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Abstract

The Latest Danian Event (LDE, ~62.1 Ma) is an early Paleogene hyperthermal or transient
(<200 kyr) ocean warming event. We present the first deep-sea benthic foraminiferal faunal
record to study deep-sea biotic changes and new benthic (Nuttallides truempyi) stable isotope
data from Walvis Ridge Site 1262 (Atlantic Ocean) to evaluate whether the LDE is controlled
by similar processes as the minor early Eocene hyperthermals. The spacing of the double
negative δ13C and δ18O excursion and the slope of the δ18O-δ13C regression is comparable,
strongly suggesting a similar orbital control and pacing of eccentricity maxima as well as a
rather homogeneous carbon pool. However, in contrast to early Eocene hyperthermals, the
benthic  foraminiferal  fauna  is  remarkably  stable  across  the  LDE.  This  lack  of  benthic
response could be related to the absence of threshold related circulation changes or better pre-
adaptation to elevated deep-sea temperatures, as the LDE was superimposed on a cooling
trend, in contrast to early Eocene warming.

Introduction

The early Paleogene is characterized by numerous hyperthermals, transient (<200 kyr) deep-
sea and surface ocean warming events, associated with carbon isotope excursions (CIEs) and
carbonate dissolution in the deep sea. Of these, the Paleocene-Eocene Thermal Maximum
(PETM; ~56 Ma) is the most extreme example. The Latest Danian Event (LDE; Bornemann
et al., 2009; ~62.1 Ma), also referred to as Top Chron 27n Event (Westerhold et al., 2011) is a
minor  hyperthermal  compared  to  the  PETM.  Benthic  and  planktic  foraminiferal  isotope
records indicate a ~2-3°C warming (Westerhold et al., 2011; Jehle et al., 2015), and a ~0.7‰
negative CIE (Bornemann et al., 2009;  Westerhold et al., 2011). Also peak values in XRF
core scanning Fe records (Westerhold et al., 2008), anoxia in marginal basins (Sprong et al.,
2012, Schulte et al., 2013) and biotic changes among calcareous nannofossils (Monechi et al.,
2013), planktic foraminifera (Jehle et al., 2015) and mammals (Clyde et al., 2008) coinciding
with the LDE are strongly reminiscent phenomena related to the PETM. At present,  it  is

1

mailto:arne.deprez@kuleuven.be
http://dx.doi.org/10.1111/ter.12250


unclear  whether the LDE was controlled by similar  processes as the minor  early Eocene
hyperthermals. Also the biotic changes in the deep-sea have not been studied so far.

This paper provides the first in-depth comparison between isotope records spanning the LDE
and the Eocene ETM2-H2 hyperthermals, as recorded at Walvis Ridge ODP Site 1262 (Stap
et al., 2010). We combine the isotopic data with benthic foraminiferal abundance patterns in
order to evaluate relationships between transient warming events and development of the
early Paleogene deep sea ecosystem.

Walvis Ridge ODP Site 1262 is located at 4759 m water depth near the base of Walvis Ridge
(Angola Basin). Paleocene sediments consist of nannofossil ooze with cyclic variations in

sediment  lightness  and  geochemistry,  representing  a
response  to  orbital  forcing  (Westerhold et  al.,  2008).
Paleodepth was estimated as ~3000 – 3300 m, based on
a  simple  thermal  subsidence  model  and  benthic
foraminiferal  assemblages  (Shipboard  Scientific  Party,
2004a; b).

Material and methods

Stable isotopes ratios (δ18O, δ13C) for 91 samples from
9 m of core were measured on five Nuttallides truempyi
specimens  (size  125-180 µm)  per  sample  (Appendix
S1). SEM images of broken N. truempyi (Appendix S2)
reveal open pores, but also the presence of ~1 µm sized
crystals  of  secondary  calcite  on  interior  walls.  Since
most recrystallization takes place in the upper sediment
layers, benthic foraminifera preserve the stable isotope
signature,  even  if  recrystallized  (Edgar et  al.,  2013;
Voigt et al., 2016).  Regression lines were calculated to
investigate  the  relationship  between  the  δ13C and  the
δ18O excursion. Major axis regression was used instead
of  ordinary  least  squares,  because  of  measurement
errors associated with both δ13C and δ18O. Slopes were
compared  to  major  axis  regression  for  early  Eocene
hyperthermals  (data  from  Lauretano et  al.,  2015).
Sedimentary  CaCO3 was  determined  using  a  LECO
device at the BGR in Hannover.

Benthic  foraminiferal  abundances  were obtained from
representative splits  (> 270 specimens)  of the >63 µm
fraction.  Benthic  foraminifera  were  classified  in
epibenthic  and endobenthic  morphotypes  according to
Corliss  and  Chen  (1988). Shannon  diversity  was
calculated  based  on  the  dataset  with  absolute  counts
(Hammer,  2015). Benthic  foraminiferal  accumulation
rates  (BFAR)  were  calculated  by  multiplication  of
foraminiferal  numbers  per  gram  with  sedimentation
rates (option 2 age model of  Westerhold et  al.,  2008)
and Shipboard dry bulk densities (Shipboard Scientific
Party,  2004b).  Non-metric  multidimensional  scaling
(NMDS) on abundances for all taxa with a maximum
relative abundance >2% was run to  identify the main
patterns  in  the  benthic  foraminiferal  abundances.  The

2

S
el

.
D

an
ia

n
S

ta
ge

61
.6

61
.8

62
.0

62
.2

62
.4

δ
18

O (‰)~T(°C)

δ
13

C (‰)

1209 (Westerhold et al., 2011) ~2500 m 
1210 (Jehle et al., 2015) ~2700 m 
1262 (this study) ~3000 m

10.5

10.5

LD
E

1
LD

E
2

10.5 0 0.5

0-0.5

10 8

12 10

Fig. 1. Nuttallides truempyi 
isotope patterns of ODP Sites 
1209, 1210 (Shatsky Rise, Pacific
Ocean) and 1262 (Walvis Ridge, 
Atlantic Ocean) plotted against 
the numeric age model based on 
linear interpolation between 
short-term eccentricity maxima of
Westerhold et al. (2008), option 
2. Thick lines represent a 3-point 
moving average. Records from 
Walvis Ridge and δ13C records 
were plotted on a different scale 
to prevent overlapping records. 
Temperature estimates are 
according to the Erez and Luz 
(1983) paleotemperature 
calculation with 1.2‰ ice-free 
standard mean ocean water 
(Shackleton and Kennett, 1975) 
and a 0.35‰ correction for 
Nuttallides vital effects 
(Shackleton et al., 1984).



2D  representation  and  the  correlation  distance  measure  were  chosen  (e.g.  Hammer  and
Harper,  2006).  To compare  the  LDE to  early Eocene hyperthermals,  ƩCV  were calculated
following the biotic scaling approach of  Gibbs et al. (2012). This measure associates one
value to the overall assemblage variability in a certain time period. These were calculated on
a dataset with 3 point moving averages of all taxa with an average abundance of more than
1%. More information on material and methods is available in Appendix S3.

Results and discussion

Stable isotopes

The isotopic record (Fig. 1) reveals two distinct negative peaks, both in δ 13C and δ18O at
~62.1 Ma (~195 mcd), here termed LDE1 and LDE2. These two peaks coincide with higher
Fe, as revealed by XRF core scanning (Westerhold et al., 2008) and lower carbonate values
(Fig. 4).  LDE1  at  Walvis  Ridge  starts  at  62.18 Ma
(195.6 mcd),  reaching  lowest  δ13C values  at  62.14 Ma
(195.3 mcd).  This  CIE coincides  with  a  ~0.5‰ negative
δ18O excursion,  indicating ~2.2°C bottom water warming,
assuming no local changes in δ18OSW due to salinity or ice
volume.  LDE2  peaks  at  62.04 Ma  (194.5 mcd)  with  a
~0.5‰ CIE  and  a  ~0.3‰  δ18O  excursion.  Both  isotopic
records  return  to  pre-LDE  values  in  about  50 kyr  at
61.99 Ma (194.1 mcd).

These peaks correspond to those observed at Shatsky Rise
sites 1209 and 1210, but Site 1262 shows a larger CIE (0.9
compared to 0.6‰) and warming (2.2 compared to 1.5-2°C)
during  LDE1. The  LDE  shows  a  pattern  of  two  CIEs,
100 kyr  apart,  which  it  shares  with  ETM2-H2,  and I1-I2
(Littler et al., 2014). All these CIEs are thought to relate to
short-term (100 kyr) eccentricity maxima in one long-term
(400 kyr) eccentricity maximum (Westerhold et al.,  2008;
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Hilgen et al., 2015). The slopes of major axis regression (Fig. 2) on the δ13C-δ18O relationship
for the LDE and early Eocene hyperthermals are plotted in Fig. 3. Compared to slopes for
early Eocene hyperthermals, LDE1 has a similar slope to H1 (ETM2), J and K (ETM3). I1
has a slightly steeper slope than the other events, but still within the 95% confidence intervals
of all other events. LDE2 has a steeper slope then LDE1, but compared to the other secondary
events in a hyperthermal pair, H2 and I2, it is in the lower range of the confidence interval.
The relationship between the added mass of carbon divided by the initial mass of carbon in
the ocean-atmosphere system (Madded/Minitial) and the δ13C change is given by Madded / Minitial = -
CIE / (δ13Cfinal – δ13Cadded) (McInerney and Wing, 2011). The slope of the relationship between
δ13C and δ18O is dependent on climate sensitivity (temperature change per increase in CO2)
and  the  δ13C  value  of  the  source  of  reduced  carbon.  Climate  sensitivity  governs  the
relationship between δ18O (as measure for temperature) and the amount of carbon added to
the atmosphere (Madded  / Minitial). For more negative values for the carbon source, δ13Cfinal –
δ13Cadded increases and the slope (1 / (δ13Cfinal – δ13Cadded)) is less steep. Similar slopes thus
point to similar climate sensitivities for Paleocene and Eocene hyperthermals and a similar
carbon source, although compensating effects of both factors are also possible.

The difference in slope between the primary and secondary events was noted by Lauretano et
al. (2015). Possible causes for this difference include a higher contribution of an isotopically
less negative source during the secondary events (because of incomplete filling of the carbon
reservoir;  Dickens, 2003), different climate feedbacks or local changes in circulation. The
slope difference between the two LDE peaks could be caused by similar factors.

Four  options  can  account  for  small  changes  in  the  slope of  the  δ13C-δ18O regression  for
hyperthermals. The background δ13C values of the LDE are more positive because of long-
term secular changes. Such higher background values will cause a lower slope for the LDE,
because the difference with the isotope signature of the source is larger. Then, the δ13C of the
ocean-atmosphere  system changes  more  rapidly for  an equal  CO2 rise.  Alternatively,  this
slight change can reflect changes in climate sensitivity,  as climate sensitivity seems to be
higher at higher temperatures (Caballero and Huber, 2013; von der Heydt et al., 2014). The
LDE is superimposed on a cooler climate than Eocene hyperthermals, and has a shallower
slope (less δ18O change per unit change in δ13C), as expected. A third option for differences in
slope is a different isotope signature of the source. Relatively small differences in the isotope
signature of the source can be caused by changes in atmospheric δ13C, which is certainly the
case  if  a  reservoir  is  emptied  during  the  hyperthermal  and  gradually  filled  afterwards
(Dickens, 2003). As a last option, changes in climate and atmospheric CO2 concentration are
able to cause changes in carbon fractionation of land plants (Diefendorf et al., 2010; Schubert
and Jahren, 2012). The first and the third options can cancel out each other, as continuous
fractionation between the atmosphere-ocean system and the carbon source is maintained by
continuous refilling of the carbon source from ambient CO2. In this case, changing climate
sensitivity would be responsible for the changing slope.

Similarities in isotopic composition of the carbon source and orbital configuration point to
carbon input from a common reduced carbon reservoir causing both the LDE and the double
peaked early Eocene hyperthermals. The exact nature of this reduced carbon reservoir is still
uncertain, but several release mechanisms have been proposed, such as the destabilization of
gas hydrates due to deep-sea circulation changes, peat oxygenation by longer dry seasons or
destabilization of permafrost during eccentricity maxima (Lunt et al., 2010;  Zachos et al.,
2010, DeConto et al., 2012).

Benthic foraminifera

Despite the marked benthic isotopic signature of the LDE and its similarity with the Eocene
hyperthermals, especially ETM2-H2, the benthic foraminiferal record for the LDE of Site
1262  (Fig.  4)  shows  remarkable  stability  at  the  seafloor.  The  first,  and  most  important,
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NMDS axis shows no faunal change at the base of the LDE It separates a distinct biofacies
just above the second LDE peak, coinciding with higher abundances of Paralabamina lunata.
This species possibly feeds on a specific kind of fresh phytodetritus that is not consumed by
other benthic foraminifera. Axis 2, which is less important, shows a small positive excursion
in both LDE peaks, coinciding with somewhat higher abundances of N. truempyi (from ~5 to
~9%) and other epibenthic morphotypes. Yet, as indicated by the low correlation to initial
distances (R²=0.08), this axis hardly explains the main faunal patterns. On the other hand, a
higher  abundance  of  N.  truempyi and  epibenthic  morphotypes  generally  points  to  more
oligotrophic  conditions  (Thomas,  1998),  consistent  with  lower  BFAR  (from  ~500  to
~400/cm²/kyr) during most of the LDE.

Table 1. Overview of data about hyperthermals. The table includes the slopes (Fig. 3), δ18O 
values pre-event, and 300 kyr before the event, peak values and excursion sizes, δ13C pre-
event, peak values and excursion sizes and temperature trends prior to the event, peak values 
and excursion sizes. Isotope records for Eocene events are from Lauretano et al. (2015).

event slope 300ka
prior  to
event

pre-
event

trend pre-
event

peak values excursion

δ18O δ18O T(°C) δ13C δ13C δ18O T(°C) δ13C δ18O T(°C)

LDE1 0.576 -0.1 0.2 -1.3 1.3 0.4 -0.3 11.4 0.9 0.5 2.2

H1 (ETM2) 0.611 -0.3 -0.2 0.2 0.3 -1 -1 14.5 1.3 0.8 3.6

I1 0.686 -0.4 -0.5 0.4 0.4 -0.6 -1.2 15.4 1 0.7 3.1

J 0.612 -0.5 -0.6 0.4 0.3 -0.2 -0.9 14.1 0.5 0.3 1.3

K (ETM3) 0.620 -0.5 -0.6 0.4 0.2 -0.6 -1.1 15.0 0.8 0.5 2.2

LDE2 0.664 0 0.9 0.4 -0.3 11.4 0.5 0.3 1.3

H2 0.748 -0.4 0.2 -0.6 -1 14.5 0.8 0.6 2.7

I2 0.729 -0.5 0.4 -0.3 -1 14.5 0.7 0.5 2.2
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Fig. 4. δ13C patterns, weight percentage of carbonate on bulk samples, benthic foraminiferal 
accumulation rates (numbers per cm² per kyr), first and second NMDS axes of benthic 
foraminiferal relative abundances, Shannon diversity, ƩCV calculated for a sliding time 
window of 150 kyr, symmetric about the data point and relative abundances of epi- and 
endobenthic morphotypes and the five most abundant benthic foraminifera: N. truempyi, 
Gavelinella beccariiformis, Gyroidinoides octocameratus, P. lunata and Siphogenerinoides 
brevispinosa. All faunal data are reported in Appendix S1.



An increasing relative abundance of N. truempyi and epifaunal morphotypes is also reported
at Walvis Ridge during the PETM (Thomas, 2007), ETM2 (Jennions et al., 2015) and ETM3
(Röhl et al., 2006), in addition to higher numbers of abyssaminids during the Eocene events.
However, increases in relative abundance of N. truempyi and Abyssamina poagi (+10%) and
decreases in BFAR (from ~200 to ~10/cm²/kyr) and diversity (from ~35 to ~25 species per
100 counts; Jennions et al., 2015) were much larger during ETM2. The increased abundance
of  thin-shelled  A.  poagi indicates  that  dissolution  is  not  causing  these  decreases  during
ETM2. Comparing ƩCV values, the difference between the events becomes even clearer. The
ƩCV of the background Paleocene (pre-LDE) is ~5 (Fig. 4). A ƩCV of ~7 for LDE1 is only
slightly  larger.  ƩCV for  ETM2  (data  of  Jennions et  al.,  2015)  reaches  13.  No  Eocene
background could be assessed, because Jennions et al. (2015) only studied the ETM2 event.
Overall,  the  LDE  at  Walvis  Ridge  shows  comparable  faunal  changes,  but  with  a  much
reduced intensity. These minor assemblage changes, however, contrast with CIEs (~0.9‰ for
LDE, ~1.4‰ for ETM2, ~0.8‰ for ETM3; Table 1) and temperature change (2°C for LDE1
and ETM3, 4°C for ETM2; Table 1) of nearly identical magnitude.

Short-term deep-sea circulation changes in the Atlantic Ocean were inferred during ETM2
(D'haenens et al., 2014; Jennions et al., 2015) and the PETM (McCarren et al., 2008) in order
to explain impoverished benthic foraminiferal assemblages due to oligotrophy (D'haenens et
al.,  2012)  and/or  lower  dissolved  O2 (McCarren et  al.,  2008;  Jennions et  al.,  2015).
D'haenens et al. (2014) suggested that this circulation change was threshold based and these
circulation changes were not observed in connection with CIEs slightly smaller than ETM2.
The CIE and temperature rise of the LDE is indeed slightly smaller than at ETM2 and ETM3
(Table 1), but absolute bottom water temperatures of ETM2 (~14°C) and ETM3 (~15°C) are
significantly higher than these of the LDE (~11°C). The possibility of crossing an absolute
temperature threshold is thus higher.

δ18O data from Shatsky Rise indicate a deep-water long-term cooling trend from 63.0 (~10°C)
to 58.5 Ma (~7°C), briefly interrupted during the LDE (Westerhold et al., 2011). The LDE is
the only early Paleogene hyperthermal superimposed on such a cooling trend for which the
benthic foraminiferal fauna was studied (Table 1). During the LDE, deep-sea temperatures
were similar to those prevailing some 0.4 to 1 Ma earlier (Westerhold et al., 2011 and Fig. 1).
Under gradually changing conditions, benthic foraminiferal genetic evolution will lag behind
environmental change (Lynch and Lande, 1993) because benthic foraminifera evolve slowly
(Pawlowski et al., 2007), but can adapt by phenotypic plasticity (Chevin et al., 2010). In a
gradually cooling deep-sea, this lag in genetic adaptation would lead to species well-adapted
to higher temperatures than the prevailing conditions. Accordingly,  a brief interruption of
long-term cooling during the LDE would not affect deep-sea communities, as shown by our
data.

Conclusions

The  early  Paleocene  LDE  hyperthermal  event  bears  some  striking  similarities  in
environmental and biotic characterization with the PETM. Furthermore, both the LDE and
early Eocene hyperthermals ETM2-H2 and I1-I2 of Site 1262, Walvis Ridge, show orbitally-
paced double-peaked δ13C and δ18O excursions with a similar relationship between δ13C and
δ18O changes, strongly suggesting a shared astronomically controlled causal mechanism. Yet,
in  contrast  to  ETM2-H2  (and  the  PETM),  benthic  foraminiferal  faunal  patterns  show
remarkable stability at the seafloor during the LDE. This discrepancy may be explained by
the rather cool early Paleocene background deep-sea temperature and the lack of threshold
related circulation changes as during the early Eocene hyperthermals. In addition, benthic
communities were well-adapted to higher temperatures as the LDE was superimposed on an
early Paleocene cooling  trend,  in  contrast  to  the warming trend during the early Eocene
hyperthermals.
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