
Under consideration for publication in Theory and Practice of Logic Programming 1

Efficient Algebraic Effect Handlers for Prolog

AMR HANY SALEH

TOM SCHRIJVERS

KU Leuven, Belgium
Department of Computer Science

(e-mail: {ah.saleh,tom.schrijvers}@cs.kuleuven.be)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Recent work has provided delimited control for Prolog to dynamically manipulate the
program control-flow, and to implement a wide range of control-flow and dataflow effects
on top of. Unfortunately, delimited control is a rather primitive language feature that is
not easy to use.

As a remedy, this work introduces algebraic effect handlers for Prolog, as a high-level
and structured way of defining new side-effects in a modular fashion. We illustrate the
expressive power of the feature and provide an implementation by means of elaboration
into the delimited control primitives.

The latter add a non-negligible performance overhead when used extensively. To address
this issue, we present an optimised compilation approach that combines partial evaluation
with dedicated rewrite rules. The rewrite rules are driven by a lightweight effect inference
that analyses what effect operations may be called by a goal. We illustrate the effectiveness
of this approach on a range of benchmarks.

KEYWORDS: delimited control, algebraic effect handlers, program transformation

1 Introduction

The work of Schrijvers et al. (2013) has introduced delimited control constructs

for Prolog. Delimited control is a very powerful means to dynamically manipulate

the control-flow of programs that was first explored in the setting of functional

programming (Felleisen 1988; Danvy and Filinski 1990). Schrijvers et al. (2013)

show its usefulness in Prolog to concisely define implicit state, DCGs and corou-

tines. More recently, Desouter et al. (2015) have shown that delimited control also

concisely captures the control-flow manipulation of tabling.

Unfortunately, there are two prominent downsides to delimited control. Firstly,

it is a rather primitive feature that has been likened to the imperative goto, which

was labeled harmful for high-level programming by Dijkstra (1968). Secondly, the

overhead of delimited control for encoding state-passing features is non-negligible.

For example, the delimited control implementation of DCGs is 10 times slower for

a tight loop than the traditional implementation.

2 A. H. Saleh and T. Schrijvers

This paper addresses both issues. In order to provide a high-level structured in-

terface to delimited control, we adapt the algebraic effects and handlers approach to

Prolog. Algebraic effects and handlers have been said to relate to delimited control

the way structured loops relate to goto. While the structured approach restricts

the expressive power, we still show a range of useful applications. Moreover, in ex-

change for the restricted expressiveness, we provide two benefits. Firstly, multiple

handlers can be combined effortlessly to deal with distinct effetcs, to deal with one

effect in terms of another or to customize the behavior of an effect. Secondly, we

provide an automated program transformation that eliminates much of the over-

head of delimited control. Indeed, compared to the free form of delimited control,

the structured approach of effect handlers simplifies the identification of program

patterns that can be optimised.

Our specific contributions are as follows:

• We define the syntax of algebraic effects and handlers for Prolog, and provide

semantics in terms of an elaboration to the delimited control primitives.

• We illustrate the feature with a number of examples, including DCGs, implicit

state and a writer effect.

• We provide a program transformation to eliminate much of the overhead

of the elaboration-based implementation. This transformation is formulated

in terms of partial evaluation augmented with rewrite rules. These rewrite

rules are driven by an effect analysis that characterises which effects may be

generated by a goal.

• We have implemented our program analysis and illustrated its effectiveness

on a range of benchmarks.

All code of this paper is available at http://github.com/ah-saleh/prologhandlers.

2 Algebraic Effect Handlers

This section introduces our algebraic effect handlers for Prolog.

2.1 Syntax and Informal Semantics

We introduce two new syntactic constructs. The effect operations are Prolog pred-

icate symbols op/n that are declared as such with the following syntax.

:- effect op /n.

For instance, we declare operation c/1 to consume a token, get/1 and put/1 to

respectively retrieve and overwrite an implicit state, and out/1 to output a term.

Efficient Algebraic Effect Handlers for Prolog 3

The handler is a new Prolog goal form that specifies how to interpret effect

operations. Its syntax is as follows:

handle G0 with

op1(X̄)→ G1;

. . .

opn(X̄)→ Gm

[finally(Gf)]

[for(P1 = T1, . . . , Pn = Tn)]

Effect handlers can be thought of as a generalisation of exception handlers, where

calling an effect operation corresponds to throwing an exception. The handler

“catches” the operations that arise in G0. Its operation clauses opi(X̄)→ Gi stip-

ulate that an occurrence of operation opi(X̄) is to be handled by the goal Gi.

Before we explain the optional finally and for clauses, consider a few ways in

which the out/1 operation can be handled in hw/0.

hw :- out(hello), out(world).

In terms of the exception analogy, hw/0 throws two out/1 exceptions. Our first

handler intercepts the first out/1 and does nothing.

?- handle hw with (out(X) -> true).

true.

A more interesting handler prints the argument of out/1.

?- handle hw with (out(X) -> writeln(X)).

hello

true.

Note that only the first out/1 is handled; this aborts the remainder of hw and the

second out/1 is never reached. To handle all operations, effect handlers support

a feature akin to resumable exceptions: in the lexical scope of Gi, we can call

continue to resume the part of the computation after the effect operation (i.e.,

its continuation). For instance, the next handler resumes the computation after

handling the first out/1 operation and intercepts later out/1 operations in the

same way.

?- handle hw with (out(X) -> writeln(X), continue).

hello

world

true.

Interestingly, we can invoke the same continuation multiple times, for instance both

before and after printing the term.

?- handle hw with (out(X) -> continue, writeln(X), continue).

world

hello

world

true.

4 A. H. Saleh and T. Schrijvers

The finally Clause The optional finally clause is performed when G0 finishes;

if omitted, Gf defaults to true.

?- handle hw with (out(X) -> writeln(X), continue)

finally (writeln(done)).

hello

world

done

true.

Note that if the goal does not run to completion, the finally clause is not invoked.

?- handle hw with (out(X) -> writeln(X))

finally (writeln(done)).

hello

true.

The for Clause All variables in the operation and finally clauses are local to that

clause, except if they are declared in the for clause.1 Every Var = Term pair in

the for clause relates a variable, which we call a parameter, that is in scope of all

the operations and finally clauses with a term whose variables are in scope in the

handler context. For instance, the following handler collects all outputs in a list.

?- handle hw with (out(X) -> Lin = [X|Lmid], continue(Lmid,Lout))

finally (Lin=Lout) for (Lin = List, Lout=[]).

List = [hello,world].

Note that continue has one argument for each parameter to indicate which values

the parameters take in the continuation.

2.2 Nested Handlers and Forwarding

Nesting algebraic effect handlers is similar to nesting exception handlers. If an

operation is not “caught” by the inner handler, it is forwarded to the outer handler.

Moreover, if the inner handler catches an operation and, in the process of handling

it, raises another operation, then this operation is handled by the outer handler.

Let us illustrate both scenarios.

We can easily define a non-deterministic choice operator or/2 in the style of

Tor (Schrijvers et al. 2014; Schrijvers et al. 2014) in terms of the primitive choice/1

effect which returns either of the two boolean values t and f.

:- effect choice/1.

or(G1,G2) :- choice(B), (B == t -> G1 ; B == f -> G2).

chooseAny(G) :- handle G with (choice(B) -> (B = t ; B = f), continue).

1 The for clause plays a similar role as that in Schimpf’s logical loops (Schimpf 2002).

Efficient Algebraic Effect Handlers for Prolog 5

The chooseAny handler interprets choice/1 in terms of Prolog’s built-in disjunc-

tion (;)/2.

?- chooseAny(or(X = 1, X = 2)).

X = 1;

X = 2.

To obtain more interesting behavior, we can nest this handler with:

flip(G) :- handle G with (choice(B) -> choice(B1), not(B1,B), continue).

not(t,f). not(f,t).

to flip the branches in a goal without touching the goal’s code.

?- chooseAny(flip(or(X = 1, X = 2))).

X = 2;

X = 1.

What happens is that the inner flip handler intercepts the choice(B) call of or/2.

It produces a new choice(B1) call that reaches the outer chooseAny handler, and

unifies B with the negation of B1, which affects the choice in the continue-ation of

or/2.

Thanks to forwarding, we can also easily mix different effects. For instance, with:

writeOut(G) :- handle G with (out(T) -> writeln(T), continue).

we can combine output and non-determinism.

?- chooseAny(writeOut(or(out(hello), out(world)))), fail.

hello

world

false.

Note that the inner writeOut handler does not know how to interpret the choice/1

effect. As a consequence, it (implicitly) forwards this operation to the next sur-

rounding handler, chooseAny, who does know what to do.

2.3 Elaboration Semantics

There is a straightforward elaboration of handlers into the shift/1 and reset/3

delimited control primitives for Prolog (Schrijvers et al. 2013). For instance, the

last example query of Section 2.1 is elaborated into:

?- handler42(hw,List,[]).

List = [hello,world].

where the declaration of the out/1 operation is elaborated into:

out(X) :- shift(out(X)).

which shifts the term representation of the operation. The actual handler code is

elaborated into a predicate (with a fresh name).

6 A. H. Saleh and T. Schrijvers

handler42(Goal,Lin,Lout) :-

reset(Goal,Cont,Signal),

(Signal == 0 ->

Lin = Lout

; Signal = out(X) ->

Lin = [X|Lmid],

handler42(Cont,Lmid,Lout)

; shift(Signal),

handler42(Cont,Lin,Lout)

).

This predicate executes the goal in the delimited scope of a reset/3, which captures

any shift/1 call. If the goal terminates normally (i.e., Signal=0), then the finally

code is run. If the goal suspends with a shift/1, the predicate checks whether the

operation matches the handler’s operation clause. If so, the clause’s body is run.

Note that continue(Lmid,Lout) has been expanded into a recursive invocation

of the handler with the actual continuation goal Cont. If the operation does not

match, the handler forwards it to the nearest surrounding handler with shift/1

and continues with the continuation.

The example above generalizes straightforwardly. Any declaration of an effect

operation is elaborated into a predicate definition.

:- effect op /n. 7→ op (X1,...,Xn) :- shift(op (X1,...,Xn)).

Also every handler goal is substituted with a predicate call.

handle G0 with

op1 → G1;

. . .

opn → Gm

finally(Gf)

for(P1 = T1,...,Pn = Tn)

7→ h(G0,T1,...,Tn).

where h/n + 1 is an auxiliary predicate defined as:

h(Goal,P1,..,Pn) :-

reset(Goal,Cont,Signal),

(Signal == 0 -> Gf

; Signal = op1 -> G′
1

; ...

; Signal = opn -> G′
n

; shift(Signal), h(Cont,P1,...,Pn)

).

Here, each G′
i is derived from Gi by replacing all occurrences of continue(S1,...,Sn)

with recursive calls h(Cont,S1,...,Sn).

Efficient Algebraic Effect Handlers for Prolog 7

3 Optimisation

Section 2.3’s elaboration of algebraic effects into the delimited control constructs is

conveniently straightforward. Unfortunately, capturing the delimited continuation

incurs a non-trivial runtime cost. In many simple cases this cost is quite steep

compared to more conventional program transformation approaches. For instance,

the implementation of DCGs with delimited control is 10 times slower in a tight

loop than the traditional term expansion approach.

Fortunately, the runtime overhead is not inherent in the algebraic effects and

handlers approach, and we can obtain competitive performance through optimised

compilation. This section presents our optimisation approach, which aims to elim-

inate most uses of delimited control. The optimisation consists of two collaborat-

ing transformation approaches: rewrite rules (Section 3.2) and partial evaluation

(Section 3.3). We use term rewrite rules to simplify handler goals and possibly

eliminate the handler construct altogether. These rules depend on an effect system

(Section 3.1) that infers which effects can or cannot be generated by a goal. Partial

evaluation complements the rewrite rules by specialising handled predicate calls.

This enables in particular the specialisation of (mutually) recursive predicates.

3.1 Effect System

Driving our optimisation is an effect system that associates with each goal G an

effect set E that denotes which effects the goal may call.

Effect Sets In order to cater for modular programs, effect sets E are not elements

of the powerset lattice over the closed set OP of locally known effect operation

symbols op/n. Instead we use the powerset lattice over an open-ended set of effect

operations augmented with the additional top element All . This allows us to express

the effects of unknown goals and unknown effect operations in an abstract manner.

Hence, we denote effect sets in one of two forms:
⋃

i opi/ni or All −
⋃

i opi/ni.

The former is an explicit enumeration of effect operations, while the latter expresses

the dual: all but the given effect operations.

The ∈ relation as well as the functions ∪ and − are extended in the obvious way

from the powerset lattice to our augmented version.

Effect System We use these functions over effect sets in the definition of our effect

system judgment Ec ` G : E. This judgment expresses that goal G calls only effect

operations from the effect set E, provided that continue calls only effect operations

from the effect set Ec. Since continue is not defined for a top-level goal, we may

assume any value for its Ec. Hence, for convenience, we always take Ec = ∅ for

top-level goals G and just write ` G : E.

Figure 1 defines this judgment by means of inference rules. Rule (E-Var) ex-

presses that a variable (i.e., unknown) goal may call All effect operations. Rule (E-

Op) states that known effect operation calls itself. Rules (E-Conj) and (E-Disj)

combine the effects of their subgoals. Rule (E-True) expresses that the goal true,

8 A. H. Saleh and T. Schrijvers

Ec ` X : All (E-Var)
op/n ∈ OP

(E-Op)
Ec ` op(T1, . . . , Tn) : op/n

Ec ` G1 : E1 Ec ` G2 : E2

Ec ` (G1, G2) : E1 ∪ E2

(E-Conj)
Ec ` G1 : E1 Ec ` G2 : E2

Ec ` (G1;G2) : E1 ∪ E2

(E-Disj)

Ec ` continue(T̄) : Ec (E-Cont) Ec ` true : ∅ (E-True)

p(S1, . . . , Sn) :- G Ec ` G : E
(E-Pred)

Ec ` p(T1, . . . , Tn) : E

E∗ = (E0 −
⋃

i opi) ∪ Ef ∪
⋃

i Ei

Ec ` G0 : E0 Ec ` Gf : Ef E∗ ` Gi : Ei (∀i)
(E-Handle)

Ec `

 handle G0 with

opi(X̄)→ Gi

finally(Gf) for(Gs)

 : E∗

Fig. 1: Effect Inference Rules

as an example for other built-ins, is op-free. Rule (E-Cont) captures the invariant

that continue has the Ec effect. In Rule (E-Pred) the effect of a user-defined

predicate is the effect of its body. Finally, the most of the complexity of the infer-

ence system is concentrated in Rule (E-Handle) that deals with a handler goal.

The rule expresses that the handler goal forwards all the effect operations E0 of the

goal G0 it handles, except for the ones that the handler takes care of,
⋃

i opi/ni.

In addition, the handler may introduce additional calls to effect operations in its

operation and finally clauses. Also note that calls to continue in the operation

clauses have exactly the same effect as the handler goal itself; they are essentially

recursive calls after all.

Here are a few examples:

` hw : out/1

` handle hw with (out(X) -> writeln(X)) : ∅
` handle Y with (out(X) -> writeln(X)) : All − out/1

3.2 Rewrite Rules

We use the information of the effect system and the syntactic structure of goals to

perform a number of handler-specific optimisations. We denote these optimisations

in terms of semantics-preserving equivalences G1 ≡ G2 that we use as left-to-right

rewrite rules. Figure 2 lists our rewrite rules in the form of inference rules where

conditions on the inferred effects are written above the bar.

Rule (O-Disj) captures the fact that effect handling is orthogonal to disjunction

to specialise the branches of a disjunction separately. There are two rules for con-

Efficient Algebraic Effect Handlers for Prolog 9

 handle (G1;G2)

with op→ G;
finally(Gf) for(Gs)

 ≡

 handle G1

with op→ G;
finally(Gf) for(Gs)

 ;

 handle G2

with op→ G;
finally(Gf) for(Gs)


(O-Disj)

Ec ` G1 : E1 E1 ∩
⋃
i

opi = ∅
(O-Conj) handle (G1,G2) with

op→ G;
finally(Gf) for(Gs)

 ≡ G1,

 handle G2 with

op→ G;
finally(Gf) for(Gs)


(op(S̄)→ Gi) ∈ op→ G freshen(P̄F , S̄, Gi) = (P̄ ′F , S̄

′, G′i) (O-Op)
handle (op(T̄), Gc)

with op→ G
finally(Gf)
for(P̄F =P̄A)

 ≡ P̄ ′F =P̄A,T̄=S̄
′,G′i

continue(Ū) 7→

handle Gc with

with op→ G
finally(Gf)
for(P̄F =Ū)



Ec ` G : E op′ → G′ = (op → G) ∩ E
(O-Drop) handle G

with op → G
finally(Gf) for(Gs)

 ≡

 handle G

with op′ → G′

finally(Gf) for(Gs)


(

handle(G) with ∅
finally(Gf) for(Gs)

)
≡ G,Gs,Gf (O-Triv)

see text op′2 → G′2 = (op2 → G2)− op1
(O-Merge)

handle


handle G

with op1 → G1

finally(G1,f)
for(G1,s)


with op2 → G2

finally(G2,f)
for(G2,s)


≡


handle G with

op1 → G′1
op′2 → G′2

finally G′1,f
for(G1,s,G2,s)


Fig. 2: Optimisation Rules for effect handlers

junction. Rule (O-Conj) pulls the first goal G1 of a conjunct out of the handler

provided that it does not call any of the handler’s operations. This covers both the

case were G1 is an op-free goal and the case where all the operations in G1 are

forwarded by the handler. The second rule for conjunction, Rule (O-Op), stati-

cally evaluates the special case where the first goal is an operation dealt with by

the handler. This consists of three parts: 1) the unification of the formal and actual

parameters, 2) the unification of the formal and actual operation arguments, and 3)

calling the operation clause’s goal. Note that we substitute all calls to continue(Ū)

(for any Ū) in this last goal with the second conjunct wrapped in the handler; note

10 A. H. Saleh and T. Schrijvers

that the arguments Ū become the new actual parameters. In the process we are

careful to freshen all the local logical variables that are used.

Rule (O-Drop) removes spurious operation clauses from the handler; it only

retains those that correspond to operations that the goal may actually call. In the

case that no operation clauses remain, Rule (O-Triv) dispenses with the handler

altogether. This amounts to unifying the formal and actual parameters and calling

the finally goal.

Finally, the most complex rule of all, Rule (O-Merge), merges two nested han-

dlers into one single handler and thereby eliminates expensive forwarding of oper-

ations. At first it might seem trivial to merge two handlers: We simply merge all

the components of the two handlers pairwise. There is an obvious simplification to

perform in the process: we can drop all outer handler’s operation clauses that over-

lap with any of the inner handler’s clauses, as the inner handler takes precedence

over the outer one.

Yet, there is a further subtle issue that have to be taken account in order to

preserve the original semantics. The finally goal G1,f and the operation clause

goals op1 may call operations that are originally intercepted by the outer handler.

We have to make sure that this remains the case. For that reason we adjust those

goals to G′
1,f and Ḡ′

1 in the merged handler. Let us explain these adjustments for

the different forms of operation clause goals G1,i that we consider.

1. The operation goal G1,i is of the form G1,i,a,continue(V̄) where G1,i,a does

not contain any call to continue. We wrap the initial part of the goal in the

outer handler and finally proceed with continue.

G′
1,i =

 handle G1,i,a with

op2 → G2

finally continue(V̄ , P̄2,F) for (P̄2,F , P̄
′
2,F)


2. The operation goal G1,i does not contain a call to continue. In this case we

wrap the entire goal in the outer handler and make sure to call the outer

handler’s final goal.

G′
1,i =

(
handle G1,i withop2 → G2

finally G2,f for (P̄2,F , P̄
′
2,F)

)
Similarly, we adapt the final goal G1,f to

G′
1,f =

(
handle G1,f with op2 → G2

finally G2,f for (P̄2,F , P̄
′
2,F)

)

3.3 Partial Evaluation

We use a custom partial evaluation approach to expose more optimisation oppor-

tunities for the rewrite rules and to deal with recursive predicates. Our partial

evaluation is targeted at predicate calls that are handled. Consider the following

simple DCG example that checks if a phrase is a succession of the terminals ab:

:- effect c/1.

ab. ab :- c(a), c(b), ab.

Efficient Algebraic Effect Handlers for Prolog 11

query(Lin) :-

handle ab with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1) for (Lin1=Lin,Lout1=[]).

Here we abstract the goal handle ab with ... into a fresh predicate (say ab0/2),

which makes abstraction of the actual handler parameters. This yields the new

definition of query/1:

query(Lin) :- ab0(Lin,[]).

At the same time we unfold the definition of ab/0 in the newly created predicate

ab0/2. Because ab/0 has two clauses, this means that ab0/2 bifurcates similarly.

ab0(Lin,Lout) :- ab0(Lin,Lout) :-

handle true with handle (c(a), c(b), ab) with

(c(X) -> Lin1=[X|Lmid], (c(X) -> Lin1=[X|Lmid],

continue(Lmid,Lout1)) continue(Lmid,Lout1))

finally (Lin1 = Lout1) finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout). for (Lin1=Lin,Lout1=Lout).

This unfolding exposes new rewriting opportunities. Using the Rules (O-Drop) and

(O-Triv), the first clause specialises to Lin1=Lin, Lout1=Lout, Lin1=Lout1. In

the second clause, a double use of Rule (O-Op) deals with the c/1 operations.

This leaves a recursive invocation of ab/0, wrapped in the handler. Now the partial

evaluation kicks in again, realises that this is a variant of the earlier specialiation

and ties the knot with a recursive call to ab0/2. After further clean-up of the

unifications, we get:

ab0(L,L). ab0([a,b|Lmid],Lout) :- ab0(Lmid,Lout).

There is no trace of delimited control left. Moreover, this is precisely the tight code

that the traditional DCG yields.

4 Evaluation

We evaluate the usefulness of our optimisation approach experimentally on a set of

benchmarks. All results were obtained on an Intel Core i7 with 8 GB RAM running

hProlog 3.2.38 on Ubuntu 14.04.

The first experiment concerns the ab program of Section 3.3. Table 1 lists the

timings (in ms) for different input sizes obtained with three different versions of the

program: the traditional DCG implementation (based on SICStus), the elaborated

handler implementation and the optimised handler implementation. Clearly, the

naive use of delimited control slows the program down by more than an order of

magnitude. Fortunately, our optimisation eliminates all uses of delimited control

and matches the traditional implementation’s performance.2

2 Thanks to more aggressive inlining it is even slightly faster.

12 A. H. Saleh and T. Schrijvers

Input Size Traditional Elaboration Optimised
1× 103 0 2 0
1× 104 1 4 1
1× 105 8 37 5
1× 106 32 321 29
2× 106 67 635 58
5× 106 150 1821 146
1× 107 300 4757 297
1× 108 2953 47632 2922

Table 1. DCG benchmark results in ms

The second experiment considers three scenarios with nested handlers. Table 2

lists the runtime results (in ms) for different input sizes of different versions: the

plain elaborated program, the program optimised with only the rewrite rules and

the program optimised with both rewrite rules and partial evaluation.

The first benchmark, state dcg, extends the ab example with an implicit state

that is incremented with every occurrence of ab in the input. Because the rewrite

rules merge the two handlers in this benchmark, they generate an almost two-fold

speed. With partial evaluation, the speed-up of around two orders of magnitude is

much more dramatic. The main reason is that delimited control is again eliminated.

The second benchmark adds an inner-most dummy handler for an unused foo/0.

The aim of this benchmark is to assess the cost of forwarding. In the plain elaborated

version, we can see there is a significant overhead. Thanks to the rewriting, the

three handlers are again merged and most of the overhead of the spurious handler

disappears – the only remaining cost is the spurious foo/0 operation clause. Finally,

with partial evaluation, all trace of the foo/0 is eliminated.

The third benchmark re-implements the calculator example of Dragan et al. (2009)

with two handlers, one to manage an implicit stack and one to one for an implicit

register. The behavior is similar to the other two benchmarks: merging the handlers

roughly halves the runtime and partially evaluating them speeds up the code by

two orders of magnitude.

5 Related Work

Language Extensions Various Prolog language extensions have been proposed in

terms of program transformations. Van Roy has proposed Extended DCGs (Roy

1989) to thread multiple named accumulators. Similarly, Ciao Prolog’s structured

state threading (Ivanovic et al. 2009) enables different implicit states. Algebraic

effects and handlers can easily provide similar functionality.

Schimpf’s logical loops (Schimpf 2002) approach has been very influential on our

handler design, in particular regarding the elaboration into recursive predicates

and the notions of locally fresh variables and parameters. Of course, both features

originate in distinct paradigms: logical loops are inspired by imperative loops, while

handlers originate in the functional programming paradigm.

Control Primitives Various works have considered extensions of Prolog that enable

control-flow manipulation. Before the work of Schrijvers et al. (Schrijvers et al.

Efficient Algebraic Effect Handlers for Prolog 13

Program Name Input Size Elaborated Rewriting Rewriting + PE
state dcg 1× 103 3 2 0
state dcg 1× 104 20 11 0
state dcg 1× 105 151 63 3
state dcg 1× 106 1879 604 37
state dcg 2× 106 2814 1208 75
state dcg 5× 106 7919 4348 186
state dcg 1× 107 29695 18094 375

state dcg foo 1× 103 4 3 0
state dcg foo 1× 104 23 11 0
state dcg foo 1× 105 358 61 3
state dcg foo 1× 106 4666 670 37
state dcg foo 2× 106 8777 1350 75
state dcg foo 5× 106 30026 4551 186
calculator 1× 103 4 3 1
calculator 1× 104 30 16 1
calculator 1× 105 307 78 10
calculator 1× 106 1195 761 57
calculator 2× 106 3015 1525 110
calculator 5× 106 12326 6114 247

Table 2. Runtimes of nested-handler benchmarks in ms

2013), Tarau and Dahl already allowed the users of BinProlog to access and ma-

nipulate the program’s continuation.

Various coroutine-like features have been proposed in the context of Prolog for

implementing alternative execution mechanisms, such as constraint logic program-

ming and delay. Nowadays most of these are based on a single primitive concept:

attributed variables (Holzbaur 1992). Like delimited control, attributed variables

are a very low-level feature that is meant to be used directly, but is often used by

library writers as the target for much higher-level declarative features.

Algebraic Effects and Handlers The work in this paper adapts the existing work in

the functional programming community on algebraic effects and handlers to Prolog.

Both algebraic effects (Plotkin and Power 2002) and handlers (Plotkin and Matija

2013) were first explored at a theoretical level, before giving rise to a whole range

of implementations in functional programming languages, such as Eff (Bauer and

Pretnar 2015), Multicore OCaml (Dolan et al. 2015) and Haskell (Kammar et al.

2013; Kiselyov et al. 2013; Wu and Schrijvers 2015) to name a few.

Schrijvers et al. (2014) have previously appealed to a functional model of algebraic

effects and handlers to derive a Prolog implementation of search heuristics (2014).

This paper enables a direct Prolog implementation that avoids this detour.

6 Conclusion

This paper has defined algebraic effects and handlers for Prolog as a high-level al-

ternative to delimited control for implementing custom control-flow and dataflow

effects. In order to avoid undue runtime overhead of capturing delimited continu-

ations, we provide an optimised compilation approach based on partial evaluation

and rewrite rules. Our experimental evaluation shows that this approach greatly

reduces the runtime overhead.

14 A. H. Saleh and T. Schrijvers

Acknowledgments This work is partly funded by the Flemish Fund for Scientific

Research (FWO). We are grateful to Bart Demoen for his support of hProlog.

References

Bauer, A. and Pretnar, M. 2015. Programming with algebraic effects and handlers.
Journal of Logical and Algebraic Methods in Programming 84, 1, 108–123.

Danvy, O. and Filinski, A. 1990. Abstracting control. LFP ’90. 151–160.

Desouter, B., van Dooren, M., and Schrijvers, T. 2015. Tabling as a library with
delimited control. TPLP 15, 4-5, 419–433.

Dijkstra, E. W. 1968. Letters to the editor: Go to statement considered harmful. Com-
mun. ACM 11, 3 (Mar.), 147–148.

Dolan, S., White, L., Sivaramakrishnan, K., Yallop, J., and Madhavapeddy, A.
2015. Effective concurrency through algebraic effects. In OCaml Users and Developers
Workshop.

Felleisen, M. 1988. The theory and practice of first-class prompts. POPL ’88. 180–190.

Holzbaur, C. 1992. Meta-structures vs. Attributed Variables in the Context of Extensible
Unification. LNCS, vol. 631. 260–268.

Ivanovic, D., Morales Caballero, J. F., Carro, M., and Hermenegildo, M. 2009.
Towards structured state threading in Prolog. In CICLOPS 2009.

Kammar, O., Lindley, S., and Oury, N. 2013. Handlers in action. In Proceedings of
the 18th ACM SIGPLAN International Conference on Functional programming. ICFP
’14. ACM, 145–158.

Kiselyov, O., Sabry, A., and Swords, C. 2013. Extensible effects: An alternative to
monad transformers. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell.
Haskell ’13. ACM, New York, NY, USA, 59–70.

Plotkin, G. D. and Matija, P. 2013. Handling algebraic effects. Logical Methods in
Computer Science 9, 4.

Plotkin, G. D. and Power, J. 2002. Notions of computation determine monads. In
Foundations of Software Science and Computation Structures, M. Nielsen and U. Eng-
berg, Eds. LNCS, vol. 2303. Springer, 342–356.

Roy, P. V. 1989. A useful extension to prolog’s definite clause grammar notation. 24, 11,
132–134.

Schimpf, J. 2002. Logical loops. In International Conference on Logic Programming.
Springer, 224–238.

Schrijvers, T., Demoen, B., Desouter, B., and Wielemaker, J. 2013. Delimited
continuations for Prolog. TPLP 13, 4-5, 533–546.

Schrijvers, T., Demoen, B., Triska, M., and Desouter, B. 2014. Tor: Modular
search with hookable disjunction. Sci. Comput. Program. 84, 101–120.

Schrijvers, T., Wu, N., Desouter, B., and Demoen, B. 2014. Heuristics entwined with
handlers combined. In Proceedings of the 16th International Symposium on Principles
and Practice of Declarative Programming. PPDP ’14. ACM, 259–270.

Wu, N. and Schrijvers, T. 2015. Fusion for free - efficient algebraic effect handlers. In
Mathematics of Program Construction. LNCS, vol. 9129. Springer, 302–322.

Efficient Algebraic Effect Handlers for Prolog 15

Appendix A Detailed Optimisation Example Walk-Through

This appendix elaborates the optimisation example of Section 3.3 in more depth.

We start from the following program:

:- effect c/1.

ab.

ab :- c(a), c(b), ab.

query(Lin) :-

handle ab with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=[]).

Step 1 We abstract the goal handle ab with ... into a new predicate ab0/2. This

new predicate takes two arguments: one for every parameter in the handler’s for

clause. The original call is replaced by a call to the new predicate, supplying the

actual parameters of the handler as actual arguments.

query(Lin) :- ab0(Lin,[]).

The predicate ab0/2 is a copy of ab/0’s definition, with the handler wrapped

around each clause’s body.

ab0(Lin,Lout) :-

handle true with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

ab0(Lin,Lout) :-

handle (c(a), c(b), ab) with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

Step 2 The optimiser now applies rewrite rules to the two clauses. In the first clause,

Rule (O-Drop) can be applied because the effect system provides the information

that the goal true has no effects. Hence, we drop the operation clause:

ab0(Lin,Lout) :-

handle true with

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

Step 3 The handler currently handles no operations3. The optimizer proceeds with

applying (O-Triv):

3 This syntax is only allowed during the compilation process.

16 A. H. Saleh and T. Schrijvers

ab0(Lin,Lout) :-

true,

Lin1 = Lout1 ,

Lin1 = Lin,

Lout1 = Lout.

Step 4 By partially evaluating true and the remaining unifications, the first clause

is simplified to:

ab0(L,L).

Step 5 In the second clause the handler’s goal starts with the c/1 operation. The

optimiser applies (O-Op) to the handler, producing the following code:

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Lin1 = Lin,

Lout1 = Lout,

handle (c(b), ab) with

(c(X1) -> Lin11=[X1|Lmid1], continue(Lmid1,Lout11))

finally (Lin11 = Lout11)

for (Lin11=Lmid,Lout11=Lout1).

All the variables in the new handler goal are fresh variables. Observe that the actual

arguments in the newly generated for clause are taken from the continue call of

the previous handler. This is to ensure the correct state threading of the handler,

and to keep the correct semantics of the program.

Step 6 The optimiser re-applies (O-Op) for c(b), generating the following code:

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Lin1 = Lin,

Lout1 = Lout,

Lin11 = [b|Lmid1],

Lin11 = Lmid,

Lout11 = Lout1,

handle (ab) with

(c(X2) -> Lin12=[X1|Lmid2], continue(Lmid2,Lout12))

finally (Lin12 = Lout12)

for (Lin12=Lmid1,Lout12=Lout11).

Step 7 The remaining handler goal is now a variant of the original one, which was

already abstracted into ab0/2. Therefore, we can replace it with ab0/2.

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Efficient Algebraic Effect Handlers for Prolog 17

Lin1 = Lin,

Lout1 = Lout,

Lin11 = [b|Lmid1],

Lin11 = Lmid,

Lout11 = Lout1,

ab0(Lmid1,Lout11).

Step 8 The clause now consists of several unifications followed by a tail-recursive

call. Partially evaluating the unifications leads to the final optimised code:

ab0([a,b|Lmid1],Lout) :-

ab0(Lmid1,Lout).

Appendix B State-DCG Handler Example in Detail

This appendix shows the result of optimizing a program that consists of two han-

dlers. We first show the elaboration into delimited control. Then, we show how

the original program can be optimised by means of the rewrite rules and partial

evaluation.

We use the following program, which was used to generate the results of the

first benchmarks in Table 2. As described in Section 4, there are two handlers: one

handles the implicit state operations and the other handles the DCG operations.

abinc.

abinc :- c(a), c(b), get_state(St), St1 is St+1, put_state(St1), abinc.

state_phrase_handler(Sin,Sout,Lin,Lout) :-

handle

(handle abinc

with

(get_state(Q) -> Q = Sin1, continue(Sin1,Sout1)

; put_state(NS) -> continue(NS,Sout1)

)

finally

Sout1 = Sin1

for

(Sin1 = Sin, Sout1 = Sout)

)

with

(c(X) -> Lin1 = [X|Lmid], continue(Lmid,Lout1))

finally

Lin1 = Lout1

for

(Lin1=Lin, Lout1=Lout).

The inner handler’s goal is abinc, which consumes two elements, a and b, by using

18 A. H. Saleh and T. Schrijvers

the operation c/1 and then increments the state using the operations get state/1

and put state/1.

?- state_phase_handler(0,Sout,[a,b,a,b,a,b],Lout).

Sout = 0

Lout = [a,b,a,b,a,b];

Sout = 1

Lout = [a,b,a,b];

Sout = 2

Lout = [a,b];

Sout = 3

Lout = [].

The immediate elaboration into delimited control yields:

state_phrase_handler(A, B, C, D) :-

handler_0(handler_1(abinc,A,B), C, D).

handler_1(A, B, C) :-

reset(A, D, E),

(D == 0 ->

C = B

; E = get_state(F) ->

F = B,

handler_1(D, B, C)

; E = put_state(G) ->

handler_1(D, G, C)

; shift(E),

handler_1(D, B, C)

).

handler_0(A, B, C) :-

reset(A, D, E),

(D == 0 ->

B = C

; E = c(F) ->

B = [F|G],

handler_0(D, G, C)

; shift(E),

handler_0(D, B, C)

).

The predicates handler 0/3 and handler 1/3 correspond to the elaborated DCG

and state handlers respectively. They follow the semantics described in Section 2.3.

Using the rewrite rules first, yields the following elaborated program instead:

state_phrase_handler(A, B, C, D) :-

handler_2(abinc, A, B, C, D).

handler_2(A, B, C, D, E) :-

Efficient Algebraic Effect Handlers for Prolog 19

reset(A, F, G),

(F == 0 ->

C = B,

D = E

; G = get_state(H) ->

H = B,

handler_2(F, B, C, D, E)

; G = put_state(I) ->

handler_2(F, I, C, D, E)

; G = c(J) ->

D = [J|K],

handler_2(F, B, C, K, E)

; shift(G),

handler_2(F, B, C, D, E)

).

The two handlers have been merged into one, with the corresponding performance

improvement.

When partial evaluation is enabled as well, the optimisation goes one step further

and yields the following final program:

state_phrase_handler(A, B, C, D) :-

abinc0(A, B, C, D).

abinc0(A, A, B, B).

abinc0(A, B, [a,b|C], D) :-

E is A+1,

abinc0(E, B, C, D).

Partial evluation has pushed the handlers into the definition of abcinc/0 where

the rewrite rules have been able to replace the operations by the corresponding

handler clauses. As a consequence, the handlers are eliminated and no delimited

control primitives are generated.

Appendix C Soundness of Rule (O-Disj)

This appendix proves the soundness of the (O-Disj) rewrite rule. Our proof relies on

the elaboration of the handler syntax into delimited control and the corresponding

semantics for delimited control given by Schrijvers et al. (2013). This semantics is

expressed in terms of a Prolog meta-interpreter that we show in Figure C 1.

We start from the left-hand side of the rewrite rule and turn it into the right-hand

side by means of a number of equivalence preserving transformations.

handle (G1;G2) with

op→ G;

finally Gf

for Gs.

(C1)

20 A. H. Saleh and T. Schrijvers

eval(G) :- eval(G,Signal),
(Signal = shift(Term,Cont) ->

fail
; true).

eval(shift(Term),Signal) :- !,Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !, eval(G,Signal1),
(Signal1 = ok -> Cont = 0, Term = 0
; Signal1 = shift(Term,Cont)),
Signal = ok.

eval((G1,G2),Signal) :- !, eval(G1,Signal1),
(Signal1 = ok -> eval(G2,Signal)
; Signal1 = shift(Term,Cont),

Signal = shift(Term,(Cont,G2))).

eval((G1;G2),Signal) :- !, (eval(G1,Signal)
; eval(G2,Signal)).

eval((C->G1;G2),Signal) :- !, (eval(C,Signal1) ->
(Signal1 = ok -> eval(G1,Signal)
; fail
)

; eval(G2,Signal)).

eval(Goal,Signal) :- built_in_predicate(Goal), !, call(Goal), Signal = ok.

eval(Goal,Signal) :- clause(Goal,Body), eval(Body,Signal).

Fig. C 1: Delimited Control Meta-Interpreter

The elaboration of this handler goal into delimited control yields the following

auxiliary predicate:

h(Goal,P1,..,Pn) :-

reset(Goal,Cont,Term),

(Term == 0 -> Gf

; Term = op → G

; shift(Signal), h(Cont,P1,...,Pn)

).

Here the variables Pi are the formal parameters of Gs. The goal itself is then by

definition equivalent to

h((G1;G2),A1,...,An) (C2)

where the Ai are the actual parameters of Gs.

This is equivalent to evaluation the goal in the meta-interpreter:

eval(h((G1;G2),A1,...,An)) (C3)

We can now unfold the eval/1 call and subsequently unfold the resulting call to

the auxiliary predicate eval/2 which selects the last clause. After also evaluating

Efficient Algebraic Effect Handlers for Prolog 21

the call to clause/2 to unfold h/n + 1 we get:

eval((reset((G1;G2),Cont,Term),

(Term == 0 -> Gf

; Term = op → G

; shift(Signal), h(Cont,P1,...,Pn)

)

)

, Signal

),

(Signal = shift(Term,Cont) -> fail ; true)

(C4)

For the sake of space, we refer to the if-then-else block after the reset/3 call as

<Switches>. We can thus abbreviate the above as:

eval((reset((G1;G2),Cont,Term), <Switches>)

, Signal

),

(Signal = shift(Term,Cont) -> fail ; true)

(C5)

Unfolding eval/2 using the appropriate clause for conjunction, yields:

eval(reset((G1;G2),Cont,Term), Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C6)

Now we unfold the first call to eval/2 using the clause for reset/3:

eval((G1;G2), Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C7)

Again, we unfold the first call to eval/2 using the clause for disjunction:

(eval(G1, Signal2) ; eval(G2, Signal2)),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C8)

22 A. H. Saleh and T. Schrijvers

We now distribute what comes after the first disjunction into both branches.

(

eval(G1, Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval(G2, Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C9)

At this point we change gear and start folding again. First we fold the reset/2

clause of eval/2 twice, once in each branch.

(

eval(reset(G1,Term,Cont),Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval(reset(G2,Term,Cont),Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C10)

Efficient Algebraic Effect Handlers for Prolog 23

Then we fold the conjunction clause of eval/2 in each branch.

(

eval((reset(G1,Term,Cont),<Switches>),Signal),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval((reset(G2,Term,Cont),<Switches>),Signal),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C11)

Subsequently, we fold eval/1 twice.

(

eval((reset(G1,Term,Cont),<Switches>))

;

eval((reset(G2,Term,Cont),<Switches>))

)

(C12)

Now we can drop the meta-interpretation layer again.

(

(reset(G1,Term,Cont),<Switches>)

;

(reset(G2,Term,Cont),<Switches>)

)

(C13)

Then we fold h/n + 1 twice.

(h(G1,A1,...,An); h(G2,A1,...,An)) (C14)

Finally, we invert the elaboration to obtain the right-hand side of the rewrite

rule.

handle G1 with

op→ G;

finally(Gf)

for(Gs)

;

handle G2 with

op→ G;

finally(Gf)

for(Gs)

(C15)

