
Large neighbourhood search for large-scale shift
assignment problems with multiple tasks

Pieter Smet · Greet Vanden Berghe

Abstract Shift assignment with multiple tasks presents a challenging combi-
natorial optimisation problem in which two decisions must be taken simulta-
neously. Both tasks and shifts must be assigned to qualified employees while
minimizing costs originating from employee preferences. The present paper
presents a natural integer programming formulation for this problem and in-
troduces two lower bounds on the optimal solution quality. Two exponentially-
sized neighbourhoods are used in a large neighbourhood search algorithm for
improving initial solutions constructed by a greedy heuristic. Extensive com-
putational experiments are analysed to gain insights into the performance and
behaviour of the proposed solution approaches. All experiments are conducted
on a randomly generated benchmark dataset inspired by real cases. The re-
sults demonstrate that the presented large neighbourhood search finds optimal
solutions for all instances in relatively short computation time.

Keywords Task scheduling · Personnel rostering · Large neighbourhood
search · Column generation

1 Introduction and background

The multi-task shift assignment problem (MTSAP) is a daily scheduling prob-
lem which requires tasks to be assigned to qualified employees, while simul-
taneously assigning shifts. Tasks represent an organisation’s operations whose
start time and duration are decided on before the MTSAP is solved and thus
may not be modified. Tasks have qualification requirements which impose a
hard constraint on their assignment to employees. A shift is defined as a con-
tinuous time interval with fixed start and end times in which an employee

P. Smet and G. Vanden Berghe
KU Leuven, Department of Computer Science, CODeS & iMinds - ITEC
Gebroeders De Smetstraat 1, 9000 Gent, Belgium
Tel.: +32 92658704
E-mail: {pieter.smet, greet.vandenberghe}@cs.kuleuven.be

2 Pieter Smet, Greet Vanden Berghe

can be assigned to tasks. By modelling demand in terms of tasks, a closer
approximation to the practical reality of staff scheduling problems is obtained
which eliminates the, often unintuitive, translation from task-based demand
to shift-based demand.

Shift scheduling and assignment problems have been studied for several
decades [4]. In their most basic form, shift start and end times must be deter-
mined for a single day, based on staffing demands for each time interval. Over
the years, several extensions of this problem have been considered which, for
example, take into account break placement [2] or consider multiple days [7].

However, few publications focus on multi-task shift assignment as it is con-
sidered in the present paper. Smet et al. [14] address the multiple day variant
of the MTSAP in which violations of employees’ contractual constraints are
minimised. Several constructive heuristics and very large-scale neighbourhood
search algorithms are proposed and evaluated on a large benchmark dataset.
Krishnamoorthy et al. [9] present a heuristic algorithm based on Lagrangian
relaxation for a similar task scheduling problem in which shifts are already
assigned and cannot be modified. Lequy et al. [11] employ a two-stage heuris-
tic algorithm for assigning both tasks and interruptible operations to qualified
employees. The simultaneous scheduling of tasks and activities in shifts is ad-
dressed by Boyer et al. [3] through branch-and-price. Other related research
can be found in literature surveys concerning personnel scheduling [5,16].

Whereas previous research efforts primarily focused on solving problem
instances with a limited number of employees (20-50), the present paper em-
phasises solving large-scale problems with many employees (≥ 100). Problem
instances of this size are often encountered in large organisations such as air-
line [8] or railway operations [12]. Manually constructing solutions of such a
large scale represents a complex and daunting task, thereby highlighting the
significant benefits associated with automating the approach.

The remainder of this paper is organised as follows. Section 2 introduces
the MTSAP and discusses its complexity. A natural integer programming for-
mulation for the MTSAP is presented in Section 3. The heuristic algorithm
used for solving the large problem instances considered by this paper is dis-
cussed in Section 4. Section 5 introduces two lower bounds for the MTSAP.
Experimental results are presented and discussed in Section 6. Finally, Section
7 concludes the paper and identifies future research directions.

2 Problem definition

Let E be the set of employees and T the set of tasks which need to be assigned.
Each employee e ∈ E is qualified for a (sub)set of tasks Te ⊆ T . Consequently,
there is a (sub)set of employees Et ⊆ E qualified for task t. Let S = Sw ∪{s0}
be the set of shifts, consisting of the subset of working shifts Sw and the
shift s0 which, when assigned, is a dummy shift assignment indicating that an
employee is not working. A task t is covered by shifts in St ⊂ S, indicating
that when this task is assigned, a shift within St must be assigned to the same

LNS for large-scale shift assignment problems with multiple task 3

employee. The model assumes that a task never spans two or more shifts,
that is, there always exists at least one shift which completely covers the task.
Furthermore, it is assumed that a solution in which all tasks can be assigned
always exists.

Break placement is not considered in the present model. However, it is
possible to model breaks if their start time and duration are fixed. To do this,
shifts for which the break overlaps with task t can be simply removed from
the set St. The objective is to minimise the costs ces incurred by assigning
employee e to shift s. The practical relevance of this objective is clear as it
enables modelling employee preferences.

Table 1 provides an overview of the aforementioned notation.

s0 dummy shift
ces cost for assigning shift s to employee e
T set of tasks
S set of shifts
E set of employees
Et set of employees qualified for task t
Sw set of working shifts, i.e. S\{s0}
St set of shifts in which task t can be assigned
Te set of tasks for which employee e is qualified
Ce set of maximal cliques in the interval graph defined for employee e

Table 1 Overview of notation

Theorem 1 The MTSAP is NP-Hard.

Proof The proof is based on restriction by showing that the Shift Minimisa-
tion Personnel Task Scheduling Problem (SMPTSP) is a special case of the
MTSAP. In the SMPTSP, n tasks must be assigned to m employees, such
that qualification requirements are respected and tasks overlapping in time
are assigned to different employees. The objective is to minimise the number
of employees that have at least one task assigned. Kroon et al. [10] showed that
the SMPTSP is NP-Hard in the strong sense. A special case of the MTSAP is
equivalent to an instance of the SMPTSP.

Let Sw = {s′} be restricted to a single shift s′ which can cover all tasks,
or, formally, St = {s′} for all t ∈ T . The set S furthermore consists of the
dummy shift s0. ces′ = 1 and ces0 = 0 for all e ∈ E. All tasks in T and their
parameters in the MTSAP are transferred directly to the SMPTSP instance.

It follows from this construction that minimizing the number of employees
in the resulting SMPTSP instance is equivalent to minimizing the costs ces. To
construct the MTSAP solution from the SMPTSP solution, task assignments
are directly transferred. Shift s′ is only assigned to an employee if he has at
least one task assigned. By doing so, the resulting objective value equals that
of the SMPTSP solution. ut

4 Pieter Smet, Greet Vanden Berghe

3 Integer programming formulation

The natural integer programming formulation uses the maximal cliques in an
interval graph Ge = (V,A) to model overlapping tasks for each employee e.
The graph Ge contains one node for each task in Te. Edges are added between
two nodes if their corresponding tasks overlap in time. Therefore, a maximal
clique K in Ge represents a subset of tasks from which at most one may be
assigned to employee e. The set containing all maximal cliques Ce in an interval
graph Ge can be constructed in polynomial time [9]

Two sets of decision variables are used for assigning tasks and shifts to
employees.

xte =

{
1 if task t is assigned to employee e
0 otherwise

yes =

{
1 if employee e is assigned to shift s
0 otherwise

The full integer programming formulation utilising these two sets of deci-
sion variables is denoted by NF.

NF : min
∑
e∈E

∑
s∈S

cesyes (1)

s.t.
∑
e∈Et

xte = 1 ∀ t ∈ T (2)

∑
t∈K

xte ≤ 1 ∀ e ∈ E, K ∈ Ce (3)∑
s∈S

yes = 1 ∀ e ∈ E (4)∑
s∈St

yes ≥ xte ∀ t ∈ T, e ∈ E (5)

∑
t∈Te

xte ≥ 1− yes0 ∀ e ∈ E (6)

yes ∈ {0, 1} ∀ e ∈ E, s ∈ S (7)

xte ∈ {0, 1} ∀ t ∈ T, e ∈ E (8)

Objective function (1) minimises the cost incurred by shift assignments.
Constraints (2) make sure each task is assigned to a qualified employee. Over-
lapping task assignments are forbidden by Constraints (3). Constraints (4)
require each employee to be assigned one shift. Constraints (5) link the x and
y variables by stating that tasks must only be assigned to employees them-
selves assigned to a shift in which the task may be performed. Constraints
(6) ensure that shifts are only assigned if an employee is assigned to at least
one task in the shift. Finally, Constraints (7) and (8) impose bounds on the
decision variables.

LNS for large-scale shift assignment problems with multiple task 5

3.1 Branching priorities

To speed up a branch-and-bound algorithm for solving NF, branching priorities
are assigned to the decision variables. The priorities are set such that the y
variables are branched on first, resulting in many of the x variables to be set
to zero due to tasks not fitting in the selected shifts. An alternative approach
would be to first branch on the x variables, but given that there are more tasks
than shifts, branching on the shift assignment variables first results in faster
pruning of the search tree.

4 Large neighbourhood search

As this paper aims to address large instances of the MTSAP, solving the
natural integer programming formulation does not present a viable approach.
Therefore, this section introduces a heuristic algorithm based on local search
which can cope with increasing problem size.

Local search algorithms typically employ neighbourhoods which may be
explored relatively quickly but exhibit tendencies to result in locally optimal
solutions. Very large-scale neighbourhood search algorithms (VLSN) overcome
this disadvantage by employing exponentially large neighbourhoods [1]. The
present paper proposes a large neighbourhood search (LNS) for the MTSAP,
a special type of VLSN in which neighbourhoods are implicitly defined by a
destroy and repair operator [13]. Algorithm 1 outlines the general LNS frame-
work, with σ0 corresponding to the initial solution, f(σ) the evaluation func-
tion and N(σ) the neighbourhood which is explored.

Algorithm 1 Large neighbourhood search
Input: σ0, f(σ), N(σ)
1: σ ← σ0 . σ maintains the current solution
2: while stop criterion not met do
3: σ′ ← N(σ) . select a neighbouring solution of σ
4: if f(σ′) � f(σ) then
5: σ ← σ′

6: end if
7: end while
8: return σ

The evaluation function f(σ) calculates the number of unassigned tasks and
solution cost defined by Equation (1). A lexicographical comparison, denoted
by �, determines whether or not new solutions are accepted, based firstly
on the number of unassigned tasks and, secondly, on the solution cost. A
neighbouring solution σ′ is thus always accepted if it contains fewer unassigned
tasks. Note that the problem definition requires all tasks to be assigned; the
proposed approach thus allows infeasible solutions to be considered.

6 Pieter Smet, Greet Vanden Berghe

4.1 Initialisation

The initial solution σ0 is generated using a greedy heuristic which attempts to
assign each task t ∈ T to a qualified employee already assigned to a shift from
St. If no such assignment can be made, an employee from Et who is not yet
assigned a shift is randomly selected. The task, together with the lowest cost
shift from St are subsequently assigned to this employee. If no such employee
can be found, the task remains unassigned. Algorithm 2 shows an overview of
the greedy heuristic.

Algorithm 2 Greedy heuristic
1: for t ∈ T do
2: unassigned ← true
3: for e ∈ Et do
4: if e is assigned to a shift from St and there is no overlap with other tasks then
5: assign task t to employee e
6: unassigned ← false
7: break
8: end if
9: end for

10: if unassigned then
11: randomly select a non-working employee e′ ∈ Et

12: assign task t to employee e′

13: assign the shift with the smallest ces from the set St

14: end if
15: end for

4.2 Neighbourhoods

To improve the initial solution constructed by Algorithm 2, two very large-
scale neighbourhoods are proposed. While both neighbourhoods employ an
optimal repair operator, they are differentiated by which part of the solution
is selected to destroy.

Horizontal neighbourhood H(σ, b) Given a solution σ, this neighbour-
hood is defined by fixing all assignments of (|E| − b) randomly selected
employees. A neighbouring solution is obtained by solving the resulting
subproblem to optimality. The parameter b has a direct impact on this
neighbourhood’s size, and thus also on its performance, whereby higher
values of b typically result in better solutions [15]. The size of this neigh-
bourhood is exponential, it may, however, be explored effectively by a state
of the art branch-and-bound algorithm solving restricted instances of NF.
Note that, if b = |E|, exploring H(σ, b) is equivalent to solving the complete
problem to optimality.

LNS for large-scale shift assignment problems with multiple task 7

Hamming distance neighbourhood HD(σ,h) Given a reference solution
σ, a Hamming distance constraint limits the number of variables that may
change value when (further) optimising the reference solution [6]. The
neighbourhood HD(σ, h) is defined by adding such a Hamming distance
constraint (9) to NF, with x̄ representing values of reference solution σ.
By adding this constraint, at most h

√
|T | tasks may be reassigned in each

neighbouring solution. While this neighbourhood contains an exponential
number of solutions, it may be effectively explored by using a branch-and-
bound algorithm by imposing the strong Hamming distance restriction.

∑
t∈T

∑
e∈E

x̄te(1− xte) ≤ h
√
|T | (9)

5 Lower bounds

To evaluate the quality of solutions obtained by the proposed LNS algorithm,
two lower bounds on the optimal objective value are presented. While the
first lower bound is based on solving an exponentially large formulation of the
problem, the second lower bound can be easily calculated based on some of
the problem’s properties.

5.1 Set partitioning bound

The first lower bound is calculated by solving the linear programming relax-
ation of the problem’s set partitioning formulation. In this formulation, each
variable corresponds to a line of work which includes both task and shift as-
signments for a single employee. Due to the problem’s combinatorial nature,
this formulation contains an exponential number of variables. Therefore, col-
umn generation is used to solve the model.

Let P be the set of lines of work, with Pe ∈ P representing a subset
containing only those lines of work which are feasible for employee e. The cost
cep for assigning line of work p to employee e is calculated based on the shift
assignment costs ces. Let atp be a binary value which equals one if task t is
covered in line of work p, and zero otherwise. The integer programming model
of the set partitioning formulation is denoted by SP.

xep =

{
1 if line of work p is assigned to employee e
0 otherwise

ut =

{
1 if task t is not assigned
0 otherwise

8 Pieter Smet, Greet Vanden Berghe

SP : min
∑
e∈E

∑
p∈Pe

cepxep +
∑
t∈T

Mut (10)

s.t.
∑
e∈E

∑
p∈Pe

atpxep + ut = 1 ∀t ∈ T (11)

∑
p∈Pe

xep = 1 ∀ e ∈ E (12)

xep ∈ {0, 1} ∀ e ∈ E, p ∈ Pe (13)

ut ∈ {0, 1} ∀ t ∈ T (14)

Objective function (10) consists of two parts which minimise the costs
incurred by assigning the selected lines of work and the cost of leaving a task
unassigned. The second term has a weight M , which forces all tasks to be
assigned. Constraints (11) ensure all tasks be covered by one of the selected
patterns or by the task’s u variable which indicates the task is unassigned.
Constraints (12) require each employee to be assigned exactly one feasible line
of work. Bounds on the decision variables are imposed by Constraints (13) and
(14).

The column generation’s pricing problem is solved to determine if there
are variables with negative reduced cost defined as c̄ep = cep−

∑
t∈T atpπt−γe

with πt and γe the dual prices of Constraints (11) and (12), respectively. The
resultant pricing problem is solved via the efficient decomposition approach
proposed by Smet et al. [14]. The column generation’s performance is further
improved by stabilising the dual variables via dual smoothing and by speeding
up convergence using a Lagrangian lower bound.

5.2 Shift cost bound

The second lower bound is derived from the shift assignment costs ces. Since
the problem definition requires each employee to be assigned one shift, the sum
of each employee’s best possible shift assignment is a valid lower bound on the
optimal solution quality. Formally, the shift cost bound LBsc is calculated via
Equation (15).

LBsc =
∑
e∈E

min
s∈S

ces (15)

6 Computational experiments

A series of computational experiments are analysed to evaluate the perfor-
mance of the new contributions.

LNS for large-scale shift assignment problems with multiple task 9

6.1 Experimental setup

Given the unavailability of a publicly available benchmark dataset, the in-
stance generator from Krishnamoorthy et al. [9] was adapted for the MTSAP.
Table 2 shows which instance characteristics were varied and identifies the re-
sulting 12 instance classes. The skilling level refers to the average percentage of
tasks each employee is qualified for. Task length is sampled from a triangular
distribution tri(α, β, γ), for which two settings were used. In each instance,
three shifts are defined: an early shift (7:00 am - 3:00 pm), day shift (10:00
am - 6:00 pm) and late shift (1:00 pm - 9:00 pm). For each class, ten random
instances were generated in which shift start time is advanced or postponed at
most one hour and shift duration is shortened or extended at most 30 minutes
with the aim of diversifying the set of instances.

Instance
class id

Number of
employees

Number of
tasks

Number of
shifts

Skilling
level

Task length
distribution

1 120 391 3 0.6 tri(25,75,150)
2 123 296 3 0.6 tri(50,100,175)
3 119 394 3 1.0 tri(25,75,150)
4 119 303 3 1.0 tri(50,100,175)
5 243 783 3 0.6 tri(25,75,150)
6 236 598 3 0.6 tri(50,100,175)
7 243 795 3 1.0 tri(25,75,150)
8 240 609 3 1.0 tri(50,100,175)
9 365 1158 3 0.6 tri(25,75,150)
10 360 897 3 0.6 tri(50,100,175)
11 366 1169 3 1.0 tri(25,75,150)
12 368 904 3 1.0 tri(50,100,175)

Table 2 Instance classes

All experiments were performed on a Dell Poweredge T620, 2x Intel Xeon
E5-2670 with 128GB ram. CPLEX 12.6.1 was used as an integer programming
solver, configured to use one thread and default settings. Linear programming
problems were solved with the primal simplex algorithm in CPLEX 12.6.1.
Whenever a time limit was imposed, it was set to 1800 seconds. In the LNS,
the number of non-improving iterations was considered an additional stop
criterion.

6.2 Lower bound quality

The first series of computational experiments compares the different lower
bounds on the optimal solution quality. Specifically, emphasis is placed upon
the linear programming (LP) relaxations of the NF and SP formulations. Table
3 shows, for the different instance classes, the objective value and calculation
time in seconds for the LP relaxations of NF, denoted as ÑF, and of SP,
denoted as S̃P. The reported values are the average value of all instances per

10 Pieter Smet, Greet Vanden Berghe

class, with the best results highlighted in bold. Finally, the last column shows
the value of the shift cost bound LBsc.

Class id ÑF S̃P LBsc

Obj Time Obj Time

1 165.8 200.6 165.8 16.8 165.8
2 166.5 4.9 166.5 7.6 166.5
3 166.7 568.3 166.7 305.2 166.7
4 165.9 183.4 165.9 105.5 165.9
5 67.9 1448.3 339.6 165.2 339.6
6 36.5 1623.7 329.1 70.0 329.1
7 103.0 1371.4 0.0 1801.5 333.6
8 102.1 1280.9 262.6 1448.3 328.5
9 0.0 1803.9 507.0 594.4 507.0

10 51.3 1629.9 496.3 277.9 496.3
11 0.0 1800.8 0.0 1811.2 503.3
12 53.3 1683.7 0.0 1803.7 506.8

Table 3 Comparison of lower bounds

Table 3’s results demonstrate the tighter formulation of SP, compared to
NF. For almost all instance classes, the best LP relaxation value is obtained by
solving SP. Moreover, column generation achieves this in less calculation time
on average. Such results confirm the potential of embedding the proposed col-
umn generation in branch-and-price with the aim of obtaining optimal integer
solutions.

The shift cost bound consistently improves upon the two considered LP re-
laxations. This improvement is clear compared to ÑF, however, improvement
compared to S̃P only occurs when the column generation algorithm fails to
converge within the time limit. Nevertheless, these results highlight the use-
fulness of the shift cost bound, as its required calculation times are orders of
magnitude smaller.

6.3 Neighbourhood parametrisation

A series of experiments were conducted to gain insight into how parameter
settings influence the neighbourhoods and affect their overall performance.

6.3.1 Tuning the horizontal neighbourhood

Neighbourhood H(σ, b) is parametrised by b. Figure 1 shows the influence of in-
creasing values for b on both the objective value and calculation time. For these
experiments, there was no limit on the maximum number of non-improving
iterations. Consequently, the calculation time is always 1800 seconds. Once b
is greater than or equal to 20, the same objective value is always found.

LNS for large-scale shift assignment problems with multiple task 11

1799.0

1799.5

1800.0

1800.5

1801.0

334.1

334.1

334.2

334.2

334.3

10 20 30 40 50 60

Ti
m

e
(s

)

O
b

je
ct

iv
e

va
lu

e

b

Objective Calculation time

Fig. 1 Influence of b in H(σ, b)

Exploring this neighbourhood results in relatively quick convergence of
the LNS. This insight may be exploited to reduce the calculation time by
terminating the algorithm earlier than the maximum time limit by restricting
the number of non-improving iterations. Figure 2 empirically demonstrates
the trade-off between the maximum number of non-improving iterations and
the average objective value and calculation time when b = 20.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

334.0

334.1

334.2

334.3

334.4

334.5

25 50 75 100 125 150 175

Ti
m

e
(s

)

O
b

je
ct

iv
e

va
lu

e

Maximum number of non-improving iterations

Objective Calculation time

Fig. 2 Influence of the maximum number of non-improving iterations in H(σ, 20)

The obtained results demonstrate the expected linear relationship between
the maximum number of non-improving iterations and the required calculation
time. Regarding objective value, there is a clear convergence when 75 or more
non-improving iterations are permitted. Based on these empirical observations,
a maximum number of 75 non-improving iterations will be employed for the
remaining computational experiments.

12 Pieter Smet, Greet Vanden Berghe

6.3.2 Tuning the Hamming distance neighbourhood

Neighbourhood HD(σ, h) also has one parameter: the scaling factor h. Figure
3 shows the objective value and calculation time for increasing values of h.
Given the nature of the Hamming distance neighbourhood, it suffices to set
the maximum number of non-improving iterations to two, without risking
prematurely stopping the algorithm before it has converged.

200.0

400.0

600.0

800.0

1000.0

1200.0

330.0

335.0

340.0

345.0

350.0

355.0

0.5 1.0 1.5 2.0 2.5 3.0

Ti
m

e
(s

)

O
b

je
ct

iv
e

 v
al

u
e

h

Objective Calculation time

Fig. 3 Influence of scaling factor h in HD(σ, h)

Figure 2 visualises how increasing h enables more tasks to be reassigned
by one move in this neighbourhood, resulting in lower calculation times. The
trend demonstrated by the objective value is less clear. The lowest average
objective values are obtained when f is greater than or equal to 1.5. While
it is expected that the larger the neighbourhood the better the solutions, the
increase at h = 3.0 is remarkable. The best solutions were obtained with
h = 2.5.

6.4 Overall performance evaluation

A final series of experiments compares the performance of the different algo-
rithms proposed in this paper: directly solving the natural formulation (NF),
the greedy constructive heuristic (Greedy), LNS with the horizontal neigh-
bourhood (H(σ, 20)), and LNS with the Hamming distance neighbourhood
(HD(σ, 2.5)). Table 4 supplies an overview of the results. For all approaches,
the average objective value and average calculation time in seconds are shown.
Whenever an approach failed to find a feasible solution for all instances in
a class, the percentage of feasible instances is given in brackets instead of
the objective value. The final column shows a lower bound, calculated as
LB∗ = max(ÑF, S̃P,LBsc).

By directly solving NF, large problem instances with 200 or more em-
ployees are not solved consistently. Moreover, for most instances, the maxi-
mum permitted calculation time is required. The LNS algorithms, by contrast,

LNS for large-scale shift assignment problems with multiple task 13

Class id NF Greedy H(σ, 20) HD(σ, 2.5) LB∗

Obj Time Obj Time Obj Time Obj Time

1 165.8 86.7 304.8 0.0 165.8 40.7 165.8 34.4 165.8
2 166.5 10.6 307.5 0.0 166.5 27.2 166.5 19.6 166.5
3 166.7 212.1 300.5 0.0 166.7 50.3 166.7 67.6 166.7
4 165.9 69.2 301.4 0.0 165.9 37.5 165.9 50.5 165.9
5 (30%) 1290.1 609.6 0.1 339.6 63.9 339.6 322.5 339.6
6 (90%) 996.7 584.2 0.0 329.1 44.2 329.1 182.7 329.1
7 (50%) 1329.3 604.7 0.1 333.6 83.0 333.6 638.8 333.6
8 (50%) 1133.5 600.7 0.1 328.5 53.4 328.5 417.7 328.5
9 (10%) 1801.0 916.5 0.1 507.0 84.5 507.0 990.6 507.0

10 (40%) 1395.8 900.0 0.1 496.3 78.6 496.3 742.6 496.3
11 (0%) 1801.5 906.4 0.1 503.3 111.8 503.3 1550.5 503.3
12 (10%) 1801.3 925.0 0.1 506.8 66.9 506.8 1179.8 506.8

Average (57%) 994.0 605.1 0.1 334.1 61.8 334.1 516.5 334.1

Table 4 Comparison of different algorithmic approaches for the MTSAP

find feasible solutions for all instances. While the greedy heuristic responsi-
ble for generating the initial solutions proves successful, these solutions are of
poor quality. Both neighbourhoods find optimal solutions for all considered
instances. The time required by the LNS increases with larger problem sizes,
however, for H(σ, 20), the average calculation time is only little more than one
minute.

For the considered problem instances, the results demonstrate that the
lower bound based on shift costs always corresponds to the optimal objective
value. This observation warrants further research into the empirical hardness of
the used MTSAP instances and the employed instance generation procedure.

7 Conclusions and future work

The present paper addressed a large-scale multi-task shift assignment prob-
lem. A natural integer programming formulation was introduced, in addition
to lower bounds based on linear programming relaxations and derived from
the problem’s structure. Computational results demonstrated that the bound
based on the problem’s structure was equal to the optimal solution cost for all
considered problem instances. To find high quality solutions, two very large-
scale neighbourhoods were proposed which were explored in a large neighbour-
hood search algorithm. This algorithm succeeded in solving problem instances
with up to 368 employees to optimality within reasonable calculation time.

Computational experiments revealed the potential for embedding the pre-
sented column generation in a branch-and-price algorithm. Moreover, the prob-
lem’s structured nature lends itself to a variety of other decomposition ap-
proaches, such as, for example, Benders decomposition. From a practical per-
spective, considering the problem’s stochastic variant in which, for example,
task durations are not deterministic, presents a relevant and challenging re-
search objective.

14 Pieter Smet, Greet Vanden Berghe

Acknowledgements This work was supported by the Belgian Science Policy Office (BEL-
SPO) in the Interuniversity Attraction Pole COMEX (http://comex.ulb.ac.be) and funded
by research project 110257 of the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen). Editorial consultation provided by Luke
Connolly (KU Leuven).

References

1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neigh-
borhood search techniques. Discrete Applied Mathematics 123(1-3), 75 – 102 (2002)

2. Bechtold, S.E., Jacobs, L.W.: Implicit modeling of flexible break assignments in optimal
shift scheduling. Management Science 36(11), 1339–1351 (1990)

3. Boyer, V., Gendron, B., Rousseau, L.M.: A branch-and-price algorithm for the multi-
activity multi-task shift scheduling problem. Journal of Scheduling 17(2), 185–197
(2014)

4. Dantzig, G.B.: A comment on Edie’s ‘Traffic delays at toll booths’. Journal of the
Operations Research Society of America 2(3), 339–341 (1954)

5. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research
153(1), 3–27 (2004)

6. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming Series B 98, 23–47
(2003)

7. Jacobs, L.W., Brusco, M.J.: Overlapping start-time bands in implicit tour scheduling.
Management Science 42(9), 1247–1259 (1996)

8. Klinkert, A.: Large-scale rostering in the airport industry. In: Proceedings of the 10th
International Conference on the Practice and Theory of Automated Timetabling, pp.
493–494 (2014)

9. Krishnamoorthy, M., Ernst, A., Baatar, D.: Algorithms for large scale shift minimisation
personnel task scheduling problems. European Journal of Operational Research 219(1),
34–48 (2012)

10. Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algorithms
for the tactical fixed interval scheduling problem. Operations Research 45(4), 624–638
(1997)

11. Lequy, Q., Desaulniers, G., Solomon, M.M.: A two-stage heuristic for multi-activity and
task assignment to work shifts. Computers & Industrial Engineering 63(4), 831 – 841
(2012)

12. Macedo, R., Benmansour, R., Urosevic, D., Artiba, A., Mladenovic, N.: Scheduling pre-
ventive railway maintenance activities with resource constraints. In: Proceedings of the
7th Multidisciplinary International Conference on Scheduling: Theory and Applications,
pp. 782–784 (2015)

13. Pisinger, D., Ropke, S.: Large neighborhood search. In: M. Gendreau, J.Y. Potvin (eds.)
Handbook of metaheuristics, pp. 399–419. Springer (2010)

14. Smet, P., Ernst, A., Vanden Berghe, G.: Heuristic decomposition approaches for an
integrated task scheduling and personnel rostering problem. Computers & Operations
Research (2016). DOI http://dx.doi.org/10.1016/j.cor.2016.05.016

15. Smet, P., Wauters, T., Mihaylov, M., Vanden Berghe, G.: The shift minimisation per-
sonnel task scheduling problem: A new hybrid approach and computational insights.
Omega 46, 64–73 (2014)

16. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.:
Personnel scheduling: A literature review. European Journal of Operational Research
226(3), 367–385 (2013)

