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Abstract

Nonlinear model predictive control (NMPC) has become an important tool for op-

timization based control of many (bio)chemical systems. A requirement for a well-

performing NMPC implementation is obtaining and maintaining an appropriate

mathematical process model. To cope with model degradation in view of plant

changes and/or system evolution, developments have been made for linear systems

to incorporate the information content of future measurements in the closed loop

objective. However, formulations for integrated experiment design in nonlinear sys-

tems (iED-NMPC) remain scarce. Two different formulations are studied in this

paper and applied to a bioprocess, namely, algae growth as described by the Droop

model. First, a formulation for the integration of experiment design in linear dy-

namic systems is extended to nonlinear dynamic systems resulting in an NMPC

formulation with integrated experiment design. In a second approach, the notion of

economic optimal experiment design is incorporated within the NMPC formulation.

Here, an economic loss function related to inaccurate parameter estimates is mini-

mized instead of a measure of the parameter variances, resulting in improved control

performance. The advantage of the proposed techniques over a naive experiment

design integration approach is illustrated with Monte Carlo simulations.
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1. Introduction1

Cultivation of micro algae has a wide application potential ranging from re-2

newable energy to food and waste water treatment. To improve the exploitation3

of these micro algae on an industrial scale, advanced control techniques are indis-4

pensable for a flexible operation while accounting for operating constraints. This5

work considers the Droop model (Droop, 1968) for micro algae growth. It describes6

the ability of micro algae to store nutrients and the decoupling between substrate7

uptake and biomass growth. A specific challenge for bioprocess models is to re-8

main valid over time as organisms adapt their behavior, and to ensure a continued9

profitable/desired operation. However, given the inherent variability of biological10

systems model updates are inevitable.11

12

Model Predictive Control (MPC) has become an industry accepted technology ap-13

plicable for a wide variety of (bio)chemical (Forbes et al., 2015) systems. The basic14

idea behind MPC is to repeatedly solve a model-based optimal control problem to15

control the future behavior of the system (Lee, 2011). The main difference from16

the more traditional control strategies is that in MPC, the optimal control input is17

computed iteratively online based on a process model.18

19

Classic (linear) MPC consists of a linear system model, linear constraints and a20

quadratic (tracking) objective (Lee, 2011). Consequently, the global aim is a smooth21

tracking of an a priori determined target reference profile while continuously mini-22

mizing the effect of disturbances. In the last decades the MPC formulation has been23

extended to include nonlinear dynamic systems with nonlinear constraints (NMPC)24

and/or economic objectives (E(N)MPC). For a more detailed description the inter-25

ested reader is referred to, e.g., Morari and Lee (1999); Rawlings (2000); Diehl et al.26

(2002); Würth et al. (2009); Diehl et al. (2011).27

28

Before (N)MPC can be applied in practice, one of the main challenges is to ob-29

tain and to maintain an accurate process model for the system in consideration. In30

the literature it has been reported that one of the most expensive parts of MPC31

commissioning is the modeling effort (Larsson et al., 2013, 2015). However, in a32

2
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real-world operation, bioprocess systems tend to (gradually) change over time, so33

a model-based controller might not be able guarantee their optimal operation after34

certain time. The first critical step in the maintenance of model-based controllers is35

to distinguish between control-relevant plant changes and variations in disturbance36

characteristics. Following this strategy, Mesbah et al. (2015) recently developed an37

approach for linear systems.38

39

When it has been determined that the cause is a control-relevant plant change,40

a dedicated model (re)calibration is required to (re)adjust the model parameters41

to the observed system’s behavior (Larsson et al., 2015; Mesbah et al., 2015). To42

this extent, the data has to be such that the model parameters can be estimated43

accurately. To reduce the experimental burden and limit the cost, informative44

experiments need to be designed. The field of off-line model-based optimal experi-45

ment design (OED) for nonlinear dynamic systems started with Espie and Macchi-46

etto (1989) although many statisticians have addressed the issue earlier for static47

models (e.g., Fisher (1935); Kiefer and Wolfowitz (1959)) in the previous century.48

A recent overview of the state-of-the-art for nonlinear dynamic systems is given49

in Franceschini and Macchietto (2008). More recently, approaches have been devel-50

oped to design informative experiments where the only parameters considered are51

the ones relevant for the economic goal of the model (economic OED) (Recker et al.,52

2012; Houska et al., 2015). For linear dynamic systems the first study to address53

the intended model application in system identification has been Gevers and Ljung54

(1986). Online experiment design and re-identification approaches in which control55

is not considered can be found in Zhu and Huang (2011); Galvanin et al. (2012);56

Barz et al. (2013).57

58

In Espie and Macchietto (1989); Franceschini and Macchietto (2008); Yunfei Chu59

and Hahn (2013); Houska et al. (2015) experiments are designed and performed in60

an off-line framework in which systems are excited in contrast with the usual aim of61

(model predictive) control, i.e., reference tracking objectives and ensuring a smooth62

operation. Incorporating identification in the control loop results in the so-called63

dual control problem (e.g., Gevers (1993); Hasmet and Michael (1996); Bombois64

3
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et al. (2006); Gevers et al. (2011); Larsson et al. (2013); Forgione et al. (2015);65

Larsson et al. (2015). This dual control problem has been studied thoroughly for66

linear dynamic systems and is still an active field of research (e.g., (Forgione et al.,67

2015; Larsson et al., 2015; Mesbah et al., 2015; Heirung et al., 2015)), while it68

remains an open field for nonlinear dynamic systems (Gevers, 2006). One impor-69

tant reason is that the frequency domain identification approaches cannot directly70

be extended to nonlinear systems. In addition, operating constraints are hard to71

consider directly in classic frequency domain approaches (Larsson et al., 2013, 2015).72

73

In the current paper, the first contribution is the adaptation of a formulation for74

linear dynamic systems of Larsson et al. (2013, 2015) to nonlinear MPC, resulting75

in NMPC with integrated experiment design (iED-NMPC). The main challenge in76

the proposed formulation is that a nonlinear matrix inequality has to be added.77

However, the nonlinear matrix inequality is reformulated such that these problems78

can be implemented in standard NMPC packages (Houska et al., 2011; Lucia et al.,79

2014; Bhonsale et al., 2016) without the need for solving the nonlinear matrix in-80

equality explicitly. A second contribution of this paper is a formulation for joint81

identification and control based on economic optimal experiment design (Houska82

et al., 2015). This formulation requires the addition of one scalar constraint. Fur-83

thermore, this constraint has, in contrast to the alphabetic OED criteria in optimal84

experiment design, a straightforward economic interpretation. A third contribution85

is an extensive case study, for which the proposed techniques are compared with a86

naive integrated experiment design formulation.87

88

The paper is structured as follows: Section 2 reviews optimal experiment design and89

how the information content can be quantified with future applications in mind. In90

Section 3, the integrated experiment design formulations are presented. In Section 491

the employed case study based on the Droop model, is described. The numerical92

simulation results are discussed in Section 5. Finally, Section 6 summarizes the93

main conclusions.94

4
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2. Optimal experiment design95

This section reviews existing methods for optimal experiment design problem96

formulations for nonlinear dynamic systems. Throughout this paper, the notation97

dx

dτ
(τ) = f(x(τ), u(τ), p) ∀τ ∈ [t, t+ tp], (1)

is used to denote a set of parametric ordinary differential equations. Here, τ de-98

notes time, x the state vector, u input functions that we can choose to control the99

system, and p a parameter vector, whose exact value is unknown and needs to be100

(re)estimated. The dynamic system equations are represented by the right-hand101

side function f . In addition, the function h(x(t)) denotes a potentially nonlinear102

measurement function. The measurements itself, given by103

η(t) = h(x(t)) + v(t),

are affected by a zero mean Gaussian measurement noise with variance-covariance104

matrix E{v(τ)v(τ ′)⊤} = Q(τ)δ(τ − τ ′). The functions f and h are assumed to be105

twice continuously differentiable. Furthermore, in this section, the initial value of106

the system is considered known, i.e., x(t) = x0.107

108

The focus of Section 2.1 is on how the information content of the measurements η109

can be quantified. Subsequent sections review both the traditional alphabetic opti-110

mal experiment design criteria, as well as modern formulations based on application111

oriented optimal experiment design and economic optimal experiment design.112

2.1. Quantifying information113

One way to quantify the information content of the measurements η collected114

over the time horizon [t, t+ tp] is by computing the Fisher information matrix (Wal-115

ter and Pronzato, 1997; Franceschini and Macchietto, 2008), which is given by116

F (t+ tp) = F (t) +

∫ t+tp

t

∂x

∂p
(τ)

⊤ ∂h(x(τ))

∂x

⊤

Q(τ)−1 ∂h(x(τ))

∂x

∂x

∂p
(τ)dτ . (2)

Here, F (t) denotes the Fisher information with respect to the parameters till the117

time t. As the true values p0 for the system parameters p are unknown, the Fisher118

5
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information matrix is evaluated at the current best guess p̂, i.e., Fp̂. For the case that119

the measurements are only available at discrete time point rather than in continuous120

time, the Fisher information matrix can be computed similarly by replacing the121

integral in Equation (2) with a summation (Walter and Pronzato, 1997). Under122

the assumption of unbiased estimators and uncorrelated Gaussian noise, the inverse123

of F (t + tp) approximates the lower bound of the parameter estimation variance-124

covariance matrix, i.e., the Cramér-Rao bound (Ljung, 1999; Walter and Pronzato,125

1997). The sensitivities which are needed for the Fisher information matrix, are126

computed as the solution of the following ordinary differential equations:127

d

dτ

∂x

∂p
(τ) =

∂f

∂x
(x̂(τ), u(τ), p̂)

∂x

∂p
(τ) +

∂f

∂p
(x̂(τ), u(τ), p̂). (3)

Here, x̂(τ) is the solution of the set of ordinary differential equations:128

˙̂x(τ) = f(x̂(τ), u(τ), p̂), (4)

in which it is assumed that u(τ) is given. In an experiment design formulation both129

the Fisher information matrix Equation (2) and the sensitivity Equations (3) have130

to be added to the dynamic optimization formulation. Thus, the cost of computing131

the Fisher information matrix is determined by the cost of solving the variational132

differential equation (Equation (3)) comprising nx·np states, as well as the integral in133

Equation (2), which can alternatively be computed by solving a (trivial) differential134

equation with
np(·np+1)

2 differential states. An alternative approach for computing135

the F (t) is based on solving Riccati differential equation, as discussed in Telen et al.136

(2013).137

2.2. Alphabetic experiment design criteria138

In a classic optimal experiment design approach a scalar measure of the Fisher139

information matrix (Φ(·)) is usually optimized, which is often described by the140

so-called alphabetic design criteria. Some widely used scalar functions are listed141

below (Pukelsheim, 1993; Walter and Pronzato, 1997; Franceschini and Macchietto,142

2008):143

144

6
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• A-criterion: min[trace(F−1)]. An A-optimal design minimizes the average145

of the parameter estimation errors. Geometrically this is the minimization of146

the enclosing frame of the joint confidence region. A computationally efficient147

formulation using sequential semidefinite programming can be found in Te-148

len et al. (2014a). This criterion is sometimes heuristically reformulated as149

maximizing the trace of F .150

• D-criterion: max[det(F )]. A D-optimal design minimizes the geometric151

mean. Geometrically, this is minimizing the volume of the joint confidence152

region. A distinct advantage of this criterion is that it is scaling invariant.153

• E-criterion: max[λmin (F )]. E-optimal designs aim at minimizing the largest154

parameter error, which corresponds to minimizing the length of the largest155

uncertainty axis of the joint confidence region.156

• Modified E-criterion: min[λmax(F )
λmin(F ) ]. The modified E-criterion (ME-criterion)157

minimizes the condition number of the Fisher information matrix. A priori the158

theoretical lowest possible value of one is known (though not always achiev-159

able). This corresponds to circular joint confidence regions. However, an160

absolute decrease of the joint confidence region is not guaranteed with this161

criterion.162

A severe drawback of the aforementioned criteria is that there is no direct connection163

with how efficient the experiment is with respect to the later use of the model. It164

is entirely possible that too much effort is spent for estimating the parameters165

which hardly influence the considered operating objectives. In the following two166

subsections, approaches which consider the model application are discussed.167

2.3. Application oriented OED168

The technique which is discussed in this section has originally been developed169

for linear dynamic systems. As discussed previously, it is assumed that there ex-170

ists a vector p0 which contains the true system parameters (which have slowly171

evolved/changed over time after the NMPC development). The Fisher information172

matrix can subsequently be used to compute an approximation of the parameter173

7



Postprint version of paper published in Chemical Engineering Science 2017, vol. 160, p. 370-383. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage:  http://www.journals.elsevier.com/chemical-engineering-science/  
Original file available at: http://www.sciencedirect.com/science/article/pii/S0009250916305711 
 

 

confidence ellipsoid:174

P (α) = {p : (p− p0)
⊤Fp0

(p− p0) ≤ χ2
α(np)} , (5)

here χ2
α(np) is the α-percentile of the χ2-distribution with np degrees of free-175

dom (Walter and Pronzato, 1997) and Fp0
denotes the Fisher information matrix176

evaluated with the true system parameters. In Larsson et al. (2013, 2015) this el-177

lipsoid which approximates the set of estimates for a specified confidence level, is178

called the identification ellipsoid.179

180

In system identification the notion of an application cost has been introduced (Hjal-181

marsson, 2009; Larsson et al., 2013, 2015). It is a measure of the performance182

degradation due to model and plant mismatch. The application cost is denoted by183

Capp in the current paper. The following assumptions are made with respect to the184

application cost: Capp(p) ≥ 0 and Capp(p0) = 0. A model is considered acceptable185

if the degradation is small. A set of acceptable models is described by:186

S(γ) = {p : Capp(p) ≤ γ−1} , (6)

here γ represents an application specific constant governing the model accuracy187

(note that γ has the inverse units of the application cost). The larger gamma, the188

more accurate the model and the smaller the performance degradation. A discussion189

on how to choose γ can be found in Larsson (2011). A convex approximation190

of the set of acceptable models is obtained by requiring that Capp(p0) = 0 and191

∂Capp(p0)
∂p

= 0, so the set of acceptable model parameters is approximated by a192

second-order Taylor expansion (Larsson et al., 2013, 2015):193

E(γ) = {p : (p− p0)
⊤C

′′

app(p0)(p− p0) ≤ 2γ−1}. (7)

Here, C
′′

app denotes the Hessian of the application cost with respect to p.194

195

In Larsson et al. (2013, 2015), this ellipsoid is called the application ellipsoid. The196

goal of application oriented experiment design is to find an input with a high prob-197

8
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ability to result in acceptable parameters while minimizing the cost of the identifi-198

cation experiment. In Hjalmarsson (2009) it is suggested to formulate this aim as199

P (α) ⊂ E(γ) which means that the identification ellipsoid should be a subset of the200

application ellipsoid. Mathematically this is equivalent to:201

Fp0
≻

γχ2
α(np)

2
C

′′

app(p0) . (8)

Here, ≻ denotes the matrix inequality. So, this approach leads to a lower bound for202

the Fisher information matrix based on the considered application.203

204

Remark 1. A first important issue of this formulation is that both the com-205

putation of the Fisher information matrix as well as C
′′

app(p0) depend on p0, the206

true system parameters for the theoretical derivation. However, the goal is to design207

an experiment that yields the estimate p0. This means that in the formulations the208

current best guess for the parameters, i.e., p̂ has to be used instead of the unknown209

p0. As the values p̂ are not the true parameter values, the obtained profile has to210

be robust with respect to the information content and with respect to constraint211

satisfaction. This relates to the field of robust optimal experiment design/NMPC.212

The approaches presented in the literature, i.e., a worst case approach (Körkel213

et al., 2004) or an expected value approach (Ostrovsky et al., 2013; Li et al., 2008;214

Galvanin et al., 2010; Telen et al., 2014b; Mesbah and Streif, 2015; Rasoulian and215

Ricardez-Sandova, 2016), (possibly with chance constraints), can be used to extend216

and to make the presented approaches more robust.217

218

Remark 2. In Larsson (2011); Ebadat et al. (2014) several application costs have219

been discussed. In this paper a least squares type of function is employed:220

Capp(p) =

∫ tf

0

(x(τ)p − x(τ)p0
)⊤S(x(τ)p − x(τ)p0

)dτ , (9)

here, S is an user defined weighting matrix while x(τ)p0
are the state profiles based221

on parameter p0. The symbol x(τ)p denotes the state profiles based on parameter222

p. The goal is to minimize the model and plant difference over, e.g., the NMPC223

tracking profile. An advantage of such a least squares objective function is that the224

9
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Hessian can be consequently computed using a Gauss-Newton approximation. This225

results in the following:226

C
′′

app(p0) =

∫ tf

0

∂x

∂p
(τ)

∣

∣

∣

⊤

p0

S
∂x

∂p
(τ)

∣

∣

∣

p0

dτ . (10)

The above formulation which resembles quite closely the Fisher information matrix227

is subsequently used as lower bound for the Fisher information matrix. In Larsson228

et al. (2015) a relation between the different types of performance measures and the229

application cost is discussed.230

2.4. Economic experiment design231

In this section, the main idea of economic optimal experiment design is reviewed.232

Here, the main assumption is that the ultimate goal is to solve a parametric optimal233

control problem of the form:234

min
x(·),u(·)

∫ t+tp

t

J(x(τ), u(τ))dτ with

J(x(τ), u(τ)) =(x(τ) − xref(τ))
⊤W (x(τ) − xref(τ))+

(u(τ)− uref(τ))
⊤R(u(τ)− uref(τ)) (11)

subject to:235

dx

dτ
(τ) =f(x(τ), u(τ), p) ∀τ ∈ [t, t+ tp], (12)

u(τ) ∈U, x(τ) ∈ X, x(t+ tp) ∈ Xf , (13)

x(t) =x̄t. (14)

The vectors xref and uref denote the state and control reference profiles while the236

matrices R and W are positive semidefinite weighting matrices. Recall that the237

vector x contains the state variables while X is the set of the state bounds and Xf238

the terminal set. The set U is the set of admissible control values for the controls239

u. When, an optimal control problem is solved based on the current parameter240

estimate p̂, instead of the true system parameter p0 an optimality gap is obtained241

10
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which is mathematically defined in Houska et al. (2015) as:242

∆(p) := J(ξ∗(p̂, p0), u
∗(p̂))− J(ξ∗(p0, p0), u

∗(p0)) ,

where the function ξ∗(p̂, p0) denotes the solution of the dynamic equations:243

ξ̇(t) = f(ξ(t), u∗(p̂)(t), p0)

in dependence on p̂ and p0. The vector u∗(p) denotes an optimal solution for the244

control input profile u in dependence on p of the problem (11)-(14). In many245

experiment design approaches the parameter variance is minimized by optimizing246

some scalar measure of the Fisher information matrix. Instead, it is proposed247

in Houska et al. (2015) to determine the parameter p in such a way that this248

expected loss of optimality, i.e., Ep {∆(p)} is minimized. Unfortunately, the exact249

expectation value Ep {∆(p)} is rather difficult to compute, since the evaluation250

of the function ∆ requires to solve a parametric nonlinear programming problem.251

However, under mild assumptions on the objective function and the constraints,252

the function ∆ can be approximated by a second-order Taylor expansion of the253

Lagrangian based on the state and control profiles which have been obtained by254

solving the underlying optimal control problem on the current parameter estimate,255

see Houska et al. (2015) for more details:256

Ep ∆(p) ≈
1

2
Ep

(

(p− p0)
⊤V (p0)(p− p0)

)

=
1

2
Tr

(

V (p0)Ep

{

(p− p0)(p− p0)
⊤
})

.

The expression for the second-order expansion of the expected loss of optimality257

leads to the introduction of a weighted A-criterion of the form:258

ΦEconomic(F
−1
p̂ ) :=

1

2
Tr(V (p̂)F−1

p̂ ) .

Here, matrix V and the Fisher information matrix has to be evaluated at the cur-259

rently best available estimate p̂, since the exact parameter p0 is unknown. A formula260

to compute the function V (p̂) can be found in Houska et al. (2015). Based on this261

11
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definition, the economic optimal experiment design proceeds in exactly the same262

way as traditional optimal experiment design formulations with the only difference263

that a very particular choice for the scalar design criterion, namely the function264

ΦEconomic, is used for solving the optimal experiment design problem. A particu-265

lar feature of the economic experiment design criterion is that each parameter is266

directly weighted with the relative importance to the economic objective function.267

3. Integrated experiment design model predictive control268

The goal of this section is to discuss variants of nonlinear model predictive con-269

trol (NMPC) Rawlings (2000); Diehl et al. (2002) in order to control the system (1).270

However, instead of using a standard NMPC formulation, the focus of this paper271

is on integrated optimal experiment design criteria for NMPC. Such iED-NMPC272

formulations are needed if the model parameters, which have been obtained in a273

past NMPC commissioning, are not necessarily able to describe the future system274

behavior properly. In this situation, the MPC controller has to be used in com-275

bination with an estimator, e.g., an extended Kalman filter, or a moving horizon276

estimator (Robertson et al. (1996); Bagterp Jorgensen et al. (2007); Särkkä (2007)),277

in order to update the parameter estimates based on the incoming measurements.278

Now, the actual challenge is that not only the nominal control performance of the279

NMPC controller, but also the accuracy of future parameter estimates is influenced280

by the choice of the control input u. Consequently, iED-NMPC objectives intend281

to find a trade-off between optimizing the economic control performance and the282

information on future parameter estimates.283

284

Throughout this paper, it is assumed that the model structure itself remains valid285

(but the parameter estimate may be inaccurate). An approach to distinguish286

control-relevant system changes from variations in disturbance characteristics for287

linear systems can be found in Mesbah et al. (2015). In the remainder of the pa-288

per it is assumed that the controller has already been diagnosed with a significant289

control-relevant system change. Consequently, the model output and the actual290

systems behavior can be attributed to a slow degradation/evolution of natures pa-291

rameters, as conceptually illustrated in Figure 1.292

12
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293

In this section, the specifics of an NMPC formulation are discussed first. Sub-294

sequently, a naive integration of OED in NMPC is introduced. In the third sub-295

section, the first integrated experiment design formulation is presented while the296

section concludes with the second integrated experiment design formulation.297

3.1. NMPC formulation298

The optimal control problem (11)-(14) is solved at every step in the NMPC299

formulation employed in this paper (Vallerio et al., 2014). It is assumed that τ ∈300

[0, tf ] denotes the time and tf denotes the total length of the simulation/operation301

window. Note that in this paper a fixed final time for the NMPC is considered302

which is similar to NMPC formulations for batch processes. This is also motivated303

by the fact that also in continuous processes a limited experimental window can be304

allowed. The variable tp is the prediction horizon in the NMPC algorithm. The305

vector x̄t denotes the state measurements or estimates at time instance t.306

3.2. Naive integration of OED in NMPC307

A straightforward but naive formulation for integrating experiment design in308

NMPC is the following:309

min
x(·),u(·)

∫ t+tp

t

J(x(τ), u(τ))dτ with (15)

J(x(τ), u(τ)) =(x(τ) − xref(τ))
⊤W (x(τ) − xref(τ))+

(u(τ)− uref(τ))
⊤R(u(τ)− uref(τ))

subject to:310

311

Equations (2)-(3) and (12)-(14) and312

Φ (F (t+ tp)) ≥
t+ tp
tf

ΦLB, if tf /∈ [t, t+ tp] ,

Φ (F (tf)) ≥ΦLB, if tf ∈ [t, t+ tp]. (16)

Equation (16) guarantees the excitation of the system because the above formula-313

tion enforces a specific minimum value (ΦLB) of one of the scalar measures of the314

13
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Fisher information matrix at the end of experimental window tf of the NMPC run.315

316

A potential way to choose ΦLB could be by first performing an open loop multi-317

objective optimization for the total simulation time tf by considering both the max-318

imization of the information content and the objective of the NMPC. Based on the319

user preferences a compromise can be chosen as, e.g., suggested in Telen et al.320

(2012). A challenge which remains, is how the information content is related to the321

future system behavior. The following two formulations tackle the issue of relating322

information content to the expected system behavior in an integrated experiment323

design setting.324

325

Note. Besides an estimation or measurement of the actual states, the values of326

the sensitivity and Fisher information matrix elements need to be acquired. In327

this paper the exact values of the predictions are employed. In practice, how-328

ever, an estimation algorithm is required, e.g., an extended/unscented Kalman fil-329

ter (Särkkä, 2007; Bagterp Jorgensen et al., 2007) to estimate the actual sensitivity330

equations/Fisher information matrix elements from the noisy measurements of the331

actual state. For the illustrative purposes of the presented iED-NMPC approaches332

this aspect is considered out of the scope of the presented paper.333

3.3. iED-NMPC Formulation 1: A matrix inequality based integrated experiment334

design formulation335

By using the consideration from Section 2.3, an iED-NMPC formulation based336

on application oriented OED is obtained:337

min
x(·),u(·)

∫ t+tp

t

J(x(τ), u(τ))dτ (17)

J(x(τ), u(τ)) =(x(τ) − xref(τ))
⊤W (x(τ) − xref(τ))+

(u(τ)− uref(τ))
⊤R(u(τ)− uref(τ))

subject to:338

339

14
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Equations (2)-(3) and (12)-(14) and340

F (t+ tp)p0
≻

t+tp
tf

γχ2
α
(np)
2 C

′′

app(p0), if tf /∈ [t, t+ tp] ,

F (tf)p0
≻

γχ2
α
(np)
2 C

′′

app(p0), if tf ∈ [t, t+ tp].
(18)

In the above formulation there is a hard, time-dependent constraint that at tf the341

Fisher information matrix should satisfy the information constraint (18). This in-342

creases linearly as long as the final experimental time is not part of the prediction343

horizon and is fixed at the minimum required information content value when the344

final experimental time is part of the prediction horizon. These time-dependent345

constraints are necessary to ensure that the controller does not postpone the con-346

trol actions indefinitely required to sufficiently excite the system.347

348

Remark 1. An important issue in the presented approach is whether the lower349

bound based on the application cost leads to a feasible or infeasible nonlinear ma-350

trix inequality in the NMPC formulation. It is possible that for a given case study351

(with the chosen values for γ and the confidence level α) no Fisher information352

matrix exists that satisfies the given bound in the given experimental window. The353

idea is to increase the number of experiments (or the number of independent mea-354

surements in a single experiment which is mathematically equivalent but due to,355

e.g., lack of sensors can be harder to perform in practice) when a single experiment356

is expected not to be informative enough based on the a priori calculations. The357

following approach is suggested:358

1. Compute
γχ2

α
(np)
2 C

′′

app(p̂) based on the tracking NMPC profile of past opera-359

tions, check whether F (tf)p̂,NMPCrun ≻
γχ2

α
(np)
2 C

′′

app(p̂), if satisfied the NMPC360

run is already sufficiently informative, re-estimate parameters based on the361

NMPC data, if not, go to 2.362

2. Solve an off-line optimal experiment design optimization problem that opti-363

mizes one of alphabetic criteria, set nex = 1, check whether the F (tf)p̂,OED ≻364

γχ2
α
(np)

2nex
C

′′

app(p̂), if this is satisfied go to next step, otherwise nex = nex + 1365

and iterate till satisfied considering all nex experiments.366

3. Perform nex times the NMPC run (or measure each point nex times) with the367

information bound
γχ2

α
(np)

2nex
C

′′

app(p̂), collect all measurements and re-estimate368

15
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the parameters.369

There is always a trade-off between the information content in the experiment and370

the economic objective. If the user is interested in a thorough numerical trade-off371

investigation, the following papers are suggested (Telen et al., 2012) on optimal372

experiment design and (Vallerio et al., 2014) on NMPC and multi-objective opti-373

mization under uncertainty (Vallerio et al. (2015)).374

375

NMPC is in general a nonconvex optimization problem. In addition Equation (18)376

denotes a nonlinear matrix inequality. In a practical setting this nonlinear matrix377

inequality has to be addressed. A first approach to solve this can be a linearization378

such that a sequential semidefinite programming approach can be followed (Telen379

et al., 2014a). A drawback of this approach is that dedicated semidefinite pro-380

gramming solvers are required, which are not always available in standard NMPC381

packages. Furthermore, due to the linearization, convergence can be slow, especially382

important in the context of online identification and control. A second approach is383

to employ Sylvester’s criterion (Wicaksono and Marquardt, 2013; Telen et al., 2015).384

385

Sylvester’s criterion: a real-symmetric matrix A ∈ R
n×n is positive-definite386

if and only if all of the leading principal minors have a positive determinant.387

A ≻ 0 ⇐⇒ det
(

A[1:i×1:i]

)

> 0, ∀i = 1, . . . , n . (19)

When this criterion is applied the following integrated experiment design NMPC388

(iED-NMPC) formulation for Equation (18) is obtained:389

det

(

(

F (t+ tp)−
τ
tf

γχ2
α
(np)
2 C

′′

app(p0)
)

[1:i×1:i]

)

> 0

with i = 1, . . . , np, if tf /∈ [t, t+ tp]

det

(

(

F (tf)−
min(τ,tf)

tf

γχ2
α
(np)
2 C

′′

app(p0)
)

[1:i×1:i]

)

> 0

with i = 1, . . . , np, if tf ∈ [t, t+ tp].

(20)

The reformulation of the nonlinear matrix inequality into Equation (20) results in390

a problem formulation with np additional nonlinear constraints. The motivation of391

the presented approach is that iED-NMPC formulation 1 based on the above formu-392
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lation can subsequently be implemented in existing NMPC software (Houska et al.,393

2011; Lucia et al., 2014; Bhonsale et al., 2016) without the need for adaptations of394

the optimization routines.395

3.4. iED-NMPC Formulation 2: Economic integrated experiment design in (N)MPC396

Similar to the integrated experiment design approach of the previous paragraph,397

the following formulation is proposed which includes the economic optimal experi-398

ment design notation.399

min
x(·),u(·)

∫ t+tp

t

J(x(τ), u(τ))dτ (21)

J(x(τ), u(τ)) =(x(τ) − xref(τ))
⊤W (x(τ) − xref(τ))+

(u(τ)− uref(τ))
⊤R(u(τ)− uref(τ))

subject to:400

401

Equations (2)-(3) and (12)-(14) and402

1

2
Tr(V (p̂)F−1

p̂ (t+ tp)) ≤
tf

t+ tp
EUB if tf /∈ [t, t+ tp] , (22)

1

2
Tr(V (p̂)F−1

p̂ (tf)) ≤ EUB if tf ∈ [t, t+ tp] . (23)

The main difference between the proposed formulation of the current section and403

that of the previous section is the addition of a single scalar information constraint.404

This leads to a straightforward implementation in standard NMPC tools. A remain-405

ing issue is the choice of the upper bound EUB for the allowed economic optimality406

gap. The following strategy is proposed:407

1. Compute V (p̂) and ENMPC := 1
2 Tr(V (p̂)F−1

p̂ ) based on the computed NMPC408

profile, assess with the NMPC objective function value if the predicted eco-409

nomic loss is acceptable; if satisfied, perform experiment and re-estimate pa-410

rameters, else, go to 2.411

2. Solve an optimal experiment design optimization problem that minimizes,412

EOED := min 1
2 Tr(V (p̂)F−1

p̂ ), for which EOED ≤ ENMPC holds. This provides413

the minimum achievable optimality loss for the given objective function.414
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3. Choose EUB ∈ [EOED, ENMPC], based on preference.415

4. Perform the NMPC with the given information bound, collect measurements416

and re-estimate the parameters.417

As in this formulation p̂ is used as well, the information content has to be robust in418

the neighborhood of p̂. Potential approaches have been referred to in Remark 2 in419

Section 3.3. These approaches can be extended to include the formulation of this420

section.421

3.5. A discussion on the two approaches422

Both of the presented approaches try to reconcile the control of the system with423

a sufficient excitation of the system such that the parameters can be estimated424

accurately. Furthermore, both methods require a previously available function with425

corresponding state profiles. In iED-NMPC formulation 1, this is the application426

cost while in formulation 2 this is the so-called economic objective function. In427

addition, both methods perform a second-order Taylor approximation with respect428

to the considered parameters. The first main difference is in how subsequently these429

matrices are employed. In formulation 1, a matrix inequality is obtained to ensure430

that the predicted parameter ellipsoid is contained in a lower bound determined by431

the Taylor expansion. In the second approach this expansion serves as a weighting432

function with respect to the parameter variance-covariance matrix. When the trace433

of this matrix is computed, an approximation of the expected economic loss function434

is obtained. The second main difference is in the way the required information435

content is added to the optimization formulation. In formulation 1, this is through a436

nonlinear matrix inequality for which a dedicated treatment is required. In contrast,437

for the second formulation a single scalar constraint is sufficient which is easier to438

integrate in existing dynamic optimization software packages.439

Remark 3.1. Notice that even if the nominal objective is a strictly convex (least-440

squares) tracking term, the proposed iED-NMPC problem formulations lead to eco-441

nomic performance criteria that are in general neither convex nor in a least-squares442

tracking form anymore. In particular, the additional learning terms in the iED-443

NMPC formulation might destabilize the controller, if the iED-NMPC excites the444

system too extremely in order to be able to estimate the parameters. Unfortunately,445
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a mathematical stability analysis tailored for existing persistently exciting and iED-446

NMPC controllers is at the current status of research not available. However, the447

stability of general economic (N)MPC controllers has been analyzed by many au-448

thors (Amrit et al. (2011); Angeli et al. (2012); Diehl et al. (2011); Grune (2011);449

Houska (2015)). In the sense that the proposed iED-NMPC controllers can be inter-450

preted as economic NMPC controllers, the corresponding stability results can also be451

applied to analyze (and enforce) the stability of the proposed iED-NMPC controller.452

4. Case study453

The case study employed in this paper is the Droop model (Droop, 1968; Bernard,454

2011). It describes the growth of micro algae in a photobioreactor under constant455

temperature and illumination conditions. The model equations are given by:456

ĊS =− ρ(CS)CX −D(CS − Sin) , (24)

ĊQ =ρ(CS)− µ(CQ)CQ , (25)

ĊX =µ(CQ)CX −DCX . (26)

Here, the states, CS, CQ, and CX denote the substrate concentration (mg N/L),457

the intracellular quota (mg N/ mg C), and the biomass concentration (mg C/L).458

All states are assumed to be measurable with the following measurement variances,459

σ2
CS

= 1.0 (mg N/L)2, σ2
CQ

= 1.0 ·10−5 (mg N/ mg C)2, and σ2
CX

= 1.0 (mg C/L)2,460

the nondiagonal elements are assumed to be zero. The total simulation time or461

operation window is tf = 14 days, while the prediction time is tp = 7 days in the462

dynamic optimization problem. The control action is the dilution rate D, while463

Sin is the fixed, pre-set substrate concentration in the feed. For all optimizations,464

a single shooting approach is employed, where the control action is discretized in465

7 steps (each corresponding to a single day) so u = (D(0), . . . , D(tp − 1))⊤. All466

simulations are performed using the ACADO toolkit (Houska et al., 2011). The467

uptake rate is given by the following equation:468

ρ(CS) =ρm
CS

CS +Ks
, (27)
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while the growth rate is described by:469

µ(CQ) =µm

(

1−
Q0

CQ

)

. (28)

For this case study the tracking of the biomass concentration at 100 mg C/L is470

considered as the objective function:471

J =

∫ t+tp

0

(CX(t)− 100)2dt . (29)

In the model the following three parameters are of interest for the optimal experi-472

ment design procedure, i.e., p = (µm,Ks, ρm)
⊤. Initially, the parameters have been473

estimated to be p̂ = (1.6 day−1, 7.5 mg N/L, 0.10 mg N/ (mg C . day))⊤. The sys-474

tem, however, has evolved as is quite common in biochemical systems and the true475

system parameters for the simulations are given by:476

p0 = (1.2 day−1, 6.75 mg N/L, 0.125 mg N/ (mg C . day))⊤. Bounds on the oper-477

ating conditions and numerical values for the remaining constants are described in478

Table 1.479

480

The application cost employed for the given case study is:481

Capp(p) =

∫ tf

0

(CX(τ)p − CX(τ)track,p̂)
⊤(CX(τ)p − CX(τ)track,p̂)dτ , (30)

while γ = 0.1 (mg C/L)−2 and a 95% confidence level is targeted: Here, CX(τ)track,p̂482

denotes the obtained biomass state profile after a tracking NMPC run using the483

parameters p̂ in the controller and p0 in the bioprocess plant. To compute the lower484

bound for the Fisher information matrix, also the parameter sensitivity equations485

need to be computed from the NMPC run.486

5. Simulation results487

In this section the obtained numerical results are discussed. The simulation488

results of the NMPC controller are described in Subsection 5.1. Subsection 5.2489

discusses the naive integration approach. In Subsection 5.3, the results for the490

integrated experiment design formulation 1 are presented while in Subsection 5.4 the491
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results obtained with the integrated experiment design formulation 2 are described.492

5.1. NMPC simulations493

First, two linearized MPC implementations and a NMPC formulation are per-494

formed where the goal for all three is to track the biomass at 100 mg C/L. The495

corresponding biomass, substrate, internal quota and control profiles are displayed496

in Figure 2. A distinct difference is observed between the two linearized approaches.497

Linearized MPC-1 which has the same sampling period and prediction horizon as498

the NMPC controller has a poor tracking performance and even seems to fail to con-499

verge to the desired target of 100 mg C/L. This failure is considered to be caused500

by the long prediction horizon for which the linearized model results in poor predic-501

tions and the lack of timely feedback. For the linearized MPC-2 approach, a higher502

sampling rate (20 d−1) and a shorter prediction horizon (1 d) is chosen. Note that503

all control parameters are summarized in Table 2. A significant better control per-504

formance is observed for the latter linearized MPC approach with some overshoot505

and a slight offset in the remainder of the simulation horizon. Furthermore, a signif-506

icantly more oscillating control reaction with a switching type behavior is observed.507

Notice that all simulations are performed with the aforementioned model-plant mis-508

match. Thus, our numerical comparison of linearized MPC and NMPC illustrates509

that a more accurate nonlinear model can cope with slower sampling rates and a510

larger prediction horizon. In contrast, linearized MPC approaches for an inherent511

nonlinear process can possibly lead to an acceptable control performance. The price512

to pay is however an increased sampling rate. In essence a reduction of the mod-513

eling effort is moved to the hardware/sensors. This illustrates the arising dilemma514

for every practical (N)MPC implementation between on the one hand the model-515

ing/computational effort and the hardware/sampling rate requirement at the other516

hand.517

518

In addition, both the resulting states of the actual system based on p0 are depicted519

as well as the corresponding controller predictions based on p̂ for the NMPC con-520

troller. It can be observed from Figure 2 that the biomass concentration is slower in521

reaching the targeted value of 100 mg C/L. Predicted by the controller to reach the522

target after 2 days while it only arrives in the neighborhood after 6-7 days. If the523
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actual biomass concentration of the plant is investigated in detail, it is noted that524

the targeted of 100 mg C/L value is never actually reached and an offset is present525

throughout the simulation. This difference in predicted versus actual behavior is526

partially managed by the feedback principle but the large difference to reach the527

targeted value is the motivation the perform an identification experiment.528

5.2. A naive integration529

A first step in this naive approach is the investigation of the trade-off between530

the tracking objective J1 and the maximization of the information content, i.e.,531

J2 = min−λmin(F (tf)). So, an E-optimal design has been chosen. The resulting532

trade-off between these objectives is computed in open loop, i.e., without an NMPC533

formulation using a multi-objective optimization approach. These simulations are534

carried out based on p̂ as the true parameter values are not known. To illustrate the535

trade-off, a Pareto front of mathematically speaking equivalent points is depicted in536

Figure 3. These 11 points are computed based on a scalarization technique, i.e., the537

enhanced normalized normal constraint (Sanchis et al., 2008; Logist et al., 2010).538

Nevertheless, the weights of a classic weighted sum trade-off can be computed using539

the relations observed in Logist et al. (2012).540

541

A sharp trade-off is observed in the maximization of the information content and542

the minimization of the tracking error in Figure 3. The corresponding state and543

control profiles are illustrated in Figure 4. Three profiles are presented, each of the544

two anchor points, i.e., the optimization of each of the two single objectives and a545

single compromise/trade-off point (in Figure 3 denoted by the green square). Note546

the slight difference in the obtained control action between the NMPC and the open547

loop optimization for the tracking objective (Figure 2 and 5). The difference can548

be explained by the presence of feedback in the NMPC. The different aims of the549

different objectives and control actions is clearly visible in Figure 4. The dilution550

rate starts for the maximization of the information content only at the 5th day551

leading to a much slower growth of biomass. Furthermore, it reaches a maximum552

of 140 mg C/L at the 6th day to decrease to 60 mg C/L at the 12th day at which553

the feed stops. It thus depicts a strong oscillatory reaction to the feeding profile. In554

contrast, the initial biomass concentration for the tracking objective starts already555
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much higher. The feeding starts much earlier and subsequently decreases as it is556

targeted at maintaining the concentration at 100 mg C/L. The compromise exper-557

iment depicts properties of both extreme aims. It goes much faster to 100 mg C/L558

than the maximization of the information content profile. Its overshoot is lower and559

earlier and also its undershoot is not as high.560

561

To illustrate the naive integration, an NMPC run is envisioned in which the mini-562

mum eigenvalue (i.e., the E-criterion) has to be greater than 4.0 at the end of the563

simulation horizon. Mathematically, this is expressed this as λmin(F (tf)) ≥ 4.0. For564

the practical implementation the Sylvester’s criterion is employed to enforce this565

minimum eigenvalue (Telen et al., 2015). The obtained state and control profiles566

are displayed in Figure 5. In Figure 5, e.g., the biomass starts at almost the same567

concentration as in the NMPC tracking case where in Figure 4 this is notably lower.568

The biomass increases at the same pace as in the tracking case but overshoots up to569

120 mg C/L. Towards 7 days, the biomass concentration decreases to 100 mg C/L570

after which it increases again to 120 mg C/L at day 9. Subsequently it starts to571

decrease to 90 mg C/L in day 12 to rise slowly to 100 mg C/L at the final time point.572

573

A difference is observed when comparing Figure 4 and Figure 5 in the expected574

state evolutions. Two reasons can be envisioned. In NMPC a shorter prediction575

horizon is used than the open loop dynamic optimization (7 intervals versus 14.).576

Furthermore, in NMPC there is the aspect of feedback which is totally absent in577

the a priori open loop simulations. A first numerical simulation is performed by578

sampling 200 noise realizations for each of the 2 profiles and subsequently perform-579

ing a parameter estimation procedure. The results are given in Table 3. A decrease580

in the standard deviation with respect to µmax is observed while for the remaining581

parameter estimates this is more or less in accordance. The main noticeable dif-582

ference is that the mean parameter estimates of the naive approach are closer to583

the true system parameters p0 than the parameter estimates of the tracking profile.584

However, a significant problem with the naive approach is that an accurate assess-585

ment of the future model performance is not directly possible. In the following 2586

sections, the 2 presented integrated experiment design approaches are illustrated.587
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5.3. iED-NMPC Formulation 1588

Based on the obtained profiles of Figure 2, the Hessian of the application cost589

is computed. Note that as p0 is not known, this is computed based on p̂. The590

lower bound for the Fisher information matrix is computed where the aim is a 95%591

confidence region for the set of models which at most deviate 10 (mg C/L)2 as mea-592

sured in the application cost, this results in γ = 0.1 (mg C/L)−2. Next, the lower593

bound of the Fisher information matrix is computed and compared with the Fisher594

information matrix of the NMPC run. Also an off-line optimization is performed595

where the minimal eigenvalue of the Fisher information matrix is maximized. Based596

on these computations a minimum number of 3 experiments is required to estimate597

the parameters sufficiently accurate, i.e., do 3 NMPC runs with information content598

constraint/measure 3 times during a single NMPC run. For a relative small process599

model with 3 states and 3 considered parameters, the computational burden in the600

NMPC formulation increases already significantly. Besides the 3 states of the pro-601

cess model, 9 sensitivity equations are required in addition to 6 Fisher information602

matrix elements. So, for a relative small system a total of 18 ordinary differential603

equations are needed. Given the employed sampling rate, computational time is604

not a concern for the considered system in this paper, however, for larger systems605

this may be a point of concern.606

607

The obtained state profiles are displayed in Figure 6. The first two days of the608

iED-NMPC run, coincide with the NMPC run. After the biomass concentration609

reaches 90 mg C/L, the feeding rate is kept a 0.5 day−1 resulting in a sharp de-610

crease in biomass concentration but resulting in a slight increase in both the internal611

quota as well as the substrate concentration. It is assumed that this action is per-612

formed to increase the information content and to satisfy the information constraint.613

After seven days the period of feeding stops and the biomass concentration starts614

to increase again which is in the neighborhood of 100 mg C/L after 9 days. In the615

remaining part of the experiment the concentration of 100 mg C/L is maintained.616

617

A Monte Carlo simulation is performed to assess both the parameter accuracy as618

well as the performance with respect to the employed application cost. For each619
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case, the normal NMPC run and the iED-NMPC run, 200 realizations with 3 mea-620

surements for each time point are sampled. The resulting mean parameter estimates621

and the corresponding variances can be found in Table 4. It is observed that both622

profiles are able to recover the true system parameters p0. In addition, the tracking623

profile leads to a similar standard deviation for all parameters, except for Ks which624

is almost 25% larger compared with the iED-NMPC approach.625

626

When the application cost and the number of violations (exceeding the target ap-627

plication cost value) for each approach is computed, a value of 29.5% is obtained for628

the iED-NMPC approach while the NMPC leads to 63% violations. The a priori de-629

termined value of 5% is not reached. Consider that the Fisher information matrix630

is always an approximation of the true parameter variance-covariance matrix, in631

particular for nonlinear systems. As the experiment is designed with p̂, the robust632

experiment design approaches must/can be applied to guarantee the information633

level. However, this is out of scope for the current paper.634

635

The distribution of the application cost is also reported. The distribution is pre-636

sented as a box plot in Figure 7 (note the logarithmic scale). Mind however that the637

application cost is skewed, so the quartiles (Q1, Q2, and Q3) are emphasized instead638

of mean and variance. For Q1 the iED-NMPC experiments lead to 2.96 while the639

NMPC run leads to 6.1. For Q2 this is 5.9 versus 15.6 and for the third quartile,640

Q3 this is 12.0 versus 37.2. So, the presented iED-NMPC formulation leads to more641

informative NMPC runs compared with the tracking NMPC runs. Furthermore,642

this increased parameter accuracy leads to an enhanced control action in future643

runs, i.e., less deviations from the tracking biomass profile of p0.644

5.4. iED-NMPC Formulation 2645

The obtained biomass, substrate and internal quota profiles for the NMPC track-646

ing objective are also depicted in Figure 8. Based on the obtained profiles and647

control action the weighting matrix V is computed. The matrix V weighs the648

variance-covariance matrix such that an approximation of the expected economic649

loss can be computed. When the expected loss of the tracking profile is computed650

a value of 100 mg C/L is obtained. Furthermore, an off-line optimal experiment651
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design procedure is performed to determine the lowest obtainable economic loss.652

It is observed that the lowest possible value is 7.25 mg C/L for a single experi-653

ment. Based on the value for the objective function, the target of the integrated654

experiment design is set to 19 mg C/L. The obtained state profiles and control655

action of the second integrated experiment design formulation are presented in Fig-656

ure 8. In the integrated experiment design approach, a higher initial concentration657

of substrate is obtained while the initial biomass concentration is lower than in the658

NMPC run. The feeding profile results in a biomass increase to 140 mg C/L at day659

5. Afterwards the biomass concentration is reduced to 100 mg C/L and maintained660

at this level for the remainder of the simulation time.661

662

A Monte Carlo simulation is performed to assess both the parameter accuracy as663

well as the performance with respect to the predicted expected economic loss. So,664

for each case, the normal NMPC run (note that the normal NMPC run is the same665

as in Section 6.1) and the iED-NMPC run, 200 realizations of a single experiment666

are sampled. The resulting mean parameter estimates and the corresponding vari-667

ance can be found in Table 5. It can be observed that the iED-NMPC experiments668

are able to recover on average the true system parameters p0 with some uncertainty,669

in particular when compared to the previous section. Note that as only a single670

experiment/measurement is taken, the uncertainty is higher than in the previous671

formulation. The tracking profile parameters deviate more from p0. Furthermore, it672

leads to very large confidence regions. When these are compared with the obtained673

confidence bounds of the previous section, the benefit of repeating measurements674

multiple times/performing multiple experiments is clearly observed. In addition, it675

seems that parameter µmax benefits the most from the multiple repetitions. Its cor-676

responding confidence region increased by a factor 12 and 5 respectively compared677

with the confidence region of the previous section. A point of interest while com-678

paring the two formulations is that the smallest confidence regions are obtained for679

ρm and µm. From a biochemical point of view this makes sense as these parameters680

heavily influence the growth rate and the uptake rate, while it is known that the681

Michaelis constant has a lesser impact.682

683
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Besides the parameter accuracy, the incurred economic loss is investigated. This684

is done in the simulation because it is known what the true system parameters p0685

are. The box plot of both the NMPC and the integrated MPC design are presented686

in Figure 9 (note again the logarithmic scale). As the economic loss is skewed,687

the median (Q2) is reported. For the tracking profile Q2 = 555 whereas for the688

iED-NMPC formulation Q2 = 38 is obtained. With an objective function value689

of 1977 this means that in 50% of the parameter estimates a deviation of 2% or690

less from the objective function is reached. The first and third quartile are for the691

tracking profile Q1 = 85 and Q3 = 1911 while the iED-NMPC leads to Q1 = 9.0692

and Q3 = 140. These quartiles illustrate that the iED-NMPC estimates those pa-693

rameters accurately which are relevant for the tracking objective and which leads694

in turn to a model with minimal economic loss.695

696

Remark. In both formulations there is a difference in the predicted economic697

performance and the observed performance after the re-identification. The differ-698

ence can be attributed to the following factors: firstly, the predictions are performed699

using parameter values p̂ while the true system parameter values are p0. In an off700

line setting this difference has been the field of robust optimal experiment design. It701

is believed that the proposed formulations can benefit by formulating them in these702

robust experiment design settings. Secondly, the information content is quantified703

using the Fisher information matrix. This is a linear approximation of the pa-704

rameter variance-covariance matrix which can sometimes underestimate the actual705

parameter variance-covariance matrix (Heine et al., 2008).706

6. Conclusion707

In this paper two practical formulations for the integration of optimal experi-708

ment design in NMPC have been proposed with application to the Droop model.709

The first formulation is an adaptation of a formulation used in linear MPC. For710

nonlinear system, however, it results in a nonlinear matrix inequality. A solution711

strategy to reformulate the nonlinear matrix inequality has been presented based712

on Sylverster’s criterion. The second formulation is based on the notion of eco-713

nomic optimal experiment design which aims at reducing the expected economic714
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loss. This results in a single inequality that has to be added to the NMPC formu-715

lation. A distinct advantage of the suggested approaches is that they can be easily716

formulated in existing NMPC software packages without the need of tailored opti-717

mization tools. Furthermore, in contrast to a naive integration, an assessment of718

the future model performance is possible. The Droop model has been successfully719

recalibrated in closed loop by the two presented formulations. Both approaches720

have been validated using Monte Carlo simulation which illustrates their potential721

but also reveals the need to include more robust formulations in future work.722
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Table 1: Overview of the operating conditions and the remaining constants.

Operating conditions Constants
CS(0) ∈ [0, 15] mg N/L Q0 = 0.04 mg N/ (mg C)
CQ(0) ∈ [0, 0.10] mg N/ (mg C) Sin = 4.0 mg N/L
CX(0) ∈ [0, 40] mg C/L

D ∈ [0, 0.5] day−1

901

Table 2: Overview of the simulation parameters for the different controllers of Figure 2.

Controller type Prediction horizon [d] Sampling period [d]
Linearized MPC-1 7 1
Linearized MPC-2 1 0.05
NMPC 7 1

902

Table 3: Overview of the true system parameters and the obtained parameter estimates and their
corresponding standard deviation (between brackets) for the NMPC tracking profile and the naive
approach.

True system parameters Tracking NMPC Naive integration
µm,0 = 1.2 µ̂m = 1.59 (0.52) µ̂m = 1.24 (0.055)

Ks,0 = 6.75 K̂s = 3.58 (2.50) K̂s = 6.20 (2.57)
ρm,0 = 0.125 ρ̂m = 0.085 (0.043) ρ̂m = 0.113 (0.045)
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Table 4: Overview of the obtained parameter estimates and their corresponding standard deviation
(between brackets) for three tracking experiments and integrated experiment design formulation
1.

True system parameters Tracking NMPC iED-NMPC 1
µm,0 = 1.2 µ̂m = 1.22 (0.042) µ̂m = 1.22 (0.045)

Ks,0 = 6.75 K̂s = 6.86 (2.15) K̂s = 6.65 (1.76)
ρm,0 = 0.125 ρ̂m = 0.126 (0.032) ρ̂m = 0.122 (0.032)

Table 5: Overview of the obtained parameter estimates and their corresponding standard deviation
(between brackets) for a tracking experiment and integrated experiment design formulation 2.

True system parameters Tracking NMPC iED-NMPC 2
µm,0 = 1.2 µ̂m = 1.59 (0.52) µ̂m = 1.30 (0.19)

Ks,0 = 6.75 K̂s = 3.58 (2.50) K̂s = 6.07 (1.04)
ρm,0 = 0.125 ρ̂m = 0.085 (0.043) ρ̂m = 0.114 (0.025)

Figure 1: Illustration of the parameter evolution in the plant after a ∆t which induces a controller
update.
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Figure 2: Obtained plant state profiles (by p0) for two linearized MPC settings, the NMPC
approach and the by the controller predicted state behavior (based on p̂ for the NMPC approach).
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Figure 3: Pareto front illustrating the trade-off between the tracking objective J1 = [1.0, 0.0] and
the maximization E-criterion J2 = [0.0, 1.0].
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Figure 4: States and control actions for the tracking objective(wENNC = [1.0, 0.0]), the max-
imization of the E-criterion (wENNC = [0.0, 1.0]) and a compromise (wENNC = [0.5, 0.5]) as
denoted in Figure 3.
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Figure 5: States and control actions for NMPC and a naive integration where λmin(tf ) ≥ 4.0.
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Figure 6: Obtained plant state profiles and applied control action for both the tracking and iED-
NMPC formulation 1.
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Figure 7: Box plot of the application cost in logarithmic scale for the NMPC and iED-NMPC
approach (the targeted application cost value is the dashed line).
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Figure 8: Obtained plant state profiles and applied control action for both the tracking and iED-
NMPC formulation 2.
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Figure 9: Box plot of the expected economic loss in logarithmic scale for the NMPC and iED-
NMPC approach (the targeted expected economic loss is the dashed line).
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