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Introduction

The control of pest species is one of the biggest chal-
lenges facing humankind (Garrett 2013, Maxmen 2013). 
Traditional pest control based on chemical pesticides has 
had success, but may be restricted by increasing concerns 
over environmental impact and the evolution of resistance 
(Heckel 2012, Köhler and Triebskorn 2013, Alphey 2014). 
There is indeed increasing evidence that current risk 
assessment strategies considerably underestimate the 
impact of chemical pesticides on non-target organisms 
(Beketov et al. 2013). Synergistic interactions of chemical 
pesticides with natural stressors may be an important rea-
son for these underestimations (Coors and De Meester 

2008, Holmstrup et al. 2010, Rotter et al. 2013, Vighi 2013, 
Dinh Van et al. 2014). Despite the potential strong effects 
of such synergisms on non-target organisms, the exploita-
tion of these synergistic interactions to better control 
target pest species has been rarely considered (but see 
Birch et al. 2011).

The identification of synergisms between biological 
pesticides and natural stressors on pest species would be 
especially relevant, as biological pesticides are increas-
ingly promoted as part of environmentally friendly inte-
grated pest management (IPM) strategies (Lacey and 
Shapiro-Ilan 2008). Biological pesticides are pesticides 
derived from natural materials or organisms and include, 
for example, microbial pesticides produced from bacteria 
(Wilson et al. 2013). Because of their higher specificity, 
biological pesticides have a lower environmental impact 
than chemical pesticides (Lacey and Shapiro-Ilan 2008). 
Moreover, given the often complex mode-of-action, 
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bacterial-derived biological pesticides are considered to 
give a lower risk for the evolution of resistance (Wirth et al. 
2005, Becker et al. 2010). Yet, several studies show that 
also biological pesticides may have considerable impact 
on non-target organisms (e.g., Kanzok and Jacobs-
Lorena 2006) and that target pest organisms may evolve 
resistance against them (Tabashnik 1994, Boyer et  al. 
2012). Combined exposure with natural stressors, espe-
cially when synergistic interactions occur, would allow the 
application of lower doses of biological pesticides, which 
may further reduce their environmental impact and the 
probability of evolving resistance (Gravitz 2012, Kroeger 
et al. 2013).

A widespread and potentially powerful synergism is the 
one between chemical pesticides and exposure to predation 
risk cues for which both lethal (e.g., Relyea and Mills 2001, 
Relyea 2003) and sublethal (e.g., Campero et al. 2007, Qin 
et  al. 2011) effects on non-target organisms have been 
reported. Besides lethal, also sublethal fitness-related 
effects such as effects on immune function, may play an 
important role in population dynamics (Preisser and 
Bolnick 2008). Although target pest organisms may poten-
tially also suffer from synergistic interactions between 
chemical pesticides and predation risk cues, this has never 
been studied. Furthermore, despite their potential for 
more efficient IPM, synergistic interactions between bio-
logical pesticides and predation risk cues have never been 
considered. One major limitation for the applicability of 
such synergisms is that predation risk cues may be difficult 
to manipulate at a large scale as the chemical nature is 
largely unknown, making it a big challenge to synthesize 
them. However, recently, for one important invertebrate 
predator, the backswimmer Notonecta maculata, chemical 
cues (i.e., kairomones) have been identified and the syn-
thetic form has been applied successfully to repel oviposi-
tion in adult mosquitoes (Silberbush et  al. 2010). This 
opens the possibility of combining synthetic kairomones of 
Notonecta with biological pesticides to develop a more effi-
cient pest control program.

To address these applied ecological issues, we studied the 
combined lethal and sublethal effects of a biological pesti-
cide and predation risk cues in a vector mosquito. As vector 
mosquito we chose Culex pipiens molestus (Forskal), which 
is very common throughout Europe and the USA where it is 
controlled because it causes high levels of nuisance and 
because it is an important vector for West Nile virus to ani-
mals and humans (Becker et al. 2010, Kilpatrick 2011). We 
focused on the biological pesticide Bacillus thuringienisis 
var. israelensis (Bti), a gram-positive spore-forming bacte-
rium. Bti is highly specific to the larval stages of certain 
Diptera including mosquitoes, chironomids, and black flies 
that are killed by the production of protein crystals that 
upon ingestion lead to pore formation and cell lysis of the 
intestinal tract (Becker et al. 2010). Bti is a worldwide used 
biological pesticide to control vector mosquitoes in the lar-
val stage and is the only allowed biological pesticide to fight 
mosquitoes in Europe (EU Biocidal Products Directive 
98/8/EC). Microbial-control agents like Bti have been 

successfully used for about 30 yr in nuisance insect control 
programs and since the beginning of the new millennium 
also to control mosquitoes transmitting West Nile virus. 
For instance, in Quebec, Canada, more than 50 tons of Bti 
formulations are used every year (Becker et al. 2010). Given 
its high specificity, Bti has less environmental impact than 
chemical pesticides, yet negative effects on non-dipterans 
have been documented (e.g., Boisvert and Boisvert 2000, 
Poulin et al. 2010, Lajmanovich et al. 2015, but see Lagadic 
et al. 2014) and resistance may evolve (e.g., Boyer et al. 
2012). Moreover, Bti is less efficient than chemical pesti-
cides and is therefore sometimes used in combination with 
those to increase its efficacy in controlling mosquitoes 
(Tetreau et al. 2013). As Notonecta are important natural 
predators that may control mosquito populations (Becker 
et al. 2010) and that evoke antipredator responses in larval 
C. pipiens (Sih 1986), we tested for synergistic interactions 
between the recently discovered synthetic kairomones of 
N. maculata and Bti and compared the impact of natural vs. 
synthetic kairomones on larval prey.

We focused not only on mortality but also on sublethal 
life history effects (development time and mass at emer-
gence), as these can also strongly affect vector competence, 
the ability of a vector to become infectious, and subse-
quently transmit a pathogen (Alto and Lounibos 2013). To 
get an integrated estimate that combines effects on these 
different life history traits we calculated the composite 
index of population performance (r′; Livdahl and Sugihara 
1984, Juliano 1998). While it is well-documented that Bti is 
lethal for Culex larvae (e.g., Boisvert and Boisvert 2000), its 
effects on sublethal response variables are unknown for 
any dipteran species. Given that synergistic effects may 
only be visible for fitness-related physiological variables 
(Janssens and Stoks 2013a) and that sublethal fitness-
related effects across metamorphosis may play an 
important role in population dynamics (Preisser and 
Bolnick 2008), we also quantified effects on fat content and 
immune function both in the larval and in the adult stage. 
As a measure of immune function, we measured the 
activity of phenoloxidase (PO), a key component of the 
insect immune system (Sugumaran 2002). The PO cascade 
pathway is involved in fighting against a wide range of par-
asites in mosquitoes (Christensen et al. 2005), indicating 
that stressors affecting this pathway, may also have effects 
on vector competence (Cornet et al. 2013).

Methods

Bti application

We used the commercial Bti formulation Vectobac 
(WG, 37.4% Bti at 3000  ITU/mg; Valent Biosciences, 
Libertyville, Illinois, USA). The Bti concentration for the 
exposure experiment was based on a range finding experi-
ment in the laboratory where fourth instar (L4) larvae 
were exposed to a range of Bti concentrations (0, 2, 6, 10, 
14, 18 μg/L) for 4 d, administered in two pulses on the first 
and third day. The concentrations for this range finding 
were based on the LC50 value for fourth instar C. pipiens 
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larvae (35.33 μg/L; Boudjelida et al. 2008). No mortality 
was observed at 10 μg/L and 30% mortality at 14 μg/L. 
Therefore, we selected the intermediate concentration of 
12 μg/L to screen for effects on life history and carry-over 
effects to the adult stage. High lethal concentrations of a 
pesticide may reduce the possibility of detecting synergis-
tic interactions with predator cues (Relyea and Mills 
2001). Recommended dosage for Vectobac WG for 
mosquito control range from 1 to 5 mg/L for container 
habitats and from 12.5 to 75  mg/m2 for open habitats 
(data available online).2 If we assume a depth of 0.5 m for 
the typical shallow ponds that Culex prefers (Becker et al. 
2010), this corresponds to a recommended application 
concentration between 25 and 150 μg/L. A stock solution 
of 1 mg/mL Bti was prepared in milliQ water.

Experimental design

To test for the effect of Bti exposure and predation risk 
cues on life history and physiology, we set up a laboratory 
experiment where larvae were exposed during 4 d to one of 
the eight combinations of two Bti concentrations (0 and 
12  μg/L) and four predation risk cues treatments (no 
kairomones,No; synthetic kairomones, SK; natural kair-
omones, NK; and natural kairomones plus alarm cues 
from conspecifics, NK  +  AC). The latter was added 
because it reflects the highest dose of risk for mosquitoes 
(Ferrari et al. 2008) and therefore allows comparing the 
effect of synthetic kairomones with the strongest risk 
cocktail present in nature. Note that we did not include a 
treatment only containing alarm cues as it was not our aim 
to test the pure effect of alarm cues, as these normally do 
not occur in isolation in nature and cannot be produced 
synthetically. The number of replicated jars per combina-
tion of Bti concentration × predation risk cues treatment 
was 10 with each jar containing 20 larvae (total of 1600 lar-
vae in 80 jars). Exact sample sizes per response variable are 
given in Appendix S4.

During the pre-exposure period, larvae were reared 
under the same conditions as the larvae from the culture 
(see Appendix S1) and daily fed 5 mL of a 25 mg/mL solu-
tion of the same food mixture used for the laboratory cul-
ture. This amount equals 0.313 mg of food/d.larva and 
equals a high food condition (Beketov and Liess 2007) 
thereby avoiding effects of food shortage on the measured 
response variables.

When larvae molted into the L4, we started the 4-d 
exposure period to Bti and predation risk cues. We chose a 
4-d exposure period as at day five the first larvae started to 
pupate. At the start, 20  L4 larvae (<24  h in L4) were 
transferred to a 210-mL glass jar. Each jar was filled 
with 100 mL of one of the two Bti solutions (0 or 12 μg/L 
in  dechlorinated tap water) and 1  ×  107 cells of 
Scenedesmus obliquus algae. The medium was refreshed 
after 48 h. At the end of the 4-d exposure period, larvae 
were transferred to a new glass jar with 100 mL of dechlo-
rinated tap water where they maintained until they 

reached metamorphosis. During the 4-d exposure period 
and the remaining time until metamorphosis, larvae were 
fed daily with the same amount of food as during the pre-
exposure period.

To install the predation risk cues treatment during the 
4-d exposure period, we added medium daily according to 
the jar treatment. To prepare the medium with natural kai-
romones of N. maculata, two bugs were starved for 96 h in 
their holding aquarium (see Appendix S1), after which we 
transferred each bug to a 50-mL glass jar with 35 mL of 
dechlorinated tap water for an additional starvation 
period of 24 h. This way no chemical cues of the prey were 
present in the medium. From this medium, we used 20 mL, 
10 mL/predator. We pipetted 670 μL of this medium into 
jars from the corresponding predation risk cues treatment. 
This matches the realistic kairomone concentrations asso-
ciated with three individual N. maculata/15 L in natural 
ponds (Silberbush et al. 2010).

To obtain medium with natural kairomones and alarm 
cues from conspecifics, we offered two L4 larvae from the 
culture to the same two bugs previously used to obtain natu-
ral kairomones. After the predator finished preying upon the 
larvae, 40  mL of this medium was taken (20  mL/bug). 
Additionally, four extra C. pipiens larvae were homogenized 
in this medium to make the alarm cues stronger (Pestana 
et al. 2009). From this final mixture, we added 670 μL to each 
jar. The same amount of dechlorinated tap water was added 
to the predation risk cues treatments without predator 
kairomones (control) and with synthetic kairomones.

As synthetic predator kairomones, we used a mixture of 
tricosane and heneicosane, the two hydrocarbons that were 
identified as kairomones of N. maculata (Silberbush et al. 
2010). For both hydrocarbons, we obtained a stock solu-
tion of 1  mg/mL by dissolving granules obtained from 
Sigma-Aldrich (St. Louis, Missouri, USA) in 1,4-dioxaan 
(100%). From these primary stock solutions a secondary 
stock in milliQ water was prepared to obtain a 1 μg/mL tri-
cosane solution and a 0.1 μg/mL heneicosane solution. We 
daily added 20 μL of the secondary tricosane stock solution 
and 33 μL of the secondary heneicosane stock solution to 
the corresponding jars giving concentrations of 33 ng/L 
and 200 ng/L, respectively. The used concentrations of tri-
cosane and heneicosane in this treatment thereby matched 
the amount of natural kairomones used in the other preda-
tion risk cues treatments (based on Silberbush et al. 2010). 
The same amount of 1,4-dioxaan was added to all jars of 
the other predation risk cues treatments.

Response variables

Mortality was expressed as the total number of larvae 
that died/jar during the fourth larval instar. At the end of 
the 4-d exposure period, four larvae per jar were randomly 
selected, weighed to the nearest 0.01 mg using an electronic 
balance (AB135 S, Mettler Toledo, Zaventem, Belgium), 
and frozen at −80°C for later physiological analyses. 
Development times were calculated as the average time 
from the start of the L4 stage until metamorphosis of all 2 �http://www.who.int/whopes/Mosquito_Larvicides_sep_2011.pdf

http://www.who.int/whopes/Mosquito_Larvicides_sep_2011.pdf
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surviving larvae per jar. After metamorphosis, adult mos-
quitoes were collected, weighed to the nearest 0.01 mg, and 
frozen at −80°C for physiological analyses.

To investigate how the combined effects on all meas-
ured life history traits would affect population growth 
rate, we calculated the composite index of population per-
formance (r′) based on Livdahl and Sugihara (1984). This 
index estimates the realized per capita rate of population 
change. We calculated r′ for each jar as follows: 

 N0 is the initial number of females in each jar. We calcu-
lated N0 separately for each replicate jar as the total number 
of females that emerged plus half of the animals that died 
prior to eclosion in that replicate. Because for these animals 
no sex was determined, we assumed a sex ratio of 50%. Ax is 
the number of females eclosing on day x, wx is the mean size 
of females eclosing on day x, f(wx) is a function relating 
fecundity to female size, and D is the time (in days) between 
adult eclosion and reproduction. For C. pipiens molestus, D 
is approximately 8  d (Vinogradova 2000) and the size–
fecundity relationship is f(wx) = 32.88 wx − 89.72 (r2 = 0.99) 
with wx  =  wing length in mm (Costanzo et  al. 2011, 
calculated from Vinogradova 2000). The analysis of female 
wing length is included in Appendix S2.

To quantify physiological variables, we homogenized 
per jar following sets of animals: two sets of two L4 larvae 
(both sets were averaged per jar for statistical analyses), a 
set of two adult females, and a set of three adult males 
(more males were pooled given their lower mass). Animals 
were homogenized using a pestle, diluted 15 times in phos-
phate buffer saline (PBS; pH 7.4, 100 mmol PBS), and cen-
trifuged for 5 min (13 200 rpm; 4°C).

As a measure of immune function we quantified the 
activity of a key enzyme in insect immunity, phenoloxidase 
(PO; Sugumaran 2002, Christensen et al. 2005). PO pro-
duces indole groups, which are subsequently polymerized 
to melanin. The enzymatic reactions in turn produce a set 
of intermediate products such as quinones, diphenols, 
superoxide, hydrogen peroxide, and reactive nitrogen 
intermediates, which are important during defense against 
bacterial, fungal, and viral agents (González-Santoyo and 
Córdoba-Aguillar 2011). PO was quantified using a spec-
trophotometric assay based on the protocol by Stoks et al. 
(2006), for details see Appendix S3. PO activity was 
expressed per minute and per μg protein. Total fat was 
measured based on the protocol of Bligh and Dyer (1959), 
for details see Appendix S3. Fat content was expressed as 
μg fat/mg wet mass.

Statistical analyses

All statistical analyses were performed using jars as rep-
licates, hence on jar totals (mortality) or jar means (other 
traits). Mortality was analyzed using a generalized linear 

model with a Poisson error distribution and the log link 
function with Bti exposure and the predation risk cues 
treatment as independent variables. We tested for effects 
of Bti exposure and predation risk cues on r′, larval PO 
activity, and larval fat content using separate two-way 
ANOVAs.

For the variables larval development time, adult mass, 
adult PO activity, and adult total fat, we had information 
on the sex of the animals, hence we calculated separate jar 
means for males and females. We tested for effects of Bti 
exposure and predation risk cues on these variables by 
means of separated repeated-measures ANOVAs, with Bti 
exposure and predation risk cues as independent factors. 
Sets of means of males and females per jar were considered 
as repeats of that jar. This way the coupling of observa-
tions for males and females of the same jar was taken into 
account. For the physiological variables PO activity and 
fat content sample sizes are lower for some treatment com-
binations because in the repeated-measures ANOVA only 
jar replicates with data for both males and females are used 
(exact sample sizes are given in Appendix S4 for all varia-
bles where the number of jar replicates deviates from 10). 
These were not always available since two females and 
three males were needed in the pooled samples for physio-
logical analysis. All observed effects for these two varia-
bles, however, remained present when we ran separate 
ANOVAs for males and females, including all data.

All analyses were performed in STATISTICA v12 
(StatSoft, Tulsa, Oklahoma, USA). When effects were 
identified for the predation risk cues treatment or its inter-
actions with Bti, we carried out contrast analyses to iden-
tify which treatments differed from the control treatment. 
For mortality, we also ran separate analyses per predation 
risk cues treatment to quantify the effect of Bti exposure 
since contrast analyses are not available for generalized 
linear models. We define a synergism based on the additive 
effects model when the combined effect is greater than the 
sum of effects elicited by the individual stressors (Folt et al. 
1999). This can be tested formally as a significant interac-
tion term in the ANOVAs. Results of contrast analyses are 
indicated in the corresponding figures.

Results

Life history responses

While exposure to Bti increased mortality, this strongly 
depended upon the presence of predation risk cues 
(Table 1, Fig. 1). Separate analyses per predation risk cues 
treatment showed that mortality increased on average by 
133% (mean across all three treatments with predation 
risk cues) when both stressors were combined compared 
to the associated predation risk cues treatments in the 
absence of Bti (Bti effect for each of the three treatments 
with kairomones, all P < 0.001). This increase in mortality 
was not observed in the absence of predation risk cues 
(Wald statistic = 0.55, df = 1, P = 0.46). This was further 
indicated by the nearly significant Bti × predation risk cues 
interaction (P = 0.059; Table 1).
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The predation risk cues treatment had an overall effect 
on development time (Table  1; Fig.  2A, B). Larvae 
exposed to the combination of natural kairomones and 
alarm cues had a significantly shorter development time 
than the other three predation risk cues treatments, 
including the control with no predator kairomones (con-
trast analyses, all P < 0.034; Fig. 2A, B). Males had ~3 d 
(18%) shorter development times than females (Table 1, 
Fig. 2A, B). Although exposure to Bti had no overall effect 
on the development time, both sexes did react in a different 
way to Bti, with females, if anything, slightly tending to 
accelerate development and males slightly tending to 
decelerate development (sex × Bti; Table 1, Fig. 2A, B).

Exposure to Bti increased mass at metamorphosis, but 
only in adults reared as larvae in the presence of natural 

kairomones (Bti × predation risk cues; Table 1, Fig. 2C, D; 
contrast analyses, Bti effect with natural kairomones, 
F1,61 = 18.35, P < 0.001; Bti effect for the other predation 
risk cues treatments, all P > 0.90). Females were heavier 
than males (Fig. 2C, D). Males exposed as larvae to the 
cocktail of natural kairomones and alarm cues had a lower 
mass compared to the control treatment without predator 
kairomones (contrast analysis, F1,61 = 11, P = 0.0015), 
while females did not show this mass reduction 
(F1,61  =  0.0063, P  >  0.94; sex  ×  predation risk cues; 
Table 1).

While exposure to Bti resulted in a lower composite 
index of population performance (r′), this strongly 
depended upon the presence of predation risk cues 
(Table 1, Fig. 3). Separate analyses per predation risk cues 
treatment showed that this Bti-induced reduction of r′ was 
only present for the treatment with synthetic predator kai-
romones (P = 0.003) and for the combination of natural 
kairomones plus alarm cues (P = 0.014). This reduction 
was not observed in the absence of predation risk cues 
(P = 0.77) and also not in the presence of only natural kair-
omones (P  =  0.63). This was further indicated by the 
nearly significant Bti  ×  predation risk cues interaction 
(P = 0.056; Table 1).

Physiological responses

Larvae exposed to the cocktail of natural kairomones 
and alarm cues had a lower PO activity compared to con-
trol larvae (contrast analysis, F1,72  =  5.52, P  =  0.022; 
Fig. 4A; effect of the other predation risk cues treatments, 
all P > 0.058; main effect predation risk cues, P = 0.07; 
Table 2). Exposure to neither Bti nor predation risk cues 
had an effect on the fat content of larvae (Table 2, Fig. 4B).

The predation risk cues treatment had an overall nega-
tive effect on the PO activity in adult mosquitoes (Table 2, 
Fig. 5A, B). Adults exposed to predation risk cues as lar-
vae had a lower PO activity compared to adult mosquitoes 
from the control treatment without predation risk cues 

Table 1.  Results of the general linear models testing for the effects of Bti and the predation risk cues on mortality and develop-
ment time during the fourth larval instar, adult body mass at metamorphosis and the composite index of population performance 
(r’) of Culex pipiens.

Effect Mortality Development time Adult mass r′

df Wald stat. P df F P df F P df F P

Bti 1 32.17 <0.001 1,64 0.03 0.853 1,61 5.10 0.027 1,66 8.57 0.005
Predation risk cues 3 4.33 0.228 3,64 4.82 0.004 3,61 1.88 0.143 3,66 0.32 0.811
Bti × predation risk 

cues
3 7.44 0.059 3,64 0.32 0.812 3,61 4.68 0.005 3,66 2.66 0.056

Sex 1,64 277.68 <0.001 1,61 1008.51 <0.001
Sex × Bti 1,64 4.50 0.038 1,61 0.12 0.728
Sex × predation risk 

cues
3,64 1.00 0.400 3,61 2.52 0.066

Sex × Bti × predation 
risk cues

3,64 1.72 0.172 3,61 0.81 0.492

Notes: For the analyses on development time and adult mass, sex was also included in the model.

Fig. 1.  Mortality of Culex pipiens larvae during the fourth 
larval instar in response to Bti and four predation risk cues 
treatments: no chemical cues (No), synthetic kairomones of 
Notonecta maculata (SK), natural kairomones of N. maculata 
(NK), and natural kairomones of N.  maculata  +  C.  pipiens 
alarm cues (NK  +  AC). Mortality is expressed as the log-
transformed (x + 1) number of larvae that died. Jar means are 
given with 1 SE (based on 10 jar replicates). Lines represent 
contrast analyses testing for the effect of the Bti treatment per 
predation risk cues treatment (* P < 0.05, ns P > 0.05).
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(contrast analyses, all P < 0.037; Fig. 5A, B). Exposure to 
neither Bti nor predation risk cues had an effect on the fat 
content of adult mosquitoes (Table  2; Fig.  5C, D). 
Females had a lower fat content than males (Table  2; 
Fig. 5C, D).

Discussion

Responses to isolated exposure to predation risk cues

Our results indicate that predation risk cues had effects 
on life history (development time and mass at metamor-
phosis) as well as on physiology (PO activity) in larval and 
adult mosquitoes. These effects were often only present 
when predator kairomones were combined with alarm 

cues, reflecting the highest dose of risk for prey organisms, 
thereby confirming that prey may respond in a threat-
sensitive way to kairomones associated with predation 
risk (Pestana et al. 2009, for Culex mosquitoes, Sih 1986, 
Ferrari et al. 2008).

In the presence of the cocktail of natural kairomones 
and prey alarm cues, the Culex larvae accelerated develop-
ment, possibly to escape the risk of being preyed upon by 
aquatic predators (Higginson and Ruxton 2010). While a 
longer predator-induced development time has been 
observed for mosquito species (Beketov and Liess 2007, 
van Uitregt et  al. 2012), studies on Culex mosquitoes 
(Silberbush et  al., unpublished manuscript), and other 
aquatic insects also found an accelerated life history when 
prey were exposed to predation risk cues (e.g., Dahl and 

Fig. 2.  (A, B) Development time and (C, D) adult body mass of Culex pipiens mosquitoes in response to Bti and four predation 
risk cues treatments: no chemical cues (No), synthetic kairomones of Notonecta maculata (SK), natural kairomones of N. maculata 
(NK), and natural kairomones of N. maculata + C. pipiens alarm cues (NK + AC). Given are jar means with 1 SE for (A, C) males 
and (B, D) females. Lines represent contrast analyses explained in the results section.
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Peckarsky 2003, Stoks et  al. 2012). Possibly this faster 
development was reached by a re-allocation of energy 
away from other functions like immune function (Stoks 
et al. 2012). In line with this, PO activity was reduced in lar-
vae and adults exposed to the cocktail of natural predator 
kairomones and alarm cues; such predator-induced 
immunosuppression has been observed before in other 
taxa (e.g., Stoks et al. 2006, Groner et al. 2014). In adults, 
this reduction in PO activity was also present when they 
had been exposed as larvae only to natural or synthetic 
kairomones (predation risk cues that did not evoke a faster 
development), suggesting that besides food re-allocation 
toward an accelerated development, also a reduced food 
acquisition may have contributed to the immunosuppres-
sion. Also the observed pattern in mass at emergence, 
being lower when adult males were exposed to the combi-
nation of natural kairomones and alarm cues, supports 

previous work in aquatic organisms (e.g., Dahl and 
Peckarsky 2003), including mosquitoes (e.g., van Uitregt 
et  al. 2012). The reduced mass of adult males can be 
explained by the observed shorter development time with-
out a compensatory reaction in growth rate (results not 
shown). Possibly the mass reduction was only present in 
males as these had a considerably shorter development 
time than females.

The observed predator-induced reductions of immune 
function and adult mass (in males) likely have a negative 
influence on the adult fitness, such as a lower resistance to 
starvation (van Uitregt et al. 2012), a shorter adult lifes-
pan, and a lower flight capacity (Briegel et al. 2001). Carry-
over effects across metamorphosis of larval stressors, such 
as predation risk on adult fitness-related traits, are 
increasingly reported in other taxa (e.g., Stoks et al. 2006, 
Groner et al. 2014) and may be an important factor nega-
tively affecting prey population dynamics (Preisser and 
Bolnick 2008).

The identified immuno-suppressive and life history 
effects can also influence vector competence and can 
therefore be important in disease transmission. Vector 
competence has two components (Breaux et  al. 2014): 
physiological vector competence, dealing with physiologi-
cal traits involved in the host-pathogen interaction (e.g., 
immune and defense mechanisms), and functional vector 
competence, dealing with traits contributing to the ability 
of an individual mosquito to transmit the pathogen effec-
tively given that it has attained physiological competence 
(e.g., flight capacity, longevity, and host localization). The 
net effect of larval stressors on adult vector competence 
will critically depend on the strength and direction both 
components will be affected and the resulting balance is 
hard to predict (Breaux et al. 2014). On the one hand, the 
here-observed reduced immune function under predation 
risk can result in more susceptible adults, with a greater 
proportion of stressed mosquitoes becoming competent 
vectors (Alto et al. 2008, Juliano 2009). On the other hand, 
the reduced immune function and body mass can reduce 
the longevity and flight capacity, hence the functional 

Fig.  3.  Mean (with 1 SE) composite index of population 
performance (r′) of Culex pipiens in response to Bti and four 
predation risk cues treatments: no chemical cues (No), synthetic 
kairomones of Notonecta maculata (SK), natural kairomones of 
N. maculata (NK), and natural kairomones of N. maculata + 
C.  pipiens alarm cues (NK  +  AC). Lines represent contrast 
analyses testing for the effect of the Bti treatment per predation 
risk cues treatment (* P < 0.05, ns P > 0.05)

Table 2.  Results of the general linear models testing for the effects of Bti and predation risk cues on phenoloxidase (PO) activity 
and total fat content in larvae and adults of Culex pipiens.

Effect PO activity larvae Total fat larvae PO activity adults Total fat adults

df F P df F P df F P df F P

Bti 1,72 1.21 0.275 1,72 0.40 0.532 1,46 0.80 0.375 1,44 0.52 0.476
Predation risk cues 3,72 2.46 0.070 3,72 1.20 0.318 3,46 4.16 0.011 3,44 0.99 0.408
Bti × predation risk 

cues
3,72 0.16 0.924 3,72 0.31 0.822 3,46 1.37 0.264 3,44 1.45 0.242

Sex 1,46 0.06 0.814 1,44 9.89 0.003
Sex × Bti 1,46 0.39 0.536 1,44 0.82 0.371
Sex × predation 

risk cues
3,46 1.69 0.184 3,44 1.04 0.385

Sex × Bti × preda-
tion risk cues

3,46 0.44 0.729 3,44 1.40 0.255

Notes: For the analyses on adult PO activity and total fat also sex was included in the model.
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vector competence. A shorter adult life span of even a few 
days will reduce the likelihood of pathogens completing 
their incubation period (Thomas and Read 2007). For 
example, the incubation period for West Nile virus is ~5 d 
at 22°C in Culex mosquitoes (Kilpatrick et al. 2008), while 
the mean lifespan of adult Culex under summer field con-
ditions in the absence of predation risk is only ~7 d (Lebl 
et al. 2013).

Our study is the first to evaluate and demonstrate the 
effects of synthetic kairomones on life history and physiol-
ogy in the larvae (the actual prey) with carry-over effects to 
the adult stage. A study by Silberbush et al. (2010) had 
already proven that female mosquitoes avoided oviposi-
tion to a considerable extent in water with synthetic 
Notonecta kairomones. A key finding of our study was 
that responses to synthetic and natural kairomones were 
to a large extent similar. Indeed, the presence of synthetic 
and natural kairomones had similar carry-over effects to 
the adult stage by reducing PO activity and similar syner-
gistic effects on mortality when combined with Bti. Given 
that we used the same concentration and ratio of the two 

identified kairomones present in Notonecta predators in 
the treatments with synthetic and natural kairomones, 
this suggests these two compounds are the major 
Notonecta kairomones. However, subtle differences 
between the effects of natural and synthetic kairomones 
existed and this translated in the synergistic effect at the 
level of the composite index of population performance 
only being present for the synthetic kairomones.

Responses to isolated exposure to Bti

Exposure to the sublethal Bti concentration had very lit-
tle effect on life history and physiology in larval and adult 
mosquitoes when used in isolation. The only detectable 
Bti effect was a slight modification of development time 
with females slightly accelerating and males decelerating 
development. Any shortening of the development time 
may be an adaptive response to escape pesticides in the 
aquatic stage and has been observed in other aquatic 
insects (see e.g., Janssens and Stoks 2013b). Possibly males 
with their already much shorter development times had a 
lower need and were not able to further accelerate devel-
opment under Bti exposure.

Responses to combined exposure to Bti and predation risk 
cues

The most striking finding of our study was that while 
neither Bti nor predation risk cues affected mortality, the 
combination of both stressors increased mortality by an 
average of 133% compared to the situation with only pre-
dation risk cues present, indicating a synergism (sensu 
Folt et al. 1999). Lethal synergistic interactions between 
predation risk cues and chemical pesticides have been 
observed before (e.g., carbaryl, Relyea and Mills 2001, 
Relyea 2003, fipronil, Qin et al. 2011). However, this inter-
action with predation risk cues has never been docu-
mented for biological pesticides. Moreover, this is the first 
demonstration that such interaction may occur with syn-
thetic kairomones.

Also, when integrating the effects on the different life 
history traits into the composite index of population per-
formance (Livdahl and Sugihara 1984), a synergistic 
interaction between Bti and predation risk cues was 
revealed. Population performance was only reduced in 
the presence of Bti when it was combined with synthetic 
kairomones or with the cocktail of natural kairomones 
and alarm cues. These results follow the synergistic pat-
tern observed for mortality, except that no significant 
reduction in performance was detected when Bti was 
combined with natural kairomones. The loss of the syner-
gism on r′ for the treatment with natural kairomones is 
mainly caused by subtle, non-significant differences 
between the three predation risk cues treatments: wing 
length being somewhat lower for the treatment with natu-
ral kairomones in the absence of Bti and mortality being 
somewhat lower for the treatment with natural kair-
omones in the presence of Bti.

Fig. 4. (A) Phenoloxidase (PO) activity and (B) total fat of 
Culex pipiens larvae in response to Bti and four predation risk 
cues treatments: no chemical cues (No), synthetic kairomones of 
Notonecta maculata (SK), natural kairomones of N. maculata 
(NK), and natural kairomones of N.  maculata  +  C.  pipiens 
alarm cues (NK + AC). PO activity is expressed per minute and 
μg protein. Total fat is expressed in μg fat/mg wet mass. Jar 
means are given with 1 SE (based on 10 jar replicates). Lines 
represent contrast analyses explained in Results.
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A synergism between Bti and predator cues may seem 
surprising as Bti has a completely different mode of 
action compared to the chemical pesticides known to 
produce a lethal synergism. The endotoxins of Bti cause 
pore formation and cell lysis in the mosquito midgut, 
while carbamates (e.g., carbaryl) work by inhibiting ace-
tylcholinesterase (Relyea 2003) and phenylpyrazoles 
(e.g., fipronil) work as GABA-gate chloride channel 
inhibitors (Qin et al. 2011). Yet, in a study specifically 
trying to relate the mode of action of chemical pesticides 
to the occurrence of a synergism with predator cues also 
no general pattern was present (Qin et al. 2011). A possi-
ble general mechanism not directly related to the mode 
of action of pesticides could be that the predation risk 
cues treatment causes a lower energy intake and/or a 
higher energy demand. When at the same time pesticides 
are present, the energy in the organism may not be 

sufficient for detoxification and repair (Relyea and Mills 
2001, Campero et al. 2007, Qin et al. 2011).

Conclusions and applied perspectives

The control of vector mosquitoes to fight nuisance and 
diseases is one of the biggest challenges facing humankind 
(Garrett 2013, Alphey 2014) with the use of chemical pesti-
cides often leading to environmental impact and the evo-
lution of resistance (Heckel 2012, Köhler and Triebskorn 
2013, Alphey 2014). While the biological pesticide Bti due 
to its high specificity may largely offset these problems, 
several recent studies did document negative effects on 
non-dipterans (e.g., Boisvert and Boisvert 2000, Poulin 
et al. 2010, Lajmanovich et al. 2015, but see Lagadic et al. 
2014) and the evolution of resistance (e.g., Boyer et al. 
2012). The here identified novel synergism type between a 

Fig. 5. (A, B) Phenoloxidase (PO) activity and (C, D) total fat of Culex pipiens mosquitoes in response to Bti and four predation 
risk cues treatments: no chemical cues (No), synthetic kairomones of Notonecta maculata (SK), natural kairomones of N. maculata 
(NK), and natural kairomones of N. maculata + C. pipiens alarm cues (NK + AC). PO activity is expressed per minute and μg 
protein. Total fat is expressed in μg fat/mg mass. Given are jar means with 1 SE for (A, C) males and (B, D) females. Lines represent 
contrast analyses explained in the results section.
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biological pesticide and (synthetic) predator kairomones 
may open possibilities to counter these unwanted effects 
and thereby strengthen the use of Bti in IPM programs 
hereby creating more efficient and sustainable mosquito 
control. At the same time, this synergism highlights that 
good knowledge of the effects of biological pesticides and 
their interaction with other stressors may be necessary to 
translate the effects of biological pesticides under environ-
mentally realistic conditions. It is, however, important 
that future research evaluates this synergism under more 
natural conditions.

The lethal synergistic interaction with the synthetic 
kairomones may allow lowering the recommended Bti 
concentrations for vector control; this can be especially 
interesting in small container habitats where Culex larvae 
are abundant and Notonecta predators are absent. 
Moreover, also the immunosuppressive effect and possi-
ble fitness effects (on longevity) of the exposure to the kair-
omone may affect vector competence, but further research 
is needed to be able to predict the net outcome of these 
effects. The application of lower Bti doses will help reach-
ing two important applied goals. Firstly, it will lower 
potential harmful effects of Bti on non-target organisms 
and the resulting impact on the environment. For 
instance, non-biting midges (Chironomidae) which make 
up an important part of the biomass in shallow lakes and 
are important prey for fish in the larval stage, and for birds 
in the terrestrial stage have been identified as non-target 
organisms experiencing negative effects of Bti (e.g., Liber 
et al. 1998). Negative effects of Bti on those non-target 
organisms may thereby negatively affect bird populations 
(Poulin et al. 2010). Secondly, lower Bti doses may reduce 
the risk and delay the development of resistance against 
Bti (Heckel 2012). Even partial resistance to Bti is of 
increasing concern, as it will lead to the use of higher appli-
cation doses and a switch to more harmful chemical pesti-
cides. For the identified nonlethal effects on life history 
and physiology to affect vector competence in the field and 
eventually contribute to vector control, it will, however, be 
necessary to considerably reduce current application 
doses that are so high that lethal effects of Bti dominate 
and overrule any sublethal effects.

We have provided the important proof of principle 
under controlled laboratory conditions that even suble-
thal low Bti concentrations may impose a considerable 
mortality increase in Culex mosquitoes when combined 
with predator kairomones; and importantly, this syner-
gism could be invoked by the synthetic kairomones of 
Notonecta predators. Moreover, the patterns in the com-
posite index of population performance suggest that the 
combination of Bti with synthetic kairomones can nega-
tively influence population growth rates of mosquitoes. 
Future research should focus on (1) the degree to which 
currently recommended Bti concentrations can be low-
ered while maintaining efficient vector control by combin-
ing them with these synthetic kairomones under natural 
field conditions and (2) on how cocktails of Bti and syn-
thetic kairomones could be manufactured. For instance, 

new formulations of Bti enriched with synthetic kair-
omones could be developed. Bti is the only larvicide 
allowed in Europe for mosquito control (Directive 98/8/
EC), and yearly many tons are applied, for example 
between 1981 and 2009 1000 tons of different Bti formula-
tions were used on the Rhine flood plains in Germany 
(Becker et al. 2010). The EU demands the combination of 
different control strategies (IPM) and that all available 
techniques should be used in order to prevent the develop-
ment of resistance to a certain pesticide (Directive 98/8/
EC). The application of the here-documented novel syner-
gism between Bti and synthetic kairomones would match 
these demands and may be a promising enrichment for 
current mosquito control although further research on the 
effects of these synthetic kairomones in more natural envi-
ronments and their effects on non-target organisms is 
needed.
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