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Abstract— Many biochemical network models include quanti-
ties that are conserved in molarity. While important theoretical
results rely on such conservation relations, they often pose
a problem for numerical analyses. Several analysis routines
that are very relevant for biochemical models, for example
sensitivity or stability analysis, intrinsically cannot deal with
networks where conservation relations are present. To apply
these routines, one generally needs to construct an equivalent
reduced model without the conservation relations.

Here, a method to remove conservation relations from
biochemical reaction network models is proposed. The method
is based on an orthogonal decomposition for the stoichiometric
matrix, which makes the approach numerically efficient even for
very large networks. Based on this decomposition, a reduced
differential equation which describes the dynamics within a
specified stoichiometric class is derived. Finally, applications
of the reduction approach for steady state computation and
stability analysis are discussed.

I. INTRODUCTION

Biochemical network models describe the conversion of
one set of biochemical reactants into another set via re-
actions. These reactions are subject to the conservation
of matter, which gives rise to a structural property called
conservation relations in biochemical networks. For networks
modelled with an ordinary differential equation of the form

z = Nv(x),

a conservation relation is represented by a vector g which
satisfies the equation

g'e =0,

making g%z a conserved quantity.

There is an extensive body of scientific literature on the
interpretation and consequences of conservation relations in
biochemical network models. In chemical reaction network
theory, conservation relations determine stoichiometric sub-
spaces of networks [5], which are quite useful in network
analysis. In particular, the associated partitioning of the
state space into stoichiometric compatibility classes provides
strong results on the structure and stability of steady states
in the network [4], [14].

While conservation relations are a relevant structural
property, they usually pose problems for numerical analy-
sis routines, especially in software for automated network
analysis. Due to the structural eigenvalue equal to zero of the
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network’s Jacobian at steady state, numerical analyses which
rely on the Jacobian being invertible, such as local sensitivity
analysis, cannot be applied directly. Also, even when the
dynamics in each stoichiometric class are structurally stable,
the differential equation for a network with conservation
relations is not structurally stable for any choice of parameter
values when looking at the full state space. This is problem-
atic for stability and bifurcation analysis, which relies on the
network’s equations being structurally stable for almost all
parameter values. Also, when computing equilibrium points
of a network, numerical algorithms may select a solution in
a stoichiometric class different from the considered initial
conditions, if no special care for this situation is taken.

Conservation relations are also an important property of
biochemical reaction networks studied in metabolic control
theory [7]. Here, the construction of an equivalent reduced
model without conservation relations is crucial in order to
allow the computation of the various coefficients used in
metabolic control theory [9]. Reder [11] has shown that for
networks with conservation relations, after an appropriate
reordering of the species, the stoichiometric matrix N can
be decomposed as

N = LN,, €y

where L is a tall rectangular matrix with the identity in
the upper block, and an integer matrix in the lower block.
Based on this decomposition, an equivalent reduced model
without conservation relations is constructed. Commonly,
the first » components of the reordered species vector are
taken as “independent” species, and the remaining n — r
components as “dependent” species. The reduced model
then contains only the concentrations of the independent
species as state variables. While this approach to construct
a reduced model maintains an intuitive relation between
state variables in the original and reduced systems, the
distinction between independent and dependent species is
not unique. Also, the decomposition of the stoichiometric
matrix is numerically challenging, since it requires to put
the stoichiometric matrix into the reduced row echolon form.
Software tools which are using this reduction approach, for
example the Systems Biology Toolbox for Matlab [13] or the
PySCeS library for Python [10], typically implement special
code involving Gaussian elimination and careful pivoting to
get this reduction correct for larger networks. A detailed
discussion of computational issues related to conservation
relations is also given in [12].

This paper explores the construction of a reduced model
with any stoichiometric decomposition, not necessarily in-



MTNS 2014
Groningen, The Netherlands

teger, of the form (1), where the decomposed matrices are
full rank. The main contribution is the development of a
reduction method which does not rely on classifying species
as “independent” or “dependent”. Instead, the appropriate
stoichiometric class is characterized by the factors obtained
in the decomposition of the stoichiometric matrix. The
method can be applied with singular value decomposition
(SVD) [8] or the QR decomposition, making the construction
of the reduced model numerically robust and efficient even
for large-scale metabolic networks. The approach is particu-
larly well suited for the numerical analysis of larger networks
or in automated workflows, where numerical efficiency is
important and a splitting of the species vector in dependent
and independent variables is not required.

II. METHODS AND THEORY
A. Network models with conservation relation

Consider a biochemical reaction network composed of n
biochemical species S;, ¢ = 1,...,n and m reactions R;,
j=1,...,m given by

R zn:ijSi - Zn:ijsi,
i=1 i=1

where N and NZ‘ are the substrate and product stoi-
chiometric coefficients, respectively. Let us denote species
concentrations by z; = [5;], and summarize them with a
species concentration vector x € R™. The rate of reaction R;
is denoted by v;, which yields the concentration dependent
reaction rate vector v(x) € R™. The components of the
stoichiometric matrix N € Z are given by N;; = N}, — N7.
Balancing of the species then yields the differential equation

3)

)

& = Nv(x)

as a kinetic model for dynamics of the species concentra-
tions, together with an initial condition z(0) = xo.
Biochemical reaction networks are subject to the conser-
vation of matter: the amount of entities which are neither
added to nor removed from the system will not change over
time. Mathematically, conservation relations in a biochemical
reaction network are described by a vector g € R™ such that
g's =g "Nv(z) = 0. 4
For a conservation relation, (4) is required to hold inde-
pendent of the reaction rate vector v(z). This is equivalent
to

g €ker NT. 5)

The number of linearly independent vectors g which satisfy
condition (5) is n — r, where 7 is the rank of the stoichio-
metric matrix N [7]. All linear independent conservation
relations are collected in the matrix G € R™X("=7) whose
columns span the kernel of NT and which satisfies

GTN =0. (6)
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For each concentration vector x(, chemical reaction theory
defines the stoichiometric compatibility class [4] as the affine
subspace

S=x9+imN. @)

Regarding the conservation relations, it is then easy to see
that z € S, if and only if

Gz —x0) =0,

or
Gtz =G . (8)

In view of (4), one also sees that the solution x(t) of
the dynamic model (3) is restricted to the stoichiometric
compatibility class of the initial condition z(0).

In order to construct an equivalent model without conser-
vation relations, a decomposition of the stoichiometric matrix
into a link matrix L € R™*" and a reduced stoichiometric
matrix N, € R"™™ was suggested in metabolic control
theory [11]. By this decomposition,

PN = LN,, 9)

where P € R™*"™ is a permutation matrix representing an
appropriate reordering of the species vector, and both L and
N, are of full rank r. In metabolic control theory, L is
commonly constructed to be of the special structure

1= (7).

Lo
with the identity matrix of dimension r in the upper block,
and an integer matrix L in the lower block. For the reduced
model, the permuted state vector Px can be partitioned

accordingly as
Pz = <%> ,
Z

with z € R” the concentrations of the “independent” species
and zZ € R™™" the concentrations of the “dependent” species.
The reduced model is then commonly constructed as

3= N,v(PTLz)
z=PTLz

(10)

(1)

12)

with the initial condition z( taken from the first » components
of Pxq [11].

The classical reduction presented in this section is intuitive
in that its state variables z are simply a subset of the original
state variables x. However, this reduction has the significant
drawback that the stoichiometric decomposition (9), with
L as in (10), is numerically ill-conditioned and thus not
very well suited for either large-scale networks or automated
numerical analysis routines. Robust numerical routines to
obtain L in the special form (10) use an orthogonal matrix
decomposition followed by some carefully pivoted Gaussian
elimination. As will be seen in Section III, a simpler reduc-
tion method can be devised by abandoning the separation
into independent and dependent species, which is usually
non-unique anyway.
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B. Matrix decompositions

1) The singular value decomposition: The singular value
decomposition (SVD) [8] is a matrix factorization where a
matrix M € R™ ™ is decomposed as a product of three
matrices,

M=UxVv?T (13)

with U € R"*", ¥ € R™*™, and V € R™*™, The three
matrices U, X, and V have the special properties that U and
V are orthogonal, that is UTU = I,, and VTV = I,,,, and
> has all off-diagonal elements equal to zero.

The diagonal entries of ¥ are called the singular values
of M. These entries are sorted in descending order, that is
Y11 > ¥ > ... > Xy, with ¢ = min(n,m). If r is the
rank of M, then only the first r singular values are non-zero,
and Er+1,r+1 =...= qu = 0.

The singular value decomposition has been used previ-
ously on the stoichiometric matrix. In fact, Sauro and Ingalls
[12] have suggested to determine the conservation relations
by a SVD of the stoichiometric matrix, and also constructed
an alternative link matrix L obeying the decomposition (9).
The L constructed in this way will not be of the special
structure (10) though, and they do not discuss how to derive
a reduced model in this reference.

Doing a SVD of the stoichiometric matrix is also sug-
gested in [3] as a method to determine the dominant modes
of genome-scale metabolic networks. This allows to get a
good overview picture of a large-scale network in terms of
so called “eigen-reactions” and how individuals metabolites
contribute to those.

2) The QR decompostion: In the QR decomposition with
pivoting, a matrix M € R"*™ is decomposed as

MP = QR, (14)

where P € R™*™ is a permutation matrix, ) € R™*" an
orthogonal matrix, i.e., QTQ =1, and R € R™™ an upper
trapezoidal matrix [1]. The permutation matrix P captures
column permutations in M that have been performed during
the pivoting process. In the decomposition (14), R has the
same rank as M. If n > m, R is upper triangular.

Pivoting has the effect that the diagonal elements of
R are sorted by descending absolute value, i.e., |Ri1| >
|R22| > 2 ‘Rmin(m,n),min(m,n)|' Then, if M has rank
r < min(m,n), the matrix R has the structure

o (5.

0
where Ry € R"™™ is upper trapezoidal.

QR decomposition with pivoting using the Householder
method was suggested in [15] as a numerically efficient
and robust way to determine conservation relations in a
stoichiometric network.

5)

III. RESULTS

A. Removing conservation relations via stoichiometric ma-
trix decomposition
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1) Decomposition of the stoichiometric matrix and model
reduction: This section describes the removal of conserva-
tion relations from the biochemical network model (3) based
on an orthogonal decomposition like SVD or QR. First, either
SVD or QR decomposition is applied to the stoichiometric
matrix. From this decomposition, an appropriate coordinate
transformation for the state variables is constructed. The
reduced model is then formulated easily in the transformed
coordinates.

Both QR and SVD decomposition can be applied to yield
a decomposition of the stoichiometrix matrix N as

N=UM, (16)

where U € R"™*™ is an orthogonal matrix. For the QR
decomposition with pivoting, one has U = @ and M =
RPT. For the SVD decomposition, U is as in (13) and
M = XVT. Recall from Section II-A that N is of rank
r < min(n,m). Consider the following splitting of the
matrix U in (16):

U=(LG), a7

where L € R"*" and G € R™"*("~")_Since U is orthogonal,
L and G have the properties that

o LL=1,,

« GG =1,_,,

e« G'L=0and LG = 0.
These properties will be essential to the following deriva-
tions.

From the properties of the matrix M in the decomposi-
tion (16), one can now find a matrix N, € R"™™ "™ such that

N = LN,, (18)

which is formally a decomposition as in the classical case (9),
but with the special properties of L listed above, due to U
being orthogonal. For the SVD decomposition, one has

== (3).

with £; € R™™ and £, € RM=7)*m 55 = 0. With the
splitting of U as in (17), one finds that

X

o, 19)

N=L2 V' + G2Vt =L, vT, (20)

and thus

N, =%, VT, 21
For the QR decomposition, R is structured according to (15),
and thus N = LR; PT and

N, = R, PT. (22)

Moreover, since GTN = GTLN, = 0, the columns of G

describe all conservation relations of the form (5) present in
the network (3), but again with the special properties of G
due to U being orthogonal.
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2) The reduced kinetic equations: In this section, a re-
duced differential equation of order r is derived for the
reaction network. The reduced model describes the dynamics
of the reaction network within a fixed stoichiometric class.
Also the formulas for transforming from the original to the
reduced model and vice versa are provided. The state variable
of the reduced kinetic system is z € R", and is defined by
the equation

z=L"z. (23)
The differential equation for z is derived as
t=L"%
= LT Nu(z) (24)
= N,v(z).

In order to arrive at an equation in z only, one needs
to substitute the variable xz by a function of z. However,
inverting (23) is not possible, since x is underdetermined
in this equation. At this point, one needs to choose the
stoichiometric class within which the reduced dynamics of
the network are to be constructed. As was seen in (8), a
stoichiometric class is defined by the equation GT2 = GT .
Thus, for the stoichiometric class determined by Gz, the
full characterization of x is given by

LT
( GTZ%) = ( GT) r=U" 25)
Since U is orthogonal, UT = U~!, and one gets
r=U (GTZxO) =Lz + GG . (26)

In conclusion, the reduced dynamics of the reaction net-
work (3) within the stoichiometric class determined by Gz
are given by the ordinary differential equation

5= Ny(Lz + GGTxg) (27)
with the initial condition
2(0) = LT zo. (28)

For any z(t) which is a solution of (27), the corresponding
concentration vector x(t) is obtained via equation (26). One
can also check that this z(t) is guaranteed to be in the
stoichiometric class determined by G'x for any z € R":

G =G (Lz + GG" o) = GTay. (29)

B. Applications

As discussed in the introduction, computational algorithms
for the analysis of the reaction network (3) will often not
respect the condition that the concentration vector x must
stay within a stoichiometric class, usually defined from the
initial condition of the network’s differential equation as
GTro = GTx(0). This section explores the benefits of
using the suggested model reduction approach for steady
state computation and stability analysis of steady states in
the network.

Conservation relations within a network are in particular
a problem for algorithms which compute a steady state of
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(3), that is a concentration vector x5 for which Nv(xs) = 0.
The iterative solvers which are commonly applied for steady
state computation typically require a starting point x( to be
defined, which would in principle be ideal for determining
the stoichiometric class that is being considered. However, if
the implementation of the solver does not consider conserva-
tion relations, for example a generic root finding algorithm,
it is not guaranteed that the result x of the solver is in the
same stoichiometric class as xqg. In fact, the stoichiometric
class that the result x, happens to fall in must be considered
random and not under control of the algorithm’s user.

An approach which does not suffer from this problem is
to have a generic algorithm compute a steady state z, of the
reduced model (27), which satisfies 0 = N,v(Lz,+GG x0),
where x also specifies the stoichiometric class within which
a steady state is to be computed, using zp = L™z as starting
point. Then, a steady state of the original model is given via
the transformation rule (26) as x5 = Lzs + GGTxy. This
steady state is indeed in the stoichiometric class specified by
xo, since GTx, = GTx.

As an example to illustrate the problem with steady state
computations, let us study a simple biochemical network
describing a covalent modification cycle [6]. The covalent
cycle is a frequent reaction motif in biochemical signal
transduction and is formed by a signaling protein and two en-
zymes. One of the enzymes covalently adds a small chemical
group, e.g. a phospate group, to the protein, and the other
enzyme removes this group. In this way, the protein may
cycle back and forth between the modified and unmodified
state. The reaction network is given by

T+ Ty = Ts = T3+ T2 (30)
T3+ Ty = Tg — T1 + T4,
where 1 (x3) is the unmodified (modified) protein, x5 is
the enzyme adding the modification, and x4 is the enzyme
undoing the modification. The network has n = 6 species
and m = 4 reactions, and the rank of the stoichiometric
matrix N is 3. Thus there are three conserved quantities

r1+x3+ x5 + Tg

T2 + T5 (3D

T4 + Tg.

When solving for a steady state from a given initial point, it
is usually desired that the values for the conserved quantities
in steady state are the same as for the initial point.

To highlight the relevance of the reduction to the cor-
rect stoichiometric class, steady state computation for net-
work (30) is performed. Reaction rate kinetics are assumed
to be given by the law of mass action, with parameter values
all equal to 1. The initial conditions which will determine
the stoichiometric class are given in Table I, where x; and
x4 are varied to obtain different stoichiometric classes.

Figure 1 shows steady states of the network (30) computed
from these five different initial conditions. Two approaches
are compared: solving directly the equations resulting from
the mass action model of the network, or solving the equa-
tions for the reduced model according to the previous section.
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TABLE I
INITIAL CONDITIONS FOR THE COVALENT CYCLE

Variable | 1 T2 X3 T4 5 X
Value | 1,2,...,5 1 0 0.2,04,...,1 01 0.1
6
5~ .
af hN 1
© N
x ~ N
+3F S .
® N RN
2k < Y A R
Tw . N
IFw, ™ AN AN 1
S R - . S m S .
0 ] a ) o -]
0 1 2 3 4 5 6
x1 + x5
Fig. 1. Steady states in the covalent modification cycle, computed from the

reduced model (stars) or the full model (squares). Different colors indicate
steady states computed from different initial conditions (circles) with their
stoichiometric classes (dashed lines).

While the latter correctly returns the steady state in the
same stoichiometric class as the initial condition, the direct
approach with the original network does not guarantee this
property.

A naive approach to make sure that the solver’s output x4
is in the same stoichiometric class as the provided starting
point o would be to add the constraints

GTz, = GTxy (32)

to the steady state equation Nv(xs) = 0. However, there
are two disadvantages with this naive approach compared to
computing the steady state via the suggested model reduction
approach. The naive approach yields a system of 2n — r
equations in m variables. First, this is an overdetermined
equation system, and solvers may run into numerical prob-
lems where due to floating-point approximation errors it may
seem that the equations are infeasible. Second, even if the
first problem does not occur, the method proposed here is
still computationally more efficient, since only 7 equations
in r variables have to be solved.

As a second case where the removal of conservation
relations via the proposed method helps with a typical
analysis task, let us consider the stability analysis of a
reaction network in the proximity of a steady state. This
analysis is typically based on the Jacobian of the right hand
side of (3) evaluated at the steady state. By Lyapunov’s
stability theorem, small perturbations of the network away
from the steady state x5 decay exponentially if and only if
the Jacobian

J(ws) = N () (33)

has all its eigenvalues in the left half complex plane, with
real part less than zero.
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In case the reaction network has conservation relations,
i.e. the rank of N is less than n, the Jacobian J(z;) has a
zero eigenvalue with multiplicity at least n — r, independent
of the steady state x5 and the reaction rate law v: from (4),
one gets

g - E

9 oz

Thus J(z) has a zero eigenvalue with multiplicity at least

equal to the number of linearly independent vectors g such
that (4) holds, which is exactly n — r.

While the zero eigenvalue appears at first sight to exclude
the possibility of exponential convergence to steady state, this
is in fact not necessarily the case. When the multiplicity is
equal to n—r, all perturbations related to the zero eigenvalue
change the stoichiometric class of the concentration vector,
and are thus not consistent with the network’s intrinsic dy-
namics close to the considered steady state. In this case, the
zero eigenvalue should be discarded for a dynamical stability
analysis. However, it is not possible to just neglect the zero
eigenvalue without doing a full conservation analysis. In case
the multiplicity of the zero eigenvalue is larger than n —r, it
is not only due to a conservation relation, and is then quite
relevant for a stability analysis.

Instead of considering the original ODE (3) of the net-
work, a better approach is to study the stability of the
corresponding steady state zg LTz, in the reduced
equations (27). The Jacobian of the reduced equations is
given by

(zs) = gt J(xs) = 0. (34)

ov

ox
and does not have a structurally zero eigenvalue related to
conservation relations, since both NV, and L are of maximal
rank. Therefore, it can be ascertained that solutions of
both the reduced network (27) and of the original network
(3), within the considered stoichiometric class specified by
GTxg, converge exponentially to the steady state z, or z,
respectively, if and only if the Jacobian J,.(z,) of the reduced
model has all its eigenvalues in the left half complex plane.

In the covalent modification cycle (30), the existence of
three linearly independent conservation relations corresponds
to a zero eigenvalue with multiplicity 3. In fact, a numer-
ical computation yields the eigenvalues (with multiplicity)
{0,0,0,—-0.45, —2.7, —3.1} for the full Jacobian J(zs) at
the steady state within the stoichiometric class defined by
the initial conditions in Table I with 1 = 1 and x4 = 0.2.
The reduced Jacobian J,.(zs) at this steady state has the
eigenvalues {—0.45, —2.7, —3.1}.

Jo(2s) = Np=—(Lzs + GG x0) L, (35)

C. Implementation and Availability

The proposed algorithm for the removal of conservation
relations from biochemical reaction network in the
SVD variant has been implemented in the Python
package pybrn, available as open source from
http://pybrn.sourceforge.net. The pybrn
package uses the SVD implementation available in
the Python Numpy package for matrix computations
(http://www.numpy.org).
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IV. CONCLUSIONS

This paper gives an approach to remove conservation
relations from biochemical reaction network models, based
on numerically robust matrix decompositions like the SVD
or QR decomposition. These decompositions factor a given
matrix into the product of orthogonal matrices and a matrix
structured according to the rank of the decomposed matrix,
and the here proposed method exploits this general structure.
It is a simple, computationally efficient method to determine
a reduced network model, which can be used for common
analysis tasks such as computation of steady states, numeri-
cal simulation, or stability analysis.

Since the stoichiometric matrix is usually sparse, it would
be particularly beneficial to employ a matrix decomposition
tailored for sparse matrices, which are available for the QR
decomposition [2].

The proposed approach is particularly appropriate for
automated network analysis in software tools. In this case,
there is no disadvantage from the property that coordinates of
the reduced model can not be interpreted directly as species,
since the software tools can handle this transparently, and
communicate to the user only the original coordinates from
the back-transformation = Lz + GGTzy. It is also useful
for large networks, where a removal of conservation relations
can not be done in the classical approach by hand or with
numerically ill-conditioned methods.
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