Solving Euclidean Steiner Tree Problems
with Multi Swarm Optimization ~

Tom Decroos
KU Leuven
Dept. of Computer Science

ABSTRACT

A new iterative heuristic algorithm, based on Multi Swarm
Optimization, is presented for Steiner Tree Problems (STP)
in the 2-dimensional Euclidean plane. The basic algorithm is
made practical for large instances by applying a result from
graph theory, and a well-informed approximation. The algo-
rithm’s performance is compared to perfect solutions for the
classic Steiner Tree Problem and to a deterministic heuristic
for the k-bottleneck STP, a variant of STP. The algorithm
often produces near optimal solutions with limited resources.
The approach can be applied to higher dimensions and to
other variants of the Steiner Tree Problem.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search— Heuristic methods

INTRODUCTION

The Steiner Tree Problem is a problem in combinatorial
optimization. It asks for the best possible network intercon-
necting n given points, also named terminal points. Extra
points called Steiner points can be added to improve the
network.

The problem can be formulated both in the plane (or
in spaces with higher dimensions) and in the context of
weighted graphs where we are given an edge-weighted graph
G = (V, E,w) and a subset S C V of required vertices. STP
has many variants with applications in VLSI design, net-
work routing, wireless communication, computational biol-
ogy, etc. Almost all these variants are NP-hard.

We have developed and applied a new heuristic to two
specific instances of STP: (1) the classic Steiner Tree Prob-

1.

*This research was performed by the first author in partial
fulfilment of the requirements for the Bachelor’s degree in
Informatics at the KULAK, KU Leuven, under the supervi-
sion of the other two authors. This work is supported by the
Belgian Science Policy Office (BELSPO) in the Interuniver-
sity Attraction Pole COMEX. (http://comex.ulb.ac.be)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain

(© 2015 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-3488-4/15/07.

DOL: http://dx.doi.org/10.1145/2739482.27646 76

Patrick De Causmaecker
KU Leuven
Dept. of Computer Science

1379

Bart Demoen
KU Leuven
Dept. of Computer Science

lem in the Euclidean plane which asks for a Steiner tree of
minimal total length; it is abbreviated as ESTP; (2) the k-
bottleneck STP which asks for a Steiner tree that minimizes
the longest edge. A maximum of k Steiner points can be
added to the network to shorten the bottleneck.

We achieve near optimal results for ESTP with little com-
putational effort. Moreover, our approach improves signif-
icantly on a recent heuristic for the k-bottleneck STP as
devised by Marcus Brazil et al. [I].

We assume the reader to be familiar with Particle Swarm
Optimization and (Multi) Swarm Optimization [2].

2. THE STP-MSO ALGORITHM

Our application of Multi Swarm Optimization is uncon-
ventional: we let a set of sub-swarms each search for their
own optimal placement of one Steiner point. Each sub-
swarm contributes to a global optimal placement of Steiner
points by being aware of the position of the Steiner points
of the other sub-swarms.

Our algorithm performs a number of iterations, either pre-
defined or until some criterium is met. Each iteration evolves
all the particles in a subswarm in the direction of its cur-
rent best particle, taking into account the best particle in
the other sub-swarms, and with some random factor. At
each iteration, a new sub-swarm (i.e a new Steiner point) is
injected in the system, possibly subject to conditions that
limit the number of sub-swarms or their fitness, and with
some random element in its generation. The evolution of
particles is quite naturally based on their current position
and velocity, as we consider the placement of Steiner points
in the Euclidean plane. Sub-swarms are deleted when they
do not contribute to a better current solution.

Visualization of the algorithm.

The progress of the sub-swarms during an execution of
the algorithm for the two dimensional ESTP can be visual-
ized conveniently: Figure 2] shows three snapshots from an
animation generated by our implementation. This suggests
the possibility of an interactive environment in which the
user can manipulate Steiner points directly in coordination
with the running program. The decision at which precision
to stop the computation could also be made by the user.

IMPROVING EFFICIENCY

STP-MSO updates the best Steiner Tree by repeatedly
comparing alternative spanning trees and selecting the best
one. This is the most important step in the algorithm and
also the most resource intensive. To compare Steiner trees,

3.

http://dx.doi.org/10.1145/2739482.2764676

(a)
Figure 1: (a) the initial MST without any additional

Steiner point; (b) 10 sub-swarms and their best rep-
resentative as Steiner points: the sub-swarms are

still dispersed; (c) the sub-swarms converge: the
current solution is close to optimal.
optimal solution STP-MSO
Problem size length (%) k length (%) k
10 95.70 4 95.70 4
100 96.76 44 96.86 41
1000 n/a n/a 97.02 389

Table 1: Optimal solutions vs STP-MSO. length (%)
is the total length of the Steiner tree relative to the
length of the minimal spanning tree without Steiner
points; k is the number of Steiner points used to
construct the Steiner tree. STP-MSO was given 500
iterations and 500 particles/sub-swarm for all tests.

we first construct them as the minimal spanning tree (MST)
of the set of all points (terminal points and Steiner points)
using Kruskal’s algorithm. This computation is incremen-
tal, as new Steiner points are injected or the current best
Steiner point in a sub-swarm changes. We rely on two ob-
servations to improve the efficiency of the computation of a
new minimal spanning tree: (1) a theorem stating that one
can compute an MST for a graph G with an additional ver-
tex v by considering only the edges in an already computed
MST for G and the edges between v and vertices in G; (2) an
approximation using the intuition that long edges from the
additional vertex v to any vertex of G are improbable to
contribute to the new MST. Using these observations, our
algorithm performs well also on large numbers of terminals.

4. RESULTS

We used benchmarks provided by the OR libmmﬂ.

Benchmarks of size 10 to 100 have been solved to optimal-
ity for the classic STP by an algorithm called geosteiner96 in
[4]. Table[shows how well STP-MSO approximates the op-
timal solutions for a small subset of our experiments. E We
have not made a thorough performance comparison, how-
ever, it is worth noting that geosteiner96 took several min-
utes even for small benchmarks whereas STP-MSO produces
results in a matter of seconds. STP-MSO generates solutions
that are very close or equal to the optimal solution. This
leads us to believe that STP-MSO can also generate close
to optimal solutions for other variants of the Steiner Tree
Problem and for problem instances for which the optimal
solution is not yet known.

"http://people.brunel.ac.uk /“mastjjb/jeb /info.html
2Optimal solutions seem to exist for the instances with more
than 100 terminal nodes, but we were unable to obtain them.

1380

MSTH STP-MSO

Problem size k bottleneck (%) bottleneck (%)
10 5 75.31 63.34

20 10 56.35 46.08

50 20 47.05 40.33

100 50 32.07 27.94

Table 2: MSTH vs STP-MSO. bottleneck (%) shows
the length of the bottleneck, relative to the mini-
mal spanning tree without Steiner points; k is the
number of Steiner points. STP-MSO was given 500
iterations and 500 particles per sub-swarm.

We tested the effectiveness of STP-MSO on the k-bottleneck
Steiner Tree Problem by comparing it with the Minimal
Spanning Tree Heuristic (MSTH) [3]. To our knowledge,
this is currently still one of the best deterministic heuristics
in literature and its approximation ratio is bounded above
by 2. The results can be seen in Table Our tests show
that STP-MSO outperforms MSTH by a significant margin:
the Steiner trees constructed by STP-MSO have a bottle-
neck that is, on average, 11% shorter than the bottleneck
of a Steiner Tree constructed by MSTH, with peaks of 17%
improvement over MSTH. We would have liked to compare
directly with the newer approximation algorithm devised by
Marcus Brazil et al. [I], but were unable to find an imple-
mentation. [I] performs up to 8% better than MSTH, so our
heuristics seem to outperform it as well.

5. CONCLUSION

Our method based on Swarm Intelligence is very effective
and not complex. Indeed, unlike other heuristics, it does
not rely on any mathematical properties of the problem.
It is also easily adaptable to other constraints and it has
a powerful visualization that can be of great help while
using the algorithm interactively. Our STP-MSO produces
near optimal results for the classic Steiner Tree Problem
and largely outperforms a deterministic heuristic on the
k-bottleneck STP. Our STP-MSO implementation in Java
can be found at https://github.com/TomDecroos/stp-mso.
A longer version of this paper is at
https://lirias.kuleuven.be/handle/123456789/473764.

Acknowledgements.
We thank Daan Seynaeve for his valuable comments to
improve this paper.

6. REFERENCES

[1] Marcus Brazil, Charl Ras, and Doreen Thomas. A new
algorithm for the euclidean k-bottleneck steiner
problem. In Proceedings of the 19th International
Symposium on Mathematical Theory of Networks and
Systems—MTNS, volume 5, 2010.

James Kennedy. Particle swarm optimization. In
Encyclopedia of Machine Learning, pages 760-766.
Springer, 2010.

L. Wang and D.-Z. Du. Approximations for a bottleneck
steiner tree problem. Algorithmica, 32(4):554-561, 2002.
P. Winter and M. Zachariasen. Large Euclidean Steiner
Minimum Trees in an Hour. Rapport (Kgbenhavns
universitet. Datalogisk institut). Datalogisk Institut,
Kgbenhavns Universitet, 1996.

2]

3]

[4]

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
https://github.com/TomDecroos/stp-mso
https://lirias.kuleuven.be/handle/123456789/473764

	Introduction
	The STP-MSO algorithm
	Improving efficiency
	Results
	Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

