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Cellwise robust regularized discriminant analysis

Stéphanie Aerts*! and Ines Wilms?

Abstract

Quadratic and Linear Discriminant Analysis (QDA/LDA) are the most often applied classi-
fication rules under normality. In QDA, a separate covariance matrix is estimated for each
group. If there are more variables than observations in the groups, the usual estimates are
singular and cannot be used anymore. Assuming homoscedasticity, as in LDA, reduces the
number of parameters to estimate. This rather strong assumption is however rarely verified
in practice. Regularized discriminant techniques that are computable in high-dimension and
cover the path between the two extremes QDA and LDA have been proposed in the litera-
ture. However, these procedures rely on sample covariance matrices. As such, they become
inappropriate in presence of cellwise outliers, a type of outliers that is very likely to occur
in high-dimensional datasets. In this paper, we propose cellwise robust counterparts of these
regularized discriminant techniques by inserting cellwise robust covariance matrices. Our
methodology results in a family of discriminant methods that (i) are robust against outlying
cells, (ii) cover the gap between LDA and QDA and (iii) are computable in high-dimension.
The good performance of the new methods is illustrated through simulated and real data

examples. As a by-product, visual tools are provided for the detection of outliers.
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1 Introduction

Consider a training set X = {x1,--- ,xx} of N observations of dimension p, each belonging
to one of K groups Gi,--- ,Gg, with ny observations in the k-th group and N = Zszl ng.
Discriminant analysis methods aim to construct a decision rule based on X that automatically

assigns a new observation @ to one of the K groups. If the group conditional densities
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fr(x) are known, the Bayes classifier §(.) assigns « to the group with maximum posterior
probability. In quadratic discriminant analysis (QDA), where the conditional distributions

are assumed Gaussian Np(pg, Xy), this yields the rule
é(z) = argmin ((x = pi)" Op(@ — py) — log(det O) — 2log my,) , (1)

where @, := 2,;1 is the k-th group precision matrix. This rule splits the measurement space
into K disjoint regions with quadratic boundaries. In the special case of linear discriminant
analysis (LDA), homoscedasticity is further assumed, yielding linear boundaries. Even when
the population group precision matrices substantially differ, LDA is often used because it
might improve estimation accuracy by reducing the number of parameters to estimate.

In practice, the group parameters p; and 3y are commonly estimated by the arithmetic
mean &; and the sample covariance matrix flk. in QDA, or the sample pooled covariance
matrix f]pool in LDA. These procedures will be denoted by s-QDA and s-LDA from now on.
However, when p = nyg, these estimators become highly inaccurate and for p > ng, their
inverse cannot be computed anymore. In the sequel, high-dimension refers to such settings.
Regularized estimators have been successful in obtaining accurate estimates of @ in high-
dimension. They do this by biasing away the estimates from the sample covariance matrices.
Particular focus is given to sparse precision matrices where many elements are estimated as
zero, see e.g. [25]. Xu et al. [24] propose to plug the popular Graphical Lasso [11] sparse
precision matrices in quadratic rule (1). Similarly, one can obtain a sparse pooled precision
matrix for LDA. However, QDA and LDA are two extreme cases and their underlying as-
sumptions, i.e. all distinct covariance matrices in QDA, and homoscedasticty in LDA, are
rather strong. Therefore, several regularized discriminant methods have been proposed that
cover the path between LDA and QDA, see e.g [11] or [17].

All these procedures take the sample covariance matrices f)k as input. These estima-
tors are however not robust to outliers, i.e. atypical observations. Therefore, the proposed
methods inherit their lack of robustness. Since outliers frequently occur in high-dimensional
datasets, their possible presence should be accounted for. Several high-dimensional proce-
dures have been proposed to detect outliers (see e.g. [9] or [27] for a review). Our focus is on
how to deal with outliers in regularized discriminant analaysis.

To robustify the discriminant rule (1), one could think of replacing the group means and
covariance matrices by standard robust estimates. Croux and Dehon [4] use the S-estimator,

while Hubert and Van Driessen [16] and Filzmoser et al. [10] insert the MCD estimator



into rule (1). Nevertheless, these estimators are not computable anymore in high-dimension.
For high-dimensional datasets, robust discriminant methods have been investigated in [15]
and [23]. However, these methods circumvent the high-dimensionality problem by applying
a two-step procedure. First, a robust dimension reduction technique is applied. Then a
robust discriminant rule, using standard robust location and covariance matrix estimates, is
computed in this low-dimensional subspace.

Another issue with the standard robust estimators is that they usually downweight an
observation even if only one of its components is contaminated. In high-dimensional datasets
where many variables are measured on a small number of observations, this may result in
a huge loss of information. For such high-dimensional datasets, the cellwise contamination
model (see [3]), where each observation may contain at least one contaminated component,
is more appropriate. The development of cellwise robust procedures only appeared recently,
see e.g. [22] and [1] for low-dimensional datasets, or [20] and [5] for high-dimensional ones.

In this paper, we use cellwise robust covariance matrix estimates as an input for regu-
larized discriminant methods. As a result, we obtain discriminant methods that deal with
two important topics in applied statistics: regularized estimation and the presence of out-
liers in high-dimensional datasets. The resulting family of discriminant methods has clear
advantages: (i) the methods are robust against cellwise outliers, (ii) as a by-product, they
provide a way to detect both rowwise and cellwise outliers, (iii) they cover the path between
LDA and QDA, and (iv) they are computable in high-dimension without requiring an initial
dimension reduction technique.

The remainder of this article is structured as follows. In Section 2, we review several
non robust regularized discriminant methods. We propose cellwise robust counterparts in
Section 3. Simulation studies in Section 4 compare the proposed methods and show their
good performance in contaminated and uncontaminated settings. Finally, we analyze two
real data sets in Section 5. We find that the proposed cellwise robust discriminant methods
improve the classification performance. Furthermore, two visual tools for outlier detection

are provided. The conclusions are outlined in Section 6.

2 Regularized discriminant methods

To classify a new observation x in one of the K groups on the basis of the discriminant

rule (1), we need estimators of the group means g and precision matrices ®y. The usual



estimators for the group means are the average means ;. In this section, we review several
procedures to obtain high-dimensional precision matrix estimates that can then simply be

plugged into (1). Their cellwise robust version will be discussed in Section 3.

GL-LDA and GL-QDA. Starting from the sample covariance matrix in the k-th group
3, the Graphical Lasso [11] maximizes the L penalized log-likelihood

(:)k-,GL := argmax ny log det(®y) — nktr((—)kgk) -\ Z |0k,i51 (2)
O i#j
subject to the constraint that ©y, is positive definite. Here, 6y ;; is the element (4, j) of ©y
and A\; > 0 is a regularization parameter. The Li-norm of the off-diagonal elements ensures
that problem (2) can be solved even when the dimension p exceeds the group sample size
ng. For large values of A, many off-diagonal elements in (:)k. will be equal to zero. Under
normality, this can be interpreted as conditional independence between the corresponding
variables in the specific group. Problem (2) can be solved using the R-package huge [26].
We denote by GL-QDA, the quadratic classifier obtained by computing the Graphical
Lasso in each group and by plugging (:)1,GL,...,(:)K,GL into (1), see [24]. A regularized
estimate of the pooled precision matrix can be obtained in a similar way by using

K

~ n ~
Spool = D 3 (3)
k=1

as input in (2). We denote by GL-LDA the resulting linear classifier.

JGL-DA. The GL-QDA discriminant rule does not exploit the potential similarities be-
tween the groups since it estimates the K precision matrices independently. On the other
hand, the homoscedasticity assumption behind GL-LDA ignores the group specificities that
may be of particular interest in the classification context. To encourage similar sparsity pat-
terns across the groups, Price et al. [17] (and Gao et al. [13] in model based clustering) use

the Joint Graphical Lasso (JGL) [7]. The JGL estimates are

K K N
;= argmax Z ng log det(®g) — nitr(@;Xy)

((")k,JGL)
©:,..9x

k=1

K
— A Y kil = A2 DO 0k — Okl (4)

k=1 i#j k<k' 4,5



subject to the constraint that @1, ..., @k are positive definite. The first penalty in (4), with
regularization parameter A\; > 0, is the same as in (2). The second penalty in (4), with
regularization parameter Ao > 0, encourages similar sparsity patterns across the groups and
similar signs and values for the non-zero elements. The GL-QDA estimator corresponds to
the particular case with Ay = 0. Large values of the similarity parameter Ao yield precision
matrices with many similar elements across the groups. Varying the parameter Ay provides
a variety of classifiers that lie in between LDA and QDA. Problem (4) can be solved using
the R-package JGL [6]. We denote by JGL-DA the discriminant rule obtained by plugging the

precision matrices of equation (4) into rule (1).

RDA. Friedman [12] proposes another regularized discriminant method, denoted by RDA

from now on. Like JGL-DA, it gives a path from LDA to QDA and it is computable in

high-dimension. Unlike JGL-DA, it does not provide sparse precision matrix estimates.
RDA starts by computing a convex combination of the group specific and pooled sample

covariance matrices
S0 = (1= p1) Sk + p1Epool, (5)

where 0 < p; < 1is a regularization parameter. Then, the resulting estimator (5) is shrunken

towards a multiple of the identity matrix
YirpA = (1 —p2) X0 + ;tr(Ezl)Ip, (6)

with a second regularization parameter 0 < po < 1. The s-QDA solution corresponds to
p1 = p2 = 0 while the s-LDA solution is obtained with ps = 0,p; = 1. The resulting
estimators f]k,RDA can then be inverted to obtain regularized precision matrix estimates to

be plugged into (1).

3 Cellwise robust discriminant methods

The estimators from Section 2 all use the sample covariance matrices and/or the pooled co-
variance as input and are therefore not robust against cellwise outliers. To obtain cellwise
robust discriminant methods, we start with computing initial cellwise robust covariance ma-
trices Sj and the corresponding pooled covariance Spo01. These cellwise robust covariance

matrices are used to replace the sample covariance matrices 3j and X, as input of the



Graphical Lasso in (2), the Joint Graphical Lasso in (4) or RDA in (5) and (6). Then, we use
these precision matrices along with robust mean estimates, namely the vector of marginal
medians, in the discriminant rule (1). As a result, we obtain discriminant methods that are
both robust against cellwise outliers and easily computable in high-dimension.

These cellwise robust counterparts of the regularized discriminant methods of Section 2
are denoted by rGL-LDA, rGL-QDA, rJGL-DA and rRDA from now on. The code to obtain

these estimators is made available on http://feb.kuleuven.be/ines.wilms/software.

3.1 Cellwise robust covariance matrix estimates

We estimate each bivariate covariance between variables X* and X7 by
si; = scale(X*)scale(X7)corr (X7, X7), (7)

as in Croux and Ollerer [5]. We use the robust @Q,,-estimator [18] as sc/zﬁe(.) and the Kendall’s

correlation estimator as corr(.) . For a bivariate sample (z},27]),..., (¢!, x7), this correlation

estimator is defined as
XX = = 3 sign (o~ wh)e] )

By using signs rather than numerical values, Kendall correlation is a robust correlation mea-
sure and, hence, can cope with outliers.

A O(nlogn) algorithm to compute it is available in the pcaPP package [8]. The covariance
matrices obtained by estimating each pairwise covariance as in (7) are denoted by Sy and
the corresponding pooled covariance by S;,01. Croux and Ollerer [5] show that replacing the
sample covariances by these robust estimates in the Graphical Lasso estimator (2) results in
robust precision matrices with 50% breakdown point against cellwise contamination. Note
that few proposals of cellwise robust covariance estimators that are computable in high-

dimension are available in the literature. Alternatives can be found in [2] and [20].

3.2 Selection of the regularization parameters

The regularized methods rGL-LDA, rGL-QDA, rJGL-DA and rRDA all depend on one or
two regularization parameters. To select the regularization parameters of a given method,
we consider a grid of values, i.e. a one-dimensional grid for rGL-QDA and rGL-LDA, and

a two-dimensional grid for rJGL-DA and rRDA. For each (combination of) regularization



parameter(s), we compute the corresponding precision matrix estimates @1, ..., @k (or Opgol

for LDA) and we search for the optimal ones minimizing the Bayesian Information Criterion

BIC = f: [nktr (Sk(:)k) — ny log(det((:)k.))] + log(N)df, (8)
k=1

where df denotes the degrees of freedom of the model. The cellwise robust covariance matrices
S}, are replaced by Spo01 in LDA. Note that @1, e e) x and df depend on the regularization
parameters.

We take the degrees of freedom df to be the total number of distinct non-zero elements
in ®y,...,0. Danaher et al. [7] replace df by the total number of non-zero elements in the
estimated precision matrices. As such, model complexity is however overestimated since it

does not take into account the fact that some elements may be identical across the C:)k

Grid bounds. For each regularization parameter, we consider a logarithmic spaced grid of
five values between chosen upper and lower bounds, i.e. the grid consists of the exponential
of five equally spaced values between the logarithms of the bounds. The lower bound is a
tenth of the upper bound. Below, we discuss the choice of the upper bound for each of the
proposed methods. Up to our knowledge, no upper or lower bound for such a grid is proposed
in the literature for the multiple group setting.

For rGL-QDA, we take as upper bound for \;

\rCL—QDA

1,max

= m]?xmaxnk\(sk)ij — Iij, (9)

where I is the identity matrix. This value is the maximum over the K upper bounds con-
sidered by default in the huge package when performing the Graphical Lasso in each group.
The upper bound for rGL-LDA can be obtained by replacing Sy by Spoo1 in (9).

For rJGL-DA, we consider

)\EJIE;J;DA = max max ng|(Sk)ijl,
’ k  i,55i#7
as upper bound for A; since \; > Aj max is a sufficient condition for all the off-diagonal

elements of the solution to be zero [7]. For Ay, we propose the heuristic upper bound

)\rJ GL-DA

2,max - m]?X max nk‘(SPOOI)ij o (Sk)zj’

Z?J

We take this bound since Ay > A\JSL—PA g 5 necessary condition for Sp,. to satisfy the

2, max

KKT conditions of problem (4) (for Ay =0, if Sp001 has full rank and K = 2).
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For rRDA, the regularization parameters p; and p2 in equations (5) and (6) are the

coeflicients of convex combinations. Hence, we set the upper bounds to one.

4 Simulation study

In this section, we compare the performance of the regularized discriminant methods (cfr.
Section 2) and their cellwise robust counterparts (cfr. Section 3) through a simulation study.
The considered non robust methods are s-LDA, s-QDA, GL-LDA, GL-QDA, JGL-DA and
RDA. The cellwise robust counterparts are respectively r-LDA, r-QDA, rGL-LDA, rGL-QDA,
rJGL-DA and rRDA. The former two are obtained by plugging the cellwise robust covariance
matrices S, (or the pooled matrix Spee1) directly into rule (1). Regularization parameters
for the regularized methods are selected based on the BIC equation (8). For the non robust
versions, we use flk. instead of Sy in the BIC equation (8).

Up to our knowledge, no comparison of all the considered discriminant methods has been
made in the literature. Hence, it is worth analyzing their relative performances in depth. To

this end, we consider both uncontaminated and contaminated settings.

Performance measures. For all the settings described below, we simulate 1000 training
datasets consisting of K groups for each of which we estimate the mean and precision ma-
trix. These estimates are then used to construct a discriminant rule. Additionally, for each
training dataset, we generate a test dataset that consists of Nie = 1000 observations. For
each observation of the test set, we randomly select (with equal probability) one of the K
populations, then randomly draw a value from this population. We evaluate the discriminant
methods in terms of classification performance and estimation accuracy.

To evaluate classification performance, we use the test datasets to compute the average
percentage of correct classification over the 1000 simulation runs. The higher the average
percentage, the better the classification performance.

To measure estimation accuracy, we report the Kullback Leibler (KL) distance. Under the
normal model, the KL-distance from the model with estimated precision matrices (:)1, e 2) K

to the model with true precision matrices ®1,...,Ok is

K
KL(®1,...,0k:01,...,0k) = <Z —log det(©,0; 1) + tr((?)k@,;l)> — Kp.
k=1



The lower the KL-distance, the more accurate the estimates. If all the estimates are equal

to the true precision matrices, the KL-distance is equal to zero.

4.1 Uncontaminated scheme

We consider two different scenarios. In the first one, the number of groups is set to K = 10,
with group sample sizes n; = 30 and varying dimension p = 5,10, 30. The precision matrices
of the first five groups are equal. They have diagonal elements equal to one and zero off-
diagonal elements except in the upper left block of size 2 x 2, where the off-diagonal elements
are set to 0.9. For the precision matrices of the next five groups, the 2 x 2 block with 0.9
off-diagonal elements is located in the lower right corner. The mean vectors of the first five
groups have elements all equal to zero except element k in the k-th group that is equal to 3.
The mean vectors of the remaining five groups have the opposite sign.

In the second scenario, the number of groups is set to K = 6, with group sample size
ng = 30 and dimension p = 50. The covariance matrices are chosen as in [12]: they are all
diagonal with elements (9(i —1)/(p — 1) + 1) for i = 1,...,p in the first three groups, and
(9(p—i)/(p—1)+1)* for i = 1,...,p in the three other groups. The condition number is
thus the same for all the groups but the low and high variance subspaces of groups 1 to 3
and 4 to 6 are complementary. All the elements of the mean vector of group k are set to zero
except the k-th element in the first three groups, and the p — k-th element in the three other
groups that are equal to log(p).

Results. Table 1 gives the correct classification percentages and KL-distances for the non
robust (top) and robust methods (bottom) in the two scenarios. Robust methods are generally
expected to perform well also in uncontaminated settings. In both scenarios, the correct
classification percentages and KL-distances of the robust techniques are, overall, quite similar
to those of the non robust ones, regardless of the dimension p. The use of the cellwise robust
discriminant methods (instead of the non robust ones) thus only results in a small statistical
efficiency loss.

Next, we compare the standard discriminant methods s-LDA and s-QDA to the regular-
ized ones GL-LDA, GL-QDA. For their cellwise robust counterparts, the same conclusions
can be made. In a low dimension (Scenario 1, p = 5), all the methods show similar classi-
fication performance. As soon as the dimension increases (Scenario 1, p = 10 and p = 30),

GL-LDA and GL-QDA perform much better. Regularization is necessary to improve both the



classification performance and estimation accuracy of the standard methods. For instance,
in dimension p = 10, the standard quadratic classifier s-QDA suffers from low estimation
accuracy, i.e. its KL-distance is 3 times that of its regularized version GL-QDA. This, in
turn, negatively impacts its classification performance. In dimension p = 30, s-QDA is not
computable anymore as indicated by NA in Table 1. Its regularized version, on the contrary, is
always computable and yields good classification performance and high estimation accuracy.
Also for the robust methods, although still computable in this setting®, r-QDA yields poor
classification performance and estimation accuracy compared to rGL-QDA.

Further improvement over GL-LDA and GL-QDA can be obtained by using JGL-DA.
The latter not only yields a high correct classification percentage but also the most accu-
rate precision matrix estimates in each setting. When several groups share similar sparsity
patterns (as in the considered simulation settings), estimation accuracy can be considerably
improved by using a method that covers the path between LDA and QDA, like JGL-DA.
In other (unreported) simulation studies expected to favour either GL-LDA or GL-QDA, we
also find JGL-DA to be a tough competitor with respect to both classification performance
and estimation accuracy. The results are available from the authors upon request. The same
overall conclusions hold when comparing the cellwise robust discriminant methods.

Differences between the regularized methods are even more marked in the second scenario
(see Table 1). JGL-DA still attains the best correct classification performance and estimation
accuracy, followed by GL-QDA. The standard s-QDA is not computable since p is too large.
The methods GL-LDA and RDA show poor classification performance and low estimation
accuracy. In this scenario, the groups are more difficult to distinguish since they have comple-
mentary low and high variance subspaces, and the mean differences lie in the direction with
the lowest variance. The precision matrix estimates used in GL-LDA, RDA (and s-LDA) ar-
tificially inflate the lowest variances by pooling and enlarging the smallest eigenvalues. This
results in poor performance of these techniques. JGL-DA, on the contrary, lies in between
LDA and QDA without shrinking the precision matrices towards each other as a whole. Only
the coefficients that are similar across groups will be estimated identically. Hence, JGL-DA

shows good performance in terms of both correct classification and estimation accuracy.

3Kendall’s coefficient uses all the possible pairs of observations. As such, the corresponding covariance

matrices may be invertible for p > nj but they become singular as soon p > ng(ni —1)/2.
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Table 1: Percentages of correct classification (CC) and KL-distance for the non robust dis-
criminant methods (top) and their cellwise robust counterparts (bottom), averaged over 1000

simulation runs.

s-LDA  s-QDA GL-LDA GL-QDA JGL-DA  RDA

p=>5 CcC 78.4 79.0 78.5 81.4 81.9 78.4

KL | 12.65 7.53 12.73 3.60 3.01 12.64

Scenario 1 | p=10 CC 82.7 76.6 83.4 85.6 86.1 82.8
K =10 KL | 14.06 39.36 13.46 13.60 3.68 14.00
p=30 CC T NA 80.5 83.0 83.5 75.4

KL | 30.29 NA 21.87 40.41 5.03 58.67

Scenario 2 | p=50 CC 23.5 NA 25.7 54.5 71.4 25.7
K=6 KL | 223.90 NA 158.12 85.43 78.67 155.72

r-LDA  r-QDA rGL-LDA rGL-QDA rJGL-DA rRDA

p=2>5 CC 77.0 78.2 76.9 79.3 79.6 77.0
KL 14.96 8.16 15.97 8.90 8.15 15.07
Scenario 1 | p=10 CC 81.4 69.3 82.2 84.5 85.1 81.4
K =10 KL 14.57 104.11 14.00 13.88 4.44 14.51
p=30 CC 76.1 59.7 7.4 79.7 80.1 73.5
KL | 22.86 139.18 22.98 44.57 11.02 59.01
Scenario 2 | p=50 CC 24.0 70.2 24.6 51.9 61.4 25.5
K=6 KL | 177.28  238.08 159.64 93.01 104.73 156.07

4.2 Contaminated scheme

We compare the performance of the non robust and robust discriminant methods in the
presence of cellwise outliers. To this end, we add contamination to the settings from Sec-
tion 4.1. In each training set, we randomly replace a given proportion of the cells in each
group. The considered cellwise contamination percentages are ¢ = 5% and 10% in the first
scenario and 1% in the second one. The test datasets are generated as in Section 4.1 without
contamination.

In the first scenario, each contaminated cell is drawn from a normal distribution N(—10,0.2)
in the first five groups and from N(10,0.2) in the five other groups. This shift contamination
may drive the estimated means of the first five groups in the direction of the means of the
remaining groups (and vice-versa) and inflate the sample covariance estimates. In the second

scenario, each contaminated cell is drawn from a normal distribution with a large variance
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N(0,50).

Results. We compare the non robust discriminant methods to their robust counterparts
in terms of correct classification. Figure 1 shows the results for scenario 1 (left panel: 5% of
contaminated cells, right panel: 10% of contaminated cells), Figure 2 for scenario 2. For each
method, the boxplot of correct classification percentages of the 1000 simulation runs for the
non robust version is displayed on the left while the boxplot on the right corresponds to its
cellwise robust counterpart.

In all the considered contaminated settings, the cellwise robust methods maintain their
good classification performance. On the contrary, the outlying cells mislead all the considered
non robust methods. As a result, their correct classification percentages considerably decrease
and their KL-distances (unreported) are high.

The higher the dimension p and/or the higher the contamination proportion ¢, the better
the performance of the cellwise robust estimators relative to their non robust version. For
instance, keeping ¢ fixed to 5%, rJGL-DA leads to an increase in correct classification perfor-
mance of (on average) 19 percentage points over JGL-DA in dimension p = 5, while this gain
increases to 32 percentage points in dimension p = 30. Likewise, keeping the dimension p = 5
fixed but varying the proportion of contaminated cells, rJGL-DA improves classification per-
formance by 19 percentage points over JGL-DA when ¢ = 5%, and this gain doubles when
e = 10%. The deteriorating performance of the non robust methods when the dimension
increases is expected in this cellwise contamination scheme. Indeed, the probability that an
observation has at least one contaminated cell is 1 — (1 — ¢)P. In the first scenario, for 5%
of contamination and p = 5, already 22.6% of the observations are expected to be contam-
inated, and more than 78% if p = 30. For 10% of cellwise contamination, the presence of
contaminated cells is expected for nearly a half of the observations if p = 5, and almost all
of them if p = 30.

Results for the cellwise robust estimators are summarized in Table 2. The main findings
are similar to those detailed in the uncontaminated case. As the dimension increases in Sce-
nario 1, the regularized techniques rGL-QDA and rJGL-DA are among the best in terms of
correct classification. rJGL-DA achieves considerably lower KL-distances than rGL-QDA.
In the second scenario, r-QDA, rJGL-DA and rGL-QDA yield the best correct classification
rates but the estimation accuracy of r-QDA is much worse than rJGL-DA and rGL-QDA.

12



10% cellwise contamination

5% cellwise contamination

vay!
vay
va-1or!
va-1oc
vao-19
vad-19o
vai1-1o!
vai1-19
vao-1
vao-s
vai-i
vai-s

vay!
vay
va-1or!
va-1oc
vao-19
vad-19
vai1-1o!
vai1-19
vao-1
vao-s
vai-i
vai-s

p=10

p=10

5% cellwise

Figure 1: Scenario 1 : Boxplots of correct classification percentages. Left panel :

contamination, right panel: 10% cellwise contamination.
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Figure 2: Scenario 2 : Boxplots of correct classification percentages. 1% cellwise contamina-

tion.

To summarize, the proposed cellwise robust discriminant methods have better classifi-
cation performance and estimation accuracy than their non-robust counterparts in presence
of cellwise outliers. Among the robust techniques, the regularized methods outperform the
standard ones in high dimension. Among the cellwise robust regularized methods, rJGL-DA
attains the best overall performance. This method relies on a similarity parameter that, when
varied, covers the path from QDA to LDA. Choosing this parameter in a data-driven way
makes rJGL-DA a tough competitor not only in presence of many similar precision matrices

but also under LDA /QDA assumptions.

5 Examples

In this section, we illustrate the performance of the proposed methods on two real datasets.
The first example, the forest soil dataset, is known in the robust discriminant analysis liter-
ature. The second example, the phoneme dataset, includes a large number of variables and
has been used in papers on regularized discriminant analysis. We find most cellwise robust
discriminant methods to attain better classification performance than their non robust coun-
terparts. We also provide two visual tools showing the outlying observations and outlying

cells in the analysed datasets.

The robust mean and precision matrix estimates proposed in this article can be used for
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Table 2: Percentages of correct classification (CC) and KL-distance for the cellwise robust

discriminant methods, averaged over 1000 simulation runs.

r-LDA  r-QDA rGL-LDA rGL-QDA 1rJGL-DA rRDA
p=5 CC 74.9 76.1 74.6 774 7.7 74.9
KL 20.83 12.530 22.32 15.31 14.07 20.95
Scenario 1 - ¢ = 5% | p=10 CC 80.4 77.8 80.6 82.3 82.9 80.4
K =10 KL 22.58 21.25 25.13 23.83 15.83 22.68
p=30 CC 73.5 56.7 74.9 76.7 77.8 71.6
KL | 33.90 116.03 40.26 70.25 23.21 68.95
p=5 CC 72.0 73.7 71.7 75.2 75.6 72.0
KL 26.13 16.41 27.84 20.47 18.73 26.24
Scenario 1 - € =10% | p=10 CC 78.3 75.5 78.6 80.4 81.3 78.3
K=10 KL | 30.78 25.54 34.20 33.40 23.38 30.93
p=30 CC 69.1 54.0 70.5 73.0 74.3 68.6
KL 51.52 106.68 62.86 98.31 41.18 85.74
Scenario 2 - ¢ = 1% | p=50 CC 24.0 70.0 24.7 51.6 58.6 25.6
K=6 KL | 176.60 227.57 161.81 98.79 117.88 156.82

outlier detection. Usual outlier detection methods are based on the computation of distances.
The sample mean and covariance matrix are, however, heavily influenced by outliers. There-
fore, distances computed from them may be large for the clean observations/cells and small
for the outlying ones. As a result, the actual outliers are not detected. This effect is known
as the masking effect [19]. It can be avoided by computing robust distances from robust
location and precision matrix estimates like the ones proposed in Section 3. They allow to
pinpoint both outlying observations, i.e. rowwise outliers, and outlying cells, i.e. cellwise
outliers.

To find rowwise outliers in each group, robust Mahalanobis distances are computed for

each observation x; of the group,

Dy =\ (@i — i) T (wi — i),

where 1), is the vector of marginal medians in group k£ and (:)k is one of the precision matrix
estimates defined in Section 3. Observations with a Mahalanobis distance above the square
root of the 0.99 quantile of the chi-square distribution with p degrees of freedom are flagged
as rowwise outliers.

To find cellwise outliers in each group, we follow the approach of [1]. For each cell z;; in
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group k, a cellwise standardized distance is computed

Tij — Mk,j

dij = ; (10)

k.

where my, ; and ?j ; estimate respectively the marginal location and scale of the jth variable
in group k. We replace my, ; in (10) by the median of the jth variable in group k. For the
scale, we replace tj ; by the square root of element (j,j) of (:),;1 Cells with standardized
distance exceeding the square root of the 0.99'/("#P) quantile of a chi-square distribution with

one degree of freedom are flagged as cellwise outliers.

5.1 Forest soil data

The forest soil dataset, available in the R-package rrcovHD [21], contains measurements on
N = 58 soil pits in the Hubbard Brook Experimental Forest in north-central New Hampshire
of 1983. For each soil sample, the exchangeable cations of calcium, magnesium, potassium
and sodium (p = 4) are reported. The pit location can be classified in K = 3 types of
forest: spruce-fir (ny = 11), high elevation hardwood (n2 = 23) and low elevation hardwood
(ng = 24). Some unusual soil samples are present in the dataset, as already noticed in
[23]. Note that the group sample sizes are low compared to the dimension p. We compare
the classification performance of the proposed cellwise robust and non robust discriminant
methods. The robust location and precision matrix estimates are then used to construct an

outlier detection map.

Classification performance. As the sample size is low, the same dataset is used to con-
struct and evaluate the discriminant rule. Table 3 summarizes the percentages of correct
classification for the non robust and robust methods. This dataset is characterized by strong
overlapping groups, which causes overall low correct classification rates. We observe that the
robust discriminant methods reduce the influence of the unusual soil samples and yield better
correct classification rates. Although the dimension is not high, the regularized techniques

rJGL-DA and rGL-QDA are to be preferred since the sample size is low.

Outlier detection. Since the cellwise robust methods perform better, outliers might be
present. To characterize the rowwise outliers, we compute robust Mahalanobis distances. To
characterize the cellwise outliers, we compute robust cellwise standardized distances. Figure

3 visualizes the detected outliers using the rGL-LDA (left panel), rGL-QDA (middle) and
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Table 3: Percentage of correct classification. Forest soil data, K =3, p =4, N = 58.
s-LDA  s-QDA GL-LDA GL-QDA JGL-DA RDA

56.9 56.9 56.9 55.1 56.9 56.9
r-LDA  r-QDA rGL-LDA rGL-QDA rJGL-DA rRDA
60.3 63.8 60.3 65.6 67.2 60.3

rJGL-DA (right panel) estimates. Observations flagged as rowwise outliers are colored in
blue, cellwise outliers in red. The black vertical lines split the observations according to their
group membership: spruce-fir (top), high elevation hardwood (middle) and low elevation
hardwood (bottom).

The same four rowwise outliers are highlighted by the three estimation methods. They
all have a sodium measurement (last column) that is much higher than expected, while
their other components are in line with the majority of the data. Unlike standard robust
methods, the proposed cellwise discriminant methods result in less loss of information since
they do not drop the entire row because of the presence of only one outlying component.
The methods also detect, overall, the same outlying cells, mainly among the measurements
for sodium. Used together, these rowwise and cellwise outlier detection techniques allow a

deeper comprehension of the dataset.

5.2 Phoneme data

The phoneme dataset [14] contains N = 1717 observations corresponding to the record of a
male voice pronouncing one of K = 2 similar sounds, either aa or ao. The aim is to build a
classifier of these sounds on the basis of the p = 256 log-periodograms representing the log

intensity of the sound across 256 frequencies.

Classification performance. Since there are enough observations in each group, we split
the dataset into a training and a test set (with 60%/ 40% of the observations respectively).
We evaluate the performance of the methods on the test set. To diminish the influence of
the split, this procedure is repeated ten times. The average percentage of correctly classified
observations is computed and reported in Table 4. For the majority of the considered meth-
ods, the robust ones perform better than their non robust counterparts. Among the cellwise
robust techniques, the regularized methods rGL-LDA and rGL-QDA improve classification
performance compared to respectively r-LDA and r-QDA.
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Figure 3: Outlier detection map of Forest soil data: detected rowwise outliers (blue) and

cellwise outliers (red) by rGL-LDA (left), rGL-QDA (middle) and rJGL-DA (right).

Outlier detection. As in the first data example, the robust mean and precision matrix
estimates can be used to detect outliers. Here, the dataset is however too large for a clear
visual inspection via the outlier detection map (cfr. Figure 3). Another useful visualisation
tool to detect rowwise outliers is the plot of the robust squared Mahalanobis distances versus
the observation numbers, as represented in Figure 4. The distances are computed with the
rGL-LDA estimates in the left panel, and with the rGL-QDA and rJGL-DA estimates in the
middle and right panels. The vertical line corresponds to the 0.99 chi-square quantile with
p = 256 degrees of freedom. Observations beyond this threshold are considered as rowwise
outliers. For all the methods, outliers are detected in both groups. The same extreme outlying
rows are highlighted by all the estimation methods.

The different methods also detect overall the same outlying cells (not shown), although

JGL-DA highlights many more cellwise outliers. Again, the multivariate outlying behaviour
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Table 4: Average percentage of correct classification. Phoneme dataset K = 2, p = 256,

Ntrain = 10307 Ntest = 687.
s-LDA s-QDA GL-LDA GL-QDA JGL-DA RDA

7.7 62.4 81.4 74.9 78.4 78.2
r-LDA  r-QDA rGL-LDA rGL-QDA rJGL-DA rRDA
81.1 74.7 81.7 76.0 76.7 73.3
o | o | o |
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Figure 4: Robust Mahalanobis distances computed with the rGL-LDA (left), the rGL-QDA
(second panel) and the rJGL-DA (right panel) estimates. Observations in the first group are
represented by a 17 and those in the second by a *.

of some entire rows may be explained by only one abnormal component, as is the case for
observations 388, 509 and 614. On the contrary, the extreme rowwise outlier 936 has a
high Mahalanobis distance while none of its components is flagged by the cellwise outlier
detection procedure. Its outlying behaviour is thus caused by a particular relation between
the components rather than by one of its components. Hence, it is important to consider

both the rowwise and cellwise outlier detection procedures in combination.

6 Discussion

In this paper, cellwise robust discriminant analysis methods are proposed. We discuss all the
implementation issues and we make the code publicly available. The proposed discriminant

methods enjoy several important advantages. They are robust against cellwise outliers, a type
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of outliers that is very likely to occur in high-dimensional datasets. We provide visual tools to
detect both rowwise and cellwise outliers (cfr. Section 4). Furthermore, contrary to LDA that
makes the strong assumption of homoscedasticity, we consider methods that emphasizes the
true difference between the group covariance matrices while making use of their similarities.
As such, the proposed methods lie in between LDA and QDA. Our simulations show that these
approaches result in better classification performance as well as higher estimation accuracy.
Finally, many discriminant methods require dimension reduction techniques to be computable
in high-dimension (see [15], [23]). Our methods, in contrast, are computable even when the
dimension exceeds the group sample size without requiring any preprocessing step. By using
sparse precision matrix estimates, we reduce the effect of uninformative variables.

The proposed regularized methods depend on regularization parameters that are tuned
in a data-driven way. In this paper, we focus on parameter selection via minimization of the
BIC. In the classification context, one may also be interested in selecting parameters so as
to maximize the expected out-of-sample correct classification rate, which can be obtained by
L-fold cross validation. This method is, however, much more time consuming. Furthermore,
in our simulations, it, overall, does not outperform BIC model selection in terms of correct
classification. Even more, parameter selection by L-fold cross validation sometimes achieve

higher KL-distances.

Acknowledgements. We thank Prof. C. Croux who provided insights and critical com-
ments that helped improving the manuscript. We gratefully acknowledge support from the

FWO (Research Foundation Flanders, contract number 12M8217N).

References

[1] C. Agostinelli, A. Leung, C.J. Yohai, and R. H. Zamar. Robust estimation of multivariate
location and scatter in the presence of cellwise and casewise contamination. TEST, 24

(3):441-461, 2015.

[2] F. A. Algallaf, Martin R.D. Komis, K. P., and R.H. Zamar. Scalable robust covariance
and correlation estimates for data mining. Proceedings of the Fighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 14-23, 2002.

20



[3]

[12]

[13]

[14]

F.A. Algallaf, S. Van Aelst, V.J. Yohai, and R.H. Zamar. Propagation of outliers in
multivariate data. The Annals of Statistics, 37:311-331, 2009.

C. Croux and C. Dehon. Robust linear discirminant analysis using S-estimators. The

Canadian Journal of Statistics, 29(3):473-493, 2001.

C. Croux and V. Ollerer. Modern Multivariate and Robust Methods, chapter Robust

high-dimensional precision matrix estimation. Springer, 2015.

P. Danaher. JGL: Performs the Joint Graphical Lasso for sparse inverse covariance
estimation on multiple classes, 2013. URL https://CRAN.R-project.org/package=
JGL. R package version 2.3.

P. Danaher, P. Wang, and D. Witten. The joint graphical lasso for inverse covariance
estimation across multiple classes. Journal of the Royal Statistical Society, Series B, 76:

373-397, 2014.

P. Filzmoser and H. Fritz. pcaPP : Robust PCA by Projection Pursuit, 2006. URL
https://CRAN.R-project.org/package=pcaPP. R package version 1.0.

P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimension.

Computational Statistics and Data Analysis, 52:1694-1711, 2008.

P. Filzmoser, K. Hron, and M. Templ. Discriminant analysis for compositional data and

robust parameter estimation. Computational Statistics, 27:585-604, 2012.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with

the graphical lasso. Biostatistics, 9(3):432-441, 2008.

J. H. Friedman. Regularized discriminant analysis. Journal of the American Statistical

Association, 84:165-175, 1989.

C. Gao, Y. Zhu, X. She, and W. Pan. Estimation of multiple networks in gaussian
mixture models. FElectronic Journal of Statistics, 10:1133-1154, 2016.

T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data
Mining, Inference and Prediction, Second Edition. Springer Verlag, New York, 2009.

M. Hubert and S. Engelen. Robust PCA and classification in biosciences. Bioinformatics,

20(11):1728-1736, 2004.

21



[16]

[17]

[20]

[21]

22]

23]

[24]

[25]

[26]

M. Hubert and K. Van Driessen. Fast and robust discriminant analysis. Computational

Statistics and Data Analysis, 45(2):301-320, 2004.

B. Price, C. Geyer, and A. Rothman. Ridge fusion in statistical learning. Journal of

Computational and Graphical Statistics, 24(2):439-454, 2015.

P. Rousseeuw and C. Croux. Alternatives to the median absolute deviation. Journal of

the American Statistical Association, 88(424):1273-1283, 1993.

P. J. Rousseeuw and A.M. Leroy. Robust regression and outlier detection. John Wiley

and Sons, New-York, 1987.

G. Tarr, S. Miiller, and N.C. Weber. Robust estimation of precision matrices under

cellwise contamination. Computational Statistics and Data Analysis, 93:404—420, 2015.

V. Todorov. rrcovHD : Robust Multivariate Methods for High dimensional data, 2016.
URL https://CRAN.R-project.org/package=rrcovHD. R package version 0.2-5.

S. Van Aelst. Stahel-Donoho estimation for high dimensional data. International Journal

of Computer Mathematics, 93:628-639, 2016.

K. Vanden Branden and M. Hubert. Robust classification in high dimension based on

the SIMCA method. Chemometrics and Intelligent Laboratory Systems, 79:10-21, 2005.

B. Xu, K. Huang, King I., C. Liu, J. Sun, and N. Satoshi. Graphical lasso quadratic
discriminant function and its application to character recognition. Neurocomputing, 129:

33-40, 2014.

T. Yuan and J. Wang. A coordinate descent algorithm for sparse positive definite matrix

estimation. Statistical Analysis and Data Mining, 6(5):431-442, 2013.

T. Zhao, H. Liu, K. Roeder, J. Lafferty, and L. Wasserman. The huge package for high-
dimensional undirected graph estimation in R. Journal of Machine Learning Research,

13:1059-1062, 2012.

A. Zimek, E. Schubert, and H-P. Kriegel. A survey on unsupervised outlier detection
in high dimensional numerical data. Statistical Analaysis and Data Mining, 5:363—-476,
2012.

22



FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIE

tel. + 32 16 32 66 12

fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be




	KBI_1701
	CellwiseRobustDA



