settings studied in this thesis do not currently exist.

Tiling transaction databases (Boolean matrices) [37] is another relevant research
theme. A tile is a data rectangle in the matrix full of 1s and a tiling is a small
set of such tiles such that it covers the data matrix as much as possible. By
constraining σp = {0, 1}, tiling can become an instantiation of sRMF.

To the best knowledge of the author, the bi-clustering problem was first
introduced by Cheng and Church (2000) for analysing numerical gene expression
values [15]. Since then, much research has been developed for both numeric
data and Boolean data with different approaches, to name just a few, constraint
programming [65], pattern mining [101, 45], information theory [25, 6, 63],
probabilistic graphical models [38], parametric Bayesian inference [104, 42, 102],
non-parametric Bayesian inference [58, 136, 133].

2.4.6 Rank data analysis

Rank aggregation [73] studies the problem of finding a single rank vector that
has the least discrepancy with all of the rankings over the items provided by
the users in a database. This problem appears in domains such as aggregating
user preferences [95, 53] and combining search results [31]. The main difference
to sRMF is that different types of rank patterns can be discovered while
rank aggregation only aims at finding one type of pattern, which is a (dense)
representation that has the least discrepancy w.r.t. the given rank data.

In the rank aggregation setting, it is assumed that all users are identical or
there is only one group of users. However, there has been research looking at

CONCLUSIONS 23

the setting where there could be multiple homogeneous groups of users hidden
in the data. A number of methods have been proposed to discover such groups
together with their consistent rank profiles. A non-exhaustive list of work in this
direction include [85, 10, 5, 29, 16, 1]. Similar to the rank aggregation setting
discussed above, such methods look for complete rankings of all items, which
are typically dense. In constrast, our sRMF framework aims to find multiple
types of rank patterns, which are typically sparse. Besides that, these methods
only aim at one type of rank pattern while our work aims at a framework for
mining different rank patterns.

2.5 Conclusions

Rank data is ubiquitous and useful. To discover regularities hidden in this type
of data, new data mining methods are needed.

We developed a generic semiring rank matrix factorisation framework for mining
sets of patterns. We proposed to use a max-product semiring defined on
permissible rank values of the data to calculate the matrix product of the two
factorised matrices. To mine a specific type of data regularity, we proposed to
use the two factorised matrices to define the patterns of interest by constraining
the values of these matrices as well as an appropriate scoring function to measure
the quality of the factorisation. In the next chapters, we will demonstrate how
to apply the proposed framework on real world problems in different domains,
including bioinformatics.

Chapter 3

Sparse RMF

This chapter1 presents the first instantiation of the sRMF framework to mine
rank pattern sets in rank data. We study the Sparse RMF problem, which we
introduced to find a set of (partial) rankings repeatedly occurring in the data.
Such sets of partial rankings can be used to succinctly summarise the given
rank matrix and show the main categories of the rankings.

We present two approaches to modelling Sparse RMF. The first approach
uses the plus-product semiring, i.e., the traditional linear algebra for matrix
factorisation, and the second approach uses the max-product semiring. The two
approaches not only show the chronological development of the research, i.e., the
former was first introduced in [68] and the latter was developed after that in [66],
but also illustrate the effects of the semiring to the modelling. Experimental
results confirm that the second approach leads to improved solution qualities
but needs more time to compute.

3.1 Introduction

Given a rank matrix, the aim of Sparse RMF is to discover a small set of
rankings that repeatedly occur in the data. To be tolerant with noise, the
rankings are not required to be complete; they can be a partial ranking, i.e., a
rank vector with many zeros. Discovering such sets of rankings is essential as

1Based on the journal paper "Semiring rank matrix factorisation" [66] and the conference
paper [68].

25

26 SPARSE RMF

they can be used to succinctly summarise the given rank matrix and show the
main categories of the rankings.

Example 3.1 (Sparse RMF example).

M =

1 2 5 4 6 3
1 2 3 4 5 6
1 3 2 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

C =

1 0 0
1 1 0
0 1 0
0 0 1
0 0 1

F =

1 2 0 4 0 0
1 0 0 4 5 6
2 3 5 6 0 0

To illustrate the Sparse RMF problem, let’s consider the illustration shown in
Example 3.1. It shows a rank matrix that is approximated by the product of
two smaller matrices. Rank matrix M consists of five rows and six columns.
Assuming no ties and complete rankings, each row contains each of the numbers
1 to 6 exactly once. Sparse RMF factorises matrix M into the product of a
binary 5× 3 matrix named C and a 3× 6 rank matrix named F. Each row of
matrix F is a rank vector with many zeros called a sparse rank profile and can
be interpreted as a local pattern. The sparse rank profiles help us to discover
recurrent structures in the matrix and to not focus on any noise that may be
present.

The rest of this chapter discusses two approaches to modelling and solving
this problem as well as experiments on both synthetic and real data. In
Section 3.2, we show the first approach, which uses the plus-product semiring,
i.e., the traditional linear algebra, in combination with additional constraints.
In Section 3.3, we present the second approach, which uses the max-product
semiring for factorising rank matrices. Experiments on synthetic and real data
are presented Section 3.7 and Section 3.8 respectively.

3.2 Sparse plus-product semiring rank matrix fac-
torisation (Sparse pRMF)

In this section, we choose the traditional algebra, i.e., the plus-product semiring
(Definition 2.5), to calculate the matrix product of the factorisation. This choice
leads to a specific instantiation for Sparse RMF named Sparse Plus-product
Semiring Rank Matrix Factorisation (Sparse pRMF).

Using the plus-product semiring, the reconstructed matrix is calculated by the
following formula:

SPARSE PLUS-PRODUCT SEMIRING RANK MATRIX FACTORISATION (SPARSE PRMF) 27

(C�p F)r,c = ⊕i(Cr,i ⊗ Fi,c) (3.1)

=
∑

i

Cr,i × Fi,c (3.2)

where �p denotes the matrix product using the plus-product semiring.

An important drawback of the plus-product semiring is that the product C�pF
computed by that semiring is not necessarily a rank matrix (see Example 3.2).
To address this problem, we restrict the set of acceptable matrices to those that
satisfy the following constraints:

(C�p F)r,c ≤ n, ∀r = 1, . . . ,m, ∀c = 1, . . . , n. (3.3)

where m,n are the number of the rows and the columns of the given rank matrix
respectively.

To illustrate the effect of the selected semiring to the acceptable factorisations,
let us examine the following two examples. Example 3.2 shows a factorisation
which produces an invalid rank matrix due to the plus-product semiring used
in the matrix product. Example 3.3 shows one possible way to fix this problem
by adjusting the overlapping structure of the two rank profiles.

Example 3.2 (Invalid solution for Sparse pRMF).
1 0
1 1
1 1
0 1
0 1

�p

(
1 2 5 6 0 0
0 0 4 6 1 2

)
=

1 2 5 6 0 0
1 2 9 12 1 2
1 2 12 12 1 2
0 0 4 6 1 2
0 0 4 6 1 2

This factorisation is an invalid solution for Sparse pRMF as the reconstructed
matrix contains ranks (green values) that are not in the permissible rank values
σ = {0, 1, . . . , 6}.

Example 3.3 (Valid solution for Sparse pRMF).
1 0
1 0
1 0
0 1
0 1

�p

(
1 2 5 6 0 0
0 0 4 6 1 2

)
=

1 2 5 6 0 0
1 2 5 6 0 0
1 2 5 6 0 0
0 0 4 6 1 2
0 0 4 6 1 2

We have defined a way to compute the reconstructed matrix by using the
plus-product semiring. Next, we have to define the scoring function f(,) in

28 SPARSE RMF

Equation (2.2), which is the sum of additive scoring fuctions δ (Equation 2.8),
to score the similarity between the reconstructed matrix and the original rank
matrix. To support the aim of mining sparse rank profiles in rank matrices, the
scoring function δ between elements needs to be designed in such a way that it:
1) rewards patterns that have a high coverage (ideally, the whole data would be
covered), 2) penalises patterns that make a large error within the cover of the
factorisation.

We achieve this by defining the scoring function δ between elements as follows:

δ(a, b) =
{

0 if b = 0;
α− |a− b| otherwise.

(3.4)

If b > 0, for a given cell in the reconstructed matrix R = C�F, we call this cell
covered. The term α defines how much reward is given for covering a cell in the
data; the larger α is, the larger the patterns will be. The reward is lowered by
penalising for errors; for errors higher than α the term δ(a, b) will be negative.
Hence, setting α low enough will ensure that we will not cover the complete
data.

The error term |a− b| is related to the Footrule distance, which is a well-known
distance for comparing rankings.
Definition 3.1 (Footrule distance). Given two rank vectors, u = (u1, . . . , un)
and v = (v1, . . . , vn), the Footrule distance is defined as

∑n
i=1 |ui − vi|.

The α parameter balances errors against coverage. Indeed, an alternative way
of writing our scoring function is as follows:

f(M,R) = α · coverage(R)− error(M,R),

where

• R = C� F;

• coverage(R) =
∑

Rr,c>0 1;

• error(M,R) =
∑

Rr,c>0 |Mr,c −Rr,c|.

Many other scoring functions could also be used to measure the disagreement
between rows, for instance, Kendall’s tau; see [80, 4] for a survey. We choose
the Footrule as it can be calculated relatively efficiently.

Note that we do not take into account the error for cells that are not covered; this
reflects our interest in discovering local patterns that not necessarily characterise
the complete data.

SPARSE PLUS-PRODUCT SEMIRING RANK MATRIX FACTORISATION (SPARSE PRMF) 29

Plugging the scoring function in Equation (3.4), the constraints in Equation (3.3)
and the plus-product semiring in the sRMF framework in Definition 2.7, we
can summarise the problem instance of Sparse RMF using the plus-product
semiring (Sparse pRMF) as follows.

Problem 3.1 (Sparse pRMF). Given a rank matrix M ∈ σm×n, Sparse pRMF
is the semiring rank matrix factorisation problem obtained by using

• the plus-product semiring;

• the set of permissible values σp = σ ∪ {0} ;

• the additive scoring function based on formula (3.4);

• constraints that (C�p F)ij ≤ n,∀i = 1, . . . ,m, ∀j = 1, . . . , n.

To illustrate the effects of using the plus-product semiring to mine Sparse rank
profiles, we apply Sparse pRMF to the rank matrix created by combining the
two overlapping rank profiles in Example 2.5. The optimal result is shown in
Example 3.4, which could not detect the overlapping structure in the data.

Example 3.4 (Sparse pRMF example).

M =

1 2 5 6 0 0
1 2 5 6 1 2
1 2 5 6 1 2
0 0 4 6 1 2
0 0 4 6 1 2

'

1 0
1 0
1 0
0 1
0 1

�p

(
1 2 5 6 0 0
0 0 4 6 1 2

)
=

1 2 5 6 0 0
1 2 5 6 0 0
1 2 5 6 0 0
0 0 4 6 1 2
0 0 4 6 1 2

Sparse pRMF approximates matrix M by the product of two smaller matrices
with k = 2. If α = 1, then cover(C �p F) = 20, error(M,C �p F) = 0, and
the optimal score f(M,C�p F) = 20. Note that the optimal solution by Sparse
pRMF does not have overlapping rank profiles.

30 SPARSE RMF

3.3 Sparse max-product semiring rank matrix fac-
torisation (Sparse mRMF)

In this section, we choose the max-product semiring to calculate the matrix
product of the factorisation. This choice leads to a specific instantiation for
Sparse RMF named Sparse Max-product Semiring Rank Matrix Factorisation
(Sparse mRMF).

Using the max-product semiring, the reconstructed matrix is calculated by the
following formula:

(C�m F)r,c = ⊕i(Cr,i ⊗ Fi,c) (3.5)

= max
i
{Cr,i × Fi,c} (3.6)

where �m denotes the matrix product using the max-product semiring.

Therefore, the resulting matrix product using the max-product semiring always
consists of permissible rank values. Consequently, Sparse mRMF does not need
additional constraints specified by Equation (3.3) as Sparse pRMF does.

Plugging this semiring and the scoring function in Equation (3.4) in the sRMF
framework in Definition (2.7), we can summarise the problem instance of Sparse
RMF using the max-product semiring (Sparse mRMF) as follows.

Problem 3.2 (Sparse mRMF). Sparse mRMF is the rank matrix factorisation
problem obtained by using

• the max-product semiring;

• the set of permissible values σp = σ ∪ {0};

• the additive scoring function based on formula (3.4).

To demonstrate the advantages of using the max-product semiring for rank
matrix factorisation, we apply Sparse mRMF to the same rank matrix shown
in Example 3.2. The result presented in Example 3.5 shows that in this case
Sparse mRMF not only recovers the overlapping structure, but also obtains
higher coverage than Sparse pRMF while having the same error.

SPARSE MRMF FACTORISATION IS NOT UNIQUE 31

Example 3.5 (Sparse mRMF example).

M =

1 2 5 6 0 0
1 2 5 6 1 2
1 2 5 6 1 2
0 0 4 6 1 2
0 0 4 6 1 2

'

1 0
1 1
1 1
0 1
0 1

�m

(
1 2 5 6 0 0
0 0 4 6 1 2

)
=

1 2 5 6 0 0
1 2 5 6 1 2
1 2 5 6 1 2
0 0 4 6 1 2
0 0 4 6 1 2

Sparse mRMF approximates the matrix M shown in Example 3.4 where Sparse
pRMF is applied with the same value for k and α. The optimal solution produced
by Sparse mRMF has cover(C �m F) = 24, error(M,C �m F) = 0, and the
optimal score f(M,C�m F) = 24. Note that Sparse mRMF could discover the
overlapping structure of the data while Sparse pRMF could not.

3.4 Sparse mRMF factorisation is not unique

The following example illustrates that Sparse mRMF may not have a unique
factorisation.

Example 3.6 (Uniqueness of the Sparse mRMF factorisation). Given the
following rank matrix M , the threshold α = 1 and k = 2, Sparse mRMF
can return two ways of factorising the matrix, each of which has the same
coverage = 14 and error = 0.

M =

1 2 3 4 5 6
1 2 3 4 5 6
4 1 2 3 5 6
2 3 4 1 5 6

Factorisation 1:

C1 =

1 0
1 0
0 1
0 1

F1 =
(

1 2 3 4 5 6
0 0 0 0 5 6

)

32 SPARSE RMF

Factorisation 2:

C2 =

1 1
1 1
0 1
0 1

F2 =
(

1 2 3 4 0 0
0 0 0 0 5 6

)

3.5 Solving Sparse pRMF using IP

The optimisation model for Sparse mRMF is presented in Problem 3.2. Now
we re-write that optimisation model in such a form that we can easily derive
an equivalent model, which can be put into generic Integer Programming (IP)
solvers. The restatement also provides an easy comparison between Sparse
pRMF and Sparse mRMF.

Theorem 3.1 (Optimisation model for Sparse pRMF). Given a rank matrix
M, an integer k and a threshold α, Sparse pRMF is equivalent to the following
optimisation problem.

(C∗,F∗) ≡ argmax
C,F

∑
r,c

(αAr,c − |Ar,cMr,c −
∑

i

Cr,iFi,c|) (3.7)

subject to

C ∈ {0, 1}m×k (3.8)

F ∈ σk×n (3.9)∑
i

Cr,iFi,c ≤ n (3.10)

where matrix A denotes the region that is covered by the factorisation, i.e.,
Ai,j = 1 iff (C× F)i,j > 0.

Proof. Let (C∗,F∗) be the optimal solution for Sparse pRMF. Using definitions
(2.7) and (2.8), and the additional constraints in Equations (3.28), we have:

SOLVING SPARSE PRMF USING IP 33

(C∗,F∗) ≡ argmax
C,F

∑
r,c

δ(Mr,c, (C�p F)r,c) (3.11)

subject to

C ∈ {0, 1}m×k (3.12)

F ∈ σk×n (3.13)

(C�p F)r,c ≤ n (3.14)

As we use the plus-product semiring, the matrix product of the factorisation is
calculated by using Equation (3.2). Hence, the above model is equivalent to the
following:

(C∗,F∗) ≡ argmax
C,F

∑
r,c

δ(Mr,c,
∑

i

Cr,iFi,c) (3.15)

subject to

C ∈ {0, 1}m×k (3.16)

F ∈ σk×n (3.17)∑
i

Cr,iFi,c ≤ n, ∀r, ∀c (3.18)

Replace the δ(,) function by Equation (3.4) and let A be the covered matrix,
the above model is equivalent to the following:

(C∗,F∗) ≡ argmax
C,F

∑
r,c

(αAr,c − |Ar,cMr,c −
∑

i

Cr,iFi,c|) (3.19)

subject to

C ∈ {0, 1}m×k (3.20)

F ∈ σk×n (3.21)∑
i

Cr,iFi,c ≤ n, ∀r, ∀c (3.22)

which concludes the proof.

34 SPARSE RMF

To solve the optimisation model for Sparse pRMF stated in Equations (3.7) –
(3.10), we denote by Yi,j the value of |Mi,j −

∑k
t=1 Ci,tFt,j |, i = 1, . . . ,m, j =

1, . . . , n. Then, the model can be re-written as follows.

arg max
C,F,Y

m∑
i=1

n∑
j=1

αAi,j −Yi,j (3.23)

subject to

Ar,cMi,j −
k∑

t=1
Ci,tFt,j ≤ Yi,j (3.24)

−Ar,cMi,j +
k∑

t=1
Ci,tFt,j ≤ Yi,j (3.25)

Ai,j ≤
k∑

t=1
Ci,tFt,j (3.26)

nAi,j ≥
k∑

t=1
Ci,tFt,i (3.27)

k∑
t=1

Ci,tFt,j ≤ n (3.28)

Ci,t ∈ {0, 1} (3.29)

Ft,j ∈ σ (3.30)

Here, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ t ≤ k. M is the given data matrix; variables
A, C, F, Y are to be found.

Inequalities (3.24) and (3.25) are introduced to remove the absolute operator
of the summations in Equation (3.7). Inequalities (3.26) and (3.27) are used
to ensure matrix A to be the cover matrix (Theorem 3.1). Inequality (3.28)
ensures that the reconstructed matrix is a rank matrix.

Note that the newly introduced optimisation problem in (3.23) - (3.30) is an
Integer Linear Programming (ILP) problem if either C or F is known. This
makes it possible to apply an EM-style algorithm as shown in Algorithm 1, in
which the matrix F is optimised given matrix C, and matrix C is optimised

SOLVING SPARSE MRMF USING IP 35

given matrix F, and we repeat the iterative optimisation till the optimal score
cannot be improved any more.

Algorithm 1 Sparse pRMF algorithm
Require: Rank matrix M, integer k, threshold α
Ensure: Factorisation C, F
1: Initialise C using K-means algorithm
2: while not converged do
3: F ← Optimise (3.23) - (3.30) given C
4: C ← Optimise (3.23) - (3.30) given F
5: end while

To avoid local maxima, we need to initialise the iterative process in a reasonable
way, i.e., smarter than random. The solution we choose is to initialise the matrix
C using the well-known K-means algorithm. To compute the similarities of
rank vectors in K-means, we use the Footrule scoring function. The K-means
algorithm clusters the rows in k groups, which can be used to initialise the k
columns of C. Note that this results in initially disjoint patterns, in terms of
their covers, but the iterative optimisation approach may introduce overlap.

Implementation. We implemented the algorithm in OscaR [87], which is an
open source Scala toolkit for solving Operations Research problems. OscaR
supports a modelling language for ILP. We configured OscaR to use Gurobi2 as
the back-end solver. Source code can be downloaded from the following address:
https://github.com/rankmatrixfactorisation/Sparse_pRMF.

3.6 Solving Sparse mRMF using IP

To solve the Sparse mRMF problem, we use the same solving strategy that we
apply for Sparse pRMF (see Section 3.5). That is, we will first re-write the
optimisation model for Sparse mRMF, which is defined in Problem 3.2, in such
a form that it can be put into generic Integer Programming (IP) solvers.

Theorem 3.2 (Optimisation model for Sparse mRMF). Given a rank matrix
M, an integer k and a threshold α, Sparse mRMF is equivalent to the following

2http://www.gurobi.com/

https://github.com/rankmatrixfactorisation/Sparse_pRMF
http://www.gurobi.com/

36 SPARSE RMF

optimisation problem.

(C∗,F∗) ≡ argmax
C,F

∑
r,c

(αAr,c − |Ar,cMr,c −max
i
{Cr,iFi,c}|) (3.31)

subject to

C ∈ {0, 1}m×k (3.32)

F ∈ σk×n (3.33)
where matrix A denotes the region that is covered by the factorisation, i.e.,
Ai,j = 1 iff (C× F)i,j > 0.

Proof. Theorem (3.2) can be proven in a similar way used for Theorem (3.1).

The optimisation model for Sparse mRMF stated in Equations (3.31) – (3.33)
can be re-written as follows.

maximize
∑

i

∑
j

(αAi,j −Yi,j) (3.34)

subject to

0 ≤ Ci,t ≤ 1 (3.35)

0 ≤ Fi,t ≤ n (3.36)

Ri,j ≥ Ci,tFt,j (3.37)

Ri,j ≤ Ci,tFt,j + (1−Bi,j,t)n (3.38)

Bi,j,t ∈ {0, 1} (3.39)∑
t

Bi,j,t = 1 (3.40)

Ai,j ∈ {0, 1} (3.41)

nAi,j ≥ Ri,j (3.42)

Ai,j ≤ Ri,j (3.43)

Mi,jAi,j −Ri,j ≤ Yi,j (3.44)

−Mi,jAi,j + Ri,j ≤ Yi,j (3.45)

SOLVING SPARSE MRMF USING IP 37

Here, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ t ≤ k. M is the given data matrix; variables
R, C, F, B, A and Y are to be found.

The correctness of this model follows from the following arguments:

• variables Ri,j encode the result of C � F: formula (3.37) ensures that
Ri,j ≥ maxt Ci,tFt,j ; formulas (3.38)-(3.40) ensure that Ri,j ≤ Ci,tFt,j

for one choice for t (indicated byBi,j,t), which in combination with formula
(3.37) means that the maximum is chosen;

• formulas (3.41)-(3.43) ensure that variables Ai,j encode those cells that
are covered by the factorisation; i.e., Ai,j = 1 iff Ri,j > 0;

• formulas (3.34), (3.44) and (3.45) encode the additive scoring function
based on formula (3.4); formula (3.44) and (3.45) ensure that Yi,j ≥
|Mi,jAi,j −Ri,j | = |Mi,jAi,j −Ri,jAi,j | = |Mi,j −Ri,j |Ai,j ; as we look
for maximal solutions in formula (3.34), which can only be obtained
when Yi,j is minimal, we can conclude that Yi,j = |Mi,j − Ri,j |Ai,j .
The optimisation criterion for one cell (i, j) can then be written as
αAi,j − |Mi,j −Ri,j |Ai,j = (α− |Mi,j −Ri,j |)Ai,j , which corresponds to
equation (3.4).

Note that this modeling approach can trivially be modified to solve variations
of the Sparse mRMF problem; e.g., to deal with a min-product semiring we
only need to modify equations (3.37)–(3.40).

Similar to the technical problem of solving Sparse pRMF (Section 3.5), the
model for Sparse mRMF above is not a linear model if we would need to search
for both F and C. However, if we assume that one of these is fixed, the model
is linear, and consequently, in each iteration of our algorithm we can use Integer
Linear Programming (ILP) solvers.

Efficient parallel search. In the solution discussed above, we repeatedly solve
integer linear programs to determine C and F. These integer linear programs are
still hard to solve and involve finding m× k and k×n assignments, respectively,
for the matrices C and F.

We use the following properties to make solving these integer linear programs
more efficient:

• the reconstructed matrix R is calculated based on a matrix product over
a semiring;

• the scoring function is additive.

38 SPARSE RMF

The consequence of these properties is that for a given C, optimal values for all
columns of F can be determined independently of each other; similarly, for a
given F, the rows of C can be determined independently of each other.

Consider the case of determining C given F, i.e., determining the optimal
occurrences of given rank patterns for each row. Given that our scoring function
is additive, the error score for one row in the reconstructed matrix R will not
affect the error made for another row. Furthermore, given the use of products
based on semirings, a row in the reconstructed matrix R is only determined by
the corresponding row in the matrix C and the complete rank matrix F.

We exploit this property by running the solver for each row of C independently
to determine the optimal solution for that row only.

A further consequence of the independence of rows is that we can determine
row assignments in parallel to each other. Consequently, we can distribute the
optimisation problem over multiple cores.

Implementation. To implement our system, we also relied on the OscaR
system [87]. OscaR supports a modelling language for ILP. We configured
OscaR to use the Gurobi3 IP solver as the back-end solver. A benefit of
OscaR/Scala is that it has built-in support for exploiting multiple cores to solve
independent optimisation problems in parallel. The implementation is available
at the following address: https://github.com/rankmatrixfactorisation/
Sparse_mRMF.

3.7 Experiments with synthetic data

In this section, we set up a number of experiments on synthetic datasets to
evaluate Sparse mRMF, the generic approach for Sparse RMF. The results will
show: 1) the accuracy of recovering order-preserving patterns; 2) the robustness
of the algorithm with respect to noise; 3) the sensitivity of the algorithm with
respect to the parameter thresholds.

Data generation. As we would like to evaluate the capability of Sparse mRMF
to recover consistent rankings of a subset of columns in a subset of rows, we
generate ranked data with implanted orders.

For each dataset, we first implant three ranked patterns and then generate its
background information. Patterns are created by generating a reference rank
profile and repeating this profile for a number of rows. Each reference rank

3http://www.gurobi.com/

https://github.com/rankmatrixfactorisation/Sparse_mRMF
https://github.com/rankmatrixfactorisation/Sparse_mRMF

EXPERIMENTS WITH SYNTHETIC DATA 39

Color key

100 300

(a) Rank data (1000 × 400)

Color key

100 300

(b) Sparse mRMF

Figure 3.1: Recovering three implanted rank profiles from the synthetic data with
implanted orders. Figure 3.1a shows the data (w = 20). Figure 3.1b is obtained by
Sparse mRMF with k = 3, α = 20%.

profile is generated by uniformly sampling l integer numbers from the range
[1 . . . n], where l is the number of columns in the pattern. Noise is simulated
by swapping w number of column pairs for each row in the pattern. After the
patterns are implanted, each row is completed by a random permutation of the
values in [1 . . . n] not in its reference rank profile (i.e., the set difference).

We generate four 1000 rows × 400 columns datasets, one for each w ∈
{0, 10, 20, 30}. In each dataset, we implant three overlapping order-preserving
rank patterns, each of which spans 200 rows and 130 columns. Figure 4.8a
shows the dataset generated with w = 20.

Accuracy of the recovered tiles by Sparse mRMF.We ran Sparse mRMF
on the four simulated datasets with k = 3 and varying values for the threshold
α, i.e., α ∈ {10%, 20%, 30%}. For each combination of threshold and dataset,
we ran the algorithm 10 times and used the result that had the highest score.
Similar to the previous experiments, we also used precision and recall to evaluate
recovery accuracy.

We now formally define precision and recall. Let St = {B1 = (R1, C1), . . . , Bk =
(Rk, Ck)} be the k implanted rank patterns, each of which is specified by a
tuple (Ri, Ci) to indicate the rows and the columns of the data region where it
occurs. Let Sa = {A1 = (R1, C1), . . . , Ak = (Rk, Ck)} be the k rank patterns
discovered by the algorithm. The covered region of the implanted patterns is
defined as follows:

U = {(x, y)|∃Bi = (Ri, Ci) ∈ St : x ∈ Ri, y ∈ Ci} (3.46)

40 SPARSE RMF

The covered region of the discovered patterns is defined in a similar way.

V = {(x, y)|∃Ai = (Ri, Ci) ∈ Sa : x ∈ Ri, y ∈ Ci} (3.47)

Then, precision and recall are calculated by the following equations.

Precision = |V ∩ U |
|V |

(3.48)

Recall = |V ∩ U |
|U |

(3.49)

Having defined precision and recall, we can now measure the performance of
Sparse mRMF. Figure 3.2a shows that Sparse mRMF succeeds in recovering
the three simulated patterns with high precision and recall when α = 20%.
As expected, Sparse mRMF obtains high recall and low precision when the
threshold is increased (to 30%); Figure 3.2b shows that both coverage and error
increase steeply. When the threshold is (too) low, i.e., α = 10% in this case, the
implanted patterns cannot be recovered. Hence, for this case, Sparse mRMF
has low values for both precision and recall.

We did not run Sparse pRMF, the specific approach for Sparse RMF, on
the synthetic datasets as these datasets do not overlap in the row dimension.
Hence, Sparse mRMF is general enough to show capability of the two proposed
approaches in discovering the structure we are interested in. We postpone the
comparison of the Sparse pRMF and Sparse mRMF in terms of recovering
overlapping rank profiles until real world case studies in the next section, where
we have realistic settings. We also did not compare with BMF [82] and the
traditional tiling method [37] as converting ranked data to Boolean data will
loose the rank information of the columns, which is essential for this type of
pattern.

3.8 Real world case studies

In this section we report on two real world case studies concerning the European
Song Festival, and sushi consumption.

3.8.1 European Song Festival dataset

The Eurovision Song Contest (ESC) has been held annually since 1956. Each
participating country gives voting scores, which are a combination of televoting

REAL WORLD CASE STUDIES 41

● ●

●

●

●

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

10% 20% 30%
α

●

●

Precision
Recall

(a) Precision and recall

● ●
●

●

●

●

● ●

●

●

●

●

0.0

0.25

0.50

0.75

1.00

10% 20% 30%
α

●
●
Coverage
Error

(b) Coverage and error

Figure 3.2: Evaluation of precision and recall scores for Sparse mRMF on the synthetic
data with implanted orders.

and jury voting, to competing countries. Scores are in the range of 1 . . . 8, 10,
and 12. Each country awards 12 points to its most favourite country, 10 points
to its second favourite, and 8 . . . 1 to the third. . .tenth favourites respectively.
The data can be represented by a matrix in which rows correspond to voting
countries, columns correspond to competing countries, and cell values to the
scores.

We collected voting data for the final rounds of the period 2010 – 2013. We
filtered out countries participating in fewer than 3 years. The data is aggregated
by calculating average scores that voting countries award to competing countries
during the study period. After the pre-processing step, the final data consists of
44 rows and 37 columns, corresponding to 44 voting countries and 37 competing
countries. The pre-processed data is transformed to ranked data using minimum
ranks in case of ties.

Running experiments. We applied both Sparse pRMF and Sparse mRMF on
the ESC dataset with varying threshold values and then analysed the obtained
coverage and error per covered cells to empirically select the best thresholds.

With Sparse mRMF, we varied the threshold α in the range {5%, 10%, . . . , 30%},
for each of which we factorised the rank matrix with different values for k, i.e.,
k ∈ {5, . . . , 12}. Figure 3.3a shows the average coverage and error scores for
the different α values. It can be seen that, for α = 5%, Sparse mRMF made
almost no mistakes (error = 0.04) but coverage is low (19%). When α = 30%,
on the other hand, Sparse mRMF covers almost the entire matrix (> 90%)
while having an average cell-based error of 5, which might be acceptable as the

42 SPARSE RMF

range of the rank score in this dataset is [1 . . . 37]. Hence, we would choose a
threshold value based on coverage and/or error depending on the background
knowledge and preferences of the data miner. Here we choose α = 10% as the
corresponding error is low and the coverage is substantially higher than that for
α = 5%. Given α, we next have to decide an appropriate value for k. For this
we examine Figure 3.3b, which shows the coverage for α = 10% and varying k.
We choose k = 10 as coverage appears to be stable for higher k.

Voting patterns. The heatmap of the reconstructed matrix obtained by
Sparse mRMF is shown in Figure 3.4b. Compared to the original rank matrix
in Figure 3.4a, the reconstructed heatmap shows that Sparse mRMF strongly
sparsified the original rank matrix. Note that it also shows the rank profiles
produced by Sparse mRMF contain both high and low ranks.

Table 3.1 illustrates the benefits of using the max-product-based formalisation
for rank matrix factorisation. It shows that compared to the specific approach
(Sparse pRMF), which uses the plus-product semiring (linear algebra) and
constraints to avoid the ‘overranking’ problem, the general approach (Sparse
mRMF) using max-product semiring to aggregate the rank profiles attains
higher coverage (32% compared to 30%) and a lower error (1.12 compared to
1.59). Sparse mRMF also enjoys a substantial increase of the overlap among the
rank profiles in their covered rows. However, it takes more time. Note that the
wall-clock runtimes shown in this table were measured without using parallel
computation.

To show how the rank profiles produced by the two methods can provide insight
into the data, we visualise two rank profiles of Sparse mRMF in Figure 3.5.
They show the typical voting behaviour of Western European countries towards
Nordic countries (Figures 3.5b), and that of Eastern European countries toward
some other countries (Figures 3.5a). For example, countries in Eastern Europe
tend to give higher scores to Russia and Nordic countries than to other countries.
In general, the discovered patterns confirm that countries tend to give high scores
to their neighbours, which confirms common knowledge about the European
Song Contest.

3.8.2 The Sushi dataset

The Sushi dataset, collected by Kamishima [54], contains preferences of 5000
people over ten different sushi types.

We ran both Sparse pRMF and Sparse mRMT on this dataset. With Sparse
sRMF, we chose the same threshold values (α = 20% and k = 8) as we used in
our previous work [68] for a fair comparison.

REAL WORLD CASE STUDIES 43

Table 3.1: Performance statistics of Sparse pRMF and Sparse mRMF on the
European Song Festival dataset. Overlap is the percentage of the covered rows
involving in more than 1 rank profiles. 0s/pattern is the average percentage of
0s in rank profiles.

Algorithm Coverage Avg. error 0s/pattern Overlap Time
Sparse pRMF 30% 1.59 59.7% 2% 3s
Sparse mRMF 32% 1.12 52.4% 30% 69.2s
(α = 10%, k = 10)

●
● ●

●
●

●

●

●

●

●

●

●0

2

4

10%

●
●
Coverage
Error

α 20% 30%

(a) Sparse mRMF

●

● ●

●
●

● ●
●

0.0

0.1

0.2

0.3

0.4

6 8 10 12

C
ov
er
ag
e

k

(b) Sparse mRMF

Figure 3.3: Parameter tuning for Sparse mRMF on the European Song Festival
dataset.

Table 3.2 shows that the rank profiles found using Sparse mRMF have much
larger overlaps and are sparser than the ones found using Sparse pRMF, while
the average error per covered cell is smaller. The only drawback of Sparse
mRMF are the longer runtimes that come with these improved results.

Figure 3.6 shows the eight rank profiles found by Sparse mRMF. In general,
the customers have clear preferences over the ten sushi types. For example, the
first rank profile F1 in Figure 3.6 depicts that there is a group of customers
preferring light sushi types, such as maguro, ebi, and tekka maki, to oily and
seasoning sushi like uni and anago. Interestingly, the eighth rank profile F8
maintains that there exists a group of customers who have a completely opposite
taste when they prefer anago sushi to ebi sushi.

44 SPARSE RMF

os
ni

a.
an

d.
H

er
z.

Al
ba

ni
a

Be
lg

iu
m

Fi
nl

an
d

N
et

he
rla

nd
s

Sl
ov

en
ia

Sw
itz

er
la

nd
U

ni
te

d.
Ki

ng
do

m
Is

ra
el

N
or

wa
y

D
en

m
ar

k
Sw

ed
en

G
re

ec
e

R
us

si
a

Au
st

ria
M

ac
ed

on
ia

Po
rtu

ga
l

H
un

ga
ry

Be
la

ru
s

C
yp

ru
s

Ic
el

an
d

Es
to

ni
a

Az
er

ba
ija

n
G

eo
rg

ia
Li

th
ua

ni
a

Ita
ly

M
ol

do
va

Se
rb

ia
Ar

m
en

ia
Fr

an
ce

R
om

an
ia

Ire
la

nd
Sp

ai
n

M
al

ta
U

kr
ai

ne
Tu

rk
ey

G
er

m
an

y

Armenia
Azerbaijan
Belarus
Moldova
Spain
Ukraine
Belgium
Cyprus
Ireland
Israel
Lithuania
Portugal
Romania
Russia
San Marino
Denmark
Hungary
Iceland
Latvia
Malta
Poland
Albania
Bosnia and Her
Bulgaria
Croatia
Georgia
Montenegro
Turkey
Austria
Finland
France
Germany
Netherlands
Norway
Switzerland
Greece
Macedonia
Slovenia
Estonia
Slovakia
Serbia
United Kingdom
Italy
Sweden

1 10 22 370

(a) Rank data

Pr
of

ile
 1

Pr
of

ile
 2

Pr
of

ile
 3

Pr
of

ile
 4

Pr
of

ile
 5

Pr
of

ile
 6

Pr
of

ile
 7

Pr
of

ile
 8

Pr
of

ile
 9

Pr
of

ile
 1

0

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6
Profile 7
Profile 8
Profile 9

Profile 10

sn
ia

.a
nd

.H
er

z.
Al

ba
ni

a
Be

lg
iu

m
Fi

nl
an

d
N

et
he

rla
nd

s
Sl

ov
en

ia
Sw

itz
er

la
nd

ni
te

d.
Ki

ng
do

m
Is

ra
el

N
or

wa
y

D
en

m
ar

k
Sw

ed
en

G
re

ec
e

R
us

si
a

Au
st

ria
M

ac
ed

on
ia

Po
rtu

ga
l

H
un

ga
ry

Be
la

ru
s

C
yp

ru
s

Ic
el

an
d

Es
to

ni
a

Az
er

ba
ija

n
G

eo
rg

ia
Li

th
ua

ni
a

Ita
ly

M
ol

do
va

Se
rb

ia
Ar

m
en

ia
Fr

an
ce

R
om

an
ia

Ire
la

nd
Sp

ai
n

M
al

ta
U

kr
ai

ne
Tu

rk
ey

G
er

m
an

y

Armenia
Azerbaijan
Belarus
Moldova
Spain
Ukraine
Belgium
Cyprus
Ireland
Israel
Lithuania
Portugal
Romania
Russia
San Marino
Denmark
Hungary
Iceland
Latvia
Malta
Poland
Albania
Bosnia and Herz
Bulgaria
Croatia
Georgia
Montenegro
Turkey
Austria
Finland
France
Germany
Netherlands
Norway
Switzerland
Greece
Macedonia
Slovenia
Estonia
Slovakia
Serbia
United Kingdom
Italy
Sweden

(b) The reconstructed matrix by Sparse mRMF

Figure 3.4: EU Song Festival results show how Sparse RMF focuses on specific
structure and hence sparsify the data. Figure 3.4a and Figure 3.4b have the same
color key.

0

21
26
28
30
34

Voters

Rank scores

1
18

(a) Tile 1 (Sparse mRMF)

0
1
22
33

Voters

Rank scores

(b) Tile 6 (Sparse mRMF)

Figure 3.5: Rank patterns discovered on the ESC dataset by Sparse mRMF. The
rank profiles, which depict the obtained voting scores of competitors, are painted in
red; the corrresponding rows (voting countries), which show the places where these
rank profiles appear, are painted in green.

3.9 Related work

Sparse RMF is in favor of factorisations that can capture patterns users are
interested in. This means that Sparse RMF does not aim to completely recover
the original matrix as long as the detected patterns can capture the main

RELATED WORK 45

Table 3.2: Performance statistics of Sparse pRMF and Sparse mRMF on the
Sushi dataset [54]. Overlap and 0s/pattern have the same meaning as those in
Table 3.1.

Algorithm Coverage Avg. error 0s/pattern Overlap Time/run
Sparse pRMF 78.2% 1.31 13.8% 0% 53mi
(α = 20%, k = 8)
Sparse mRMF 77.2% 1.22 41.3% 75.2% 2h32mi
(α = 20%, k = 8)

Figure 3.6: Sushi preference patterns found by Sparse mRMF. The bottom row below
the heatmaps, indicated by #, shows the number of users having the corresponding
rank profile.

structure in the matrix. In this regard, Sparse RMF is related to sparse
dictionary learning [118, 14, 78]. However, the strategy to define the optimisation
functions to find the sparse encodings is different. In sparse dictionary learning
[78], the distance function is defined to minimise the error between the original
matrix and the reconstructed matrix for all data points and encourages to cover
less by using regularisation. In Sparse pRMF and Sparse mRMF, the scoring
functions are defined in such a way that they can encourage to cover more data
while having lower error in the covered region rather than in the whole data
matrix.

46 SPARSE RMF

Method Semiring Data Comment
NMF Plus-product Rank data Cannot discover consistent subsets

of rankings
sRMF Max-product Rank data Discover consistent subsets of

rankings
sRMF Plus-product Rank data Results have less overlappings than

the one using sRMF with the max-
product semiring

sRMF Min-product Rank data More or less the same as using
sRMF with the max-product semir-
ing

Table 3.3: Comparison of methods in combination with different semirings for
solving the Sparse RMF problem.

3.10 Discussion

Table 3.3 summarises the effects of applying different methods in combination
with different semirings to solve the Sparse RMF problem.

First, Non-negative Matrix Factorisation (NMF) [71] is not applicable to the
Sparse RMF problem that we study in this thesis. This is mainly because NMF
seeks a factorisation such that the reconstructed matrix is similar to the original
matrix as much as possible. The reconstructed matrix is often dense as it takes
the noise outside the patterns into account. Consequently, local patterns cannot
be detected.

Second, the sRMF framework that we introduce in this thesis has a different
behaviour under different semirings. That is, when we use the sRMF framework
with the plus-product semiring, i.e., Sparse pRMF, the results will have less
overlapping parts than the case in which we use the framework with the max-
product semiring, i.e., Sparse mRMF. However, the result should not be much
different between the case that we apply sRMF with the max-product semiring
and the case with the min-product semiring. This is because when we have a
consistent subset of ranks in a number of rows, no matter whether we take min
or max, the aggregated result should be the same.

CONCLUSIONS 47

3.11 Conclusions

We study the Sparse RMF problem, which aims at discovering a set of k sparse
rank profiles in rank matrices. Such sparse profiles can be used to succinctly
summarise the given rank matrix and show main categories of rankings.

We apply the sRMF framework to model Sparse RMF with two different
semirings, each of which leads to a problem instance for Sparse RMF. Modelling
the problem using this framework illustrates the expressiveness and flexibility
of the proposed framework. Experiments on both synthetic datasets and real
world problems shows that the framework is capable of discovering sparse rank
profiles as well as obtaining high quality solutions.

Chapter 4

Ranked Tiling

This chapter1 presents the second instantiation of the sRMF framework to mine
rank pattern sets in rank data. That is, we study how to use the framework to
do tiling in rank matrices to discover ranked tiles, which are data regions having
high ranks. Such ranked tiles are interesting as they can show local associations
between subsets of the rows and subsets of the columns of the given matrices.

We first study the problem of finding one maximal ranked tile. Then, we
study the ranked tiling problem, i.e., find k maximal ranked tiles that together
cover the given rank matrix as much as possible. For each of the problem, we
present two different approaches to modelling and solving. The first approach
proposed in [69], Constraint Programming (CP) is used. The second approach
developed later in [66] uses the sRMF framework and results in improved
solution quality. We present experimental results on three real-life datasets,
which demonstrate the interestingness as well as the practical applicability of
the ranked tiling pattern. One case study involves a heterogeneous dataset
concerning the discovery of specific molecular features for different subtypes of
breast cancer patients. An analysis of the tiles by a domain expert shows that
our approach can lead to the discovery of novel insights.

1Based on the journal paper "Semiring rank matrix factorisation" [66] and the conference
paper "Ranked tiling" [69]

49

50 RANKED TILING

4.1 Introduction

The problem of tiling was introduced by Geerts et al. [37]. It is a popular
pattern mining technique that searches for a set of tiles (that is, a tiling) in
a 0/1 matrix. Such matrices often represent transactional data, where each
transaction specifies the presence or absence of a set of items in the transaction.
A tile is then a subset of the rows and columns of the matrix, for which the
corresponding submatrix contains all 1s. Tilings are interesting as they provide
groupings of both the rows and the columns that may give new insights in the
data.

In this chapter, we extend tiling towards a setting which is not binary. That is,
we study the problem of ranked tiling, in which each transaction in the data
is a ranking of all available items. In comparison with Sparse RMF studied in
Chapter 3, in ranked tiling we do not require that the ranks of the items are
(approximately) the same between different rows included in the tile; we only
require that sufficiently high ranks are included in a tile. In other words, we
only care of whether the ranks are high or low.

One real-life example that we shall use is concerned with the discovery of
biomarkers to group cancer patients into subtypes. Finding a set of biomarkers
that characterise different cancer subtypes is clearly important. Thanks to
advances in genome sequencing and high throughput technologies, a lot of data
is becoming available about patients. However, different types of data may
be obtained with different technologies, for example, data concerning mRNA,
miRNA, copy number variations, or proteins. This means that we are given
a number of data matrices, each of which corresponds to one data type or
experiment, and each of which is measured on a different scale. Hence, the
values of the rows of the matrices are incomparable. Still we would expect to
find a tiling in which the same set of patients is shared across the different data
matrices. We shall show that by using a ranked version of the data, which
makes the rows comparable, and ranked tiling, this is feasible.

To illustrate the problem of ranked tiling, let us consider the toy example in
Figure 4.1. It depicts a rank matrix containing five rows and ten columns.
Assuming no ties, each row contains each of the numbers one to ten exactly
once. In this paper, we assume that a desirable high rank is indicated by a high
number, i.e., in this case the highest possible rank is ten. Now, we are intuitively
interested in rectangular areas in the matrix that have relatively high values,
as these correspond to columns and rows which are highly ranked. In this
particular example, the maximal ranked tile that we would like to find consists
of five rows and three columns, i.e., the area defined by {R1, R2, R3, R5} and
{C1, C2, C3}.

ONE MAXIMAL RANKED TILE MINING 51

9 5 8 3 7 1 10 4 2 6

2 9 1 7 4 5 10 6 8 3

6 7 9 5 8 4 1 2 10 3

7 10 9 6 3 8 4 5 2 1

8 10 9 4 2 6 1 7 3 5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

R1

R2

R3

R4

R5

Figure 4.1: Example rank matrix, with maximal ranked tile B =
({R1, R2, R3, R5}, {C1, C2, C3}).

4.2 One maximal ranked tile mining

In this section, we study the problem of finding one maximal ranked tile. We
first introduce an optimisation model to formally define a maximal ranked tile.
Then, we show how we can solve the optimisation problem by using CP and
the sRMF framework.

4.2.1 One maximal ranked tile

Definition 4.1 (Maximal ranked tile). Given a rank matrix M ∈ σm×n and a
threshold θ, find the ranked tile B = (R∗, C∗), with R∗ ⊆ R and C∗ ⊆ C, such
that:

B = (R∗, C∗) = argmax
R,C

∑
r∈R,c∈C

(Mr,c − θ). (4.1)

where θ is an absolute-valued threshold.

Example 4.1. Going back to the example rank matrix in Figure 4.1 and
choosing θ = 5, the maximal ranked tile is defined by R = {1, 2, 3, 5} and
C = {1, 2, 3}. The score obtained by this tile is 37, and no more columns or
rows can be added without decreasing the score. This result matches the desired
outcome that we described in the introduction.

In practice, we often use a relative instead of an absolute threshold. We denote
such a threshold as a percentage, i.e., θ = a% implies θ = a%× n.

52 RANKED TILING

The optimisation objective in Equation 4.1 rewards cells in a tile having values
higher than θ, and vice versa for cells having lower values. Since we look for
tiles that maximise this score, this threshold θ plays an important role. That is,
higher values for θ result in smaller tiles with larger ranks. This implies that
the threshold can be used to influence both 1) the size of the mined tiles, and
2) the extent to which the ranks deviate from the mean rank. An alternative
interpretation is that the threshold can be used by the analyst to express her
prior belief about how high the ranks should be to make a tile interesting.

4.2.2 Maximal ranked tile mining using CP

In this section, we present a CP-based technique to solve the problem of finding
one maximal ranked tile introduced in the previous section. That is, we introduce
a constraint-based model equivalent to Equation 4.1, but add two constraints
to make solving more efficient without affecting the results.

The technique we use to solve the optimisation problem is constraint
programming (CP). We follow the approach that was originally introduced
by De Raedt et al. [22] and further developed by Guns et al. [44]. The idea
is to formalise the problem as a constraint satisfaction problem and then use
existing solvers to find solutions. There are a number of advantages to this
solving paradigm. First, it is a declarative approach, meaning that the data
analyst can focus on modelling the problem rather than on complex procedural
implementations. Second, CP is very flexible.

Constraint-based model

To speed up the search process, we add two redundant constraints to the
optimisation problem of Equation 4.1. That is, we require that the average
values in rows and columns in the selected submatrix MR,C are higher than
the threshold θ. The resulting constraint-based model is as follows:

argmaxR,C

∑
r∈R,c∈C(Mr,c − θ) (4.2)

subject to

∀r ∈ R : r ∈ R↔
∑

c∈C
Mr,c

|C| ≥ θ (4.3)

∀c ∈ C : c ∈ C ↔
∑

r∈R
Mr,c

|R| ≥ θ (4.4)

ONE MAXIMAL RANKED TILE MINING 53

Theorem 4.1 (Model equivalence). The constraint-based optimisation model in
Equations (4.2) –(4.4) is equivalent to the optimisation model in Equation (4.1).

Proof. Let us assume that (R,C) is the optimum solution found without
additional constraints. Without loss of generality we can assume that (R,C) is
maximal in both rows and columns, i.e., there is no row nor column that can
be added to obtain the same score or a better score.

Then this optimal solution must also satisfy the constraint:

∀r ∈ R : r ∈ R↔
∑

c∈C Mr,c

|C|
≥ θ ↔ (

∑
c∈C

Mr,c − θ) ≥ 0. (4.5)

Indeed, assume that r ∈ R while (R,C) is optimal, then (
∑

c∈C Mr,c − θ) ≥ 0
must hold, as otherwise the score

∑
c∈C,r∈R(Mr,c − θ) could be improved by

removing r from R while keeping C fixed. Conversely, if r 6∈ R while (R,C) is
optimal, it can only be the case that (

∑
c∈C Mr,c − θ) < 0, as otherwise the

score of the tile could be improved by adding r to R while keeping C fixed.

Problem formalisation using CP

The formalisation in Equations (4.2) – (4.4) is defined over set variables.
Unfortunately, in earlier work it was shown [22] that set variables do not
lead to good performance in some CP systems and a reformalisation in terms
of boolean variables can be desirable.

We therefore introduce two Boolean decision vectors: T = (T1, T2, ..., Tm), with
Tr ∈ {0, 1}, for rows and I = (I1, I2, ..., In), with Ic ∈ {0, 1}, for columns. An
assignment to the Boolean vectors T and I corresponds to an indication of rows
and columns belonging to a tile. Given this, we have the following theorem.

Theorem 4.2 (Highly ranked rows constraint). If the following constraint is
satisfied:

∀r ∈ R : Tr = 1↔
∑
c∈C

(Mr,c − θ) ∗ Ic ≥ 0 (4.6)

then rows that satisfy the inequality of Equation (4.3) are identified by:

{r ∈ R | Tr = 1} (4.7)

54 RANKED TILING

Proof.

∀r ∈ R : Tr = 1↔
∑
c∈C

(Mr,c − θ) ∗ Ic ≥ 0↔
∑
c∈C

Mr,c ∗ Ic ≥ θ ∗
∑
c∈C

Ic

↔
∑

c∈CMr,c ∗ Ic∑
c∈C Ic

≥ θ ↔
∑

c∈C Mr,c

|C|
≥ θ

Here we assume that
∑

c∈C Ic ≥ 1. Overall, Tr = 1↔ r ∈ R, which concludes
the proof.

A similar property can be obtained for the column constraint. This leads to a
CP model which is equivalent to the constraint-based model in Equations (4.2)–
(4.4):

argmax
T,I

∑
r∈R

Tr ∗ (
∑
c∈C

(Mr,c − θ) ∗ Ic) (4.8)

subject to

∀r ∈ R : Tr = 1↔
∑
c∈C

(Mr,c − θ) ∗ Ic ≥ 0 (4.9)

∀c ∈ C : Ic = 1↔
∑
r∈R

(Mr,c − θ) ∗ Tr ≥ 0 (4.10)

The constraints in this formalisation are similar to those used to mine frequent
itemsets in [22]. The main difference is that we also have an objective function.

Mining maximal ranked tiles using CP

Mining a single ranked tile is equivalent to finding an assignment to vectors
T, I such that T and I satisfy constraints (4.9) – (4.10) and maximise objective
function (4.8). We solve this constrained optimisation problem using constraint
programming.

Solving a problem using CP is done in two phases: 1) modelling, and 2) solving.
Equations (4.8) – (4.10) can be written down as a model in any CP solver. As
we will see, however, the problem of ranked tiling is not easy to solve, and
finding exact solutions is difficult. To allow for finding approximate solutions,
we choose the OscaR solver [87], which is an open source CP solver written

ONE MAXIMAL RANKED TILE MINING 55

in Scala. A distinguishing feature is that it provides good support for both
exhaustive and local search methods, which we will use for our approach.

When the CP solver is asked to perform exhaustive search, it essentially builds
a search tree. The key idea here is that it uses the constraints to remove
inconsistent values while searching. This removal of inconsistent values is called
propagation and can reduce the search space significantly.

Variable and value ordering heuristic. The order in which variables are
considered for branching, as well as the order in which values are assigned
to the variables, determine the shape of the search tree and the effectiveness
of constraint propagation. We use the following heuristic. We order column
variables Ic, c = 1 . . . n, by their total sum scores,

∑
r∈R(Mr,c−θ), in ascending

order. That is, variables that have lower scores will be branched on first, and
the value zero will be assigned to a variable before the value one. Using this
heuristic, CP has a higher chance to add variables having high scores to the
solution when backtracking. Consequently, CP needs less backtracks to find a
first valid assignment as variables having higher scores have higher probability
of satisfying constraint (4.10).

Large neighbourhood search. Equation (4.9) shows that vector T can be
completely determined given a complete assignment to I. Hence, the size of
the search space is O(2n), where n is the number of columns. Even taking into
account propagation, this search space is in practice often still too large to be
traversed completely and hence we use a form of local search to speed up the
search.

Large Neighbourhood Search (LNS) is a hybridization of local search and
exhaustive search in CP. Local search refers to the idea that one solution
can be transformed into another by changing the assignment of a number of
variables. While traditional local search methods only change a limited number
of variables (e.g., one variable at a time), LNS selects a relatively large subset
of the variables in a problem (e.g., a random subset of half of the variables)
and performs complete search over these variables while fixing the remaining
variables. Two main questions involved with LNS include a) which variables
should be selected to search over, and b) how to search on these variables?
In our implementation, we use stochastic variable selection and an exhaustive
search approach. The stochastic variable selection uniformly selects half of the
column variables to search over.

56 RANKED TILING

4.2.3 Maximal ranked tile mining using sRMF

The maximal ranked tile mining problem can also be studied from the matrix
factorisation perspective. Example 4.2 illustrates how the maximal ranked tile
shown in Example 4.1 can be found by using the sRMF framework.

Example 4.2 (Maximal ranked tile mining using sRMF).

M =

8 10 9 4 2 6 1 7 3 5
7 10 9 6 3 8 4 5 2 1
6 7 9 5 8 4 1 2 10 3
2 9 1 7 4 5 10 6 8 3
9 5 8 3 7 1 10 4 2 6

C =

1
1
1
0
0

 F =
(
1 1 1 0 0 0 0 0 0 0

)

This example shows a rank matrix M in which the maximal ranked tile (red
color) with a rank higher than 5 are indicated by means of two Boolean matrices;
the matrix C identifies the rows included in the tiles; the matrix F indicates the
columns.

To formalise the problem of maximal ranked tile mining as a rank matrix
factorisation problem, our first choice is to limit the set of permissible values to
{0, 1}; as a result, we only characterise the columns included in the tiles.

Next, we define the scoring function δ, defined in Definition (2.8), as follows:

δ(a, b) =
{

0 if b = 0;
a− θ otherwise.

(4.11)

Again, in this scoring function we only look at those cells of the rank matrix
covered by the tiles. Here, however, we give a higher score for a covered cell
if its rank is higher; if the rank is too low, the contribution of the cell may be
negative, which will discourage covering too many cells with low ranks.

Note that the effect of the parameter θ is the opposite of the parameter α in
Sparse sRMF: the higher we choose the value θ, the smaller will be the tiles
that will be found; the higher we choose the value α, the larger the factors we
will find.

In summary, the maximal ranked tile mining problem can be defined as follows.

Definition 4.2 (Maximal ranked tile). The maximal ranked tile mining problem
is the rank matrix factorisation problem obtained using

• the max-product semiring;

• the set of permissible values σp = {0, 1};

RANKED TILING 57

• the additive scoring function based on formula (4.11);

• k = 1.

Definition 4.2 provides another way to define the maximal ranked tile based
on the matrix factorisation principle. We will postpone how to solve the new
optimisation problem until the next section when we generalise it to the setting
in which k is greater than 1.

4.3 Ranked tiling

Till now we study how to find a single ranked tile, but we are of course interested
in finding a set of such tiles. In other words, we would like to discover a ranked
tiling. Below is an example.

Example 4.3 (Ranked tiling example).
1 2 5 4 6 3
1 2 3 4 5 6
1 3 2 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

When the threshold θ is set to 3, the matrix above has a ranked tiling consisting
of two ranked tiles: one is painted blue and the other is painted red. The part
which is painted green is the overlapping region of the two ranked tiles.

Next, we will study two approaches to tiling rank matrices: one uses CP and
the other uses the sRMF framework.

4.3.1 Ranked tiling using CP (cpRMT)

Directly solving the ranked tiling problem with k > 1 using CP is inefficient.
Note that the problem is NP-complete (see Section 4.3.3 on page 59). Hence,
we propose a greedy CP-based approach to tiling rank matrices. That is, the
first tile is found by solving the optimisation problem in Equations (4.8)–(4.10).
Next, we remove that tile by setting all cells in the matrix that are covered to
the lowest rank. Then, we search in the resulting matrix for the second tile.
This process is repeated until the number of desired tiles is found. The proposed
greedy approach above is named cpRMT, which stands for a CP-based approach
to Rank Matrix Tiling.

58 RANKED TILING

Example 4.4 illustrates how cpRMT works. Note that the ranked tiling found
by cpRMT in this example does not have any overlapping region compared to
the one shown in Example 4.3. This is due to the greedy strategy of cpRMT.
Example 4.4 (cpRMT example).

M =

1 2 5 4 6 3
1 2 3 4 5 6
1 3 2 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

 M1 =

1 2 0 0 0 0
1 2 0 0 0 0
1 3 0 0 0 0
2 3 5 6 4 1
2 3 5 6 1 4

This example illustrates how cpRMT tiles the given matrix with k = 2. First,
the maximal ranked tile (red color) is discovered. Next, the cells in that region
are set to 0. Finally, the second maximal ranked tile (blue color) is returned.
The total coverage of the discovered ranked tiling is 18.

Implementation We implemented cpRMT in OscaR [87]. The imple-
mentation is available at the following address: https://github.com/
rankmatrixfactorisation/cpRMT.

4.3.2 Ranked tiling using sRMF (mRMT)

In this section, we study how to use the max-product semiring in combination
with the sRMF framework for discovering ranked tilings. This results in a
problem instance of sRMF called Max-product Semiring Rank Matrix Tiling or
mRMT. It is formally defined as followed.
Definition 4.3 (mRMT problem). The mRMT problem is the rank matrix
factorisation problem obtained using

• the max-product semiring;

• the set of permissible values σp = {0, 1};

• the additive scoring function based on formula (4.11).

Compared to the maximal ranked tile mining problem defined in Definition 4.2,
mRMT does not have the constraint that requires k to be equal to 1. That is,
mRMT finds a ranked tiling consisting of k ≥ 1 ranked tiles.

Example 4.5 shows the result obtained by mRMT using the same rank matrix
in Example 4.4. Compared to the result produced by cpRMT in Example 4.4,
the one by mRMT has higher coverage (19 compared to 18) and contains two
overlapping ranked tiles.

https://github.com/rankmatrixfactorisation/cpRMT
https://github.com/rankmatrixfactorisation/cpRMT

RANKED TILING 59

Example 4.5 (mRMT example).

M =

1 2 5 4 6 3
1 2 3 4 5 6
1 3 2 4 5 6
2 3 5 6 4 1
2 3 5 6 1 4

C =

1 0
1 0
1 1
0 1
0 1

F =
(

0 0 1 1 1 1
0 1 1 1 0 0

)

This example shows the result when we apply mRMT to Example 4.3 with k = 2
and θ = 3. The overlapping region of the two discovered ranked tiles is painted
green. The total coverage of the discovered ranked tiling is 19.

4.3.3 Computational complexity of the mRMT problem

We will prove mRMT is NP-complete by reduction, i.e., showing that the
BMF [82] problem, which is known NP-complete, can be reduced to the mRMT
problem.

Problem 4.1 (BMF problem [82]). Given a m-by-n Boolean matrix M and
an integer k, find an m-by-k Boolean matrix B and a k-by-n Boolean matrix X
that minimises:

m∑
r=1

n∑
c=1
|Mr,c − (B ◦X)r,c|, (4.12)

where ◦ is the Boolean matrix product.

Consider the case that k = 1. Let R = {r|Br,1 = 1} and C = {c|X1,c = 1},
the BMF problem becomes the problem of discovering a noisy tile whose rows
are indexed by R and columns are indexed by C. Therefore, Equation 4.12 is
equivalent to the following:

argminR,C

∑
(r,c)∈(R,C)

|Mr,c − 1|+
∑

(r,c)/∈(R,C)

|Mr,c| (4.13)

↔argminR,C

∑
(r,c)∈(R,C)

[Mr,c = 0] +
∑

(r,c)/∈(R,C)

[Mr,c] (4.14)

where [f] = 1 if f = true; otherwise 0.

60 RANKED TILING

Equation (4.14) implies that BMF aims at finding a tile which minimises the
number of 0 within the tile and minimises the number of 1 outside the tile. This
problem is known to be NP-complete [82].

Now we show that BMF can be reduced to mRMT.

Theorem 4.3. BMF can be reduced to mRMT.

Proof. We consider a rank matrix M , which has only two rank values: 0 for
"dislike" and 1 for "like". In other words, M is a Boolean matrix. Using the
threshold θ = 0.5 and k = 1, the mRMT problem, defined in Problem 4.3, is
equivalent to the following optimisation problem:

argmax
R,C

∑
(r,c)∈(R,C)

(Mr,c − 0.5) (4.15)

↔ argmax
R,C

∑
(r,c)∈(R,C)

0.5([Mr,c = 1]− [Mr,c = 0]) (4.16)

↔ argmin
R,C

(
∑

(r,c)∈(R,C)

[Mr,c = 0])− (
∑

(r,c)∈(R,C)

[Mr,c = 1]) (4.17)

↔ argmin
R,C

(
∑

(r,c)∈(R,C)

[Mr,c = 0]) + (
∑

(r,c)/∈(R,C)

[Mr,c = 1]) (4.18)

Equation (4.18) is the same as Equation (4.14), which shows that BMF can be
reduced to mRMT.

4.3.4 mRMT factorisation is not unique

mRMT factorisation is not unique, which can be seen using the following
example.

Example 4.6 (Uniqueness of the mRMT factorisation). Given the following
rank matrix M , the threshold θ = 3 and k = 2, mRMF can return two ways
of factorising the matrix, each of which has the same scoring value, i.e., 12.
Hence mRMT factorisation is not unique.

M =

1 2 3 4 5
1 2 4 3 5
3 2 1 4 5
1 3 2 4 5

RANKED TILING 61

Factorisation 1:

C1 =

1 0
1 0
0 1
0 1

F1 =
(

0 0 1 1 1
0 0 0 1 1

)

Factorisation 2:

C2 =

1 1
1 1
0 1
0 1

F2 =
(

0 0 1 0 0
0 0 0 1 1

)

4.3.5 Solving mRMT using Integer Programming

The following theorem establishes an equivalent model for the mRMT problem
defined in Definition 4.3.
Theorem 4.4 (IP model for mRMT). Solutions to the following optimisation
model are solutions to the mRMT problem:

maximize
∑

r

∑
c

(Mr,c − θ)Ar,c (4.19)

subject to

A ∈ {0, 1}m×n (4.20)

C ∈ {0, 1}m×k (4.21)

F ∈ {0, 1}k×n (4.22)

∀r = 1 . . .m,∀c = 1 . . . n : Ar,c ≤
k∑

t=1
Cr,tFt,c (4.23)

∀r = 1 . . .m,∀c = 1 . . . n : nAr,c ≥
k∑

t=1
Cr,tFt,c (4.24)

Here, M is the given data matrix; variables A, C and F are to be found.

Proof. Let (C∗,F∗) be the optimal solution for mRMT. Using the definition
of the mRMT probem (Definition 4.3), which constrains the set of permissible
values σp = {0, 1}, we have:

62 RANKED TILING

(C∗,F∗) ≡ argmax
C,F

∑
r,c

δ(Mr,c, (C�m F)r,c) (4.25)

subject to

C ∈ {0, 1}m×k (4.26)

F ∈ {0, 1}k×n (4.27)

Replace the δ(,) function by Equation (4.11), we obtain the following equivalent
model:

(C∗,F∗) ≡ argmax
C,F

∑
r,c

Ar,c(Mr,c − θ(C�m F)r,c) (4.28)

subject to

C ∈ {0, 1}m×k (4.29)

F ∈ {0, 1}k×n (4.30)

where A is the cover matrix, i.e., Ar,c = 1 ↔ (C �m F)r,c > 0; otherwise
Ar,c = 0. In other words, A ∈ {0, 1}m×n.

As A is the cover matrix, the optimisation model can be re-written as follows:

(C∗,F∗) ≡ argmax
C,F

∑
r,c

Ar,c(Mr,c − θ(C�m F)r,c) (4.31)

subject to

C ∈ {0, 1}m×k (4.32)

F ∈ {0, 1}k×n (4.33)

A ∈ {0, 1}m×n (4.34)

Ar,c ≤
∑

t

Cr,tFt,c (4.35)

nAr,c ≥
∑

t

Cr,tFt,c (4.36)

RANKED TILING 63

Note that �m is the matrix product based on the max-product semiring and C
and F are Boolean matrices. Hence, the maximum value of (C�m F)r,c is 1.
This results in a simpler model:

(C∗,F∗) ≡
∑
r,c

(Mr,c − θ)Ar,c (4.37)

subject to

C ∈ {0, 1}m×k (4.38)

F ∈ {0, 1}k×n (4.39)

A ∈ {0, 1}m×n (4.40)

Ar,c ≤
∑

t

Cr,tFt,c (4.41)

nAr,c ≥
∑

t

Cr,tFt,c (4.42)

which concludes the proof.

Compared to Sparse mRMF (Section 3.3), this model can be solved more
efficiently as it contains a much smaller number of variables.

To solve the mRMT problem defined in Equations (4.19) –(4.24), we apply the
same EM-style algorithm that we use for Sparse pRMF and Sparse mRMF.
That is, we first initialise matrix C using k−means clustering algorithm. Then,
matrix F is optimised given matrix C, and matrix C is optimised given matrix
F, and we repeat the iterative optimisation untill the optimal score cannot be
improved any more.

Similarly to Sparse mRMF, in mRMT, each row of matrix C can be determined
independently when matrix F is given; each column of matrix F can also
determined independently when matrix C is given. Consequently, we can
develop a parallel implementation to solve the optimisation problem for mRMT
by distributing it over multiple cores.

Implementation To implement our system, we also relied on the OscaR
system [87] as we did for Sparse pRMF and Sparse mRMF. The im-
plementation is available at the following address: https://github.com/
rankmatrixfactorisation/mRMT.

https://github.com/ rankmatrixfactorisation/mRMT
https://github.com/ rankmatrixfactorisation/mRMT

64 RANKED TILING

-5 0 5 9

Color key

(a) Numerical data (1000 × 100)

Color key

20 60 100

(b) Rank matrix (1000 × 100)

Figure 4.2: Recovering five implanted ranked tiles from the first set of synthetic data.
Figure 4.6a shows the part of the matrix covered by mRMT (k = 5, θ = 60%). Figure
4.6b shows the reconstructed matrix obtained by Sparse mRMF (k = 5, α = 20%).

4.4 Experiments with synthetic data

We experiment on two sets of synthetic datasets to 1) evaluate the algorithms
and 2) compare the patterns that the proposed algorithms for ranked tiling and
Sparse RMF can discover. The first set of data is synthetic data with implanted
ranked tiles, i.e., the absolute ranks rather than the orders of the columns of the
implanted tiles matter. It is mainly used to demonstrate the capabilities of the
ranked tiling algorithms, including its suitability for data having incomparable
rows. We will use the second set of data to study the behaviours of the proposed
algorithms on the data with implanted order-preserving patterns.

4.4.1 Synthetic data with implanted ranked tiles

For the first set of experiments we use synthetic data with incomparable rows,
i.e., rows having different scales, to show that the ranked tiling algorithms
(cpRMT and mRMT) find the relevant patterns in such data while bi-clustering
methods do not. Since bi-clustering methods work on numeric data, we use a
simple generative model to generate continuous data. This numeric data is then
transformed to a rank matrix to apply mRMT. For bi-clustering, we choose the
constant-row setting, as there are many bi-clustering algorithms designed for
this type of pattern and it is conceptually close to mRMT.

Data generation [69]. To generate synthetic datasets, we first generate
background data, and then implant a number of constant-row bi-clusters with
higher average values.

EXPERIMENTS WITH SYNTHETIC DATA 65

The values within each row are sampled, with a certain probability, from one of
two distributions: one that represents background noise and one that is likely
to interfere with the implanted patterns. First, for each row r, we uniformly
sample µ1

r, µ
2
r from two ranges:

µ1
r ∼ U(0, 3),∀r ∈ R (4.43)

µ2
r ∼ U(3, 5),∀r ∈ R (4.44)

Second, for every cell in a row, indicated by row r and column c, we sample a
latent binary variable Xr,c from a Bernoulli distribution Bin(p, 1 − p), given
some p. Depending on the value of this latent variable, the data is sampled
from either the low-average or high-average distribution:

Dr,c ∼
{
N(µ1

r, 1) if Xr,c = 1
N(µ2

r, 1) otherwise (4.45)

To plant a constant-row bi-cluster in a submatrix DR,C , specified by R and C,
we use the following two equations:

∀r ∈ R, µr ∼ U(3, 5) (4.46)

∀r ∈ R, Dr,c ∼ N(µr, 1) (4.47)

Equation 4.46 is used to sample a mean for every row in a bi-cluster. This mean
is uniformly sampled from the range [3 . . . 5], which is higher than the sampling
range used for the background ([0 . . . 3]).

Using this procedure we generated seven 1000 rows× 100 columns datasets, one
for each p ∈ {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. We implanted five ranked
tiles in each dataset. Figure 4.2a depicts the numerical dataset for p = 10%,
Figure 4.2b depicts its corresponding rank matrix.

Performance gain by adding redundant constraints for cpRMT. To
evaluate how the redundant constraints affect the time needed for search, we
compare the runtime of the optimisation model in Equation 4.1, which does not
have any constraints, to the runtime of the constraint-based model shown in
Equations (4.8)–(4.10). To make the comparison fair, we perform exhaustive
search in both cases.

To this aim, we generate a number of datasets with varying sizes using the
procedure described above. All datasets have the same number of columns,
i.e. 20, and a varying number of rows: {100, 200, 300, 400, 500, 600}, with
p = 0.1. They have the same two non-overlapping tiles: one is 10× 5 and the
other is 30× 10. We execute the mentioned models on these datasets to find

66 RANKED TILING

2000 4000 6000 8000 10000 12000

80
10

0
12

0
14

0
16

0
18

0
20

0
22

0

Matrix size

T
im

e
ra

tio
 (

%
)

Threshold = 50%
Threshold = 60%
Threshold = 70%
Threshold = 80%

Figure 4.3: cpRMT reduces the solving time by adding the two redundant
constraints. The y-axis indicates the ratio between the runtime needed with
and without the constraints, and is computed for varying threshold θ values
and matrix sizes.

the maximal ranked tile. All experiments are executed single threaded on a
desktop computer (Intel i7-2600 CPU @ 3.40GHz, 16GB RAM).

Figure 4.3 shows the ratio between the time needed to solve the problem
with and without the extra constraints, for varying θ thresholds. We can
see that adding the extra constraints reduces the search time when θ > 50%.
In particular for larger datasets and values of the threshold, the model with
the added constraints always outperforms the optimisation-only model. This
demonstrates that adding the constraints results in better propagation and
hence more efficient search. The absolute time needed to find the optimal
solution on these datasets ranges from 1ms to 4h 37m 26s.

Accuracy of the tiles found by cpRMT. We now evaluate the ability of the
algorithm to recover the implanted ranked tiles. We do this by measuring recall
and precision, using the implanted tiles as ground truth. Overall performance
is quantified by the F1 measure, which is the average of the two scores.

We varied the threshold θ; for each value of θ and each dataset, we performed
ranked tiling five times, each time mining k = 5 tiles. Then, we calculated
average precision, recall and F1 score over these five runs. Figure 4.4 summarises
the results obtained with and without using the variable ordering heuristic
(see Section 4.2.2). It can be seen that the heuristic contributes to improved
performance. When the threshold θ is around 60%, the algorithm achieves

EXPERIMENTS WITH SYNTHETIC DATA 67

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

0.00

0.25

0.50

0.75

1.00

50 60 70 80

q

q

q

q

θ (%)

S
co

re
 v

al
u
e

Precision

Recall

Using heuristic

Not using heuristic

Precision

Recall

Figure 4.4: Sensitivity analysis for cpRMT on the data with implanted tiles.

high prediction accuracy (average F1 = 86%). At lower thresholds, it has
low precision, while higher thresholds result in lower recall. This completely
matches our expectation, since higher thresholds result in smaller tiles with
higher values.

Accuracy of the tiles found by mRMT. We also evaluate mRMT by
measuring the precision and recall scores reflecting how it can recover the
implanted tiles as we do for cpRMT.

We varied the threshold θ and ran mRMT to factorise the rank matrix (k = 5)
10 times for each combination of θ and dataset. Then, the result that had
the highest score was used to calculate the average precision, recall and F1
score over these combinations. Figure 4.5a summarises the results. When θ
is around 60%, the algorithm achieves high accuracy (average F1 = 88%). At
lower thresholds precision is low, while higher thresholds result in lower recall.
This matches our expectation, as higher thresholds result in smaller tiles with
higher values; this is also shown in Figure 4.5b, where the higher thresholds
result in lower coverage (thus lower recall).

Table 4.1 shows that the results obtained by mRMT are comparable to those
obtained by cpRMT. This demonstrates that mRMT, the approach developed
later, behaves properly.

Comparison to Sparse mRMF. To contrast the ranked tiling and Sparse
RMF patterns that both mRMT and Sparse mRMF can discover, we also ran
Sparse mRMF on the generated datasets. Figure 4.6b shows the reconstructed

68 RANKED TILING

●

●

●

●
● ●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

50% 60% 70% 80%

●

●

Precision
Recall

θ

(a) Precision and recall

●

●

●

●

●

●

●

●

● ●
●

●
●

●

0.1

0.2

0.3

0.4

50% 60% 70% 80%
θ

●
●
Coverage
Error

(b) Coverage and error

Figure 4.5: Sensitivity analysis for mRMT on the synthetic data with implanted tiles.

Color key

0 1

(a) mRMT

20 60 100

(b) Sparse mRMF

Figure 4.6: Recovering five implanted ranked tiles from the first set of synthetic data.
Figure 4.6a shows the part of the matrix covered by mRMT (k = 5, θ = 60%). Figure
4.6b shows the reconstructed matrix obtained by Sparse mRMF (k = 5, α = 20%).

matrix produced by Sparse mRMF (k = 5, α = 20%) on the rank matrix
generated with p = 0.2. It can be seen that the result produced by Sparse
mRMF includes regions having low rank values (indicated in blue) instead of
only focusing on the regions having high ranks (in red). As a result, its recall
and precision are relatively low, which can also be seen in Figure 4.7. This
confirms that the two algorithms discover different types of rank patterns.

Comparison to bi-clustering. In the next experiment, we compare our
approach to several bi-clustering algorithms. SAMBA [114] was designed for

EXPERIMENTS WITH SYNTHETIC DATA 69

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

10% 15% 20% 25% 30%
α

●

●

Precision
Recall

Figure 4.7: Sensitivity analysis for cpRMT on the synthetic data with implanted
tiles.

coherent evolution bi-clusters, in which there is coherence of the signs of values,
i.e., up or down. The other methods discover coherent-valued bi-clusters, of
which a constant-row bi-clusters are a special case. CC [15], Spectral [62], and
Plaid [122] are available in the R biclust2 package. FABIA3 [48] and SAMBA4

were downloaded from their respective websites. ISA [52] is from the R isa2
package5.

Since large noise levels make the recovery task hard for any algorithm, we use
one of the previously generated datasets with average noise level, i.e., p = 0.20.
We ran all algorithms on this dataset and took the first five tiles/bi-clusters
they produced. For most of the benchmarked algorithms, we used their default
parameter values. For CoreNode, we used msr = 1.0 and overlap = 0.5,
as preliminary experiments showed that this combination produced the best
result. For ISA, we applied its built-in normalisation method before running
the algorithm.

The results in Table 4.1 show that our algorithm achieves much higher precision
and recall than the bi-clustering methods, which were run on the original data.
This indicates that when the rows in a numerical matrix are incomparable,
converting the data to a ranked matrix and applying mRMT is a better solution
than applying bi-clustering.

2http://cran.r-project.org/web/packages/biclust/
3http://www.bioinf.jku.at/software/fabia/fabia.html
4http://acgt.cs.tau.ac.il/expander/
5http://cran.r-project.org/web/packages/isa2/

http://cran.r-project.org/web/packages/biclust/
http://www.bioinf.jku.at/software/fabia/fabia.html
http://acgt.cs.tau.ac.il/expander/
http://cran.r-project.org/web/packages/isa2/

70 RANKED TILING

Table 4.1: Comparison of cpRMT, mRMT, Sparse mRMF, and bi-clustering
methods. Precision, recall and F1 quantify how accurately the methods recover
the 5 implanted tiles. k = 5.

Algorithm Data type Pattern Precision Recall F1
mRMT Ranks Ranked tile 95% 81% 88%
cpRMT Ranks Ranked tile 88% 83% 86%
Sparse mRMF Ranks Sparse rank profile 70% 70% 70%
CoreNode [121] Numerical Coherent values bicluster 43% 72% 58%
FABIA [48] Numerical Coherent values bicluster 40% 24% 32%
Plaid [122] Numerical Coherent values bicluster 90% 6% 48%
SAMBA [114] Numerical Coherent evolution bicluster 67% 3% 35%
ISA [52] Numerical Coherent values bicluster 64% 44% 54%
CC [15] Numerical Coherent values bicluster 35% 22% 29%
Spectral [62] Numerical Coherent values bicluster - - -

Color key

100 300

(a) Rank data (1000 × 400)

Color key

0 1

(b) mRMT

Figure 4.8: Recovering three implanted rank profiles from the synthetic data with
implanted orders. Figure 4.8a shows the data (w = 20). Figure 4.8b is obtained by
mRMT with k = 3, θ = 60%.

4.4.2 Synthetic data with implanted orders

In the second set of experiments, we evaluate the capability of mRMT to recover
consistent rankings of a subset of columns in a subset of rows. Hence, for this
we use the ranked data with implanted orders that we described in Section 3.7.

Accuracy of the recovered tiles by mRMT. Figure 4.8b displays the
regions covered by the best result produced by mRMT (on the synthetic data
shown in Figure 4.8a). It can be seen that these regions contain the high ranks
of the implanted patterns. In other words, mRMT only partially recovers the

REAL WORLD CASE STUDIES 71

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

50% 60% 70% 80%
θ

●

●

Precision
Recall

Figure 4.9: Sensitivity analysis for mRMT on the synthetic data with implanted
orders.

reference rank profiles, which explains the low recall in Figure 4.9. This is in
contrast to the result obtained by Sparse mRMF (Figure 3.1b on page 39), where
the implanted rank profiles could be fully recovered. Hence, this experiment
again confirms our expectations that Sparse mRMF and mRMT were designed
for different types of rank patterns.

Comparision to tiling. We did not compare mRMT/cpRMT with tiling [37]
in the experiments with the synthetic datasets discussed above. In general, we
can binarise a rank matrix and transform it into a Boolean matrix using the
user-defined threshold value θ, i.e., cell values that are greater than θ become
1; otherwise 0. However, the tiling model proposed in [37] is not fault-tolerant
with noise. That is, it requires each tile to be full of 1s. In constrast, our ranked
tiling is tolerant with noise. In other words, a rank tile can have cells of which
values are less than θ as long as the average values of the rows/columns of the
tile are greater than θ.

4.5 Real world case studies

In this section we report on three real world case studies concerning the European
Song Festival, breast cancer subtypes, and sushi consumption.

72 RANKED TILING

4.5.1 European Song Festival dataset

We used the European Song Contest (ESC) dataset that was collected for the
period 2010–2013 and described in Section 3.8.1.

We applied mRMT on the ESC dataset with varying threshold values and then
analysed the obtained coverage and error per covered cells to empirically select
the best thresholds.

We use the same parameter selection procedure as for Sparse mRMF (see
Section 3.8.1. Figure 4.10a depicts average coverage and error scores obtained
by mRMT with varying θ values. We choose θ = 80% as both coverage and
error decrease slowly beyond that point. Similarly, we choose k = 10 based on
Figure 4.10b.

The heatmap of the covered matrix by mRMT are shown in Figures 4.11b.
Compared to the original rank matrix in Figure 4.11a, the heatmap shows that
the method strongly sparsified the original rank matrix. Compared to the rank
profiles produced by Sparse mRMF (Figure 3.5), which contains both high and
low ranks, the ones produced by mRMT only indicate the places where high
ranks appear, as expected.

We visualise two rank profiles produced by mRMT in Figure 4.12. They show
the typical voting behaviour of Western European countries towards Nordic
countries (Figure 4.12b), and that of Eastern European countries toward some
other countries (Figure 4.12a). For example, countries in Eastern Europe tend
to give higher scores to Russia and Nordic countries than to other countries.

We do not present a comparison for mRMT and cpRMT in this case study as
we can see from the experiments in Section 4.4.1 that the two methods typically
have similar behaviours on small datasets. In the next sub-section, where we
will study a much larger dataset, we will compare mRMT with cpRMT.

4.5.2 Discovering breast cancer subtypes

Breast cancer is known to be a heterogeneous disease that can be categorised in
clinical and molecular subtypes [117]. Assignment of patients to such subtypes
is crucial to give adapted treatments to patients. The increasing availability of
tumor related molecular data provides the opportunity to look at the molecular
mechanisms that drive carcinogenesis at different angles. Computational models
have been proposed to integrate multiple data types and discover cancer subtypes
[84, 130], but these integrative subtyping methods do not explicitly extract the
subtype-specific features. The goal of this case study is to demonstrate that:

REAL WORLD CASE STUDIES 73

●

●

●

●

●

●
●

● ●
●

●
● ●

● ●
● ●

●

●

●

● ●
●

● ● ●0.0

0.1

0.2

0.3

0.4

60% 70% 80% 90%
θ

●
●
Coverage
Error

(a) mRMT

●
● ●

●
● ● ● ●

0.0

0.1

0.2

0.3

0.4

6 8 10 12
k

C
ov
er
a
ge

(b) mRMT

Figure 4.10: Parameter tuning for mRMT on the European Song Festival dataset.

os
ni

a.
an

d.
H

er
z.

Al
ba

ni
a

Be
lg

iu
m

Fi
nl

an
d

N
et

he
rla

nd
s

Sl
ov

en
ia

Sw
itz

er
la

nd
U

ni
te

d.
Ki

ng
do

m
Is

ra
el

N
or

wa
y

D
en

m
ar

k
Sw

ed
en

G
re

ec
e

R
us

si
a

Au
st

ria
M

ac
ed

on
ia

Po
rtu

ga
l

H
un

ga
ry

Be
la

ru
s

C
yp

ru
s

Ic
el

an
d

Es
to

ni
a

Az
er

ba
ija

n
G

eo
rg

ia
Li

th
ua

ni
a

Ita
ly

M
ol

do
va

Se
rb

ia
Ar

m
en

ia
Fr

an
ce

R
om

an
ia

Ire
la

nd
Sp

ai
n

M
al

ta
U

kr
ai

ne
Tu

rk
ey

G
er

m
an

y

Armenia
Azerbaijan
Belarus
Moldova
Spain
Ukraine
Belgium
Cyprus
Ireland
Israel
Lithuania
Portugal
Romania
Russia
San Marino
Denmark
Hungary
Iceland
Latvia
Malta
Poland
Albania
Bosnia and Her
Bulgaria
Croatia
Georgia
Montenegro
Turkey
Austria
Finland
France
Germany
Netherlands
Norway
Switzerland
Greece
Macedonia
Slovenia
Estonia
Slovakia
Serbia
United Kingdom
Italy
Sweden

1 10 22 370

(a) Rank data

Pr
of

ile
 1

Pr
of

ile
 2

Pr
of

ile
 3

Pr
of

ile
 4

Pr
of

ile
 5

Pr
of

ile
 6

Pr
of

ile
 7

Pr
of

ile
 8

Pr
of

ile
 9

Pr
of

ile
 1

0

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6
Profile 7
Profile 8
Profile 9

Profile 10

sn
ia

.a
nd

.H
er

z.
Al

ba
ni

a
Be

lg
iu

m
Fi

nl
an

d
N

et
he

rla
nd

s
Sl

ov
en

ia
Sw

itz
er

la
nd

ni
te

d.
Ki

ng
do

m
Is

ra
el

N
or

wa
y

D
en

m
ar

k
Sw

ed
en

G
re

ec
e

R
us

si
a

Au
st

ria
M

ac
ed

on
ia

Po
rtu

ga
l

H
un

ga
ry

Be
la

ru
s

C
yp

ru
s

Ic
el

an
d

Es
to

ni
a

Az
er

ba
ija

n
G

eo
rg

ia
Li

th
ua

ni
a

Ita
ly

M
ol

do
va

Se
rb

ia
Ar

m
en

ia
Fr

an
ce

R
om

an
ia

Ire
la

nd
Sp

ai
n

M
al

ta
U

kr
ai

ne
Tu

rk
ey

G
er

m
an

y

Armenia
Azerbaijan
Belarus
Moldova
Spain
Ukraine
Belgium
Cyprus
Ireland
Israel
Lithuania
Portugal
Romania
Russia
San Marino
Denmark
Hungary
Iceland
Latvia
Malta
Poland
Albania
Bosnia and Herz
Bulgaria
Croatia
Georgia
Montenegro
Turkey
Austria
Finland
France
Germany
Netherlands
Norway
Switzerland
Greece
Macedonia
Slovenia
Estonia
Slovakia
Serbia
United Kingdom
Italy
Sweden

(b) The part of the data covered by mRMT

Figure 4.11: EU Song Festival results show how mRMT focuses on specific structure
and hence sparsifies the data. In Figure 4.11b, "red" is 1 and "white" is 0.

1) we can integrate multiple data types that are inherently incomparable but
can be compared when transformed to ranked data; 2) we can simultaneously
discover breast cancer subtypes and their subtype-specific features.

The case study we present here concerns a simplified setting of the one presented
in the next chapter. We here only consider a single, integrated ranked matrix
and focus on evaluating mRMT.

74 RANKED TILING

Competitors
Voters

(a) Tile 8 (mRMT)

Competitors
Voters

(b) Tile 7 (mRMT)

Figure 4.12: Rank patterns discovered on the ESC dataset by mRMT. Voting
countries are painted in dark colors and competing countries are painted in light
colors.

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

0.0

0.1

0.2

0.4

60%

●
●
Coverage

θ

0.3

70% 80% 90%

Error

(a)

●
●

● ● ●
● ● ●

0.0

0.1

0.2

0.3

0.4

6 8 10 12
k

C
ov
er
a
ge

(b) θ = 65%

Figure 4.13: Parameter tuning on breast cancer dataset.

Data pre-processing. We use the well-studied TCGA breast cancer dataset
[117], which provides the following four data types for the same set of samples
(patients): mRNA measured by microarray technology, microRNA measured by
RNA-Seq, proteins, and copy number variations (CNV).

We first selected all the tumour samples that have measurements at the four
molecular levels, which resulted in 363 samples. Second, we filtered mRNA and
microRNAs as in our previous study [69]. That is, we selected genes based on
their differential expression relative to normal (non-tumour) samples. For each
gene, a normal distribution was fitted using the normal expression samples,
and z-scores were calculated for the tumour samples. We evaluated the 5- and

REAL WORLD CASE STUDIES 75

mRNA

miRNA

Protein

CNV

PAM50
PAM50

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Figure 4.14: sRMT on heterogeneous breast cancer data. The rows correspond
to mRNA, miRNA, protein and CNV levels, the columns correspond to breast
cancer samples. High expression numeric values are represented by red, low
numeric expression by blue. The left and upper color bars indicate the tiles.
PAM50 subtypes are indicated at the top (LuminalA=blue, LuminalB=light
blue, Basal=red and HER2=pink).

95-percentile of the tumour samples. Genes in which the p-value for these
percentiles was below 0.001 and their log-fold change relative to the mean
normal expression was at least 2.5 were selected. The filtering step resulted in
1761 mRNAs out of 17814 mRNAs and 138 microRNAs out of 1222 microRNAs.
Third, we used all the protein data (131 proteins), which were post-processed
by the UCSC genome browser [40]. Finally, copy number regions (82 in total)
were identified with GISTIC tool [81], of which the analysis result was provided
together with the TCGA paper [117]. Finally, each data level was converted to
ranks and combined into a single rank matrix consisting of 2112 rows and 363
columns.

Running experiments. As it is our aim to discover cancer subtypes consisting
of a number of tumor samples having consistently similar expression patterns,

76 RANKED TILING

Sparse mRMF is not suitable for this type of application. Hence, for this case
study we restrict ourselves to mRMT.

We ran the parallel implementation of the mRMT method on the TCGA
breast cancer dataset with varying values for the threshold θ and k, i.e., θ ∈
{55%, 60%, . . . , 90%} and k ∈ {5, . . . , 16}. For each combination of the two
parameters, we ran the algorithm 100 times and took the best result. Figure
4.13a shows the coverage and error scores obtained by the algorithm with
varying θ, from which we can infer that there is no clear cut to choose θ in this
case. In general, the higher the threshold value, the lower the error and the
coverage. To trade off the coverage and the error, we chose θ = 65%. Given
the selected θ, we next had to decide the value for k. We plotted the coverage
score w.r.t k (Figure 4.13b) and then decided to stop at k = 10 as we found the
coverage score to increase only very slowly after that point.

With θ = 65% and k = 10, the average running time for one run is 432s on
a desktop computer (Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 8 threads,
16GB RAM). With the chosen parameter values, the algorithm produces 10
overlapping ranked tiles. Though the overlap structure can be useful to study
the similarity among the discovered subtypes, for practical reasons we decided
to choose a simple interpretation in which each sample is assigned to a single
subtype. With this aim, we developed a post-processing step in which each
sample belonging to multiple subtypes according to the mRMT method is
assigned to the subtype giving the highest rank score in Equation (4.1). Figure
5.4 shows the result obtained using this procedure.

Subtype analysis. First, we observe that most discovered subtypes comprise
all four types of features. The exceptions are subtypes S1, S3, S5 and S7, which
have mRNA, miRNA and protein features but lack CNVs. Further, Figure 5.4
shows that the selected features of the identified subtypes are typically "red",
i.e., highly over-expressed, as one would expect when using mRMT.

Next, we test to what extent the discovered subtypes agree with known clinical
information. In particular, we compare to the PAM50 annotation [89], which
classifies breast cancer patients into four subtypes, Luminal A, Luminal B,
Basal and Her2, using the expression of 50 mRNAs. Figure 4.15 shows that our
approach does not only match the PAM50 classification to a large extent, it
also further refines known subtypes. For example, our approach recovered the
Basal subtype in subtype S4; recovered the Her2 subtype in subtype S9 and
sub-divided the Lumial A subtype into four smaller groups, namely, subtype
S2, S3, S5 and S10.

Comparison with cpRMT. We next compare mRMT with cpRMT. For
a fair comparison, we ran cpRMT 100 times, repeating large neighbourhood

REAL WORLD CASE STUDIES 77

Basal
Her2
LumA
LumB
Normal

0%

25%

50%

75%

100%

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PAM50

Figure 4.15: Percentages of PAM50 samples in the subtypes discovered in the
breast cancer data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 12k

Coverage
Error

Methods
●

CP

Scores

RMF

0.3

0.2

0.1

0.0

16

Figure 4.16: Comparing mRMT with cpRMT on the breast cancer dataset. In both
cases, θ was set to 65%.

search (LNS) as many times as repeating mRMT procedure. Figure 4.16 shows
that mRMT obtains higher coverage and lower error scores than cpRMT. This
matches with our expectation as mRMT implementation employs a global
optimisation procedure, whereas cpRMT uses a greedy approach, i.e., it finds
one ‘maximal’ ranked tile, removes it, and proceeds to find the next one.

78 RANKED TILING

Figure 4.17: Sushi preference patterns found by mRMT. The bottom row below the
heatmap, indicated by #, shows the number of users having the corresponding rank
profile.

Overall, we conclude that mRMT can identify cancer subtypes and their features
from several data types by searching for patterns in ranked data.

4.5.3 The Sushi dataset

We used the Sushi dataset [54] described in Section 3.8.2 to mainly demonstrate
the patterns produced by mRMT and Sparse mRMF.

We ran mRMT on this dataset θ = 65% to select subjectively high rank values
and k = 8 as in Sparse mRMF (Section 3.8.2). Figure 4.17 shows the eight rank
profiles found by mRMT. In general, we also observe similar rank patterns (but
only in the high ranks) as we do for Sparse mRMF (Figure 3.6). For example,
we also see there is a group of customers highly preferring light sushi types, such
as ebi, and ika, as shown in the rank profile F5. In constrast, the third rank
profile F3 maintains that there exists a group of customers who have completely
an opposite taste, preferring anago, which is a type of seasoning sushi.

4.6 Discussion

We discuss possible effects when we apply different methods in combination
with different semirings and data types for solving the ranked tiling problem.

DISCUSSION 79

Method Semiring Data Comments
NMF Plus-product Numeric data Cannot directly discover ranked

tiles. By using a post-
processing step to threshold
on both matrices in the fac-
torisation, ranked tiles can be
discovered with datasets having
comparable rows; might not be
possible with datasets having
incomparable rows.

NMF Plus-product Rank data Cannot directly discover ranked
tiles. By thresholding on both
matrices in the factorisation,
ranked tiles can be discovered;
might not work with overlap-
ping tiles.

sRMF Max-product Rank data Designed to discover overlap-
ping ranked tiles.

sRMF Min-product Rank data Only discover the overlapping
parts of ranked tiles.

sRMF Plus-product Rank data The overlapping parts will be
penalised; Discover ranked tiles
with less overlapping.

Table 4.2: Comparision of methods in combination with different semirings and
data types for solving the ranked tiling problem.

Table 4.2 summarises the comparison.

First, we discuss whether NMF [71] can discover ranked tiles using numeric
data and its corresponding rank data version. In principle, NMF cannot directly
discover ranked tiles in both numeric data and rank data for the same reason
we discussed in Section 3.10 on page 46. However, in some cases, we can apply
a post-processing step, which thresholds the values of both factorised matrices
in the factorisation, to discover ranked tiles. With numeric data, finding a right
threshold value will be certainly challenging when datasets have incomparable
rows as the data are multimodal. With rank data, finding a right threshold
value is easier. Yet, NMF might not be able to fully deal with overlapping
ranked tiles as NMF uses the plus-product semiring (see Sparse pRMF and
Spare mRMF in Chapter 3).

Second, our sRMF framework is quite sensitive to the type of semiring used in

80 RANKED TILING

this case. For example, using the max-product semiring, the sRMF framework
can discover overlapping ranked tiles as expected. However, if we use the
min-product semiring, we just obtain the overlapping parts of the ranked tiles.

4.7 Conclusions

In this chapter, we study ranked tiling, which is a set of data regions that have
high ranks. Experiments on real data show that this type of pattern is useful
and can lead to the discovery novel insights in heterogeneous data.

We study two different approaches to modelling and discovering ranked tilings:
cpRMT based on constraint programming and mRMT based on the max-product
semiring rank matrix factorisation. mRMT is more scalable and accurate than
cpRMT, particularly in large datasets, as mRMT has a parallel implementation
and employs a global optimisation procedure.

In the next chapter, we study another setting for ranked tiling, in which the
ranked tiles are constrained on multiple views (matrices). This setting helps us
to integrate multiple molecular data, including mutation data, gene expression
data and biological networks, to simultaneously discover cancer subtypes and
subtype specific features.

Chapter 5

Simultaneous Discovery of
Cancer Subtypes and Subtype
Features using sRMF

This chapter1 presents the third instantiation of the sRMF framework to mine
rank pattern sets in rank data. At a high level, we study the ranked tiling
problem in a multi-view setting [111, 134, 130, 84, 93], in which two ranked
tiles residing in two different rank matrices are coupled through the same subset
of the columns. This problem originates from a study on the development of an
integrative model that could use both genotype information, such as mutation
data, and molecular phenotype data, such as gene expression data, to cluster
tumour samples into biologically meaningful groups called cancer subtypes.

Molecular subtypes are defined as groups of samples that have a similar molecular
mechanism at the origin of the carcinogenesis. The molecular mechanisms are
reflected by subtype-specific mutational and expression features. Data-driven
subtyping is a complex problem as subtyping and identifying the molecular
mechanisms that drive carcinogenesis are confounded problems. Many current
integrative subtyping methods use global mutational and/or expression tumour
profiles to group tumour samples in subtypes but do not explicitly extract the
subtype-specific features. We therefore present a method that solves both tasks
of subtyping and identification of subtype-specific features simultaneously.

1Based on the journal paper "Simultaneous discovery of cancer subtype and subtype
features by molecular data integration" [67]

81

82 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

5.1 Introduction

As cancer is a heterogeneous disease, subtyping cancer is key to an improved
and more personalised prognosis and treatment. With cancer genomes,
transcriptomes, and epigenomes becoming increasingly available, one of the
major challenges in cancer research is to use these molecular data to define
clinically or biologically meaningful subtypes.

Successful seminal research on cancer subtyping aimed at grouping patients
based on similarities in their molecular profiles (gene expression) or extracting
expression derived features to optimally classify patients according to clinically
relevant phenotypes [91, 107, 83, 120].

With the availability of NGS data, charting cancer genomes, transcriptomes and
even epigenomes offers the opportunity to refine subtyping by taking into account
not only the molecular phenotypes (expression) but also likely driver events
(mutations, CNVs, methylations) that are at the origin of the tumorigenesis
[126].

Several efforts have been taken to integrate these different molecular data in
order to extract relevant subtypes, for instance [138] and [19] relied mainly on
combining copy number and expression data to define subtypes, whereas the
more generic models of [84], [130] and [109] use next to expression and CNV
also mutation and methylation data.

The problem of these early approaches, which aim at clustering samples based
on shared CNV and mutational profiles, is that they overlook one of the major
properties of tumorigenesis: its clonality. By directly using copy number
alterations to discriminate between samples they ignore the fact that CNVs
are prevalent in cancerous cells and that many CNVs are passenger events, not
involved in driving the phenotype (> 70%) [139, 97]. Using passenger events
to group patients might blur the true sample grouping in the data as driving
events are rare compared to passenger events.

The same goes for the sample grouping based on shared somatic mutational
profiles. Doing this implicitly assumes that true driving somatic mutations
are frequent across tumour samples, which is because of the clonality of the
carcinogenesis not necessarily true. Because they evolve independently, tumors
can trigger the same driver pathways through mutations in different genes. By
focusing only on frequent alterations, rare events that are very characteristic
for a subtype are ignored. In addition, if similarities between tumour samples
are scored using the raw mutation data, results are mainly driven by the dense
data, such as copy number and gene expression with a negligible contribution
from the mutation data.

INTRODUCTION 83

The most advanced state-of-the-art integrative methods for cancer analysis do
take into account the clonal properties of cancer by searching for mutational
consistency at pathway level rather than at the individual gene level. They do
so by exploiting the connectivity of mutations occurring across different tumour
samples on an interaction network. An interaction network here consists of a
comprehensive compilation of all molecular interaction information, available
on an organism of interest; the network is represented as a graph in which the
nodes correspond to genes and the edges to interactions between the genes.
Mutations that are recurrently affecting sets of genes that are closely connected
on the interaction network are identified as drivers [72, 125, 21]. [49] successfully
applied this strategy to use mutation data for subtyping.

Here we introduce a novel analysis framework that combines CNVs and mutation
data with an expression phenotype to identify subtypes while considering
mutational consistency at a pathway level. Because identifying subtypes and
defining the molecular mechanisms (driver pathways) that drive cancer are
confounded (a subtype depends on the molecular mechanism but the molecular
mechanisms that one can identify also depends on how patients are grouped),
our method performs the two tasks simultaneously.

Our method includes two main steps:

1. Find a set of driver pathways, which are assumed to be the molecular
origins of the disease. Each driver pathway is a set of mutated genes that
are closely connected in a biological network and that are recurrently
mutated in a number of samples. In addition, the driver pathway is
correlated with the abberant expression of a subset of the expressed genes
in those samples. We formally define the driver pathway concept using
two ranked tiles, one for the mutated genes of the driver pathway and
the other for the abberantly expressed genes, that are coupled through a
subset of the tumour samples. For the sake of simple reference, we call
the two ranked tiles rank factor. The task of finding k driver pathways or
rank factors is formulated using the sRMF framework.

2. Derive cancer subtypes from the discovered driver pathways. Each subtype
is a group of samples that have a unique combination of driver pathways.

We extensively tested the performance of our method on simulated data.
Comparing our method with other state-of-the-arts on the well-studied TCGA
breast cancer dataset shows how our method is able to grasp the most prominent
signatures in the data that are also retrieved by other methods, but also how it
is able to capture subtle differences that are missed by methods that compare
samples based on global profiles of similarities.

84 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

5.2 The SRF algorithm

In the following we develop an instance of the sRMF framework that can
combine three different data types, i.e., transcription data, mutation data, and
prior knowledge encoded in a biological interaction network, to discover cancer
subtypes. This model links the genomic variants of the subtypes in the genome,
i.e., the different causes of cancer [126], with the phenotypes observed in the
transcription data.

Combining these data types is particularly challenging because they are in
different measurement scales: mutation data is Boolean, transcription data such
as microarray and RNASeq data is typically numeric, and biological networks
are discrete structures. To be able to jointly analyse this heterogeneous data,
we transform them to ranked data. That is, we turn mutation data and the
biological network into a rank matrix, in which each column (patient) contains
rankings of the potential contributions to the disease of mutated genes w.r.t.
a network model. This transformation allows us to search for pathway level
consistency across the tumour samples. In this way, not only genes that are
mutated will receive high relevance scores, but also genes that are close to the
mutated genes in the network. Identifying groups of patients with a consistent
mutation profile in this transformed matrix allows searching for mutational
consistency at the pathway level (Hofree et al., 2013) and accounts for the
clonality of carcinogenesis. Similarly, we turn the transcription data into a
second rank matrix. Transforming the expression and mutation matrix to rank
matrices is key to removing the scale differences.

A subtype is subsequently defined as a set of tumour samples that share
a similar molecular origin of their disease, i.e., a driver pathway where the
driver mutations occur. The effect of a mutated driver pathway is assumed
to be reflected in the expression phenotype, consistently down- or upregulated
compared to the reference, of a subset of the genes downstream in those samples.
Hence, selected genes in the expression data and selected mutations in the
mutation data of the samples in a subtype can be different.

Detecting a subtype is formalised as a multi-view ranked tiling problem in
which one wants to search for a subset of patients that share both a similar
set of driver mutations and a subset of consistently differentially expressed
genes; given that the clonal phenotypes in cancer are affected in the same driver
pathways, this assumption is reasonable. This clustering problem is solved
by applying the sRMF framework (Chapter 2) to jointly factorise the ranked
mutation and expression matrices into a number of ranked factors, each of which
consists of two ranked tiles (Chapter 4). Conceptually, each resulting factor
consists of a subset of samples associated to a subset of expression and mutation

THE SRF ALGORITHM 85

E. Rank genes via network diffusion B. Ranked diffusion matrix D

M12

M4

M2

M7

M1

M3

M6

M8

M11 M10

M5

M9

+ Diffusion Rank

A. Mutation matrix M

C. Numeric expression matrix D. Ranked expression matrix E

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

E1

E2

E3

E4

E5 0.3 −0.1 0.1 −0.7 0.2 −2.1 0.4 0.7 1.7 2.1

−0.6−0.8−1.5 0.1 −0.3−0.1 1.8 1.5 0.4 0.8

1.3 1.9 2.7 1.1 2.5 0.8 −0.7−0.7 3.4 −0.5

1.2 2.5 2.1 1 −0.2 1.3 −0.1 0.2 −0.4−0.6

2 2.9 2.7 −0.4−1.5 0.1 −2.1 0.2 −0.6−0.1

0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 0 0

6 3 4 2 5 1 7 8 9 10

3 2 1 6 4 5 10 9 7 8

6 7 9 5 8 4 1 1 10 3

7 10 9 6 3 8 4 5 2 1

8 10 9 4 2 6 1 7 3 5

Tumor samples

M
u

ta
te

d
g

en
e

s

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

E1

E2

E3

E4

E5

Tumor samples

E
xp

re
ss

e
d

g
en

es

F. Two ranked factors (red and blue) identified by SRF

11 8 8 11 10 7 10 9 9 10
2 2 2 6 11 2 12 10 12 11
3 3 3 7 5 3 5 5 5 5
3 3 3 12 5 3 5 11 5 5
8 12 9 5 4 8 4 4 4 4
3 3 3 7 5 3 5 5 5 5
3 3 3 7 5 3 5 5 11 5
3 3 3 7 5 9 5 5 5 5
12 11 11 3 3 12 3 3 3 3
9 9 12 1 1 10 1 1 1 1
9 9 10 1 1 10 1 1 1 1
1 1 1 4 12 1 11 12 10 12

1 0
0 1
0 0
0 0
1 0
0 0
0 0
0 0
1 0
1 0
0 0
0 1

1 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

1 0
1 0
1 0
0 1
0 1

1 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

8 10 9 4 2 6 1 7 3 5
7 10 9 6 3 8 4 5 2 1
6 7 9 5 8 4 1 1 10 3
3 2 1 6 4 5 10 9 7 8
6 3 4 2 5 1 7 8 9 10

D C
1

F

E C
2

F

M
:,1

D
:,1

1 1 1 4 12 1 11 12 10 12
9 9 10 1 1 10 1 1 1 1
9 9 12 1 1 10 1 1 1 1

12 11 11 3 3 12 3 3 3 3
3 3 3 7 5 9 5 5 5 5
3 3 3 7 5 3 5 5 11 5
3 3 3 7 5 3 5 5 5 5
8 12 9 5 4 8 4 4 4 4
3 3 3 12 5 3 5 11 5 5
3 3 3 7 5 3 5 5 5 5
2 2 2 6 11 2 12 10 12 11

11 8 8 11 10 7 10 9 9 10

Figure 5.1: SRF illustration. A) Boolean mutation matrix; B) Ranked diffusion
matrix derived from the mutation matrix using the network diffusion model
shown in Figure E and the parameter α = 0.7; C) Numeric expression matrix;
D) Ranked expression matrix, obtained by ranking column values in each row;
E) Illustration how to derive a ranked diffusion vector for tumour sample P1
using his/her mutation profile and a given interaction network. F) Two ranked
factors, represented by C1, C2 and F, identified by SRF in matrices D and E.

genes (expression and mutational features) for which the selected samples have
respectively highly ranked expression values and highly ranked relevance scores.
Expression and mutational features can, but do not have to overlap. Whereas a
factor represents a group of patients together with their characteristic features,
a subtype is defined as a group of patients covered by a unique combination of
factors. Subtypes can thus mutually overlap in their characteristic expression
and/or mutational features. This overlap in features between subtypes reflects
the fact that subtypes are rarely distinct but rather represent a continuum of
possible alterations. The subtyping algorithm is dubbed SRF, for Subtyping
with Ranked Factors.

5.2.1 Transforming input datasets into rank matrices

The first step is to transform the original data into rank matrices.

86 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

Transforming transcription data Given a gene expression matrix A ∈ Rl×n,
where l is the number of expression genes and n is the number of tumour samples,
its corresponding rank matrix is obtained by sorting each row’s values from low
to high and assigning ranks accordingly (with the largest rank being assigned to
the highest value). That is, all samples are ranked for each gene. The resulting
ranked expression matrix E has the same size as A and the values in each row
are a subset of σ1 = {1, . . . , n} (ties all get the lowest rank). Figure 5.1C shows
an example of an expression matrix A and Figure 5.1D shows its transformed
rank matrix E.

Since this transformation would allow our algorithm to only find over-expressed
genes (genes with an average high rank within a subset of the samples), we
duplicate each row and also assign ranks in the reverse order. This will allow
to find under-expressed genes as well. For example, given an expression vector
g = (−2.0,−3.0, 2.0, 3.0), we obtain both rank vectors ro = (2, 1, 3, 4) (assigning
high ranks to over-expressed genes) and ru = (3, 4, 2, 1) (assigning high ranks to
under-expressed genes). As a consequence, the resulting rank matrix has twice
as many rows as the original matrix. For ease of exposition we will consider
matrix E to have the same size as A, but the algorithm trivially works on the
duplicated matrix and we will use this extended version in the experiments.

Transforming mutation data and interaction network To transform the
Boolean mutation matrix into a rank matrix, we first map each patient’s
mutation profile to the given interaction network [124, 49] and apply a network
diffusion model. The obtained diffusion values are then transformed to ranks
as before, so that higher ranks indicate that a gene is relatively “close” to a
mutated gene (for a particular patient). Figure 5.1e illustrates this procedure,
which we next describe in more detail.

Let M ∈ {0, 1}m×n be the mutation matrix, where m is the number of mutation
genes and n is the number of patients (as before), and let G = (V,E) be
the interaction network. For simplicity, we assume that each mutation gene
corresponds to exactly one v ∈ V and vice versa, hence |V | = m. Note that,
in practice, we can always create such a mutation matrix by filtering mutated
genes that are not in the network or adding more genes with all 0s. Further,
let Y (i) = M:,i = (y1, . . . , ym)T be the mutation profile of patient i, i = 1 . . . n.
Note that yj = 1, j = 1 . . .m, iff patient i carries the mutation in row j and is 0
otherwise. The corresponding diffusion vector F (i)

t is defined by the following
formula:

F
(i)
t = αWF

(i)
t−1 + (1− α)Y (i), (5.1)

where W is a stochastic matrix obtained by multiplying the adjacency matrix
of the interaction network by a diagonal matrix with the inverse of its row (or
column) sums on the diagonal. Parameter α is used for tuning. Diffusion vector

THE SRF ALGORITHM 87

F
(i)
t is determined by iteratively solving Equation 5.1 t times, starting with
F

(i)
0 = Y (i), until convergence.

Applying Equation (5.1) to the n columns of matrix M results in a diffusion
matrix B ∈ Rm×n, where B:,i = F

(i)
t . Finally, ranking the rows for each column

we obtain the ranked diffusion matrix D ∈ σm×n
2 , σ2 = {1, . . . ,m}, which we

use as input for the next step of the analysis.

5.2.2 Mining k ranked factors using sRMF

The matrix factorisation model that we introduce aims to jointly factorise the
two transformed rank matrices D and E into a set of k ranked factors, where
k is an integer given by the user. One factor consists of a set of mutation
genes, a set of expressed genes and a set of related samples. To provide some
intuition for our approach, we first present an optimisation model for a single
ranked factor. We then generalise this to k ranked factors using rank matrix
factorisation.

Mining a single ranked factor As mentioned above, a ranked factor
represents a group of samples that are consistently over/under-expressed in a
subset of expression genes and that share the same affected genes in the ranked
diffusion matrix.

Let P = {1, . . . , n}, M = {1, . . . ,m} and E = {1, . . . , l} be index sets for
tumour samples, mutation genes and expression genes respectively. A ranked
factor is represented by a tuple (P,GM , GE), where P ⊆ P, GM ⊆ M and
GE ⊆ E . Inspired by the ranked tiling pattern introduced in Chapter 4, a
ranked factor is obtained by optimising:

argmaxP,GM ,GE

∑
m∈GM ,p∈P (Dm,p − θ1) +

β
∑

e∈GE ,p∈P (Ee,p − θ2) (5.2)

subject to

∀m ∈M : m ∈ GM →
∑

p∈P Mm,p ≥ µ, (5.3)

where θ1 and θ2 are user-defined thresholds that control how high ranks in D
and E respectively should be to be included in the solution. We sometimes
indicate these thresholds using relative values, i.e., θ1 = a%; in this case, the
absolute threshold is θ1 = a% ∗ n. β is a user-defined threshold to balance the
contributions from the values in the two matrices. µ indicates the number of

88 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

patients in which a mutation should be present in order to be included in the
factor.

The objective in Equation 5.2 selects those rows (mutation and expression genes)
and columns (samples) that together maximise the total sum of the values in
the corresponding cells in the matrices, adjusted by θ1 and θ2. That is, cells
that are lower than the thresholds are penalised and those that have higher
values are rewarded. Equation 5.3 ensures that each gene that is selected from
the ranked diffusion matrix is mutated in at least one of the samples present in
the selection P . That is, genes that receive a high rank because they are in the
network neighbourhood of genes mutated in the sample but are never mutated
themselves will not be selected.

For example, given the matrices in Figure 5.1A, 5.1B, and 5.1D, and parameters
θ1 = 7, θ2 = 5, β = 1, solving the objective results in P = {P1, P2, P3, P6},
GE = {E1, E2, E3}, GM = {M1,M5,M9,M10}. It is clear from the input
matrices that this solution corresponds to an area with relatively high ranks.
No more samples or genes can be added to the solution without decreasing the
score. Note that mutated gene M11 was not selected despite having a high
rank as no samples in the group carry a mutation for this highly ranked gene.

Mining k single ranked factors using sRMF The optimisation problem in
Equations (5.2) – (5.3) finds two ranked tiles, one in the ranked diffusion matrix
D and the other in the ranked expression matrix E, which have the same set of
the columns. Hence, it is a joint rank matrix tiling for the two matrices with
the mutation constraints in Equation (5.3) and k = 1. When we want to find k
ranked factors (the SRF problem), we just simply remove the constraint k = 1.

Let’s define the following two scoring functions:

δ1(a, b) =
{

0 if b = 0;
a− θ1 otherwise.

(5.4)

δ2(a, b) =
{

0 if b = 0;
β(a− θ2) otherwise.

(5.5)

Then, the SRF problem can be formally defined as follows.

Definition 5.1 (SRF problem). The SRF problem is the joint rank matrix
factorisation for the rank matrices D and E using

• the max-product semiring;

• the set of permissible values σp = {0, 1};

THE SRF ALGORITHM 89

• the additive scoring function for the rank matrix factorisation for matrix
D based on formula (5.4);

• the additive scoring function for the rank matrix factorisation for matrix
E based on formula (5.5);

• constraints that the two rank matrix factorisations share the same matrix
F;

• constraints that µC1 ≤ MFT , where C1 is the factorised matrix of the
factorisation for matrix D.

To solve the SRF problem, we follow the algorithm for Sparse mRMF. That
is, the SRF algorithm follows an iterative EM-style scheme, in which first C1
and C2 are optimised given F, and then F is optimised given C1 and C2. We
repeat this iterative scheme until the optimisation score cannot be improved
any further. When either C1 and C2 or F is known, it can be shown that
the SRF problem defined in Definition (5.1) is an integer linear programming
(ILP) problem. Each such optimisation problem can be solved optimally. To
avoid local maxima, we initialise the algorithm with a matrix F obtained by
performing hierarchical clustering to cluster the columns into k groups.

We can develop a parallel implementation for SRF, which makes it scalable to
large datasets as we did for mRMT (Section 4.3.5). This is because each row
of C1 and C2 can be optimised independently given F. Further, given C1 and
C2, each column of F can be optimised independently if we relax the inequality
in Equation (5.3), which puts a constraint on the columns and hence makes
them dependent. However, if we require the iterative process to terminate after
the step optimising C1 and C2 given matrix F, we still obtain a very good
approximation upon convergence of the algorithm.

Implementation. We implemented SRF in OscaR [87] and used Gurobi as
the back-end solver. The implementation is available at the following address:
https://github.com/rankmatrixfactorisation/SRF.

5.2.3 Deriving cancer subtypes from ranked factors

Ranked factors model groups of tumour samples that are homogeneous in gene
expression as well as in mutations. Hence, if we obtain k non-overlapping ranked
factors, i.e., factors that cover fully disjoint sets of samples, each factor found
is considered to represent a unique subtype.

If the factors overlap in the sample dimension, however, we consider each group
of samples that is covered by a unique combination of ranked factors to form

https://github.com/rankmatrixfactorisation/SRF

90 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

a subtype. The reason for this is that each combination of ranked factors
represents a different combination of expression and mutation profiles. In this
case, the mutation and expression gene sets of a subtype are formed by the
union of the mutation and expressed genes (respectively) of all factors in the
combination. Section 5.3 shows examples of this concept. In practice, we prune
subtypes covering fewer samples than a user-defined threshold, to avoid the
discovery of small ‘subtypes’ that are most likely artefacts of noise in the data.

5.3 Results

We report results on both synthetic datasets and the well-studied TCGA breast
cancer dataset.

5.3.1 Results on simulated datasets

To test the performance of the method in recovering known subtypes, we
generated datasets in which each subtype was defined as a set of tumour samples
carrying a number of driver genes and a concomitant set of consistently over-
and/or under-expressed genes of which the expression phenotype is assumed
to be triggered by the driver mutations. The data contained 4 subtypes
that occasionally shared genes mutated in the same driver pathways or genes
displaying the same consistent expression. We imposed the rule that whenever
two subtypes share genes mutated in the same driver pathway(s), they should
share a set of consistently expressed genes. Figures 5.2A and 5.2B show an
example dataset.

Driver genes were modeled to display mutational consistency at the pathway level
across tumour samples belonging to the same subtype by selecting the drivers
of those patients from a pre-selected set of genes that are closely connected in a
real protein-protein interaction network and therefore assumed to belong to the
same driver pathway. We varied the size of the driver pathways as well as the
mutational recurrency of the driver genes for the samples within the subtypes
to generate datasets (see Section 5.4).

For each simulated dataset, we ran our algorithm with varying parameter
settings. We used two parameters to specify the preferred ranges of the ranks
from the two input matrices, and another to balance the contributions of the
two matrices. For each parameter setting, we used SRF to search for k = 5
subtypes, where the 5th subtype serves as the collection of tumour samples
that have no clear subtype assignment. We initialised the algorithm with five

RESULTS 91

A. Mutation data with true subtypes C. Ranked diffusion with mined subtypes

B. Expression data with true subtypes D. Expression data with mined subtypes

NBS
iCluster+
SNF
hclust

SNF
iCluster+
NBS

hclust

S1 S2 S3 S4

S1 S2 S3 S4

M
u
ta
te
d
g
e
n
es

Tumor samples

E
xp
re
s
se
d
g
e
n
es

Tumor samples

Figure 5.2: Evaluation on simulated datasets. Panel A–B: Example data with
ground truth. The heatmaps show mutation and numeric expression data of a
representative simulated dataset, with a 10% mutational recurrency (meaning
that a gene is mutated in at least 10% of the samples in a given subtype)
and pathway size of 40. The four ground truth subtypes are marked by the
horizontal and vertical coloured bars above and to the left of the heatmaps.
Panel C – D: Results on the data shown in panels A and B. Results obtained by
NBS [49], iCluster+ [84], SNF [130] and the hierarchical clustering algorithm
(hclust), which we used to initialize our model, are shown in the coloured bars
above the heatmaps. The results obtained with SRF are indicated by the four
coloured horizontal and vertical bars, just above and to left of the heatmaps;
each bar indicates the patients (horizontally) and genes (vertically) selected by
a ranked factor.

92 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

q q q q q

q q
q q

q

q
q

q q q

q q q q q

q
q q

q q
q q q q

q
q q q

q

q

q

q q
q q

q

q

q q

q
q

q
q

q
qq q

q
q

q

q
q

q
q q

q q q q
q

q

q

q

q qq
q q

q
q

q
q

q q q

2% 5% 10% 15%

0.0
0.2
0.4
0.6
0.8
1.0

20 40 60 80 10020 40 60 80 10020 40 60 80 10020 40 60 80 100

q
q

q q q

q

q q q

qq q
q

q
q

q

q q q
q q

q
q

q q
q

q q
q

q
q

q q q q
q

q
q

q
q

q

q q
q

q
q

q q q q q

q

q
q

q
q

q
q

q
q

q

2% 5% 10% 15%

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 10020 40 60 80 10020 40 60 80 10020 40 60 80 100

q

q

q

q

iCluster+

NBS

Our method

SNF

q q

q

q q

q q q q qq q q q qq

q

q q q q

q q q q
q

q q q q q

q

q

q q
q

q
q q q

q

q q q q q

q q q q q

q
q

q

q q
q q q q q

2% 5% 10% 15%

0.0
0.2
0.4
0.6
0.8
1.0

20 40 60 80 10020 40 60 80 10020 40 60 80 10020 40 60 80 100

F1 score for recovering mutated genes

F1 score for recovering expressed genes

F1 score for recovering tumor samples

Figure 5.3: F1 score comparison. The three plots denote F1 scores for 1) patient
recovery (top), 2) expression gene recovery (middle), and 3) mutation gene
recovery (bottom) for iCluster+, NBS, SRF, and SNF, for simulated datasets
of varying driver pathway sizes and mutational recurrencies. Note that NBS
does not work with expression data and we were unable to recover the mutated
genes due to a lack of documentation.

RESULTS 93

sample groups obtained by a hierarchical clustering of the tumors using the
ranked expression data.

After factorising the rank matrices, resulting subtypes containing less than 4%
of the total number of samples were pruned (see Section 5.4).

Accuracy of the identified subtypes We evaluated the performance of our
algorithm in recovering the known subtypes as well as their characteristic
expression and mutational features. For this we used the F1 score, which
assesses the trade-off between correctly and comprehensively distinguishing
between samples, expression genes, and mutational features that truly belong
to the subtypes from those that do not.

To optimise the parameter settings, we calculated F1 scores for different
parameter settings and chose the one that resulted in the highest average
score (see Section 5.4). Then, we used that parameter setting to evaluate the
performance of the algorithm on all the simulated datasets.

Figure 5.3 shows the F1 scores obtained for different driver pathway sizes and
mutational recurrencies. We can observe that the F1 score of recovering tumour
samples of the simulated subtypes is high and largely independent of the sizes
of the driver pathways and the mutational recurrencies. This demonstrates
the added value of integrating the expression data. Further, the F1 scores of
recovering mutation and expression genes relevant to the subtypes are generally
high. As expected, the higher the mutational recurrency, the larger the number
of mutated genes that can be recovered.

Comparison to related work To show that our method performs at least as
well as state-of-the-art subtyping methods, we compared the results obtained
by our method to those obtained with iCluster+ [84], NBS [49] and SNF [130],
applied on the same simulated data. Both iCluster+ [84] and SNF [130] identify
subtypes by jointly clustering the expression and untransformed mutation data,
while NBS [49] exploits mutational information but does not use expression
data.

Results obtained by iCluster+, NBS, SNF and SRF are summarised in Figure
5.2E. Our method obtained higher F1 scores than its competitors for both
recovering expression and mutation genes. This is because our model couples
genes, including mutation and expression genes, and patients to define subtypes
and thus explicitly identifies subtype-specific genes. For iCluster+ and SNF,
this is not the case and the selected expression or mutation genes are thus
always the same, irrespective of the subtype.

As a representative example, we illustrate in more detail the results produced
by the different methods on the simulated dataset with a 10% mutational

94 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

recurrency and a pathway size of 40 (Figure 5.2C - 5.2D). The figures show
that compared to the other methods, our method can discover overlap between
very similar subtypes in both the patient and gene dimension. In addition, our
model is shown to be tolerant to noise: the fifth ranked factor found by SRF
remained empty, revealing that no ‘noisy’ patients and genes were incorrectly
marked as belonging to a subtype.

5.3.2 Results on the TCGA breast cancer data

To test SRF in a real-world setting, we applied it to the well-studied TCGA
breast cancer dataset. We ran the method as outlined in Section 5.4. As we were
mostly interested in identifying subtype-specific features, we chose stringent
parameters to only identify subtypes with representative profiles in terms of
expression and mutations. Factorising the dataset into k = 8 factors resulted
in 13 subtypes. The number of identified subtypes is higher than the number
of factors because subtypes are defined as combinations of factors (see Section
5.2.3). The results are visualised in Figure 5.4.

To validate our subtypes, we tested 1) to what extent the discovered subtypes
corresponded to the PAM50 classification, and 2) to what extent SRF could
further refine it. Figures 5.4 and 5.6 show that most subtypes are enriched in
samples with the same PAM50 label [89] as shown in Figure 5.4A. All samples
of the same PAM50 class rarely end up in a single subtype. The Basal subtype,
for example, is divided into two major subgroups: S10, S12; LumA is divided
into S3, S4, S5, S6, S8, S13; LumB into S1, S2, S5, S9; Her2 into S11 and S7.
So our approach does not only match the PAM50 classification to a large extent,
it also further refines known subtypes.

This high-resolution subtype refinement is a characteristic property of the
method’s intrinsic feature selection. Rather than using global profiles to group
samples, the methods actively searches for combinations of feature sets (factors)
that characterise samples using rather stringent criteria. As a result differences
between expression and mutational profiles are marginal for some subtypes (e.g.,
for LumA-related subtypes S3, S4, S8, S13, and for LumB-related subtypes S7
and S9). Retrospectively, it might have been possible to merge these subgroups.
However, in case of subtypes S10 and S12, carrying samples with the same
Basal label, the subtype-specific mutational and gene expression profiles are
quite distinct for the selected feature sets, corresponding to the brown and pink
bars in Figure 5.4.

Next to the subtypes that have rather homogeneous PAM50 labels assigned to
their samples, subtypes S1, S2, S5 and S9 contain a mixture of LumA and LumB
samples, and S11 contains a mixture of Her2 and LumB samples. Although

RESULTS 95

PAM50

Basal

Her2

LumA

LumB

Normal

C
8

E

C
7

E

C
6

E

C
5

E

C
4

E

C
3

E

C
2

E

C
1

E

iCluster+

PAM50
NBS

SNF
hclust

F8
F7
F6
F5
F4
F3
F2
F1

A. Expression heatmap

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

TC
GA

−C
8−

A1
2X

−0
1

TC
GA

−A
8−

A0
7P

−0
1

TC
GA

−A
O−

A1
2H

−0
1

TC
GA

−E
W

−A
1J

1−
01

TC
GA

−E
9−

A1
R6

−0
1

TC
GA

−A
2−

A0
ET

−0
1

TC
GA

−D
8−

A1
XF

−0
1

TC
GA

−A
8−

A0
85

−0
1

TC
GA

−A
O

−A
0J

3−
01

TC
GA

−C
8−

A1
2U

−0
1

TC
GA

−B
6−

A0
RL

−0
1

TC
GA

−A
8−

A0
6Z

−0
1

TC
GA

−A
O

−A
0J

7−
01

TC
GA

−E
W

−A
1O

X−
01

TC
GA

−A
8−

A0
82

−0
1

TC
GA

−B
H−

A0
HW

−0
1

TC
GA

−A
8−

A0
6N

−0
1

TC
GA

−B
6−

A0
W

V−
01

TC
GA

−A
R−

A0
TY

−0
1

TC
GA

−A
R−

A0
U2

−0
1

TC
GA

−A
8−

A0
91

−0
1

TC
GA

−E
9−

A1
N3

−0
1

TC
GA

−A
2−

A0
ER

−0
1

TC
GA

−A
2−

A0
CT

−0
1

TC
GA

−C
8−

A1
HO

−0
1

TC
GA

−C
8−

A2
6Z

−0
1

TC
GA

−B
6−

A0
RG

−0
1

TC
GA

−E
2−

A1
5R

−0
1

TC
GA

−A
7−

A0
CD

−0
1

TC
GA

−A
R−

A0
TZ

−0
1

TC
GA

−A
1−

A0
SQ

−0
1

TC
GA

−E
2−

A1
05

−0
1

TC
GA

−A
N−

A0
FZ

−0
1

TC
GA

−E
2−

A1
IE

−0
1

TC
GA

−B
6−

A0
IM

−0
1

TC
GA

−A
O−

A0
JI−

01
TC

GA
−A

2−
A2

5E
−0

1
TC

GA
−C

8−
A1

2M
−0

1
TC

GA
−A

8−
A0

7L
−0

1
TC

GA
−B

H−
A2

04
−0

1
TC

GA
−B

6−
A1

KC
−0

1
TC

GA
−A

7−
A1

3F
−0

1
TC

GA
−A

2−
A1

FW
−0

1
TC

GA
−E

9−
A1

R7
−0

1
TC

GA
−C

8−
A2

7A
−0

1
TC

GA
−A

2−
A0

4R
−0

1
TC

GA
−B

H−
A1

8L
−0

1
TC

GA
−E

9−
A1

RE
−0

1
TC

GA
−E

2−
A1

4S
−0

1
TC

GA
−E

2−
A1

09
−0

1
TC

GA
−B

H−
A0

H0
−0

1
TC

GA
−E

2−
A1

55
−0

1
TC

GA
−A

2−
A0

D4
−0

1
TC

GA
−A

2−
A1

G4
−0

1
TC

GA
−A

Q−
A0

4H
−0

1
TC

GA
−E

9−
A2

28
−0

1
TC

GA
−A

2−
A1

FX
−0

1
TC

GA
−E

2−
A1

BC
−0

1
TC

GA
−B

H−
A0

B0
−0

1
TC

GA
−A

2−
A0

EN
−0

1
TC

GA
−E

2−
A1

IH
−0

1
TC

GA
−A

2−
A0

YD
−0

1
TC

GA
−A

2−
A0

T6
−0

1
TC

GA
−A

O−
A0

JF
−0

1
TC

GA
−B

H−
A0

DX
−0

1
TC

GA
−B

H−
A0

DQ
−0

1
TC

GA
−A

8−
A0

7J
−0

1
TC

GA
−E

2−
A1

IJ
−0

1
TC

GA
−B

H−
A1

8M
−0

1
TC

GA
−A

2−
A0

T4
−0

1
TC

GA
−E

2−
A1

IF
−0

1
TC

GA
−B

H−
A0

DG
−0

1
TC

GA
−A

N−
A0

FN
−0

1
TC

GA
−D

8−
A1

JH
−0

1
TC

GA
−B

H−
A0

W
5−

01
TC

GA
−D

8−
A2

7L
−0

1
TC

GA
−A

2−
A0

T7
−0

1
TC

GA
−B

H−
A0

DI
−0

1
TC

GA
−D

8−
A1

JU
−0

1
TC

GA
−A

R−
A2

4O
−0

1
TC

GA
−B

H−
A0

AZ
−0

1
TC

GA
−A

2−
A0

EW
−0

1
TC

GA
−B

H−
A2

01
−0

1
TC

GA
−B

H−
A0

H3
−0

1
TC

GA
−E

2−
A1

B1
−0

1
TC

GA
−E

W
−A

1J
2−

01
TC

GA
−A

R−
A2

4T
−0

1
TC

GA
−A

2−
A0

CP
−0

1
TC

GA
−B

H−
A0

BQ
−0

1
TC

GA
−B

H−
A1

FH
−0

1
TC

GA
−A

2−
A0

EO
−0

1
TC

GA
−B

H−
A0

DP
−0

1
TC

GA
−A

2−
A0

EX
−0

1
TC

GA
−E

2−
A1

IO
−0

1
TC

GA
−B

H−
A0

DV
−0

1
TC

GA
−B

H−
A2

08
−0

1
TC

GA
−E

2−
A1

08
−0

1
TC

GA
−A

2−
A0

CZ
−0

1
TC

GA
−E

W−
A1

PG
−0

1
TC

GA
−E

W
−A

1P
1−

01
TC

GA
−B

H−
A0

AV
−0

1
TC

GA
−A

7−
A2

6G
−0

1
TC

GA
−D

8−
A2

7H
−0

1
TC

GA
−B

H−
A0

BL
−0

1
TC

GA
−B

6−
A0

W
X−

01
TC

GA
−A

2−
A2

5F
−0

1
TC

GA
−B

H−
A1

FU
−0

1
TC

GA
−E

9−
A1

NH
−0

1
TC

GA
−A

8−
A0

6P
−0

1
TC

GA
−A

7−
A2

6E
−0

1
TC

GA
−E

9−
A1

R3
−0

1
TC

GA
−A

R−
A2

4M
−0

1
TC

GA
−G

I−
A2

C8
−0

1
TC

GA
−E

2−
A1

IN
−0

1
TC

GA
−A

C−
A2

3E
−0

1
TC

GA
−E

9−
A1

NG
−0

1
TC

GA
−E

9−
A1

RI
−0

1
TC

GA
−A

1−
A0

SH
−0

1
TC

GA
−A

Q−
A0

Y5
−0

1
TC

GA
−E

2−
A1

53
−0

1
TC

GA
−A

N−
A0

3X
−0

1
TC

GA
−A

8−
A0

7G
−0

1
TC

GA
−A

2−
A0

4N
−0

1
TC

GA
−D

8−
A1

XB
−0

1
TC

GA
−D

8−
A1

XO
−0

1
TC

GA
−C

8−
A1

2N
−0

1
TC

GA
−B

H−
A0

EI
−0

1
TC

GA
−E

W
−A

1IX
−0

1
TC

GA
−D

8−
A1

JE
−0

1
TC

GA
−A

8−
A0

A7
−0

1
TC

GA
−E

2−
A1

52
−0

1
TC

GA
−A

O−
A0

JE
−0

1
TC

GA
−B

H−
A0

W
7−

01
TC

GA
−A

N−
A0

XW
−0

1
TC

GA
−A

7−
A2

6H
−0

1
TC

GA
−B

H−
A0

HA
−0

1
TC

GA
−A

N−
A0

XN
−0

1
TC

GA
−A

R−
A2

55
−0

1
TC

GA
−E

2−
A1

L9
−0

1
TC

GA
−E

W
−A

1P
D−

01
TC

GA
−A

1−
A0

SM
−0

1
TC

GA
−D

8−
A1

XM
−0

1
TC

GA
−B

H−
A1

EO
−0

1
TC

GA
−B

H−
A1

EY
−0

1
TC

GA
−A

O−
A1

26
−0

1
TC

GA
−D

8−
A1

JP
−0

1
TC

GA
−E

9−
A2

29
−0

1
TC

GA
−E

9−
A1

N5
−0

1
TC

GA
−A

8−
A0

97
−0

1
TC

GA
−A

8−
A0

9D
−0

1
TC

GA
−A

R−
A2

4L
−0

1
TC

GA
−B

H−
A0

BR
−0

1
TC

GA
−D

8−
A1

41
−0

1
TC

GA
−A

N−
A0

4A
−0

1
TC

GA
−A

8−
A0

8Z
−0

1
TC

GA
−A

R−
A2

4V
−0

1
TC

GA
−A

R−
A2

4P
−0

1
TC

GA
−B

H−
A1

8I
−0

1
TC

GA
−D

8−
A2

7T
−0

1
TC

GA
−C

8−
A1

32
−0

1
TC

GA
−E

2−
A1

0F
−0

1
TC

GA
−A

O−
A0

JA
−0

1
TC

GA
−B

H−
A1

FE
−0

1
TC

GA
−B

H−
A1

F2
−0

1
TC

GA
−E

9−
A2

2E
−0

1
TC

GA
−A

1−
A0

SI
−0

1
TC

GA
−D

8−
A1

Y1
−0

1
TC

GA
−D

8−
A1

JD
−0

1
TC

GA
−A

R−
A2

50
−0

1
TC

GA
−D

8−
A1

Y2
−0

1
TC

GA
−D

8−
A1

JJ
−0

1
TC

GA
−A

8−
A0

96
−0

1
TC

GA
−E

9−
A2

2A
−0

1
TC

GA
−E

9−
A1

NF
−0

1
TC

GA
−B

H−
A0

BF
−0

1
TC

GA
−B

H−
A1

F0
−0

1
TC

GA
−E

W−
A1

P7
−0

1
TC

GA
−A

R−
A1

AO
−0

1
TC

GA
−D

8−
A1

X8
−0

1
TC

GA
−E

2−
A1

L6
−0

1
TC

GA
−A

N−
A0

FS
−0

1
TC

GA
−B

H−
A0

W
4−

01
TC

GA
−B

H−
A0

DO
−0

1
TC

GA
−A

7−
A0

DB
−0

1
TC

GA
−B

H−
A0

B7
−0

1
TC

GA
−B

H−
A0

HP
−0

1
TC

GA
−A

O−
A0

JC
−0

1
TC

GA
−B

H−
A0

DK
−0

1
TC

GA
−B

6−
A0

X7
−0

1
TC

GA
−B

H−
A0

BA
−0

1
TC

GA
−A

2−
A0

SY
−0

1
TC

GA
−B

H−
A0

BP
−0

1
TC

GA
−A

2−
A0

CV
−0

1
TC

GA
−A

8−
A0

7E
−0

1
TC

GA
−A

2−
A1

FV
−0

1
TC

GA
−D

8−
A2

7I
−0

1
TC

GA
−E

9−
A2

95
−0

1
TC

GA
−B

H−
A0

HK
−0

1
TC

GA
−E

W−
A1

IW
−0

1
TC

GA
−E

2−
A1

5M
−0

1
TC

GA
−B

H−
A0

E9
−0

1
TC

GA
−A

O
−A

0J
9−

01
TC

GA
−A

1−
A0

SF
−0

1
TC

GA
−A

O−
A0

JJ
−0

1
TC

GA
−E

2−
A1

5E
−0

1
TC

GA
−B

H−
A0

BJ
−0

1
TC

GA
−A

8−
A0

9A
−0

1
TC

GA
−A

8−
A0

A4
−0

1
TC

GA
−B

H−
A0

BO
−0

1
TC

GA
−B

H−
A0

BM
−0

1
TC

GA
−A

R−
A2

4W
−0

1
TC

GA
−A

N−
A0

XL
−0

1
TC

GA
−B

H−
A1

EU
−0

1
TC

GA
−E

2−
A1

B5
−0

1
TC

GA
−A

1−
A0

SJ
−0

1
TC

GA
−B

H−
A0

DE
−0

1
TC

GA
−A

2−
A2

59
−0

1
TC

GA
−A

R−
A1

AL
−0

1
TC

GA
−D

8−
A1

JB
−0

1
TC

GA
−A

R−
A1

AK
−0

1
TC

GA
−E

2−
A1

4Q
−0

1
TC

GA
−B

6−
A0

W
Y−

01
TC

GA
−A

O−
A1

2A
−0

1
TC

GA
−A

1−
A0

SD
−0

1
TC

GA
−A

2−
A1

FZ
−0

1
TC

GA
−A

N−
A0

XV
−0

1
TC

GA
−E

9−
A1

R0
−0

1
TC

GA
−A

7−
A0

CG
−0

1
TC

GA
−B

H−
A1

8F
−0

1
TC

GA
−A

R−
A1

AX
−0

1
TC

GA
−A

1−
A0

SE
−0

1
TC

GA
−A

Q−
A1

H3
−0

1
TC

GA
−A

2−
A1

G
0−

01
TC

GA
−D

8−
A1

45
−0

1
TC

GA
−E

9−
A1

QZ
−0

1
TC

GA
−A

R−
A1

AN
−0

1
TC

GA
−E

9−
A1

NE
−0

1
TC

GA
−E

9−
A2

27
−0

1
TC

GA
−A

O−
A0

JG
−0

1
TC

GA
−A

O−
A1

2E
−0

1
TC

GA
−B

H−
A0

DT
−0

1
TC

GA
−B

6−
A0

IH
−0

1
TC

GA
−A

2−
A0

YL
−0

1
TC

GA
−A

R−
A1

AU
−0

1
TC

GA
−B

H−
A0

EA
−0

1
TC

GA
−A

2−
A0

YI
−0

1
TC

GA
−A

2−
A0

ES
−0

1
TC

GA
−A

R−
A2

52
−0

1
TC

GA
−B

H−
A0

H5
−0

1
TC

GA
−B

H−
A0

C3
−0

1
TC

GA
−A

2−
A0

YK
−0

1
TC

GA
−A

2−
A2

5A
−0

1
TC

GA
−A

1−
A0

SB
−0

1
TC

GA
−A

O−
A1

KO
−0

1
TC

GA
−A

8−
A0

8H
−0

1
TC

GA
−B

6−
A0

RQ
−0

1
TC

GA
−A

O−
A0

3U
−0

1
TC

GA
−A

2−
A1

G6
−0

1
TC

GA
−B

6−
A0

I9−
01

TC
GA

−C
8−

A1
2Z

−0
1

TC
GA

−A
2−

A0
D1

−0
1

TC
GA

−A
8−

A0
8B

−0
1

TC
GA

−B
H−

A0
EE

−0
1

TC
GA

−C
8−

A1
HK

−0
1

TC
GA

−C
8−

A1
37

−0
1

TC
GA

−A
O

−A
03

O
−0

1
TC

GA
−D

8−
A1

XL
−0

1
TC

GA
−A

8−
A0

6Q
−0

1
TC

GA
−C

8−
A1

HM
−0

1
TC

GA
−A

R−
A2

4H
−0

1
TC

GA
−B

H−
A0

HU
−0

1
TC

GA
−A

8−
A0

9I
−0

1
TC

GA
−A

N−
A0

AJ
−0

1
TC

GA
−A

2−
A0

YG
−0

1
TC

GA
−A

7−
A0

CJ
−0

1
TC

GA
−A

8−
A0

92
−0

1
TC

GA
−A

8−
A0

79
−0

1
TC

GA
−A

2−
A0

CW
−0

1
TC

GA
−D

8−
A1

Y3
−0

1
TC

GA
−A

O−
A0

JD
−0

1
TC

GA
−A

8−
A0

81
−0

1
TC

GA
−D

8−
A1

JN
−0

1
TC

GA
−B

H−
A1

8N
−0

1
TC

GA
−A

8−
A0

6Y
−0

1
TC

GA
−A

R−
A0

TR
−0

1
TC

GA
−B

6−
A0

IC
−0

1
TC

GA
−A

Q−
A1

H2
−0

1
TC

GA
−A

O−
A1

25
−0

1
TC

GA
−E

2−
A1

5J
−0

1
TC

GA
−B

H−
A0

E7
−0

1
TC

GA
−E

2−
A1

56
−0

1
TC

GA
−A

R−
A1

AV
−0

1
TC

GA
−A

2−
A0

D3
−0

1
TC

GA
−E

2−
A1

5G
−0

1
TC

GA
−A

2−
A0

CS
−0

1
TC

GA
−E

2−
A1

B4
−0

1
TC

GA
−A

O
−A

12
B−

01
TC

GA
−A

2−
A0

CQ
−0

1
TC

GA
−C

8−
A1

33
−0

1
TC

GA
−A

7−
A1

3G
−0

1
TC

GA
−B

6−
A0

X4
−0

1
TC

GA
−A

N−
A0

FK
−0

1
TC

GA
−B

H−
A1

FG
−0

1
TC

GA
−B

H−
A0

BS
−0

1
TC

GA
−A

8−
A0

99
−0

1
TC

GA
−B

6−
A0

X0
−0

1
TC

GA
−D

8−
A1

XC
−0

1
TC

GA
−A

8−
A0

9T
−0

1
TC

GA
−A

8−
A0

83
−0

1
TC

GA
−A

N−
A0

XP
−0

1
TC

GA
−B

H−
A1

8S
−0

1
TC

GA
−D

8−
A1

XV
−0

1
TC

GA
−D

8−
A1

JS
−0

1
TC

GA
−D

8−
A1

JI−
01

TC
GA

−A
8−

A0
8A

−0
1

TC
GA

−B
6−

A0
W

Z−
01

TC
GA

−B
6−

A0
IO

−0
1

TC
GA

−D
8−

A1
XA

−0
1

TC
GA

−A
8−

A0
6T

−0
1

TC
GA

−A
R−

A0
U3

−0
1

TC
GA

−A
8−

A0
7B

−0
1

TC
GA

−E
2−

A1
5O

−0
1

TC
GA

−E
2−

A1
0A

−0
1

TC
GA

−E
W

−A
1P

5−
01

TC
GA

−A
8−

A0
A9

−0
1

TC
GA

−B
6−

A0
IA

−0
1

TC
GA

−A
8−

A0
AB

−0
1

TC
GA

−E
2−

A1
54

−0
1

TC
GA

−B
6−

A0
RM

−0
1

TC
GA

−A
R−

A1
AS

−0
1

TC
GA

−E
9−

A1
RC

−0
1

TC
GA

−A
8−

A0
9M

−0
1

TC
GA

−C
8−

A2
74

−0
1

TC
GA

−A
R−

A2
4K

−0
1

TC
GA

−B
H−

A0
DD

−0
1

TC
GA

−B
6−

A0
IB

−0
1

TC
GA

−D
8−

A1
JT

−0
1

TC
GA

−B
H−

A1
F8

−0
1

TC
GA

−E
2−

A1
4W

−0
1

TC
GA

−A
R−

A0
TV

−0
1

TC
GA

−E
9−

A2
2H

−0
1

TC
GA

−B
6−

A0
W

W
−0

1
TC

GA
−C

8−
A2

6V
−0

1
TC

GA
−A

8−
A0

84
−0

1
TC

GA
−B

H−
A1

FJ
−0

1
TC

GA
−D

8−
A1

X6
−0

1
TC

GA
−A

R−
A2

4Z
−0

1
TC

GA
−D

8−
A1

X5
−0

1
TC

GA
−E

W
−A

1O
Y−

01
TC

GA
−A

O
−A

1K
P−

01
TC

GA
−B

6−
A0

X5
−0

1
TC

GA
−A

8−
A0

9N
−0

1
TC

GA
−E

W
−A

1P
0−

01
TC

GA
−A

N−
A0

XR
−0

1
TC

GA
−E

2−
A1

5K
−0

1
TC

GA
−E

2−
A1

4O
−0

1
TC

GA
−D

8−
A1

XR
−0

1
TC

GA
−A

N−
A0

3Y
−0

1
TC

GA
−B

H−
A0

W
3−

01
TC

GA
−E

9−
A2

49
−0

1
TC

GA
−E

9−
A1

RG
−0

1
TC

GA
−A

8−
A0

7Z
−0

1
TC

GA
−E

2−
A1

59
−0

1
TC

GA
−D

8−
A1

47
−0

1
TC

GA
−B

H−
A1

8V
−0

1
TC

GA
−A

O−
A1

29
−0

1
TC

GA
−B

H−
A0

BW
−0

1
TC

GA
−B

H−
A0

W
A−

01
TC

GA
−B

H−
A0

B3
−0

1
TC

GA
−C

8−
A1

34
−0

1
TC

GA
−A

8−
A0

8R
−0

1
TC

GA
−C

8−
A1

2K
−0

1
TC

GA
−E

2−
A1

LI−
01

TC
GA

−A
R−

A1
AJ

−0
1

TC
GA

−A
R−

A2
51

−0
1

TC
GA

−E
2−

A1
LH

−0
1

TC
GA

−A
R−

A0
TS

−0
1

TC
GA

−B
H−

A0
BG

−0
1

TC
GA

−B
H−

A1
8Q

−0
1

TC
GA

−D
8−

A1
42

−0
1

TC
GA

−A
R−

A2
4Q

−0
1

TC
GA

−A
O

−A
0J

L−
01

TC
GA

−A
7−

A2
6F

−0
1

TC
GA

−B
H−

A0
E6

−0
1

TC
GA

−A
8−

A0
7U

−0
1

TC
GA

−A
2−

A0
ST

−0
1

TC
GA

−B
6−

A0
RU

−0
1

TC
GA

−A
O

−A
0J

4−
01

TC
GA

−A
2−

A0
4P

−0
1

TC
GA

−A
N−

A0
AL

−0
1

TC
GA

−D
8−

A1
JL

−0
1

TC
GA

−A
N−

A0
FX

−0
1

TC
GA

−E
9−

A2
43

−0
1

TC
GA

−A
7−

A0
DA

−0
1

TC
GA

−E
2−

A1
AZ

−0
1

TC
GA

−E
2−

A1
4X

−0
1

TC
GA

−A
7−

A2
6I−

01
TC

GA
−D

8−
A2

7F
−0

1
TC

GA
−D

8−
A2

7M
−0

1
TC

GA
−A

2−
A0

SX
−0

1
TC

GA
−A

Q
−A

04
J−

01
TC

GA
−A

R−
A1

AR
−0

1
TC

GA
−A

2−
A1

G1
−0

1
TC

GA
−B

H−
A0

RX
−0

1
TC

GA
−A

2−
A0

4Q
−0

1
TC

GA
−A

O−
A1

2F
−0

1
TC

GA
−B

6−
A0

RT
−0

1
TC

GA
−C

8−
A1

2V
−0

1
TC

GA
−E

2−
A1

B0
−0

1
TC

GA
−D

8−
A1

XW
−0

1
TC

GA
−E

2−
A1

B6
−0

1
TC

GA
−E

9−
A1

ND
−0

1
TC

GA
−E

W
−A

1P
B−

01
TC

GA
−B

H−
A0

DL
−0

1
TC

GA
−D

8−
A1

JK
−0

1
TC

GA
−C

8−
A1

31
−0

1
TC

GA
−C

8−
A1

2T
−0

1
TC

GA
−E

2−
A1

4V
−0

1
TC

GA
−C

8−
A1

2L
−0

1
TC

GA
−A

8−
A0

94
−0

1
TC

GA
−A

8−
A0

8L
−0

1
TC

GA
−C

8−
A1

2P
−0

1
TC

GA
−A

O
−A

0J
2−

01
TC

GA
−D

8−
A1

JG
−0

1
TC

GA
−D

8−
A1

3Z
−0

1
TC

GA
−E

2−
A1

4P
−0

1
TC

GA
−C

8−
A2

75
−0

1
TC

GA
−B

6−
A0

RS
−0

1
TC

GA
−A

2−
A0

EQ
−0

1
TC

GA
−D

8−
A1

XJ
−0

1
TC

GA
−E

9−
A1

RH
−0

1
TC

GA
−A

8−
A0

9X
−0

1
TC

GA
−C

8−
A1

HF
−0

1
TC

GA
−A

N−
A0

4C
−0

1
TC

GA
−C

8−
A2

78
−0

1
TC

GA
−A

8−
A0

8X
−0

1
TC

GA
−B

H−
A2

03
−0

1
TC

GA
−E

9−
A2

48
−0

1
TC

GA
−A

2−
A0

4X
−0

1
TC

GA
−A

2−
A0

SW
−0

1
TC

GA
−A

2−
A2

5B
−0

1
TC

GA
−A

8−
A0

75
−0

1
TC

GA
−E

9−
A2

2D
−0

1
TC

GA
−E

2−
A1

0C
−0

1
TC

GA
−B

H−
A0

C0
−0

1
TC

GA
−A

8−
A0

76
−0

1
TC

GA
−A

2−
A0

SV
−0

1
TC

GA
−A

O−
A0

JM
−0

1
TC

GA
−E

2−
A1

5A
−0

1
TC

GA
−A

N−
A0

AM
−0

1
TC

GA
−E

9−
A1

RB
−0

1
TC

GA
−B

H−
A2

09
−0

1
TC

GA
−E

W
−A

1O
Z−

01
TC

GA
−C

8−
A1

HG
−0

1
TC

GA
−B

H−
A1

8U
−0

1
TC

GA
−B

H−
A2

02
−0

1
TC

GA
−A

8−
A0

7W
−0

1
TC

GA
−B

6−
A0

IQ
−0

1
TC

GA
−A

1−
A0

SO
−0

1
TC

GA
−A

R−
A1

AY
−0

1
TC

GA
−A

R−
A1

AQ
−0

1
TC

GA
−E

W
−A

1P
4−

01
TC

GA
−B

6−
A0

IJ−
01

TC
GA

−B
6−

A0
RE

−0
1

TC
GA

−E
2−

A1
4R

−0
1

TC
GA

−C
8−

A2
7B

−0
1

TC
GA

−A
R−

A0
TP

−0
1

TC
GA

−A
2−

A0
D0

−0
1

TC
GA

−A
8−

A0
7R

−0
1

TC
GA

−A
2−

A0
T0

−0
1

TC
GA

−A
R−

A2
56

−0
1

TC
GA

−A
2−

A0
T2

−0
1

TC
GA

−A
7−

A0
CE

−0
1

TC
GA

−E
2−

A1
LK

−0
1

TC
GA

−E
W

−A
1P

H−
01

TC
GA

−A
N−

A0
AT

−0
1

TC
GA

−A
N−

A0
4D

−0
1

TC
GA

−E
9−

A2
2G

−0
1

TC
GA

−A
2−

A0
YM

−0
1

TC
GA

−E
2−

A1
4N

−0
1

TC
GA

−B
6−

A1
KF

−0
1

TC
GA

−E
2−

A1
LG

−0
1

TC
GA

−A
7−

A1
3D

−0
1

TC
GA

−A
R−

A1
AH

−0
1

TC
GA

−A
8−

A0
7O

−0
1

TC
GA

−A
1−

A0
SK

−0
1

TC
GA

−A
N−

A0
FL

−0
1

TC
GA

−E
W

−A
1P

8−
01

TC
GA

−B
H−

A0
E0

−0
1

TC
GA

−A
8−

A0
7C

−0
1

TC
GA

−E
2−

A1
50

−0
1

TC
GA

−A
O

−A
0J

6−
01

TC
GA

−C
8−

A1
HJ

−0
1

TC
GA

−B
6−

A0
I2−

01
TC

GA
−E

2−
A1

58
−0

1
TC

GA
−E

9−
A2

44
−0

1
TC

GA
−A

2−
A0

D2
−0

1
TC

GA
−B

H−
A1

8T
−0

1
TC

GA
−A

2−
A0

CM
−0

1
TC

GA
−A

R−
A0

U4
−0

1
TC

GA
−A

O−
A1

24
−0

1
TC

GA
−A

R−
A1

AI
−0

1
TC

GA
−D

8−
A1

43
−0

1
TC

GA
−A

N−
A0

FJ
−0

1
TC

GA
−B

H−
A1

FC
−0

1
TC

GA
−A

N−
A0

XU
−0

1
TC

GA
−E

2−
A1

4Y
−0

1
TC

GA
−A

O−
A1

KR
−0

1
TC

GA
−E

2−
A1

LL
−0

1
TC

GA
−E

9−
A1

N8
−0

1
TC

GA
−E

2−
A1

II−
01

TC
GA

−A
N−

A0
AR

−0
1

TC
GA

−B
H−

A0
B9

−0
1

TC
GA

−A
7−

A0
CH

−0
1

TC
GA

−A
8−

A0
93

−0
1

TC
GA

−B
6−

A1
KI

−0
1

TC
GA

−E
9−

A1
RD

−0
1

TC
GA

−C
8−

A1
HE

−0
1

TC
GA

−E
9−

A1
R5

−0
1

TC
GA

−B
H−

A0
H6

−0
1

TC
GA

−B
6−

A0
RP

−0
1

TC
GA

−A
2−

A0
YC

−0
1

TC
GA

−A
N−

A0
XS

−0
1

TC
GA

−E
2−

A1
5P

−0
1

TC
GA

−B
H−

A1
ET

−0
1

TC
GA

−D
8−

A2
7P

−0
1

TC
GA

−E
2−

A1
5C

−0
1

TC
GA

−A
8−

A0
8T

−0
1

TC
GA

−D
8−

A1
XG

−0
1

TC
GA

−B
H−

A0
DS

−0
1

TC
GA

−E
2−

A1
L8

−0
1

TC
GA

−E
W

−A
1P

E
−0

1
TC

GA
−A

8−
A0

AD
−0

1
TC

GA
−A

N−
A0

XT
−0

1
TC

GA
−A

1−
A0

SG
−0

1
TC

GA
−E

2−
A1

IK
−0

1
TC

GA
−A

O
−A

0J
8−

01
TC

GA
−E

2−
A1

IL
−0

1
TC

GA
−E

2−
A1

5I−
01

TC
GA

−B
H−

A1
FR

−0
1

TC
GA

−A
8−

A0
9B

−0
1

TC
GA

−A
8−

A0
A2

−0
1

TC
GA

−E
9−

A2
45

−0
1

TC
GA

−D
8−

A2
7K

−0
1

TC
GA

−B
6−

A0
RN

−0
1

TC
GA

−E
2−

A1
IU

−0
1

TC
GA

−B
H−

A0
HO

−0
1

TC
GA

−B
H−

A2
8Q

−0
1

TC
GA

−E
9−

A2
4A

−0
1

TC
GA

−A
2−

A0
EM

−0
1

TC
GA

−B
6−

A0
RO

−0
1

TC
GA

−B
H−

A0
HI

−0
1

TC
GA

−D
8−

A1
X7

−0
1

TC
GA

−E
9−

A1
N9

−0
1

TC
GA

−B
H−

A1
8P

−0
1

TC
GA

−C
8−

A1
38

−0
1

TC
GA

−E
2−

A1
LB

−0
1

TC
GA

−A
8−

A0
9G

−0
1

TC
GA

−E
W

−A
1O

V−
01

TC
GA

−B
6−

A0
IK

−0
1

TC
GA

−C
8−

A1
35

−0
1

TC
GA

−A
8−

A0
8J

−0
1

TC
GA

−A
R−

A2
4U

−0
1

TC
GA

−A
R−

A0
TX

−0
1

TC
GA

−B
H−

A0
AW

−0
1

TC
GA

−D
8−

A1
JF

−0
1

TC
GA

−B
H−

A1
EN

−0
1

TC
GA

−A
2−

A0
4W

−0
1

TC
GA

−A
N−

A0
FV

−0
1

TC
GA

−C
8−

A2
6X

−0
1

TC
GA

−B
H−

A1
8R

−0
1

TC
GA

−C
8−

A1
2Q

−0
1

TC
GA

−B
H−

A1
EV

−0
1

TC
GA

−D
8−

A1
XT

−0
1

TC
GA

−A
8−

A0
7I−

01
TC

GA
−B

6−
A0

RH
−0

1
TC

GA
−A

O−
A1

2D
−0

1
TC

GA
−A

R−
A2

54
−0

1
TC

GA
−A

2−
A0

T1
−0

1
TC

GA
−E

9−
A2

2B
−0

1
TC

GA
−B

H
−A

18
J−

01
TC

GA
−B

H−
A1

8H
−0

1
TC

GA
−C

8−
A1

2Y
−0

1
TC

GA
−A

N−
A0

FT
−0

1
TC

GA
−B

H−
A0

HX
−0

1
TC

GA
−E

2−
A1

0B
−0

1
TC

GA
−A

2−
A0

EU
−0

1
TC

GA
−E

9−
A1

R2
−0

1
TC

GA
−C

8−
A1

HI
−0

1
TC

GA
−B

H−
A0

GY
−0

1
TC

GA
−A

N−
A0

FW
−0

1
TC

GA
−E

W
−A

1J
5−

01
TC

GA
−B

6−
A0

RI
−0

1
TC

GA
−E

2−
A1

IG
−0

1
TC

GA
−A

N−
A0

FD
−0

1
TC

GA
−E

9−
A2

47
−0

1
TC

GA
−A

O
−A

12
G

−0
1

TC
GA

−B
H−

A0
DZ

−0
1

TC
GA

−B
H−

A0
BV

−0
1

TC
GA

−B
6−

A0
RV

−0
1

TC
GA

−A
2−

A2
5D

−0
1

TC
GA

−A
2−

A0
CU

−0
1

TC
GA

−B
6−

A0
I5−

01
TC

GA
−E

9−
A1

N4
−0

1
TC

GA
−E

W
−A

1J
3−

01
TC

GA
−D

8−
A1

Y0
−0

1
TC

GA
−B

H−
A1

EX
−0

1
TC

GA
−E

9−
A1

RF
−0

1
TC

GA
−B

H−
A0

BT
−0

1
TC

GA
−B

H−
A0

AY
−0

1
TC

GA
−B

H−
A0

H9
−0

1
TC

GA
−B

H−
A0

E2
−0

1
TC

GA
−B

6−
A0

IE
−0

1
TC

GA
−A

2−
A0

SU
−0

1
TC

GA
−A

7−
A2

6J
−0

1
TC

GA
−A

C−
A2

3C
−0

1
TC

GA
−E

2−
A1

5L
−0

1
TC

GA
−A

R−
A2

4X
−0

1
TC

GA
−B

H−
A0

BC
−0

1
TC

GA
−A

2−
A0

4V
−0

1
TC

GA
−E

2−
A1

BD
−0

1
TC

GA
−B

6−
A0

IP
−0

1
TC

GA
−B

H−
A0

HB
−0

1
TC

GA
−E

2−
A1

4Z
−0

1
TC

GA
−A

8−
A0

8O
−0

1
TC

GA
−B

H−
A0

B4
−0

1
TC

GA
−A

N−
A0

XO
−0

1
TC

GA
−A

O−
A0

3V
−0

1
TC

GA
−A

8−
A0

7F
−0

1
TC

GA
−A

2−
A0

EV
−0

1
TC

GA
−A

R−
A1

AP
−0

1
TC

GA
−A

N−
A0

AS
−0

1
TC

GA
−B

H−
A1

FL
−0

1
TC

GA
−E

W
−A

1P
A−

01
TC

GA
−B

H−
A0

E1
−0

1
TC

GA
−C

8−
A2

73
−0

1
TC

GA
−D

8−
A1

X9
−0

1
TC

GA
−A

8−
A0

A1
−0

1
TC

GA
−B

H−
A1

8K
−0

1
TC

GA
−A

Q−
A0

4L
−0

1
TC

GA
−B

6−
A0

W
T−

01
TC

GA
−B

H−
A0

DH
−0

1
TC

GA
−B

H−
A0

B5
−0

1
TC

GA
−B

H−
A0

H7
−0

1
TC

GA
−A

8−
A0

90
−0

1
TC

GA
−A

O−
A0

3L
−0

1
TC

GA
−B

6−
A0

W
S−

01
TC

GA
−E

2−
A1

LA
−0

1
TC

GA
−E

2−
A1

5H
−0

1
TC

GA
−B

H−
A1

EW
−0

1
TC

GA
−A

7−
A0

D9
−0

1
TC

GA
−A

N−
A0

41
−0

1
TC

GA
−B

H−
A0

GZ
−0

1
TC

GA
−A

8−
A0

86
−0

1
TC

GA
−B

H−
A0

C1
−0

1
TC

GA
−E

W
−A

1P
6−

01
TC

GA
−A

2−
A0

YF
−0

1
TC

GA
−A

N−
A0

49
−0

1
TC

GA
−E

2−
A1

0E
−0

1
TC

GA
−B

H−
A1

ES
−0

1
TC

GA
−E

W
−A

1P
3−

01
TC

GA
−B

H−
A1

FN
−0

1
TC

GA
−A

2−
A0

EY
−0

1
TC

GA
−A

8−
A0

8G
−0

1
TC

GA
−D

8−
A2

7N
−0

1
TC

GA
−B

H−
A0

BD
−0

1
TC

GA
−A

8−
A0

9Q
−0

1
TC

GA
−E

W
−A

1IY
−0

1
TC

GA
−A

8−
A0

9C
−0

1
TC

GA
−B

H−
A1

FM
−0

1
TC

GA
−A

O−
A0

3N
−0

1
TC

GA
−D

8−
A1

J9
−0

1
TC

GA
−A

2−
A0

YH
−0

1
TC

GA
−D

8−
A1

XS
−0

1
TC

GA
−B

H−
A0

BZ
−0

1
TC

GA
−C

8−
A1

HL
−0

1
TC

GA
−B

H−
A0

C7
−0

1
TC

GA
−C

8−
A2

6W
−0

1
TC

GA
−A

8−
A0

8I−
01

TC
GA

−E
2−

A1
L7

−0
1

TC
GA

−D
8−

A1
JC

−0
1

TC
GA

−A
8−

A0
6O

−0
1

TC
GA

−A
8−

A0
9R

−0
1

TC
GA

−A
N−

A0
FY

−0
1

TC
GA

−E
9−

A1
NI

−0
1

TC
GA

−E
9−

A1
NA

−0
1

TC
GA

−D
8−

A1
3Y

−0
1

TC
GA

−B
H−

A0
AU

−0
1

TC
GA

−C
8−

A1
30

−0
1

TC
GA

−A
1−

A0
SN

−0
1

TC
GA

−D
8−

A1
XZ

−0
1

TC
GA

−A
R−

A0
TQ

−0
1

TC
GA

−E
9−

A1
R4

−0
1

TC
GA

−E
W

−A
1J

6−
01

TC
GA

−A
R−

A2
4R

−0
1

TC
GA

−A
R−

A2
4S

−0
1

TC
GA

−A
O−

A1
KT

−0
1

TC
GA

−C
8−

A1
2W

−0
1

TC
GA

−D
8−

A2
7W

−0
1

TC
GA

−A
2−

A0
4Y

−0
1

TC
GA

−A
8−

A0
95

−0
1

TC
GA

−A
2−

A2
5C

−0
1

TC
GA

−A
N−

A0
FF

−0
1

TC
GA

−D
8−

A2
7R

−0
1

TC
GA

−E
9−

A2
26

−0
1

TC
GA

−B
6−

A1
KN

−0
1

TC
GA

−A
R−

A0
TT

−0
1

TC
GA

−A
O

−A
1K

S−
01

TC
GA

−B
6−

A0
IN

−0
1

TC
GA

−A
2−

A0
T3

−0
1

TC
GA

−A
R−

A1
AW

−0
1

TC
GA

−A
R−

A2
4N

−0
1

TC
GA

−A
O−

A0
3R

−0
1

TC
GA

−A
O−

A0
3T

−0
1

TC
GA

−A
2−

A0
CL

−0
1

TC
GA

−E
W

−A
1I

Z−
01

TC
GA

−E
2−

A1
07

−0
1

TC
GA

−A
O−

A0
JB

−0
1

TC
GA

−E
9−

A1
RA

−0
1

ERBB2
RPS6KB1
PIK3CA
MTOR
CCND1
CDH1
EIF4EBP1
NCOA3
MDM2
MCL1
PLCG1
AKT2
AKT1
PTEN
ARHGEF7
EPHA2
F11R
IGF1R
FGFR2
KIT
FGFR3
RELN
ITGAV
ITGB2
TP53
KDR
KRAS
LAMA1
FRS2
PIK3CB
VAV2
PIK3CG
PIP5K1C
STAT3
PDGFRB
KIRREL
PIK3R1
NRAS
EGFR
PRKCD
PTK2
CUL9
BAI1
TOPBP1
MYC
PAK3
ANK1
CDKN2A
BAIAP3
SCN2A
CASP8
WT1
CD59
PRDM1
TOP1
CREBBP
ZMAT3
TSC2
KCNH6
RB1
NF1
SMARCA4
AFP
DOCK7
ATM
MDM4
ZNF274
BRCA2
RBBP6
DAPK1
ITGA6
ETS1
SESN1
PIAS2
VCAN
SETD2
ING2
TOPORS
NLRP12
BRCA1
E4F1
HSPA4
C5orf4
CD9
ETS2
COL18A1
DRAM1
NDRG1
HMGB1
HUWE1
MAP1B
TRIP12
RAD52
WWOX
ESR1
CUX1
IRS1
INSR
ITGB3
LAMA2
PREX1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

iCluster+

PAM50
NBS

SNF
hclust

F8
F7
F6
F5
F4
F3
F2
F1

B. Mutation heatmap

C
8

M

C
7

M

C
6

M

C
5

M

C
4

M

C
3

M

C
2

M

C
1

M

Figure 5.4: Results of applying SRF (k = 8) on the TCGA breast cancer dataset,
which resulted in the 13 subtypes denoted by S1, . . ., S13. For heatmaps in
Panels A, and B: red implies over-expressed, white neutral, blue under-expressed.
Panel A: Expression data. The gene and tumour sample sets corresponding to
the eight ranked factors are marked by the vertical and horizontal colour bars.
Each subtype is a unique combination of ranked factors in the tumour sample
dimension. Panel B: Mutation data. Samples are ordered as in panel A. Only
mutated genes that belong to any of the factors are displayed. On panels A and
B, the top bar indicates the PAM50 annotation of the samples together with
the subtyping results of iCluster+, NBS, SNF, and hierarchical clustering.

96 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

A. Expression of the PAM50 genes

PAM50

B. Expression of the top-10 ranked genes

PAM50

Figure 5.5: Panel A: Expression heatmap of the PAM50 genes. The samples
are ordered as in Figure 5.4A. Red implies over-expressed, white neutral, blue
under-expressed. Panel B: Expression heatmap of the top-10 genes per subtype,
i.e., the ten genes having the highest average ranked scores per subtype.

RESULTS 97

100%

75%

50%

25%

0%

PAM50
Basal
Her2
LumA
LumB
Normal

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11S12 S13

Figure 5.6: Distribution of PAM50 samples in the identified subtypes
A. Pathway enrichment analysis for the mutated genes of the 8 factors B. Pathway enrichment analysis for the top-10 expressed genes

F6 F1 F5 F7 F2 F4 F3 F8

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13

F6 F1 F5 F7 F2 F4 F3 F8

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13

-log
10
)p-valueb

-log
10
)p-valueblog

10
)p-valueb

Factors
Factors

S6 SV S5 S7 Sf S4 S0 S8

Cell cycle
p50 signaling pathway
Cell adhesion molecules rCAMsI
Wnt signaling pathway
MAPK signaling pathway
Apoptosis
cGMP−PKG signaling pathway
cAMP signaling pathway
TNF signaling pathway
Toll−like receptor signaling pathway
Pathways in cancer
PI0K−Akt signaling pathway
MicroRNAs in cancer
ErbB signaling pathway
FoxO signaling pathway
Focal adhesion
RapV signaling pathway
Insulin signaling pathway
AMPK signaling pathway
mTOR signaling pathway
Chemokine signaling pathway
Estrogen signaling pathway
Progesterone−mediated oocyte maturation
T cell receptor signaling pathway
B cell receptor signaling pathway
Jak−STAT signaling pathway
VEGF signaling pathway
Signaling pathways regulating pluripotency of stem cells
Ras signaling pathway

J 5 VJ V5 fJ

Color Key

S
6

S
1

S
5

S
7

S
2

S
4

S
3

S
8

ErbB signaling pathway

Calcium signaling pathway

Pathways in cancer

Focal adhesion

Estrogen signaling pathway

FoxO signaling pathway

MAPK signaling pathway

Ras signaling pathway

Rap1 signaling pathway

Cytokine−cytokine receptor interaction

Chemokine signaling pathway

cAMP signaling pathway

Cell adhesion molecules kCAMs(

MicroRNAs in cancer

PI3K−Akt signaling pathway

TGF−beta signaling pathway

p53 signaling pathway

−2 −1 0 1 2

FactorsFactors

S
u
b
ty
p
e
s

S
u
b
ty
p
e
s

Figure 5.7: Cancer pathway enrichment analysis. Panel A: KEGG pathway
[55] enrichment analysis for the selected mutated genes of the eight factors;
resulting −log10 p-values are shown for cancer related pathways that were found
to be significantly enriched in at least one of the factors. Panel B: KEGG
pathway enrichment analysis for the top-10 ranked expressed genes of the eight
factors. log10 and −log10 p-values are shown for pathways having under- and
over-expressed genes respectively.

98 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

0 1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
1.0

Times (years)

S
u

rv
iv

al
pr

ob
a

b
ili

ty

Subtype S10

Subtype S12

Figure 5.8: Kaplan-Meier plot for the two Basal-related subtypes S10 and S12.
(Not statistically significant because of the low mortality rate.)

some inconsistency between the mere expression-based PAM50 classification
and subtyping protocols based on the integration of expression and genomic
information is to be expected [19], a closer inspection of the expression and
mutational profiles of the subtypes with mixed PAM50 class membership shows
why our method does not distinguish between, e.g., the selected Her2 and some
LumB samples. That is, the selected LumB samples of subtype S11 contain clear
Her2-related features that distinguish them from other LumB samples, such as
an increased ERBB2 amplification and a more pronounced over-expression of a
characteristic subset of genes.

Our approach towards identifying subtypes together with their features can only
be meaningful if the selected features are biologically relevant. To assess this,
we first tested to what extent the expression features used to build the PAM50
classifier are amongst our selected features. From the 50 PAM50 features, 49
were present amongst the features selected by our method after pre-processing
(see Section 5.4). The ranked factors found by SRF used 2221 features in total,
including 48 out of 50 PAM50 features. To select a smaller representative
feature set, the 10 genes with the highest average ranked score per subtype
were selected, resulting in 110 instead of 2221 features (Figure 5.5B). Those 110
features contained 8 out of the 48 remaining features of the PAM50 classifier.
SRF selects all high-ranking features, hence the selected feature sets are more
redundant than those used by PAM50, which were designed for classification.
If our approach is to coincide with PAM50, we expect each group of features

RESULTS 99

to be covered by a few PAM genes. Except for one subtype this is indeed the
case. The exception, indicated with the blue row bar in Figure 5.5B, does not
have a corresponding PAM50 feature. Remarkably this is the feature set that
has the most distinct difference in expression between the two subtypes with
the same PAM50 Basal label (S10 and S12). Figure 5.5A shows how indeed
no differences can be observed between Basal subtypes S10 and S12 using the
PAM50 features, whereas the subdivision is clear using the expression-based
features selected by our method and shown in Figure 5.5B. Figure 5.9 shows
how the subtype subdivision of the Basal-like subtypes and the selection of the
corresponding expression features is also driven by the simultaneous selection of
the mutation-based features: S10 and S12 show clearly distinctive mutational
profiles with different mutational frequencies of, e.g., CD9, DRAM1 and E4F1.
Interestingly, survival analysis of these two Basal-like subtypes, despite not
being significant due to the low mortality rate, shows that subtype S12 tends
to be more aggressive than S10 during the first two years (Figure 5.8).

To assess whether the selected feature sets belong to known driver pathways
in breast cancer, we did per factor a KEGG pathway enrichment analysis on
respectively the selected mutational and expression features. Figures 5.7A and
5.7B display the enrichment levels for a representative set of cancer related
pathways that were found to be enriched. They also indicate how each subtype
is a composition of different factors and how the factors overlap in genes and
thus also in enriched pathways. For instance, the genes with a characteristic
expression profile in factor 5 (representative for lumA and B) and factor 4
(representative for basal S10) are enriched in rap1, ras1 and mapK signaling,
but with an anticorrelated expression profile for the Luminal subtypes versus the
Basal one. Figure 5.7A shows how, as expected, [12, 119, 125], the Basal-related
(S10, S12) and Her2-related subtypes (S11) are highly enriched in p53 signaling
and cell cycle whereas other subtypes are not. In addition, the Luminal subtypes
(LumA and LumB; S2, S5, S6, S9 and S13) are enriched with cancer pathways
known to be specific for this group: PI3K-Akt signaling pathway [12, 125],
Estrogen signaling pathway [74], AMPK signaling pathway [125].

Comparison with state-of-the-art methods To test to what extent our
method agrees with state-of-the-art subtyping methods, we also ran iCluster+
[84], NBS [49] and SNF [130] on the same dataset. Parameter settings for each of
these methods was optimised as explained in Section 5.4. Figure 5.4 illustrates
how our results compare with those of the other tools in terms of matching the
PAM50 subtyping. SNF and iCluster+, the two integrative methods that do not
use mutational consistency at the pathway level, do not perform well for some
subtypes. For example, SNF could not discern the heterogeneity of the Luminal
samples, which has been known to be the most heterogeneous breast cancer
subtype [12, 19], when it clustered all LumA samples and a large number of

100 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

2 3 4 5 6 7 8 9 0 2 3

WWOX
SESN1
ING2
CDKN2A
ZMAT3
RAD52
ZNF274
WT1
VCAN
TRIP12
TP53
SCN2A
RB1
PRDM1
NLRP12
NDRG1
MYC
MDM2
MCL1
MAP1B
KCNH6
HUWE1
HSPA4
HMGB1
ETS2
ERBB2
E4F1
DRAM1
CREBBP
COL18A1
CD9
CD59
C5orf4
BRCA2
BRCA1
BAIAP3
BAI1
ATM
ANK1
AFP

0 0.2 0.6
Value

S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13S1

Figure 5.9: Comparing the mutation frequencies among the identified subtypes
using the mutation gene set selected by subtype S12.

LumB samples into one group; iCluster+ could not subdivide the Basal subtype.
NBS, which could use mutational consistency at the pathway level but could
not integrate with expression data, could not distinguish the LumA from the
LumB samples. In contrast, our method can integrate expression data and
mutational data at the pathway level and hence can capture subtle differences
that might be missed otherwise.

Comparison with hierarchical clustering We performed a hierarchical
clustering of the tumour samples into clusters, of which the result is annotated
by the hclust column bar in Figure 5.4A. This clustering is also used to initialise
the matrix F of the two factorisations defined in Problem 5.1. In contrast to
hierarchical clustering, our SRF algorithm identifies clusters (subtypes) that
are highly overlapping and removes noisy samples.

MATERIALS AND METHODS 101

5.4 Materials and methods

Simulated data Mutational data was generated by first selecting driver
pathways for each of the simulated subtypes. Driver pathways were selected
from the densely connected sub-networks obtained by applying the InfoMap
algorithm [96] implemented in the igraph [18] R package on the STRING network
[112] post-processed by [49]. The selected driver pathway sizes varied from
{20, . . . , 100} genes and each such gene was assigned a mutational recurrency
between 2% and 15%. Passenger mutations were simulated by sampling, for each
patient, from a Bernoulli distribution with p = 0.005 (the average mutational
recurrency we observed in the TCGA breast cancer data). The total number of
passengers was chosen such that the total number of mutation genes, including
both drivers and passengers, was 8000, which was approximately equal to the
number of mutation genes used in the TCGA breast cancer data. Each simulated
mutation matrix consists of 8000 genes × 350 patients.

Expression data was simulated as previously described by [68]. That is, first
background information was generated by sampling from a mixture of three
Gaussians, of which means were uniformly sampled from three different ranges,
namely, [-5,3), [-3,3] and (3,5]. Then, over-expressed and under-expressed
modules were implanted. Values within over-expressed and under-expressed
modules were sampled from a Gaussian, with mean uniformly sampled from
(3,5] and [-5,-3) respectively. Per set of driver mutations and thus per subtype,
we ensured that the simulated dataset consisted of at least one set of genes that
was consistently differentially expressed across the samples in the subtype.

To simulate noise in the expression data, we simulated 100 small expression
modules that could be seen as the result of some confounding factors such as
sex and tissue type. The number of rows and columns of these confounding
modules were sampled from a normal distribution, whose mean was equal to
25% of the medium-sized pattern and standard deviation was equal to 40%
of the mean. Each simulated expression matrix consists of 4000 genes × 350
patients.

TCGA breast cancer dataset Breast cancer somatic mutation, copy number
alteration (CNA), expression (RNA-Seq v2), and clinical data were downloaded
from the TCGA data portal. Mutational data were converted to a Boolean
mutation matrix. CNA data were analysed using Gistic 2.0 [81] with default
settings. This data was then binarised by considering how genes are classified
by Gistic: as either deleted or amplified. This information was added to the
mutation matrix. We restricted our analysis to mutations and CNVs in genes
that also appear in the STRING network (12232 vertices) prepared by [49].
Expression genes were selected based on their differential expression relative

102 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

to normal (non-tumour) samples: for each gene a normal distribution was
fitted using the normal expression samples and z-scores were calculated for
the tumour samples. We then evaluated the 5th and 95th percentiles of the
tumour samples. Genes were selected if 1) the p-values for these percentiles were
below 0.001 and 2) their log-fold change relative to the mean normal expression
was at least 2.5. After the filtering steps mentioned above, the final mutation
matrix consisted of 8604 genes× 719 patients, and the final expression matrix
of 2472 genes× 719 patients.

Diffusion threshold selection Our SRF algorithm transforms the Boolean
mutation matrix into a rank matrix by applying a diffusion model [124], [49] for
each mutation profile of the tumour samples on a protein–protein interaction
network. Intuitively, the diffusion model links mutated genes to its neighbours
with respect to the interaction network structure. The strength of these links is
governed by a tuning parameter called α. Hofree et. al., [49] found the optimal
value of α is network dependent. In the case of the STRING [112] network, they
also discovered that the optimal value for α is 0.7. As we used the STRING
network, which was post-processed by Hofree et. al., [49], we set the α threshold
to 0.7 for all of the experiments presented in this paper.

SRF parameter selection Our algorithm has five parameters: θ1 and θ2
specify the minimal threshold on respectively the diffusion and expression ranks
for a gene/sample to be included in a ranked factor; β specifies the importance
of the mutation relative to the expression data; k specifies the number of ranked
factors and µ specifies the number of patients in which a mutation should be
present in order to be included in a factor. µ was set to 2 for all the experiments
in this paper.

For each simulated dataset, we performed a parameter sweep using combinations
of the following parameter settings: θ1 ∈ {82%, 85%, 90%}, θ2 ∈ {65%, 70%},
and β ∈ {2, 18, 35, 50}. As we knew the ground truth for these datasets,
we evaluated F1 scores and chose the parameter setting that resulted in the
mean highest average score over all simulated datasets. This resulted in the
following choice for the parameters: θ1 = 82%, θ2 = 65%, β = 18. Note
that with this choice of β, the mutation component is implicitly given two
times the weight of the expression component in the optimisation problem, as
(max(D)/(β ∗max(E)) = 1.94, where max(D) = 12232 and max(E) = 350.

Given that our artificial data has similar properties as the TCGA data, for
the TCGA data we used the same parameter settings for θ2 and β as for the
artificial data, i.e., θ2 = 65% and β = 18; also in an earlier study [69], on
expression data only, it was demonstrated that θ2 = 65% is a good choice. We
considered alternative settings for θ1, with θ1 ∈ {70%, 72%, . . . , 90%, 92%}. Our
motivation is that we wished to end up with a number of mutations smaller

MATERIALS AND METHODS 103

than 40, which is the number of cancer genes of this disease found by [110].
Although the impact of the θ1 parameter is small, we decided to use a parameter
setting of θ1 = 86% to reduce the set of mutated genes. For k we considered
values in the range k ∈ {5, . . . , 14}. We observed that for k > 8 the results only
change slowly and hence stopped at k = 8.

To validate whether our choice is reasonable for the TCGA dataset or not, we ran
SRF with a selected number of combinations of the parameter thresholds, i.e.,
varying one parameter while fixing the others to the selected values described
above. Then, we evaluated two scores: coverage and error. The coverage score
is the percentage of the region in the reconstructed matrix of the factorisation
that has non-zero values. The error score is the average number of cells in the
covered region whose value is less than the user-defined threshold.

Figure 5.10 shows the behaviour of the algorithm when we varied the value of β
(the relative importance threshold of mutation to expression) and fixed the other
parameters to the selected values mentioned above (θ1 = 86%, θ2 = 65%, k = 8).
The figure confirms that β = 18 was a good choice as from that point the
mutation coverage levelled off and became reasonably small. At the same time,
the mutation error per cell slowly increased since β = 18.

Figure 5.11 illustrates the performance of the algorithm when we varied θ1
(the rank threshold for ranked diffusion) and fixed the other parameters to the
selected values. The figure confirms that θ1 = 86% is a good choice as the
mutation coverage (and hence the number of mutations per subtype) becomes
reasonably small from that point on. At the same time, the expression coverage
starts to increase while the expression error per cells decreases. In other words,
high quality expression data were added into the solutions from θ1 = 86% on.

Figure 5.12 shows the behaviour of the algorithm when we vary θ2 (the rank
threshold for ranked expression) and fix the other parameters to the selected
values. The figure shows θ2 = 70% could be a good choice as both mutation error
and expression error decreases at that point. However, the mutation coverage
increases and hence the number of mutations per subtype also increases. Because
we wished to end up with a number of mutations smaller than 40, θ2 = 65%
was chosen.

Figure 5.13 shows that the mutation coverage becomes stable from k = 8 on,
while expression coverage slowly increases. Hence, we could stop at k = 8.

Parameter selection for the benchmarked methods With iCluster+ [84],
we used the model selection algorithm provided by the software to obtain the
optimal parameters. With SNF [130], we varied the α parameter in the range of
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and chose the one that resulted in the highest average
F1 score on the simulated data. With NBS [49], we used the default parameter

104 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

0.0

0.1

0.2

0.3

0 10 20 30

Expression coverage
Expression error
Mutation coverage
Mutation error

β

Figure 5.10: Varying the value of β while fixing θ1 = 86%, θ2 = 65%, k = 8

0.0

0.1

0.2

0.3

70 75 80 85 90

Expression coverage
Expression error
Mutation coverage
Mutation error

θ1

Figure 5.11: Varying the value of θ1 while fixing θ2 = 65%, β = 18, k = 8

MATERIALS AND METHODS 105

0.0

0.1

0.2

0.3

0.4

60 70 80

Expression coverage
Expression error
Mutation coverage
Mutation error

θ2

Figure 5.12: Varying the value of θ2 while fixing β = 18, θ1 = 86%, k = 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

5.0 7.5 10.0 12.5
k

●

●

●

●

Expression coverage
Expression error
Mutation coverage
Mutation error

Figure 5.13: Varying k while fixing β = 18, θ1 = 86%, θ2 = 65%

106 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

settings. Note that the two scores were calculated for both rank matrices.

Gene feature selection To compare SRF to other methods concerning the
recovery of subtype-specific genes in the simulated datasets, we used gene
feature selection. With our method, it was straightforward to extract the
mutation genes and expression genes representative of the individual subtypes,
as described in Section 5.2. With iCluster+ [84], we used a quantile cut-off
of p = 0.75 to select the important genes according to the model. With SNF
[130], we first ordered the genes by Normalized Mutual Information using the
SNF software. We then selected the top-n expression and the top-m mutation
genes, where n and m are the total number of true expression and mutation
genes of the simulated subtypes respectively. With NBS [49], we could in theory
obtain subtype-specific mutation genes, but were not able to recover them given
the lack of documentation. It is important to note that with both iCluster+
and SNF, all identified subtypes have the same set of mutation and expression
genes.

Hierarchical clustering SRF requires an initialised matrix F to start from,
which was obtained through hierarchical clustering: we used the hclust package
in R to cluster the columns of the ranked expression matrix into k groups (with
Euclidean distance).

Pruning small subtypes To be more tolerant towards noise, derived subtypes
that contain less samples than a predefined threshold (less than 4% of the total
number of samples for the simulated datasets) were pruned. Samples of the
pruned subtypes were re-assigned to the remaining subtype that results in the
highest score for the function in Equation 5.2.

Survival and pathway enrichment analysis Survival analysis was per-
formed using the R survival package. We used time to follow, time to event and
the subtype information produced by our algorithm to calculate the survival
probability. Pathway enrichment analysis was done using the ClueGo plugin [8]
in Cytoscape [103].

5.5 Discussion

Previous integrative models, such as iCluster+ [84] and SNF [130], used between-
sample similarities from the sample’s global expression/mutational profiles to
derive subtypes. However, molecular subtypes are defined by the molecular
mechanisms that drive carcinogenesis. How subtypes are defined thus depends on
the features used to group samples in subtypes. Conversely, the subtypes define
which features are relevant for a certain sample grouping. Hence, subtyping and

CONCLUSIONS 107

feature identification are confounded problems that ideally should be solved
simultaneously.

In this work we therefore developed SRF, an approach that does so. To this end
we approached the subtyping problem by decomposing patient–mutation and
patient–expression data into ranked factors. A factor here represents a set of
samples for which a set of genes display mutational consistency and a (possibly
overlapping) second set of genes display expression consistency. A factor thus is
an expressed and mutational feature set shared by a group of samples, and can
be viewed as a bi-cluster [77] in respectively the expression and mutation data
that are coupled in the patient dimension. We developed a global model in the
form of matrix factorisation to identify these bi-clusters.

Subtypes are then defined as each patient set that is covered by a unique
combination of ranked factors. As a result subtypes can overlap in
the factors that characterise them, reflecting the fact that subtypes are
never mechanistically completely different, but share common representative
features/driver mechanisms.

Compared to state-of-the-art methods, our method is most related to [49] 1)
as it uses a network model to account for pathway level parallelism between
independently evolved tumour samples and 2) because it extracts features
explicitly. However, it is different from [49] by integrating both mutational and
expression data.

Compared to related methods, samples without clear-cut signals will not be
assigned to any subtypes. This prevents samples (noisy or heterogeneous
samples) from blurring the molecular characteristics that are representative for
a subtype. However, if desired we could assign samples to the closest subtype
identified by our method.

In this work, we did not consider metabolomics data, as was done in the work
by [115]. The type of data described in [115] can only be generated for cell lines
and not for a tumour biopsy. It is not available in the context of TCGA or
ICGC.

5.6 Conclusions

In this chapter, we study the ranked tiling problem in a multi-view setting, in
which we would like to find sets of two ranked tiles that reside in two different
rank matrices and that are coupled through the same subset of the columns.
This setting stems from a real bioinformatics problem called cancer subtyping,
which aims at integrating different molecular data types, including mutation

108 SIMULTANEOUS DISCOVERY OF CANCER SUBTYPES AND SUBTYPE FEATURES USING SRMF

data, gene expression data and prior knowledge encoded in biological networks,
to discover groups of tumour samples that have the same molecular origins of
their cancer development.

We approach the cancer subtyping problem by 1) defining the concept of driver
pathways using the ranked tiling pattern; 2) derive cancer subtypes from the
driver pathways using the rule that a cancer subtype is a group of samples
that have a unique combination of driver pathways. Our approach leads to
simultaneous discovery of cancer subtypes and subtype specific features.

We formalise the task of discovering k driver pathways by defining a joint rank
matrix factoristation problem, which jointly factorises the ranked version of the
mutation data and the ranked version of the expression data. We extensively
tested the performance of our method on simulated data. Testing and comparing
our method with other state-of-the-art subtyping methods on the well studied
TCGA breast cancer dataset shows how our method is able to grasp the most
prominent signatures in the data. In addition, however, our method is also able
to capture subtle differences that are missed by methods that compare samples
based on global profiles of similarities.

Chapter 6

Conclusions and Future Work

This chapter summarises the discoveries and the contributions of the thesis, and
discusses opportunities for future works.

6.1 Summary and conclusions

In this thesis, we studied rank data. We find that rank data naturally occurs
in many applications and it is a useful abstraction of numeric data. In many
cases, particularly when data consists of incomparable rows and the relative
information is more important than the absolute values, for example, high/low
gene expression values, transforming numeric data into rank data may result in
a more informative representation.

We addressed the pattern set mining problem in rank data, i.e., the problem
of discovering a small set of rank patterns that together globally describe
the structure of the data. To support the discovery of such sets of patterns,
we developed a matrix factorisation framework using semiring theory. We
successfully applied the framework to model and solve two new data mining
problems, namely, ranked tiling and Sparse RMF, which we introduced while
conducting research in this thesis. We also demonstrated that rank patterns are
generally interesting and useful in practice. For example, we were able to use
ranked tiling to link genotype information, such as mutations and copy number
variations, with molecular phenotype downstream, such as mRNA expression,
for the discovery of cancer subtypes and subtype features.

109

110 CONCLUSIONS AND FUTURE WORK

Now we review the three research questions that we raised in the introduction
chapter and the answers that we contributed.

Q1 How can we model rank pattern set mining?

We contribute a semiring rank matrix factorisation framework for pattern set
mining in rank data. The novelty of the framework lies in the definition of the
matrix product using the semiring theory rather than the linear algebra. This
makes the framework handle rank data more easily (with fewer constraints)
than conventional methods using linear algebra. This also leads to improved
solution qualities, for instance, higher overlaps.

The framework is open to discover different types of patterns in rank data. To
mine a specific pattern, we proposed to use the two factorised matrices to define
the patterns of interest by constraining the values of these matrices as well as
an appropriate scoring function to measure the quality of the factorisation.

The framework aims at local patterns. Hence, the reconstructed matrix of the
factorisation might deviate from the original matrix as long as the patterns
produced by the factorisation can capture the main structures of the data.

Q2 Which types of rank patterns are potentially interesting and useful?

We contribute the introductions of two new rank patterns, namely, Sparse RMF
and ranked tiling. Sparse RMF studies how to discover a small set of sparse
rank vectors that can be used to succinctly summarise a given rank matrix.
Ranked tiling studies how to discover a small set of data rectangles in a rank
matrix that have high ranks and together cover the matrix as much as possible.
Ranked tiling reveals local associations between subsets of the rows and subsets
of the columns. We also demonstrate how we can model and solve the two data
mining problems using the single proposed framework.

The experiments maintain that the newly introduced patterns appear in many
domains, for example, social science (the European Song Festival dataset),
artificial intelligence (the SUSHI dataset), cancer biology (the TCGA breast
cancer dataset). In addition, the discovered patterns from the datasets are
generally intersesting and are capable of giving insights about the structure of
the data, which results in useful knowledge.

Q3 How useful are rank patterns in real life applications?

We apply the framework to discover Sparse RMF and ranked tiling patterns
in real-life datasets. In general, the discovered patterns reveal interesting
categories of rankings in the data. For example, we discover interesting ways
of rankings sushis in the SUSHI dataset [54], which illustrates the existence
of different groups of customers. Such type of knowledge may be useful for

FUTURE WORK 111

business purposes.

Importantly, we successfully apply the ranked tiling pattern to study the cancer
subtyping problem. Ranked tiling is used to formally define the concept of
mutated driver pathways, from which we can derive cancer subtypes. Applying
our model in the TCGA breast cancer dataset, we could discover specific
mutation and expression features of breast cancer subtypes, which may shed a
light into the molecular origins of the disease subtypes.

6.2 Future work

This thesis concerns multidisciplinary research between computer science and
bioinformatics. The cancer biology problem inspired us to advance data mining
algorithms. In return, advances in data mining modelling and solving techniques
helped us to solve the problem that matters. Obviously, this loop helps to
improve both fields. Our future work will continue this philosophy.

Exploring other types of rank patterns and their applications. Up till
now, we have used the sRMF framework to study two types of rank patterns,
namely, Sparse RMF and ranked tiling. In the future, we will further explore
other types of rank patterns that are potentially interesting, as well as verify
the broad applicability of the framework. We believe new patterns can appear
when we extend the current framework to new settings, for instance, supervised
pattern mining, network-based pattern mining, temporal pattern mining and
relational pattern mining. To have a concrete example, let’s imagine that
we have a heterogeneous dataset consisting of different types of molecular
information for a number of tumour samples, which now have a label, for
example, drug response or drug resistance. The problem is to discover molecular
information which can be used to discriminate the two groups of the samples.
This problem belongs to the class of supervised pattern mining. In this setting,
the ranked tiling pattern is not suitable any more. However, we can extend the
ranked tiling work to have a new pattern that has the discriminative feature
required for this type of problem.

Other solving strategies. In this thesis, we only consider discrete
optimisation models, in which decision variables are constrained to have discrete
values. Solving discrete optimisation problems is in general harder than solving
convex optimisation problems. Hence, it is worthy of considering convex
relaxations for the optimisation models studied in this thesis and possible
consequences of the relaxation. For example, applying the relaxation for Sparse
mRMF might require us to re-consider the regularisation using the coverage

112 CONCLUSIONS AND FUTURE WORK

(Equation 3.4 on page 28) as the coverage matrix now easily becomes dense and
might not have the regularisation effect.

Other interesting directions might include a scalable algorithm that can directly
solve the optimisation problems for Sparse RMF and mRMT without using the
EM-style iterating method.

Continuous values for rank data. In this thesis, we only consider rank data
of which values are discrete. However, rank data can also be represented by
numeric values. These two types of representations have been considered in
statistics. For example, Mallows model [80] uses discrete values to represent
rankings while Random Utility Theory [108] and Placket-Luce models [76, 92, 43,
13] consider numeric values. These two directions are both of equal importance.

Dealing with unknown rankings. In this thesis, we assume that we have
complete rankings. However, in practice, we can encounter datasets that do
not have complete rankings. For example, in rating datasets, users often do
not provide full rankings for all of the items. How to improve the current
framework to have a probabilistic model that can deal with unknown rankings
is an interesting direction for future work.

Subjective interestingness for rank pattern set mining. In this thesis,
we focus on discovering rank patterns that can cover the data as much as
possible. Though the discovered patterns can reveal hidden data regularities,
it may be the case that the patterns are not much surprising with respect
to users’ knowledge. There has been research that models users’ subjective
interestingness for pattern mining such as the work by De Bie [20]. How to
incorporate users’ subjective interestingness in the rank factorisation framework
to mine rank patterns is also an interesting direction for future work.

Developing model selections. In practice, we see that it is quite hard to
select the right parameters for a given data. Sometimes, we still have to use prior
knowledge of the data miner to select appropriate values for the parameters.
Inspired from previous work on parameter-free data mining algorithms, for
example the work in [127], the question is whether we can develop model
selections for sRMF instances, such as Sparse RMF and ranked tiling?

Data mining and machine learning for precision oncology. One of the
prominent features of our proposed model for cancer subtyping compared to
the others is the capability of extracting subtype specific features, including
mutational features and expression features. This is essential for identifying
core driver features (pathways) that can be used to describe cancer subtypes
and to predict clinical phenotypes. However there are still many open questions
that have not been explored:

FUTURE WORK 113

• What are the core driver pathways that can be used to described all
possible cancer subtypes in different types of human tissues?

• Are there any relations among the core driver pathways?

• Given the discovered core driver pathways, can we build (probabilistic)
machine learning programs to predict clinical phenotypes accurately?

• How do the core driver pathways change when tumours evolve and develop
drug resistance?

To conclude, the rank matrix factorisation framework has proven useful and
can be extended in various interesting directions.

Bibliography

[1] Agarwal, S. On ranking and choice models. In Proc. of the 25th
International Joint Conference on Artificial Intelligence (IJCAI-16),
pp. 4050–4053.

[2] Aggarwal, C. C., and Han, J., Eds. Frequent Pattern Mining. Springer,
2014.

[3] Agrawal, R., Imieliński, T., and Swami, A. Mining association
rules between sets of items in large databases. In Proc. of the 1993 ACM
SIGMOD International Conference on Management of Data (SIGMOD-
93), pp. 207–216.

[4] Alvo, M., and Yu, P. L. Statistical methods for ranking data. Springer,
2014.

[5] Awasthi, P., Blum, A., Sheffet, O., and Vijayaraghavan, A.
Learning mixtures of ranking models. In Advances in Neural Information
Processing Systems (NIPS-14), pp. 2609–2617.

[6] Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., and Modha,
D. S. A generalized maximum entropy approach to Bregman co-clustering
and matrix approximation. Journal of Machine Learning Research 8
(2007), 1919–1986.

[7] Ben-Dor, A., Chor, B., Karp, R., and Yakhini, Z. Discovering
local structure in gene expression data: the order-preserving submatrix
problem. Journal of Computational Biology 10, 3-4 (2003), 373–384. DOI:
10.1089/10665270360688075.

[8] Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., et al.
ClueGO: a Cytoscape plug-in to decipher functionally grouped gene
ontology and pathway annotation networks. Bioinformatics 25, 8 (2009),
1091–1093. DOI: 10.1093/bioinformatics/btp101.

115

116 BIBLIOGRAPHY

[9] Brunet, J. P., Tamayo, P., Golub, T. R., and Mesirov, J. P.
Metagenes and molecular pattern discovery using matrix factorization.
Proc. of the National Academy of Sciences (PNAS) 101 (2004), 4164–4169.
DOI: 10.1073/pnas.0308531101.

[10] Busse, L. M., Orbanz, P., and Buhmann, J. M. Cluster
analysis of heterogeneous rank data. In Proc. of the 24th International
Conference on Machine Learning (ICML-07), pp. 113–120. DOI:
10.1145/1273496.1273511.

[11] Calders, T., Goethals, B., and Jaroszewicz, S. Mining rank-
correlated sets of numerical attributes. In Proc. of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
06), pp. 96–105. DOI: 10.1145/1150402.1150417.

[12] Cancer Genome Atlas Network. Comprehensive molecular portraits
of human breast tumours. Nature 490, 7418 (2012), 61–70. DOI:
10.1038/nature11412.

[13] Caron, F., and Teh, Y. Bayesian nonparametric models for ranked data.
In Advances in Neural Information Processing (NIPS-12), pp. 1520–1528.

[14] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic
decomposition by basis pursuit. SIAM Review. 43, 1 (2001), 129–159.
DOI: 10.1137/S003614450037906X.

[15] Cheng, Y., and Church, G. M. Biclustering of expression data. Proc.
of the 8th International Conference on Intelligent Systems for Molecular
Biology (ISMB-00) 8 (2000), 93–103.

[16] Chierichetti, F., Dasgupta, A., Kumar, R., and Lattanzi, S. On
learning mixture models for permutations. In Proc. of the 2015 Conference
on Innovations in Theoretical Computer Science (ITCS-15), pp. 85–92.
DOI: 10.1145/2688073.2688111.

[17] Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-
i. Nonnegative Matrix and Tensor Factorizations: Applications to
Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley
Publishing, 2009.

[18] Csardi, G., and Nepusz, T. The igraph software package for complex
network research. International Journal of Complex Systems (2006), 1695.

[19] Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., et al.
The genomic and transcriptomic architecture of 2,000 breast tumours
reveals novel subgroups. Nature 486, 7403 (2012), 346–352. DOI:
10.1038/nature10983.

BIBLIOGRAPHY 117

[20] De Bie, T. Maximum entropy models and subjective interestingness:
an application to tiles in binary databases. Data Mining and Knowledge
Discovery 23, 3 (2011), 407–446. DOI: 10.1007/s10618-010-0209-3.

[21] De Maeyer, D., Weytjens, B., De Raedt, L., and Marchal,
K. Network-based analysis of eQTL data to prioritize driver mutations.
Genome Biology and Evolution (2016). DOI: 10.1093/gbe/evw010.

[22] De Raedt, L., Guns, T., and Nijssen, S. Constraint programming
for itemset mining. In Proc. of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-08), pp. 204–
212. DOI: 10.1145/1401890.1401919.

[23] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
and Harshman, R. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (1990), 391–407.

[24] Deng, K., Han, S., Li, K. J., and Liu, J. S. Bayesian aggregation of
order-based rank data. Journal of the American Statistical Association
109, 507 (2014), 1023–1039. DOI: 10.1080/01621459.2013.878660.

[25] Dhillon, I. S., Mallela, S., and Modha, D. S. Information-theoretic
co-clustering. In Proc. of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-03), pp. 89–98. DOI:
10.1145/956750.956764.

[26] Diaconis, P. Group representations in probability and statistics. Lecture
notes-monograph series. Institute of Mathematical Statistics, 1988.

[27] Ding, C., He, X., and Simon, H. D. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proc. of the 2005 SIAM
International Conference on Data Mining (SDM-05), pp. 606–610. DOI:
10.1137/1.9781611972757.70.

[28] Ding, C., Li, T., and Peng, W. On the equivalence between non-
negative matrix factorization and probabilistic latent semantic indexing.
Computational Statistics and Data Analysis 52, 8 (2008), 3913–3927. DOI:
10.1016/j.csda.2008.01.011.

[29] Ding, W., Ishwar, P., and Saligrama, V. A topic modeling approach
to ranking. In Proc. of the 18th International Conference on Artificial
Intelligence and Statistics (AISTATS-15).

[30] Drineas, P., Frieze, A., Kannan, R., Vempala, S., and
Vinay, V. Clustering large graphs via the Singular Value
Decomposition. Machine Learning 56, 1-3 (2004), 9–33. DOI:
10.1023/B:MACH.0000033113.59016.96.

118 BIBLIOGRAPHY

[31] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank
aggregation methods for the Web. In Proc. of the 10th International
Conference on World Wide Web (WWW-01), pp. 613–622. DOI:
10.1145/371920.372165.

[32] Eldén, L. Matrix Methods in Data Mining and Pattern Recognition.
Society for Industrial and Applied Mathematics, 2007.

[33] England, G. The 100,000 Genomes Project, 2016 (accessed
September 20, 2016). https://www.genomicsengland.co.uk/
the-100000-genomes-project/.

[34] Frünkranz, J., and Hüllermeier, E. Preference Learning. Springer,
2010.

[35] G. Golub, W. K. Calculating the singular values and pseudo-inverse of
a matrix. Journal of the Society for Industrial and Applied Mathematics:
Series B, Numerical Analysis 2, 2 (1965), 205–224.

[36] Gaussier, E., and Goutte, C. Relation between PLSA and NMF
and implications. In Proc. of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR-05), pp. 601–602. DOI: 10.1145/1076034.1076148.

[37] Geerts, F., Goethals, B., and Mielikäinen, T. Tiling databases. In
Proc. of the 7th International Conference on Discovery Science (DS-04),
pp. 278–289. DOI: 10.1007/978-3-540-30214-8_22.

[38] Givoni, I., Cheung, V., and Frey, B. Matrix tile analysis. In Proc.
of the 22rd Conference on Uncertainty in Artificial Intelligence (UAI-06).

[39] Golan, J. S. Semirings and Their Applications. Kluwer, Dordrecht,
1999.

[40] Goldman, M., Craft, B., Swatloski, T., Ellrott, K., Cline, M.,
et al. The UCSC cancer genomics browser: update 2013. Nucleic Acids
Research 41, D1 (2013), D949–D954. DOI: 10.1093/nar/gks1008.

[41] Golub, G. H., and Van Loan, C. F. Matrix Computations. Johns
Hopkins University Press, 1996.

[42] Gu, J., and Liu, J. S. Bayesian biclustering of gene expression data.
BMC Genomics 9 Suppl 1 (2008). DOI: 10.1186/1471-2164-9-S1-S4.

[43] Guiver, J., and Snelson, E. Bayesian inference for Plackett-Luce
ranking models. In Proc. of the 26th Annual International Conference on
Machine Learning (ICML-09), pp. 377–384.

https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.genomicsengland.co.uk/the-100000-genomes-project/

BIBLIOGRAPHY 119

[44] Guns, T., Nijssen, S., and De Raedt, L. Itemset mining: a constraint
programming perspective. Artificial Intelligence 175, 12 (2011), 1951 –
1983. DOI: 10.1016/j.artint.2011.05.002.

[45] Henriques, R., and Madeira, S. C. BicPAM: pattern-based
biclustering for biomedical data analysis. Algorithms for Molecular Biology
9, 1 (2014), 1–30. DOI: 10.1186/s13015-014-0027-z.

[46] Henzgen, S., and Hüllermeier, E. Mining rank data. In Proc. of the
17th International Conference on Discovery Science (DS-14), pp. 123–134.

[47] HGP. The Human Geome Project, 2016 (accessed
September 20, 2016). https://www.genome.gov/12011238/
an-overview-of-the-human-genome-project/.

[48] Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., et al.
FABIA: factor analysis for bicluster acquisition. Bioinformatics 26, 12
(2010), 1520–7. DOI: 10.1093/bioinformatics/btq227.

[49] Hofree, M., Shen, J. P., Carter, H., Gross, A., and Ideker, T.
Network-based stratification of tumor mutations. Nature Methods 10, 11
(2013), 1108–15. DOI: 10.1038/nmeth.2651.

[50] Hoyer, P. O. Non-negative matrix factorization with sparseness
constraints. Journal of Machine Learning Research 5 (2004), 1457–1469.

[51] ICGC. The International Cancer Genome Consortium, 2016 (accessed
September 20, 2016). http://icgc.org/.

[52] Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv,
Y., and Barkai, N. Revealing modular organization in the yeast
transcriptional network. Nature Genetics 31, 4 (2002), 370–7. DOI:
10.1038/ng941.

[53] Kaci, S. Working with Preferences: Less Is More. Springer, 2011.

[54] Kamishima, T. Nantonac collaborative filtering: recommendation based
on order responses. In Proc. of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-03), pp. 583–
588. DOI: 10.1145/956750.956823.

[55] Kanehisa, M., and Goto, S. KEGG: Kyoto Encyclopedia of genes
and genomes. Nucleic Acids Research 28, 1 (2000), 27–30. DOI:
10.1093/nar/28.1.27.

https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/
https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/
http://icgc.org/

120 BIBLIOGRAPHY

[56] Karaev, S., and Miettinen, P. Cancer: another algorithm for
subtropical matrix factorization. In Proc. of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD-16).

[57] Karaev, S., and Miettinen, P. Capricorn : An algorithm for
subtropical matrix factorization. In Proc. of the 2016 SIAM International
Conference on Data Mining (SDM-16).

[58] Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., and
Ueda, N. Learning systems of concepts with an infinite relational model.
In Proc. of the 21st National Conference on Artificial Intelligence (AAAI-
06), pp. 381–388.

[59] Kendall, M. Rank Correlation Methods. Griffin, London, 1948.

[60] Khta, M. U., and Ali, R. M. Probability models on horse-race
outcomes. Journal of Applied Statistics 25, 2 (1998), 221–229. DOI:
10.1080/02664769823205.

[61] Kim, K. H. Boolean Matrix Theory and Applications. Dekker (1982),
1982.

[62] Kluger, Y., Basri, R., Chang, J. T., and Gerstein, M. Spectral
biclustering of microarray data: coclustering genes and conditions.
Genome Research 13 (2003), 703–716. DOI: 10.1101/gr.648603.

[63] Kontonasios, K.-N., and De Bie, T. An information-theoretic
approach to finding informative noisy tiles in binary databases. In Proc.
of the 2010 SIAM International Conference on Data Mining (SDM-10),
pp. 153–164. DOI: 10.1137/1.9781611972801.14.

[64] Koren, Y., Bell, R., and Volinsky, C. Matrix factorisation
techniques for recommender systems. Computer 42, 8 (2009), 30–37.
DOI: 10.1109/MC.2009.263.

[65] Le Van, T., Fierro, A. C., Guns, T., van Leeuwen, M., Nijssen,
S., De Raedt, L., and Marchal, K. Mining local staircase patterns in
noisy data. In Proc. of the 12th International Conference on Data Mining
Workshops (ICDM-12), pp. 139–146. DOI: 10.1109/ICDMW.2012.83.

[66] Le Van, T., Nijssen, S., van Leeuwen, M., and De Raedt, L.
Semiring rank matrix factorisation. IEEE Transactions on Knowledge
and Data Engineering Under revision.

BIBLIOGRAPHY 121

[67] Le Van, T., van Leeuwen, M., Fierro, A. C., De Maeyer, D.,
Van den Eynden, J., Verbeke, L., De Raedt, L., Marchal, K.,
and Nijssen, S. Simultaneous discovery of cancer subtypes and subtype
features by molecular data integration. Bioinformatics 32 (2016), i445–
i454. DOI: 10.1093/bioinformatics/btw434.

[68] Le Van, T., van Leeuwen, M., Nijssen, S., and De Raedt, L. Rank
Matrix Factorisation. In Proc. of the 19th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD-15), pp. 734–746. DOI:
10.1007/978-3-319-18038-0_57.

[69] Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A. C.,
Marchal, K., and De Raedt, L. Ranked tiling. In Proc. of the
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD-14) (2) (2014),
pp. 98–113. DOI: 10.1007/978-3-662-44851-9_7.

[70] Ledford, H. End of cancer-genome project prompts rethink. Nature
517 (2015), 128–9. DOI: 10.1038/517128a.

[71] Lee, D. D., and Seung, H. S. Learning the parts of objects by non-
negative matrix factorization. Nature 401, 6755 (1999), 788–791. DOI:
10.1038/44565.

[72] Leiserson, M. D. M., Vandin, F., Wu, H.-T., Dobson, J. R.,
et al. Pan-cancer network analysis identifies combinations of rare somatic
mutations across pathways and protein complexes. Nature Genetics 47, 2
(2014), 106–114. DOI: 10.1038/ng.3168.

[73] Lin, S. Rank aggregation methods. Wiley Interdisciplinary Reviews:
Computational Statistics 2, 5 (2010), 555–570. DOI: 10.1002/wics.111.

[74] Lisa, B., Friederike, M., Petra, S., Andreas, S., et al. Intrinsic
breast cancer subtypes defined by estrogen receptor signalling - prognostic
relevance of progesterone receptor loss. Modern Pathology 26, 9 (2013),
1161–1171. DOI: 10.1038/modpathol.2013.60.

[75] Liu, T.-Y. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331. DOI:
10.1561/1500000016.

[76] Luce, R. D. Individual Choice Behavior: A Theoretical Analysis. Wiley,
1959.

[77] Madeira, S. C., and Oliveira, A. L. Biclustering algorithms
for biological data analysis: a survey. IEEE/ACM Transactions on

122 BIBLIOGRAPHY

Computational Biology and Bioinformatics 1, 1 (2004), 24–45. DOI:
10.1109/TCBB.2004.2.

[78] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online learning
for matrix factorization and sparse coding. Journal of Machine Learning
Research 11 (2009), 19–60.

[79] Mannila, H., and Toivonen, H. Levelwise search and borders of
theories in knowledge discovery. Data Mining and Knowledge Discovery
1, 3 (1997), 241–258. DOI: 10.1023/A:1009796218281.

[80] Marden, J. I. Analyzing and Modeling Rank Data. Chapman & Hall,
1995.

[81] Mermel, C., Schumacher, S., Hill, B., Meyerson, M., et al.
GISTIC2.0 facilitates sensitive and confident localization of the targets of
focal somatic copy-number alteration in human cancers. Genome Biology
12, 4 (2011), R41. DOI: 10.1186/gb-2011-12-4-r41.

[82] Miettinen, P., Mielikainen, T., Gionis, A., Das, G., and Mannila,
H. The discrete basis problem. IEEE Transactions on Knowledge and
Data Engineering 20, 10 (2008), 1348–1362. DOI: 10.1109/TKDE.2008.53.

[83] Mischel, P. S., Shai, R., Shi, T., et al. Identification of molecular
subtypes of glioblastoma by gene expression profiling. Oncogene 22, 15
(2003), 2361–73. DOI: 10.1038/sj.onc.1206344.

[84] Mo, Q., Wang, S., Seshan, V. E., Olshen, et al. Pattern discovery
and cancer gene identification in integrated cancer genomic data. Proc. of
the National Academy of Sciences (PNAS) 110, 11 (2013), 4245–50. DOI:
10.1073/pnas.1208949110.

[85] Murphy, T. B., and Martin, D. Mixtures of distance-based models for
ranking data. Computational Statistics & Data Analysis 41, 3–4 (2003),
645 – 655. DOI: 10.1016/S0167-9473(02)00165-2.

[86] Nijssen, S., Vreeken, J., Zimmermann, A., Tatti, N.,
and Bringmann, B. 2011 ICDM tutorial Mining Sets of
Patterns - Next Generation Pattern Mining, 2011. Available from
http://usefulpatterns.org/msop/.

[87] OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

[88] Paatero, P., and Tapper, U. Positive matrix factorization: a
non-negative factor model with optimal utilization of error estimates

BIBLIOGRAPHY 123

of data values. Environmetrics 5, 2 (1994), 111–126. DOI:
10.1002/env.3170050203.

[89] Parker, J. S., Mullins, M., Cheang, M. C. U., Leung, S.,
et al. Supervised risk predictor of breast cancer based on intrinsic
subtypes. Journal of Clinical Oncology 27, 8 (2009), 1160–7. DOI:
10.1200/JCO.2008.18.1370.

[90] Pearson, K. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine 2, 6 (1901), 559–572.

[91] Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., et al.
Molecular portraits of human breast tumours. Nature 406, 6797 (2000),
747–52. DOI: 10.1038/35021093.

[92] Placket, R. L. The analysis of permutations. Journal of the Royal
Statistical Society 24 (1975), 193–202.

[93] Pratanwanich, N., Lió, P., and Stegle, O. Warped matrix
factorisation for multi-view data integration. In Proc. of the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD-16), pp. 789–804. DOI:
10.1007/978-3-319-46227-1_49.

[94] Rajaraman, A., and Ullman, J. D. Mining of Massive Datasets.
Cambridge University Press, 2011.

[95] Rossi, F., Venable, K. B., and Walsh, T. A short introduction to
preferences: Between artificial intelligence and social choice. Synthesis
Lectures on Artificial Intelligence and Machine Learning 5, 4 (2011), 1–102.
DOI: 10.2200/S00372ED1V01Y201107AIM014.

[96] Rosvall, M., and Bergstrom, C. T. Maps of random walks
on complex networks reveal community structure. Proc. of the
National Academy of Sciences (PNAS) 105, 4 (2008), 1118–1123. DOI:
10.1073/pnas.0706851105.

[97] Sanchez-Garcia, F., Villagrasa, P., Matsui, J., Kotliar,
D., et al. Integration of genomic data enables selective discovery
of breast cancer drivers. Cell 159, 6 (2014), 1461–1475. DOI:
10.1016/j.cell.2014.10.048.

[98] Schein, A. I., Saul, L. K., and Ungar, L. H. A generalized linear
model for principal component analysis of binary data. In Proc. of the 9th
International Workshop on Artificial Intelligence and Statistics (2003).

124 BIBLIOGRAPHY

[99] Schutter, B. D., and Moor, B. D. The singular-value decomposition
in the extended max algebra. Linear Algebra and its Applications 250
(1997), 143 – 176.

[100] Seppänen, J. K., Bingham, E., and Mannila, H. A simple algorithm
for topic identification in 0–1 data. In Proc. of the 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD-
03), pp. 423–434. DOI: 10.1007/978-3-540-39804-2_38.

[101] Serin, A., and Vingron, M. DeBi: discovering differentially expressed
biclusters using a frequent itemset approach. Algorithms for Molecular
Biology 6, 1 (2011), 1–12. DOI: 10.1186/1748-7188-6-18.

[102] Shan, H., and Banerjee, A. Bayesian co-clustering. In Proc. of the 8th
IEEE International Conference on Data Mining (ICDM-08), pp. 530–539.
DOI: 10.1109/ICDM.2008.91.

[103] Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Research 13 (2003), 2498–2504. DOI:
10.1101/gr.1239303.

[104] Sheng, Q., Moreau, Y., and De Moor, B. Biclustering microarray
data by Gibbs sampling. Bioinformatics 19, suppl 2 (2003), ii196–ii205.
DOI: 10.1093/bioinformatics/btg1078.

[105] Skillicorn, D. Understanding Complex Datasets: Data Mining with
Matrix Decompositions. Chapman & Hall/CRC, 2007.

[106] Sohn Emily. Diagnosis: a clear answer. Nature 537, 7619 (2016), S64–S65.
DOI: 10.1038/537S64a 10.1038/537S64a.

[107] Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., et al. Gene
expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications. Proc. of the National Academy of Sciences
(PNAS) 98, 19 (2001), 10869–74. DOI: 10.1073/pnas.191367098.

[108] Soufiani, H. A., Parkes, D. C., and Xia, L. Random utility theory
for social choice. In Advances in Neural Information Processing Systems
(NIPS-12), pp. 126–134.

[109] Speicher, N. K., and Pfeifer, N. Integrating different data types
by regularized unsupervised multiple kernel learning with application to
cancer subtype discovery. Bioinformatics 31, 12 (2015), i268–i275. DOI:
10.1093/bioinformatics/btv244.

BIBLIOGRAPHY 125

[110] Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., et al.
The landscape of cancer genes and mutational processes in breast cancer.
Nature 486, 7403 (2012), 400–4. DOI: 10.1038/nature11017.

[111] Sun, S. A survey of multi-view machine learning. Neural Computing and
Applications 23, 7 (2013), 2031–2038. DOI: 10.1007/s00521-013-1362-6.

[112] Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M.,
et al. The STRING database in 2011: functional interaction networks
of proteins, globally integrated and scored. Nucleic Acids Research 39,
suppl 1 (2011), D561–D568. DOI: 10.1093/nar/gkq973.

[113] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data
Mining. Addison-Wesley, 2005.

[114] Tanay, A., Sharan, R., and Shamir, R. Discovering statistically
significant biclusters in gene expression data. Bioinformatics 18, Suppl. 1
(2002), S136–S144.

[115] Tardito, S., Oudin, A., Ahmed, S. U., Fack, F., et al. Glutamine
synthetase activity fuels nucleotide biosynthesis and supports growth of
glutamine-restricted glioblastoma. Nature Cell Biology 17, 12 (dec 2015),
1556–1568. DOI: 10.1038/ncb3272.

[116] TCGA. The Cancer Genome Atlas, 2016 (accessed September 20, 2016).
http://cancergenome.nih.gov/.

[117] The Cancer Genome Atlas Network. Comprehensive molecular
portraits of human breast tumours. Nature 490, 7418 (2012), 61–70. DOI:
10.1038/nature11412.

[118] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B 58 (1994), 267–288.

[119] Toss, A., and Cristofanilli, M. Molecular characterization and
targeted therapeutic approaches in breast cancer. Breast Cancer Research
17, 1 (2015), 60. DOI: 10.1186/s13058-015-0560-9.

[120] Tothill, R. W., Tinker, A. V., George, J., Brown, R., et al.
Novel molecular subtypes of serous and endometrioid ovarian cancer linked
to clinical outcome. Clinical Cancer Research 14, 16 (2008), 5198–5208.
DOI: 10.1158/1078-0432.CCR-08-0196.

[121] Truong, D. T., Battiti, R., and Brunato, M. Discovering non-
redundant overlapping biclusters on gene expression data. In Proc. of
the 13th IEEE International Conference on Data Mining (ICDM-13),
pp. 747–756. DOI: 10.1109/ICDM.2013.36.

http://cancergenome.nih.gov/

126 BIBLIOGRAPHY

[122] Turner, H., Bailey, T., and Krzanowski, W. Improved biclustering
of microarray data demonstrated through systematic performance tests.
Computational Statistics & Data Analysis 48, 2 (2005), 235–254. DOI:
10.1016/j.csda.2004.02.003.

[123] Ukkonen, A., and Mannila, H. Finding outlying items in sets of partial
rankings. In Proc. of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD-07), pp. 265–276.

[124] Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., and Sharan,
R. Associating genes and protein complexes with disease via network
propagation. PLoS Computational Biology 6, 1 (2010), e1000641. DOI:
10.1371/journal.pcbi.1000641.

[125] Verbeke, L. P. C., Van den Eynden, J., Fierro, A. C., Demeester,
P., Fostier, J., and Marchal, K. Pathway relevance ranking for
tumor samples through network-based data integration. PLoS ONE 10, 7
(2015), 1–22. DOI: 10.1371/journal.pone.0133503.

[126] Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S.,
et al. Cancer genome landscapes. Science 339, 6127 (2013), 1546–1558.
DOI: 10.1126/science.1235122.

[127] Vreeken, J., van Leeuwen, M., and Siebes, A. Krimp: mining
itemsets that compress. Data Mining and Knowledge Discovery 23, 1
(2011), 169–214. DOI: 10.1007/s10618-010-0202-x.

[128] Žitnik, M., and Zupan, B. Data fusion by matrix factorization. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37, 1 (2015),
41–53. DOI: 10.1109/TPAMI.2014.2343973.

[129] Wall, M. E., Rechtsteiner, A., and Rocha, L. M. Singular Value
Decomposition and Principal Component Analysis. Springer, 2003, pp. 91–
109. DOI: 10.1007/0-306-47815-3_5.

[130] Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno,
M., Haibe-Kains, B., and Goldenberg, A. Similarity network fusion
for aggregating data types on a genomic scale. Nature Methods 11, 3
(2014), 333–7. DOI: 10.1038/nmeth.2810.

[131] Wang, F., Li, T., Wang, X., Zhu, S., and Ding, C. Community
discovery using nonnegative matrix factorization. Data Mining and
Knowledge Discovery 22, 3 (2011), 493–521. DOI: 10.1007/s10618-010-
0181-y.

BIBLIOGRAPHY 127

[132] Wang, H.-Q., Zheng, C.-H., and Zhao, X.-M. jNMFMA: a joint non-
negative matrix factorization meta-analysis of transcriptomics data. Bioin-
formatics 31, 4 (2014), 572–580. DOI: 10.1093/bioinformatics/btu679.

[133] Wang, P., Laskey, K. B., Domeniconi, C., and Jordan, M. I.
Nonparametric bayesian co-clustering ensembles. In Proc. of the 2011
SIAM International Conference on Data Mining (SDM-11), pp. 331–342.

[134] Xu, C., Tao, D., and Xu, C. A survey on multi-view learning. CoRR
abs/1304.5634 (2013).

[135] Xu, W., Liu, X., and Gong, Y. Document clustering based on non-
negative matrix factorization. In Proc. of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion
Retrieval (SIGIR-03), pp. 267–273.

[136] Xu, Z., Tresp, V., Yu, K., and Kriegel, H.-P. Infinite hidden
relational models. In Proc of the 22nd International Conference on
Uncertainity in Artificial Intelligence (UAI-06), pp. 544—-551.

[137] Yang, Z., and Michailidis, G. A non-negative matrix factorization
method for detecting modules in heterogeneous omics multi-modal data.
Bioinformatics 32 (2015), btv544. DOI: 10.1093/bioinformatics/btv544.

[138] Yuan, Y., Savage, R. S., and Markowetz, F. Patient-specific data
fusion defines prognostic cancer subtypes. PLoS Computational Biology
7, 10 (2011), e1002227. DOI: 10.1371/journal.pcbi.1002227.

[139] Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, et al.
Pan-cancer patterns of somatic copy number alteration. Nature Genetics
45, 10 (2013), 1134–1140. DOI: 10.1038/ng.2760.

List of publications

Journal articles

• Le Van, T., Nijssen, S., van Leeuwen, M., and De Raedt, L. Semiring
rank matrix factorisation. IEEE Transactions on Knowledge and Data
Engineering, Under revision.

• Le Van, T., van Leeuwen, M., Fierro, A. C., De Maeyer, D., Van
den Eynden, J., Verbeke, L., De Raedt, L., Marchal, K., and Nijssen,
S. Simultaneous discovery of cancer subtypes and subtype features by
molecular data integration. Bioinformatics 32 (2016), i445– i454. DOI:
10.1093/bioinformatics/btw434.

Peer-reviewed conference and workshop papers

• Le Van, T., van Leeuwen, M., Nijssen, S., and De Raedt, L. Rank Matrix
Factorisation. In Proc. of the 19th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD-15), pp. 734–746. DOI: 10.1007/978-
3-319-18038-0_57.

• Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A. C., Marchal, K., and
De Raedt, L. Ranked tiling. In Proc. of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD-14) (2) (2014), pp. 98–113. DOI: 10.1007/978-
3-662-44851-9_7.

• Le Van, T., Fierro, A. C., Guns, T., van Leeuwen, M., Nijssen, S., De
Raedt, L., and Marchal, K. Mining local staircase patterns in noisy data.
In Proc. of the 12th International Conference on Data Mining Workshops
(ICDM-12), pp. 139–146. DOI: 10.1109/ICDMW.2012.83.

129

130 LIST OF PUBLICATIONS

Meeting abstracts

• Le Van, T., Van den Eynden, J., De Maeyer, D., Verbeke, L., Fierro
Gutiérrez, A., van Leeuwen, M., Nijssen, S., De Raedt, L., Marchal, K.
(2015). Ranked tiling based approach to discovering patient subtypes.
Benelux Bioinformatics Conference (BBC-15). Antwerp - Belgium, 7-8
December 2015. (accepted for oral presentation).

• Le Van, T., Fierro Gutiérrez, A., Guns, T., van Leeuwen, M., Nijssen,
S., De Raedt, L., Marchal, K. (2013). Bi-clustering gene expression
data under constraints. Benelux Bioinformatics Conference (BBC-13).
Brussels - Belgium, 9-10 December 2013.

Curriculum Vitae

Thanh Le Van (Lê V ăn Thành in Vietnamese) was born in a suburb of Sai Gon
(HoChiMinh City), Vietnam, in November 11, 1978. He received his Bachelor
degree in Computer Science from Ho Chi Minh City University of Technology
in 2001. During the period from 2001 to 2010, he worked for VietNam Post
and Telecomunication (VNPT) in HoChiMinh City as a software engineer. In
2005, he won a two-year scholarship from VNPT for his graduate study at
the Asian Institute of Technology (AIT), Thailand. He obtained his master
degree in Information and Communication Technology from AIT in 2007. His
master thesis was entitled "Data mining for financial aid optimisation" and was
supervised by Prof. Peter Haddawy.

In November 2010, he joined the Machine Learning group, KU Leuven, Belgium,
as a pre-doctoral student. In February 2012, he started his PhD research in the
same group. His research is about declarative methods for data mining using
Constraint Programming and Integer Programming, matrix factorisation for
pattern set mining in rank data and its applications in bioinformatics.

131

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI LAB
Celestijnenlaan 200A box 2402

B-3001 Heverlee
thanh.levan@cs.kuleuven.be

http://dtai.cs.kuleuven.be

	Abstract
	Acknowledgements
	Contents
	Introduction
	Rank data
	Pattern set mining
	Bioinformatics
	Contributions
	Structure of the thesis

	Semiring Rank Matrix Factorisation
	Introduction
	Semiring rank matrix factorisation (sRMF)
	Rank pattern set mining using sRMF
	Related work
	Rank pattern mining
	Semiring-based matrix factorisation
	Boolean matrix factorisation
	Real-valued matrix factorisation
	Bi-clustering and tiling
	Rank data analysis

	Conclusions

	Sparse RMF
	Introduction
	Sparse plus-product semiring rank matrix factorisation (Sparse pRMF)
	Sparse max-product semiring rank matrix factorisation (Sparse mRMF)
	Sparse mRMF factorisation is not unique
	Solving Sparse pRMF using IP
	Solving Sparse mRMF using IP
	Experiments with synthetic data
	Real world case studies
	European Song Festival dataset
	The Sushi dataset

	Related work
	Discussion
	Conclusions

	Ranked Tiling
	Introduction
	One maximal ranked tile mining
	One maximal ranked tile
	Maximal ranked tile mining using CP
	Maximal ranked tile mining using sRMF

	Ranked tiling
	Ranked tiling using CP (cpRMT)
	Ranked tiling using sRMF (mRMT)
	Computational complexity of the mRMT problem
	mRMT factorisation is not unique
	Solving mRMT using Integer Programming

	Experiments with synthetic data
	Synthetic data with implanted ranked tiles
	Synthetic data with implanted orders

	Real world case studies
	European Song Festival dataset
	Discovering breast cancer subtypes
	The Sushi dataset

	Discussion
	Conclusions

	Simultaneous Discovery of Cancer Subtypes and Subtype Features using sRMF
	Introduction
	The SRF algorithm
	Transforming input datasets into rank matrices
	Mining k ranked factors using sRMF
	Deriving cancer subtypes from ranked factors

	Results
	Results on simulated datasets
	Results on the TCGA breast cancer data

	Materials and methods
	Discussion
	Conclusions

	Conclusions and Future Work
	Summary and conclusions
	Future work

	Bibliography
	List of publications
	Curriculum Vitae

