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As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the

sensor contacts, thermal characterization by means of contact temperature measurements becomes

cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable

relationship between the temperature and the detected signal is available. In this work, exploiting the

temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on

the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural net-

works that use different spectral shape characteristics as inputs (peak-based—peak intensity, peak

wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized

intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield

at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from

neural networks trained on fluorescence spectra acquired in steady state temperature conditions, nu-

merical simulations are performed to assess the quality of the reconstruction of dynamical temperature

changes that are photothermally induced by illuminating the fiber with periodically intensity-

modulated light. Comparison of the five neural networks investigated to multiple types of curve fits

showed that using neural networks trained on a combination of the spectral characteristics improves

the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that

included both intensity-based measurements (peak intensity) and shape-based measurements (normal-

ized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation

based on experimental observations. The implications are that quantum dots can be used as a more sta-

ble and accurate fluorescence thermometer for solid materials and that use of neural networks for tem-

perature reconstruction improves the accuracy of the measurement. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953223]

I. INTRODUCTION

Because of the crucial role of temperature in many

phenomena, there is a continuous interest in improved tem-

perature measurements in a variety of conditions, especially

with non-contact methods.1 One avenue of research has

been the use of fluorescent dyes as thermometers because

of their emission being sensitive to temperature variations.

Fluorescent dyes have been used in many instances including

labeling structures in cells,2 single photon imaging,3 and as

temperature sensors, relating the individual spectral features

such as peak intensity (PI), peak wavelength (PW or PWL),

or the ratio of different spectral peaks,4 as well as fluorescent

lifetime measurements.5 Specifically, Rhodamine B dye has

been used as a non-contact temperature sensor in microfluidic

devices,6,7 to probe the surface temperature between two

plates,8 and as an additive in polydimethylsiloxane (PDMS) to

measure the thermal conductivity of carbon nanotubes.9,10

However, all of these applications assumed a linear relation

between a single spectral feature (usually the peak intensity)

and the temperature. In reality, these relations are substantially

non-linear, and it is worthwhile to refine them and exploit the

information content in multiple features simultaneously. It is

therefore important to take into account the fluorescent behav-

iors additional sensitivity to quenching, dipole interactions,

pH,11 salt concentrations, electron coupling,12 and to discrimi-

nate between those effects and the effect of temperature.

As will be shown in this paper, for the goal of photother-

mal experiments on fibers (which involve quite time con-

suming frequency and detection position scans), the stability

of organic dyes can be problematic, as photobleaching

effects6 hamper accurate calibration at set temperatures, and

an improved fluorescent probe must be selected. Inorganic

compounds, such as quantum dots, are not affected by this,

and therefore have the potential for more robust signals. To

this end, quantum dots rather than organic fluorescent dyes

were selected in the current investigation.

Quantum dots are nanometer-sized semiconductors,

whose emission spectra are controlled by their size. While

their fluorescence spectrum is also temperature dependent,

compared to organic fluorescent dyes, they exhibit improved

stability (including after repeated thermal cycling13), a

higher quantum yield, and a slightly longer lifetime.14 They

also do not contribute significantly to the thermal diffusivity

of the material of interest.15 so that they have desirable prop-

erties for use as a fluorescent thermoprobe. Additionally, on

the timescale of photothermal experiments (with the integra-

tion time of the spectrometer on the order of ms), the blink-

ing commonly associated with quantum dots (related to the
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lifetime of the fluorophore on the order of tens of ns) is not

an issue.16 Another incentive to select quantum dots for the

current experiment is the earlier demonstration of their suc-

cessful integration into both silk worm17 and spider18 silk

(although the purpose of this coating was merely for appear-

ances). The thermal properties of spider silk materials have

previously been investigated,19 and a synthetically produced

silk is the substrate used in the current investigation for

future thermal characterization by photothermal methods.

The typical accuracy of quantum dot fluorescence thermom-

etry is typically on the order of 1–2 K,20 but this work seeks

to improve upon that temperature accuracy.

Fluorescence thermometry can generally be broken

down into two classes of methods: intensity-based and

lifetime-based. Lifetime-based relies on pulsed illumination

of the fluorophore and detection of the decay time of the

excited electrons and emitted photons.21 With typical life-

times on the order of ns, instrumentation and analysis of the

signal can be complex and expensive.22 Intensity-based

methods rely on continuous illumination by the light source

and detection by a photodiode, photomultiplier tube (PMT),

CCD, or spectrometer (typically).4 The benefits of intensity-

based methods are reduced complexity and cost, as well as

the ease of mapping the acquired temperature signal into the

frequency domain for future use during modulated heating

experiments. However, they suffer from stability concerns

that are not present with lifetime based methods. The pro-

posed work details a data reduction method by neural net-

works (NNs) to overcome some of these limitations to

improve temperature accuracy. These methods could also be

applied to other calibration procedures for improved accu-

racy, such as with molecular tagging thermometry with phos-

phorescent probes.23 However, the current study did not

consider phosphorescent thermometry because the typical

lifetimes for these probes (on the order of hundreds of ls to

seconds22) is not favorable for modulated heating experi-

ments at higher frequencies, although they can have good ac-

curacy (0.8 K for a point,23 0.1 for an interrogation area24).

As mentioned above, in order to further improve the use

of quantum dots as temperature sensors, an interesting path-

way is to simultaneously use multiple spectral features to

extract the temperature. Recently,25 the feasibility of using

spectral features of organic dyes as inputs for an artificial

neural network (NN) and training it to reconstruct the associ-

ated temperature has been demonstrated. Neural networks

have been used to solve the inverse problem for depth profil-

ing of heat source distribution,26 optical penetration via pho-

tothermal radiometry,27 to relate sea color from satellite

imagery to chlorophyll concentrations,28 and to determine

the thermal diffusivity of a slab of insulation material.29 By

making use of non-linear functions such as hyperbolic tan-

gent sigmoids, neural network approaches are particularly

efficient in dealing with non-linear aspects of the inverse

problem.30,31 This is an improvement over a simple, standard

least squares fit by a sigmoidal function of the spectral

feature32 required to create the non-linear temperature

relationship.

In this work, we verify using a neural network approach

for extracting temperature from the fluorescence spectrum of

inorganic fluorophores, in the time domain. The neural net-

work is employed to increase the accuracy of the temperature

reconstruction compared to a standard linear (as well as

exponential, power, smoothing spline, polynomial curve, and

polynomial surface) fit. This paper details a photothermal,

inorganic fluorescent thermometry accomplished by a time

domain temperature reconstruction via neural networks (with

inputs to the network based on spectral features of the fluoro-

phore at calibrated temperatures), based on modulated laser

heating experiments and simulation.

II. EXPERIMENTAL SETUP

A. Equipment description

The experimental setup consisted of a pump and probe

laser system and a sample holder with temperature measure-

ment and control. The fluorescence spectra of Rhodamine B

and quantum dots on the sample surface were collected by a

microscope objective lens and collimated into the fiber of a

USB4000 spectrometer. The optical system that focused the

light of the pump laser onto a small spot on the fiber was

placed on a position scanning stage (Figure 1). A 532 nm

Coherent Compass CW laser was used to induce the fluores-

cence at the fiber surface. The laser beam was focused to a

spot size of 30 lm by means of the top half of a plano-

convex lens cut in half. A mechanically chopped laser beam

from a 1064 nm Coherent Vector laser was used to photo-

thermally generate temperature oscillations along the fiber

surface. The pump beam diameter on the fiber surface was

about 90 lm. The longer wavelength of the heating laser was

selected because it does not induce additional fluorescence

in the quantum dots, since the quantum dot absorption is

almost negligible at long wavelengths, and the pump wave-

length is longer than the one of the fluorescence light.16

Besides the IR light that was used for the photothermal exci-

tation, the laser beam of the Coherent Vector laser also con-

tained a weak residual green component. This was reflected

and filtered out prior to arriving at the fiber sample. The

reflected green light was sent to the spectrometer to provide

to the spectrometer a reference signal synchronous with the

photothermal excitation. The IR pump light passed through

FIG. 1. Experimental setup for fluorescence measurement.
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the bottom half of the split plano-convex lens, which was

placed on a linear motor stage with sub-micron resolution, so

as to provide accurate axial positioning along the fiber. The

half lenses that focused respectively the probe and pump

beam to the fiber were placed right on top of each other, in

order to have their focal points near to each other, while

retaining the possibility to individually scan the focal point

of the pump laser beam along the fiber axis by moving the

respective half lens along with the beam.

The sample fiber was placed on an aluminum plate,

which provided four heating resistors for control of the sam-

ple temperature. The temperature of the plate was measured

by both an Omega F3141 PT1000 RTD (measured by an HP-

34401, with an uncertainty of 0.065 K, based on calibration

inside of a furnace used in adiabatic scanning calorimetry33)

and an in-house welded Omega type T thermocouple (via

HP-34970 A, with an uncertainty of 0.1 K, based on a similar

calibration) to ensure that the ends of the fiber were near the

same temperature, with their location shown in Figure 1. The

temperature control of the plate was based on the PT1000

using a PID subroutine in Labview, which controlled the

heating resistor voltage supplied by an Agilent E3631A

power supply. The sample mount plate was placed inside of

a Janis cryostat in order to combine optical access with a

vacuum environment. At a pressure of 10�5 mTorr, the ther-

mal conductivity of the surrounding medium was sufficiently

low to allow heat conduction via the air to be neglected in

modeling and analyzing the heat transport in and around the

fiber. The collection of the emitted fluorescent light was

done by a microscope objective (10�, 0.25 NA), which was

focused onto a fiber optic connected to the Ocean Optics

USB4000 spectrometer, after passing through several filters

(visible bandpass, short pass, and green notch filters). The

green reference signal reflected from the pump laser was

also collected in the spectrometer without passing through

the filters.

The operation of the experiment was controlled auto-

matically by Labview and began with stabilization of the

fiber temperature. Once the temperature variation was under

0.015 �C for 15 min (to ensure transients caused by the PID

controller could be ignored), the spectrometer collected 250

spectra while keeping track of the temperature as measured

by the PT1000 resistance. The means and standard devia-

tions of 1750 spectra between 300 K and 312 K were deter-

mined, and the individual spectra were stored in order to

serve as training data for the neural network.

After the spectral calibration was done, the pump and

probe beams were aligned on the fiber, and the position of

the pump laser was scanned in steps of 50 lm along the fiber

in order to map the thermal wave decay versus pump-probe

distance between 2000 lm and �2000 lm. The pump laser

was turned on to full power (1 W) via serial communication

to provide sufficient modulated heating of the fiber to pro-

duce a photothermal signal, a waiting period of 5 s occurred

to allow a steady state of the DC heating of fiber to be more

readily reached so that only the AC variation would be pres-

ent in the signal, and the spectrometer was set to measure as

quickly as possible (after a single measurement from the

PT1000 to verify the initial temperature), collecting enough

spectra to record 100 periods per pump-probe distance. The

temperature of the sample mount could be set at any temper-

ature of interest, allowing performance of frequency and/or

position scans, in view of applying the setup in the future to

determine the temperature dependence of the thermal diffu-

sivity of the fiber.

B. Fluorophore selection

Two types of fluorophore-coated fibers were investi-

gated using Rhodamine B and quantum dots as thermop-

robes, with the quantum dot coated fiber showing greater

stability. The experimental system was first tested on a syn-

thetic spider silk that had Rhodamine B integrated into the

fiber during its production, similar to how Rhodamine B had

been integrated into an optical fiber for use as a temperature

sensor in Ref. 34. The production process35 involved coagu-

lation of a fiber in an IPA bath, passing through a methanol/

water bath where it was stretched 1.5�, and then through a

water bath, where 65 mg of Rhodamine B was dissolved in

200 ml of distilled water, and stretched again 1.5�. This

allowed the Rhodamine B to be integrated throughout the

fiber surface, although at an unknown concentration.

However, the concentration did not change during the cali-

bration nor the experiment and hence should have little

effect on the results. The fiber diameter was about 25 lm and

thus could be considered to be thermally thin for the used

modulation frequencies between 0.5 Hz and 4 Hz, i.e., the

temperature oscillation was rather uniform throughout the

fiber, and signal variations were mainly along the fiber axis,

with increasing distance from the pump laser spot.

Rhodamine B was initially selected as a thermosensitive

probe because it had successfully been used as a temperature

sensor in an application for photothermal, shape-based neu-

ral network temperature determination, which was aimed at

depth profiling of an optical absorbance profile in glycerol.25

An important issue encountered with using the Rhodamine B

embedded fibers was that the stability of the peak intensity

and fluorescent emission spectra was not-consistent over the

time needed for a measurement. For this reason, we have

started using the more stable LumidotTM 640 nm peak wave-

length, CdSe/ZnS quantum dots from Sigma Aldrich. The

stabilities over several hours (a typical photothermal experi-

ment at low frequencies and multiple axial positions can take

an entire work day) of a synthetic spider silk embedded with

Rhodamine B, and the same type of synthetic spider silk

coated with the quantum dots, are compared in Figure 2.

Quantum dots showed greatly improved stability of the peak

intensity. In order to coat the fiber surface with quantum

dots, they were first suspended in toluene and then diluted

from 5 mg/ml to 0.5 mg/ml. Next, a drop was placed on the

fiber and the toluene was allowed to evaporate, leaving the

dots behind the fiber and glass slide. The final concentration

on the fiber was unknown, but it was sufficiently high so that

the color of the fiber was changed to the color of the dots in

solution (red-orange).

Although quantum dots can often experience photodark-

ening and photobrightening, the illumination of the quantum

dot coated sample was for several hours prior to both the
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calibration and experimental procedures. Hence, the time

scales for photodarkening (3 s) and photobrightening (>50 s)36

are not a concern. Furthermore, the photooxidation that is the

mechanism for photodarkening is avoided because the experi-

ment occurs under high vacuum (10�5 mTorr).36–38 This sta-

bility39 is also demonstrated in Figure 2, and typical stabilities

were observed over three days of separate experiments.

III. METHODS

In order to explain the quantum dot fluorescence

spectrum-based thermometry, the following sections cover

the procedure to train a neural network based on different

spectral features to reconstruct the surface temperature in

time domain (Sections III A 1 and III A 2) and the numerical

experiment (Section III B). This is to determine the viability

of this method to accurately determine the dependence of

different spectral features on the neural network-

reconstructed photothermally induced temperature oscilla-

tions based on commonly used spectral features (assuming a

linear relation between spectral features and temperature

because linear fits are commonly employed in the literature).

Further, the selection of a linear relationship for temperature

as a function of all spectral features was chosen for simplic-

ity and consistency in development of the numerical model

and because the inverse function (spectra feature as a func-

tion of temperature) was easily performed.

A. Neural network training and temperature
reconstruction

1. Temperature behavior of spectra

Central to the quantum dot fluorescence spectrum shape-

based thermometry method is the ability to accurately relate

measured spectra to the corresponding fiber surface tempera-

ture. In the following, we cover the relation between different

spectral features and the DC temperature (without photother-

mal excitation) and detail the data reduction process to use

these spectral features as inputs to train a neural network.

The temperature dependent behavior of the quantum dots

spectra and shape-based factors (spectral features) such as

peak intensity (PI), integrated intensity (II),40 the PI/II ratio

(R),41 peak wavelength (PW or PWL8), full-width half maxi-

mum (FWHM),8 and the summed spectral bands are shown in

Figure 3. As expected,8,25,40,41 as the temperature increases,

the spectral content shifts towards longer wavelengths, broad-

ens, and decreases in intensity (Figure 3(b)). The spectral fea-

tures mimic this behavior (inset of Figure 3(a)).

The temperature behavior of the fluorescent probe

(being established as sufficiently stable) allowed tackling of

the inverse problem for extracting the surface temperature

from the fluorescence spectrum by means of neural network

recognition. The neural network data acquisition process

began by combining the 250 calibration spectra from each

FIG. 2. Comparison of the stability over several hours of the peak intensity

of Rhodamine B (blue) and quantum dot coated synthetic spider silk (red).

Also, the integrated intensity of the fluorescence peak of the quantum dot

coated synthetic spider silk is shown.

FIG. 3. Experimentally determined temperature behavior of the fluorescent spectra of quantum dots with inset showing the temperature dependence of the PI,

Ratio, PWL, and FWHM of the spectra (a). Also, the trend of the spectral features with increasing temperature is schematically illustrated (b). The uncertainty

based on a linear fit of the data between 300 K and 308 K and precision of each parameter are: PI 1.1 K, PWL 1.4, II 2.0 K, Ratio, 1.2 K, FWHM 1.5 K, and nor-

malized intensity at a single wavelength 1.8 K. Neural networks trained on these different features are expected to be able to increase the accuracy of tempera-

ture reconstruction from spectral data. A summary of results with other fits based solely on the RMS error of the fit to the calibrated data is presented in

Section IV B.
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calibration temperature into a single file and performing a

moving, rectangular-windowed average (10 data points),

where the intensity of the counted intensity was averaged

over 10 wavelengths, in order to reduce the noise and deter-

mine the features of interest (peak intensity, integrated inten-

sity, peak wavelength, ratio of peak to integrated intensity,

FWHM, peak normalized intensities, and summed bands)

more accurately and more easily.

A 3rd order polynomial was fit to the smoothed spectra,

the derivative was taken, and the peak intensity and peak

wavelength were found at the maximum of the fit curve. The

selection of the polynomial order was motivated by the desire

to have a numerical stable derivative and to be able to be a

more general fit because of the different shaped-spectra of the

Rhodamine B and quantum dot spectra. The integrated inten-

sity was then taken as the sum of the intensity values under the

curve of the smoothed spectra. Also, the ratio between the

peak intensity and the integrated intensity of the spectra was

calculated. The FWHM of the spectral peak was determined as

well. The spectra were normalized to their peak value and the

“normalized intensity” values at 40 evenly spaced wavelengths

from 536 nm to 764 nm were used as inputs for the neural net-

works. Finally, five bands of 25 wavelength measurements

(�5 nm wide) were summed, and these five “sum bands”

would provide the inputs for one of the neural networks.

2. Neural network training

The different spectral features were used as inputs to

create five different, simple neural networks containing 2

hidden nodes, with varying inputs based on the different

spectral features just described and summarized below:

1. PI, II, PWL with 2 hidden nodes.

2. PI, II with 2 hidden nodes.

3. PI, II, R, FWHM, PWL with 2 hidden nodes.

4. PI, 40 Normalized Intensities with 2 hidden nodes.

5. Sum Bands with 2 hidden nodes.

These were selected to represent traditional methods for

temperature correlations (peak intensity and wavelength), shape-

based methods (FWHM and integrated intensity), and combina-

tions of both methods (normalized intensity and sum bands).

The actual training of the neural network used 80% of

the calibrated spectra for training the network and 20% for

testing how well the output matches expectations on new

data. Each spectrum was randomly assigned to either group,

for cross-validation. The weights of the different nodes

(Figure 4(a), with the results of the training presented in

Figure 4(b)) were varied at each iteration until the RMS error

of the NN output temperature to the expected temperature

(from the PT1000 measurement) was sufficiently small, with

the variation of the weights of the nodes in each layer being

guided by a Levenberg-Marquardt algorithm. The weights of

the neural networks were stored and then applied to each

measured spectra, in order to determine the modulated tem-

perature of the fiber during photothermal heating.

Figure 4(b) shows that over the temperature range of in-

terest, 300–312 K, there is a satisfactory correlation between

the temperature values extracted by the NN from the spectra

on one hand, and the actual temperatures on the other hand.

Figure 4(c) shows that the average reconstruction error for

the training and test data is less than 10 mK, with a spread

similar on the order of 100 mK (Figure 4(d)) for the normal-

ized intensity-based NN. To provide a valid comparison, a

2D surface fit was performed on the calibrated data where

temperature was given as a function of wavelength and peak

normalized intensity. Each parameter was fit with a 3rd order

polynomial, with the resulting RMS error of the fit being

3.5 K. The results of that fit are given in Figure 4(e), demon-

strating the improvement through use of the neural network.

Further analysis of the improvement of temperature recon-

struction via NN is detailed in Section IV B.

B. Numerical experiment for NN accuracy

As mentioned above, the future application of interest in

this work is the use of photothermal excitation and fluorescence-

based thermometry to extract the thermal diffusivity along the

FIG. 4. Typical NN architecture (a), correlation between expected and

extracted temperature values (b), and averaged (c) and raw (d) RMS error

values versus temperature from the training with the results of training spec-

tra in blue circles and the results of test spectra in red dots, simulated data

based on experimental uncertainties. Surface fit to calibrated temperature

data as a function of normalized intensity and wavelength (e) as a curve-fit

comparison to the NN, with RMS error of 3.5 K.
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axis of a fiber from the axial pump-probe distance depend-

ence of the photothermally induced temperature oscillation

amplitude and phase delay with respect to the intensity mod-

ulation. In order to determine which neural network provides

the best temperature reconstruction, a numerical simulation

of the quantum dot spectra and their variation due to temper-

ature was created, with the experimental to simulation com-

parison given in Figure 5.

The time dependence of the detection temperature was

simulated (see further), and noise was added to it to produce

simulated spectra. Additional noise was added to the spectra,

based on the signal-to-noise ratio of the spectrometer. The

simulation took advantage of the almost Gaussian-shape of

the quantum dot fluorescence spectra. Based on the experi-

mental observations in Figure 3, the different spectral fea-

tures were assumed to be linearly related to temperature

(A ¼ PPI;0 þ SPIT) over the linear region of the temperature

range of interest (300 K–308 K). Although the experimental

data (temperature as a function of spectral feature) was better

fit with a second order polynomial (Figure 8), the assumption

of a linear relation was chosen because the inversion of the

relationship (spectral feature as a function of temperature) is

easily performed on linear relationships. Additionally, it was

chosen because it is a common practice in the literature and

because the choice of fit does not matter in the comparison

to the neural network results as long as the simulated data is

analyzed by the same fit that was originally assumed. The

resulting temperature determined by the different neural net-

works could then be compared to the actually modulated

temperature that was used to create the spectra.

The model of Salazar et al.42 for an infinitesimally nar-

row laser line heating source was used to represent the com-

plex temperature field of a cylinder for a given periodic

intensity modulation, in vacuum, with linearized radiation,

and the fiber radius much smaller than the diffusion length of

the thermal wave, Eqs. (1) and (2). For the sake of simplic-

ity, the fluorescent spot was assumed to be a point

~Ts a; zð Þ �
P0

2pksq0s
e�q0sjzj; (1)

q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
as
þ 2h

ksa

s
: (2)

The model predicts a linear dependence of the phase

delay and of the logarithm of the amplitude on the pump-

probe distance, Eqs. (3) and (4)

zmag ¼ exp ðmmagjzj þ bmagÞ; (3)

zphase ¼ mphasejzj þ bphase: (4)

The slope is determined by the modulation frequency

and the thermal diffusivity of the fiber, Eq. (5)

mphase � mmag ¼ �pf a�1
s : (5)

To mimic the time domain behavior of the experiment,

the complex temperature (modelled as an AC signal, Eq. (6))

was superimposed onto a gradual DC temperature rise (Eq.

(7)), with a power law shape with exponent 1/2

TAC z or f ; tð Þ ¼ freqmag

freqmag;max

zmag

zmag;max
� cos 2=pif t� t0ð Þ

�
�zphase � freqphase�; (6)

TDC z or f ; tð Þ ¼ Tend � T0½ � t� t0

tend

� �n

þ T0: (7)

The time domain temperature evolutions were then used

to create Gaussian-shaped fluorescence spectra at different

times, Eq. (8), using the assumed linear dependencies of the

spectral features (API;0, SPI, etc.) on temperature from cali-

bration experiments, with the inputs to the model given in

Table I. A reference signal, synchronous with the intensity

oscillation underlying the simulated temperature evolution,

was used to create a trapezoidal curve between 526 nm and

FIG. 5. Schematic illustration of the experimental procedure for calculating

the thermal diffusivity of a fiber by determining the dependence on the pho-

tothermal signal amplitude and phase as a function of the laser intensity

modulation frequency and of the pump-probe distance along the fiber (a)

and numerical simulation model (b).
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535 nm, thus simulating the green light directed into the

spectrometer.

Spec k;T z; tð Þ
� �

¼ API;0þ SPITð Þ

� exp
�4ln 2ð Þ k� BPWL;0þ SPWLTð Þ

� �2

CFWHM;0þ SFWHMTð Þ2

" #
:

(8)

To fully mimic the experiment, this simulation also cre-

ated calibration files of spectra at fixed temperatures to train

the neural network and then created spectra from a modu-

lated temperature at a fixed frequency and axial position,

with similar uncertainties to those seen during the experi-

ment, also presented in Table I.

IV. RESULTS

A. NN accuracy via simulation compared to
experiment

An example of experimentally determined temperature

evolutions using the five NNs investigated is shown in Figure

6 for an axial pump-probe spacing of 1 mm and at an initial

temperature near the lower limit of the calibration range

(302 K). All evolutions show the expected DC temperature rise

and modulated temperature. However, there is a significant

variation in the reconstructed temperature by the different net-

works, with the normalized intensity NN having the least vari-

ation (Figure 6, inset) and the NN with the most spectral

features (PI, II, Ratio, FWHM, PWL) having the most varia-

tion. The data presented in the inset of Figure 6 is meant to

compare the magnitude of the AC variation of the different

neural networks by normalizing them to their final steady state

value, since there is a significant DC offset to NNs #4 and #5.

The discrepancy between the different NN reconstruc-

tions is postulated to be due to the nature of the inputs to the

neural networks. NNs #1–#3 rely mainly on intensity-based

features of the spectra (PI, II, R), while NNs #4 and #5 rely

on a mix of both intensity-based and shape-based features in

the reconstruction of the temperature, which have different

accuracies.43 However, the ultimate reason for up to a 10 K

difference is unclear and was the incentive to perform this

analysis on simulated data, for which the reconstructed data

can be unambiguously evaluated by comparison with the

known temperature evolution underlying the simulation.

Comparison of experimental temperature reconstructions for

absolute error under modulated heating is not feasible

because the actual temperature of the fiber is unknown dur-

ing the experiment. As will be shown later, the numerically

simulated uncertainty of 1.02 K via simulation compared to

1.1 K from experimental linear fit of peak intensity (in the

linear region of the temperature range 300 K–308 K) during

the calibration process was sufficiently similar that the

uncertainty results of the numerical simulation could be

comparable to uncertainty results of the experiment.

The numerical simulation was based on the nominal val-

ues of uncertainty on the different spectral features and other

system parameters (Table I). The calibration spectra were

created based on the magnitude of the neural network param-

eters observed during the experiment as shown in Figure 3.

The neural networks were then trained on those data. Next,

the simulation assumed a temperature evolution as described

in Section III B. For each temperature, a spectrum was gener-

ated with the corresponding characteristics (FWHM, peak in-

tensity, peak wavelength) with noise superimposed onto the

created spectra. Finally, the trained neural networks were

then used to determine the temperature evolution from the

generated spectra. The reconstructed temperature evolutions

were compared with the original one, in order to determine

which provides the greatest accuracy.

The RMS error on the temperature evolution extracted

by the different NNs is included in the legend in Figure 7.

The most accurate NN reconstruction was based on the

TABLE I. Inputs and uncertainties used for the simulation based on calibra-

tion experiment from Figure 3.

Simulation parameters Nominal values Uncertainty

Wavelength resolution 520–770 nm 0.19 nm

PT1000 Temp. 300–312 K 0.05 K

Time spacing 0.001 s 0.000727 s

Spectrometer noise 0 counts 217 counts

API;0 329356 counts 42.58 counts

BPWL;0 613.51 nm 0.123 nm

CFWHM;0 16.153 nm 0.00032 nm

D0 1500 counts 50 counts

SPI –1014 counts/K 1.391 counts/K

SPWL 0.059 nm/K 0.000404 nm/K

SFWHM 0.0616 nm/K 0.000105 nm/K

SD 0 counts/K 0 counts/K

Motor position 0.5 mm 0.0011 mm

mphase 2000 rad/m

mmag 600 1/m

as 0.13 mm2/s

P0 1000 a.u.

ks 0.24 W/mK

h 6 W/m2 K

Frequency 0.5 Hz 0.05 Hz

FIG. 6. Neural network reconstructed temperature evolutions for five types

of neural network inputs investigated based on experimental data. The inset

shows the normalized temperature evolutions. Because of the variation

caused by the different neural networks, a numerical simulation was devel-

oped to determine which type of inputs provides the greatest accuracy of the

reconstructed temperature.
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normalized intensities with an RMS error lower than that tra-

ditionally observed in fluorescent dyes (Ref. 20). The dis-

crepancy observed in the experimental temperature can be

attributed to a large DC heating during the initial 5 s when

the pump laser was on but the spectrometer was not collect-

ing data. However, this discrepancy was not observed in the

simulated temperature

RMSerrorðKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

1

ðTNN � TTrueÞ2=N

vuut : (9)

Furthermore, the numerical simulation provides an

excellent vehicle to determine the sensitivity of the method

to different experimental errors. The inputs of Eq. (8) into

the simulation were fixed at their nominal value, except for

one, in which the bias and precision uncertainty was 1% of

the nominal value. The numerical experiment was repeated

for each input for a fixed axial position and frequency, which

then fixed the decay and phase delay terms Eq. (6) as a con-

stant. Calibration spectra and modulated spectra at the low-

est temperature of the calibration range were created. The

neural network calibration and application was applied to

the simulated, modulated spectra, and the final variation

from the true modulated temperature compared to the

neural network determined temperature was determined.

Table II presents the RMS (Eq. (9)) error in Kelvin of the

reconstructed temperature, resulting from a 1% uncertainty

in the investigated variables. Apparently, the FWHM based

NN is the most sensitive to deviations. This can be

explained by the rather low sensitivity of the FWHM to

temperature (about 0.18%/K) and the limited wavelength

resolution of the spectrometer (� 0.2 nm).

B. Justification for NN use compared to curve-fit

Since the objective of this research is to demonstrate the

improved temperature resolution via a neural network, this

section will compare the results from both experimental data

and simulated data to demonstrate this point. The results of

multiple types of curve fits (linear, polynomial, exponential,

smoothed spline, interpolated, 2D surface fits, etc.) compared

to neural networks are shown in Table III. Atypical neural

networks were constructed based on a single input to com-

pare the results of single parameter fits of the same spectral

feature. Furthermore, the results based on experimental fits

can only present the error associated with the fitting of the

curve fit model curve or error of the neural network recon-

structed temperature compared to the calibrated spectra at

references temperatures. Results from the actual operation of

the experiment during modulated heating were not investi-

gated because the temperature of the fiber was not known.

To consider situations where the fiber temperature is known,

the simulation described in Section III B was performed, and

the RMS error of the difference between the reconstructed

and simulated temperature was presented. Only linear fits

were considered for the reconstruction because the simula-

tion explicitly used a linear relationship between the temper-

ature and spectral features. The results of the simulated

curve fit relationships are given in Figure 8 and show the

high degree of linearity of the data (R2 � 0:99), while the

differences in temperature reconstruction for a linear fit to

the peak intensity and neural networks is given in Figure 7.

Among the benefits of the neural network is the ability

to combine data from multiple parameters into a single out-

put. This is possible and easily visualized for two-

dimensional surface fits, but as the number of parameters

increase, this method becomes more difficult and cumber-

some. Two examples are given with the curve fits similar to

NN #2 (PI, II) and NN #4 (PI, 40 Norm). With two parame-

ters (PI and II), the 3D surface of temperature is easily cre-

ated, and the resulting error is similar to that of the neural

network. With 41 parameters, the improvement in error is by

a factor of almost
ffiffiffiffiffi
40
p

, and the 3D surface of temperatures

must be constructed as a function of wavelength and normal-

ized intensity at that wavelength rather than letting the inten-

sity at each wavelength be a separate parameter. By doing

this, the ability to reduce the error by a factor of
ffiffiffiffi
N
p

is elimi-

nated since there is no weighting function to consider all

wavelengths of interest and the normalized intensity at only

FIG. 7. Reconstructed temperature signals by 5 different neural networks

(hollow symbols) and reconstruction by a linear fit to peak intensity (filled

symbols), compared to the original temperature (full line), with the RMS

error of each (in Kelvin) in the legend. The normalized intensity based neu-

ral network matches the input temperature most accurately in the simulation.

TABLE II. RMS error (K) of spectral inputs at 1% uncertainty of each input,

with the FWHM being the most sensitive to uncertainty.

NN#1 NN#2 NN#3 NN#4 NN#5

Z position 0.14 0.48 0.47 0.16 0.10

Wavelength 0.11 0.11 0.11 0.08 0.10

PT1000 Temp. 1.61 1.69 4.22 1.60 1.60

Spectrometer noise 0.09 0.09 0.09 0.09 0.10

Slope of PWL 0.10 0.10 0.11 0.10 0.10

Intercept of PWL 0.10 0.10 0.10 0.10 0.19

Slope of PI 0.12 0.12 0.09 0.10 0.10

Intercept of PI 0.12 0.12 0.09 0.10 0.10

Slope of FWHM 0.14 0.48 0.47 0.16 0.10

Intercept of FWHM 8.88 4.70 10.47 37.47 34.57

Modulation freq. 0.14 0.49 0.50 0.17 0.10

Slope of baseline 0.14 0.48 0.47 0.16 0.10

Intercept of baseline 0.14 0.48 0.47 0.16 0.10
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one value can be considered for determination of the temper-

ature on the surface fit.

Finally, the experimental results presented in Table III

show that the curve and surface fits are out-performed by

their equivalent neural network reconstructions, with the

exception of the smoothing spline and 2nd order polynomial

fit of the ratio. In these cases, the improvement of the fit was

not significant (0.15/0.16 versus 0.19 for the single parame-

ter NN), but the multi-parameter neural networks still pro-

vided an order of magnitude improvement. The curve fit

with the poorest performance (PI, 40 normalized intensities,

2.84 K) had a neural network with the best performance

(0.29 K), which is an improvement by a factor of 3 compared

to the linear fit explicitly used in creating the simulated spec-

tra (1.02 K).

V. CONCLUSIONS

CdSe/ZnS quantum dots have been shown to be viable

fluorescent dyes to be used as a non-contact temperature sen-

sor, with the surface temperature being reconstructed from

their fluorescence spectrum by an artificial neural network

and improved performance in terms of stability, compared to

Rhodamine B, an organic dye. Out of the five neural net-

works investigated in this work, based on the different spec-

tral shape features, numerical simulations pointed out that

the neural network based on the normalized intensity pro-

vides the greatest accuracy. The overall RMS uncertainty

from simulation of the method to reconstruct the temperature

was 0.29 K by a neural network trained on the peak normal-

ized intensities at 40 wavelengths compared to 1 K based on

reconstruction by only peak intensity, also from simulation.

FIG. 8. Linear curve fits of peak intensity (PI), integrated intensity (II), peak

wavelength (PWL), ratio, full-width half maximum (FWHM), peak-

normalized intensity at a single wavelength (Norm PI), integrated sum bands

based on the simulated calibration spectra at known temperatures

(300 K–312 K).

TABLE III. Comparison of curve fits to neural network reconstruction for both experiment and simulation.

Experiment

Based only on fit Absolute test RMSE

Parameter Lin Exp Power Spline 2nd Poly Surf 1st NN NN #1 NN #2 NN #3 NN #4 NN #5

PI 1.4 1.4 1.1 1.1 0.67 … 0.24 … … … … …

PWL 0.83 0.82 0.82 1.3 0.9 … 0.088 … … … … …

FWHM 1.5 1.5 1.5 0.9 1.1 … 0.68 … … … … …

II 1.4 1.4 1.1 1.3 0.72 … 0.099 … … … … …

Ratio 0.74 0.71 0.74 0.15 0.16 … 0.19 … … … … …

Norm Intensity @ 1 k 0.85 0.85 0.85 1.3 0.93 … 0.28 … … … … -

PI, II, PWL … … … … …… … … 0.05 … … … …

PI, II … … … … … 1.59 … … 0.08 … … …

PI, II, R, FWHM, PWL … … … …… … … … … … 0.07 … …

PI, 40 norm … … … … … 3.5, Fig. 4(e) … … … … 0.016 …

Sum bands … … … … … 2.7 … … … … … 0.084

Simulation

RMSE from simulated temperature

Parameter Lin Exp Power Spline 2nd Poly Surf 1st NN NN #1 NN #2 NN #3 NN #4 NN #5

PI 1.02 … … … … … … … … … …

PWL 1.03 … … … … … … … … … …

FWHM 0.69 … … … … … … … … … …

II 2.56 … … … … … … … … … …

Ratio 2.56 … … … … … … … … … …

Norm Intensity @ 1 k 2.06 … … … … … … … … … …

PI, II, PWL … … … … … … … 0.67 … … … …

PI, II … … … … … 0.9 … … 0.88 … … …

PI, II, R, FWHM, PWL … … … … … … … … … 0.5 … …

PI, 40 norm … … … … … 2.84 … … … … 0.29 …

Sum bands … … … … … 0.83 … … … … … 0.77
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This is an improvement compared to an uncertainty of 1.8 K

based on a linear fit of the normalized intensity at a single

wavelength and 1.1 K based on a linear fit, both from experi-

mentally calibrated data. In a comparison to multiple types

of curve fits and single parameter input neural networks, the

multi-parameter input neural network consistently provided

the best performance in temperature reconstruction in both

simulation and experiment. This improvement allows for

improved thermal characterization of materials and monitor-

ing of thermal processes via a less intrusive temperature

measurement.
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