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Abstract

Nonlinear model predictive control (NMPC) has become an important tool for op-
timization based control of many (bio)chemical systems. A requirement for a well-
performing NMPC implementation is obtaining and maintaining an appropriate
mathematical process model. To cope with model degradation in view of plant
changes and/or system evolution, developments have been made for linear systems
to incorporate the information content of future measurements in the closed loop
objective. However, formulations for integrated experiment design in nonlinear sys-
tems (IED-NMPC) remain scarce. Two different formulations are studied in this
paper and applied to a bioprocess, namely, algae growth as described by the Droop
model. First, a formulation for the integration of experiment design in linear dy-
namic systems is extended to nonlinear dynamic systems resulting in an NMPC
formulation with integrated experiment design. In a second approach, the notion of
economic optimal experiment design is incorporated within the NMPC formulation.
Here, an economic loss function related to inaccurate parameter estimates is mini-
mized instead of a measure of the parameter variances, resulting in improved control
performance. The advantage of the proposed techniques over a naive experiment
design integration approach is illustrated with Monte Carlo simulations.
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1 1. Introduction

2 Cultivation of micro algae has a wide application potential ranging from re-
3 newable energy to food and waste water treatment. To improve the exploitation
+ of these micro algae on an industrial scale, advanced control techniques are indis-
s pensable for a flexible operation while accounting for operating constraints. This
s work considers the Droop model (Droop, 1968) for micro algae growth. It describes
7 the ability of micro algae to store nutrients and the decoupling between substrate
s uptake and biomass growth. A specific challenge for bioprocess models is to re-
o main valid over time as organisms adapt their behavior, and to ensure a continued
10 profitable/desired operation. However, given the inherent variability of biological
un  systems model updates are inevitable.

12

13 Model Predictive Control (MPC) has become an industry accepted technology ap-
1 plicable for a wide variety of (bio)chemical (Forbes et al., 2015) systems. The basic
15 idea behind MPC is to repeatedly solve a model-based optimal control problem to
16 control the future behavior of the system (Lee, 2011). The main difference from
17 the more traditional control strategies is that in MPC, the optimal control input is
18 computed iteratively online based on a process model.

19

2 Classic (linear) MPC consists of a linear system model, linear constraints and a
x quadratic (tracking) objective (Lee, 2011). Consequently, the global aim is a smooth
2 tracking of an a priori determined target reference profile while continuously mini-
23 mizing the effect of disturbances. In the last decades the MPC formulation has been
2 extended to include nonlinear dynamic systems with nonlinear constraints (NMPC)
s and/or economic objectives (E(N)MPC). For a more detailed description the inter-
2 ested reader is referred to, e.g., Morari and Lee (1999); Rawlings (2000); Diehl et al.
2 (2002); Wiirth et al. (2009); Diehl et al. (2011).

28

2 Before (N)MPC can be applied in practice, one of the main challenges is to ob-
3 tain and to maintain an accurate process model for the system in consideration. In
s the literature it has been reported that one of the most expensive parts of MPC

» commissioning is the modeling effort (Larsson et al., 2013, 2015). However, in a
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13 real-world operation, bioprocess systems tend to (gradually) change over time, so
s a model-based controller might not be able guarantee their optimal operation after
55 certain time. The first critical step in the maintenance of model-based controllers is
s to distinguish between control-relevant plant changes and variations in disturbance
s characteristics. Following this strategy, Mesbah et al. (2015) recently developed an
3 approach for linear systems.

30

w0 When it has been determined that the cause is a control-relevant plant change,
s a dedicated model (re)calibration is required to (re)adjust the model parameters
» to the observed system’s behavior (Larsson et al., 2015; Mesbah et al., 2015). To
s this extent, the data has to be such that the model parameters can be estimated
w accurately. To reduce the experimental burden and limit the cost, informative
s experiments need to be designed. The field of off-line model-based optimal experi-
s ment design (OED) for nonlinear dynamic systems started with Espie and Macchi-
w etto (1989) although many statisticians have addressed the issue earlier for static
s models (e.g., Fisher (1935); Kiefer and Wolfowitz (1959)) in the previous century.
s A recent overview of the state-of-the-art for nonlinear dynamic systems is given
so in Franceschini and Macchietto (2008). More recently, approaches have been devel-
si  oped to design informative experiments where the only parameters considered are
2 the ones relevant for the economic goal of the model (economic OED) (Recker et al.,
53 2012; Houska et al., 2015). For linear dynamic systems the first study to address
s« the intended model application in system identification has been Gevers and Ljung
55 (1986). Online experiment design and re-identification approaches in which control
s is not considered can be found in Zhu and Huang (2011); Galvanin et al. (2012);
s»  Barz et al. (2013).

58

v In Espie and Macchietto (1989); Franceschini and Macchietto (2008); Yunfei Chu
s and Hahn (2013); Houska et al. (2015) experiments are designed and performed in
e an off-line framework in which systems are excited in contrast with the usual aim of
e (model predictive) control, i.e., reference tracking objectives and ensuring a smooth
63 operation. Incorporating identification in the control loop results in the so-called

s dual control problem (e.g., Gevers (1993); Hasmet and Michael (1996); Bombois
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s et al. (2006); Gevers et al. (2011); Larsson et al. (2013); Forgione et al. (2015);
s Larsson et al. (2015). This dual control problem has been studied thoroughly for
o linear dynamic systems and is still an active field of research (e.g., (Forgione et al.,
s 2015; Larsson et al., 2015; Mesbah et al., 2015; Heirung et al., 2015)), while it
o remains an open field for nonlinear dynamic systems (Gevers, 2006). One impor-
7 tant reason is that the frequency domain identification approaches cannot directly
n  be extended to nonlinear systems. In addition, operating constraints are hard to
2 consider directly in classic frequency domain approaches (Larsson et al., 2013, 2015).
73

7= In the current paper, the first contribution is the adaptation of a formulation for
s linear dynamic systems of Larsson et al. (2013, 2015) to nonlinear MPC, resulting
% in NMPC with integrated experiment design (iIED-NMPC). The main challenge in
7 the proposed formulation is that a nonlinear matrix inequality has to be added.
s However, the nonlinear matrix inequality is reformulated such that these problems
79 can be implemented in standard NMPC packages (Houska et al., 2011; Lucia et al.,
s 2014; Bhonsale et al., 2016) without the need for solving the nonlinear matrix in-
a1 equality explicitly. A second contribution of this paper is a formulation for joint
& identification and control based on economic optimal experiment design (Houska
s et al., 2015). This formulation requires the addition of one scalar constraint. Fur-
e thermore, this constraint has, in contrast to the alphabetic OED criteria in optimal
s experiment design, a straightforward economic interpretation. A third contribution
e 1s an extensive case study, for which the proposed techniques are compared with a
&7 naive integrated experiment design formulation.

o

s The paper is structured as follows: Section 2 reviews optimal experiment design and
o0 how the information content can be quantified with future applications in mind. In
o1 Section 3, the integrated experiment design formulations are presented. In Section 4
oo the employed case study based on the Droop model, is described. The numerical
o3 simulation results are discussed in Section 5. Finally, Section 6 summarizes the

o4 main conclusions.
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s 2. Optimal experiment design

96 This section reviews existing methods for optimal experiment design problem

o7 formulations for nonlinear dynamic systems. Throughout this paper, the notation

dx

E(T) = f(x(T),u(T),p) VT € [t’t+tp]’ (1)

s is used to denote a set of parametric ordinary differential equations. Here, 7 de-
% notes time, x the state vector, u input functions that we can choose to control the
w0 system, and p a parameter vector, whose exact value is unknown and needs to be
w1 (re)estimated. The dynamic system equations are represented by the right-hand
102 side function f. In addition, the function h(z(t)) denotes a potentially nonlinear

103 measurement function. The measurements itself, given by

w4 are affected by a zero mean Gaussian measurement noise with variance-covariance
s matrix E{v(7)v(7')T} = Q(7)6(7 — 7). The functions f and h are assumed to be
s twice continuously differentiable. Furthermore, in this section, the initial value of
w7 the system is considered known, i.e., z(t) = zo.

108

w9 The focus of Section 2.1 is on how the information content of the measurements 7
o can be quantified. Subsequent sections review both the traditional alphabetic opti-
m mal experiment design criteria, as well as modern formulations based on application

12 oriented optimal experiment design and economic optimal experiment design.

w 2.1. Quantifying information
114 One way to quantify the information content of the measurements 7 collected
us over the time horizon [t, t+t,] is by computing the Fisher information matrix (Wal-

us  ter and Pronzato, 1997; Franceschini and Macchietto, 2008), which is given by

o 5r T on(e(r) T =) Oz
F(t+tp):F(t)+/t g_p(T) w Qﬁ)lwg—pmd“ @

ur  Here, F(t) denotes the Fisher information with respect to the parameters till the

us  time t. As the true values pg for the system parameters p are unknown, the Fisher
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ue information matrix is evaluated at the current best guess p, i.e., Fj5. For the case that
1o the measurements are only available at discrete time point rather than in continuous
121 time, the Fisher information matrix can be computed similarly by replacing the
122 integral in Equation (2) with a summation (Walter and Pronzato, 1997). Under
123 the assumption of unbiased estimators and uncorrelated Gaussian noise, the inverse
v of F(t+ t,) approximates the lower bound of the parameter estimation variance-
s covariance matrix, i.e., the Cramér-Rao bound (Ljung, 1999; Walter and Pronzato,
s 1997). The sensitivities which are needed for the Fisher information matrix, are

127 computed as the solution of the following ordinary differential equations:

Fom = PLemaumnge s Temunn. 6

s Here, Z(7) is the solution of the set of ordinary differential equations:

2(r) = f(@(r),u(r),p), (4)

1o in which it is assumed that u(7) is given. In an experiment design formulation both
10 the Fisher information matrix Equation (2) and the sensitivity Equations (3) have
131 to be added to the dynamic optimization formulation. Thus, the cost of computing
122 the Fisher information matrix is determined by the cost of solving the variational
13 differential equation (Equation (3)) comprising ny-ny, states, as well as the integral in
13 Equation (2), which can alternatively be computed by solving a (trivial) differential

% differential states. An alternative approach for computing

13 equation with 2
s the F'(t) is based on solving Riccati differential equation, as discussed in Telen et al.

o (2013).

s 2.2. Alphabetic experiment design criteria

139 In a classic optimal experiment design approach a scalar measure of the Fisher
1o information matrix (®(-)) is usually optimized, which is often described by the
1w so-called alphabetic design criteria. Some widely used scalar functions are listed
12 below (Pukelsheim, 1993; Walter and Pronzato, 1997; Franceschini and Macchietto,

143 2008)

144
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145 e A-criterion: min[trace(F~!)]. An A-optimal design minimizes the average
146 of the parameter estimation errors. Geometrically this is the minimization of
47 the enclosing frame of the joint confidence region. A computationally efficient
148 formulation using sequential semidefinite programming can be found in Te-
149 len et al. (2014a). This criterion is sometimes heuristically reformulated as
150 maximizing the trace of F.

151 e D-criterion: max[det(F')]. A D-optimal design minimizes the geometric
152 mean. Geometrically, this is minimizing the volume of the joint confidence
153 region. A distinct advantage of this criterion is that it is scaling invariant.

154 e E-criterion: max|[Ayin (F')]. E-optimal designs aim at minimizing the largest
155 parameter error, which corresponds to minimizing the length of the largest
156 uncertainty axis of the joint confidence region.

157 e Modified E-criterion: min[%]. The modified E-criterion (ME-criterion)
158 minimizes the condition number of the Fisher information matrix. A priori the
159 theoretical lowest possible value of one is known (though not always achiev-
160 able). This corresponds to circular joint confidence regions. However, an
161 absolute decrease of the joint confidence region is not guaranteed with this
162 criterion.

163 A severe drawback of the aforementioned criteria is that there is no direct connection
16e  with how efficient the experiment is with respect to the later use of the model. It
s 1S entirely possible that too much effort is spent for estimating the parameters
16 which hardly influence the considered operating objectives. In the following two

17 subsections, approaches which consider the model application are discussed.

ws  2.3. Application oriented OED

169 The technique which is discussed in this section has originally been developed
o for linear dynamic systems. As discussed previously, it is assumed that there ex-
m ists a vector py which contains the true system parameters (which have slowly
w2 evolved/changed over time after the NMPC development). The Fisher information

173 matrix can subsequently be used to compute an approximation of the parameter
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s confidence ellipsoid:

P(a) ={p: (p—po) Fpo(p—po) < x2(np)} (5)

s here x2(n,) is the a-percentile of the y2-distribution with n, degrees of free-
w dom (Walter and Pronzato, 1997) and F),, denotes the Fisher information matrix
v evaluated with the true system parameters. In Larsson et al. (2013, 2015) this el-
s lipsoid which approximates the set of estimates for a specified confidence level, is
w9 called the identification ellipsoid.

180

w1 In system identification the notion of an application cost has been introduced (Hjal-
12 marsson, 2009; Larsson et al., 2013, 2015). It is a measure of the performance
13 degradation due to model and plant mismatch. The application cost is denoted by
18 Cypp in the current paper. The following assumptions are made with respect to the
s application cost: Capp(p) > 0 and Capp(po) = 0. A model is considered acceptable

185 if the degradation is small. A set of acceptable models is described by:

S(Y) ={p: Capp(p) <7 '}, (6)

17 here v represents an application specific constant governing the model accuracy

s (note that v has the inverse units of the application cost). The larger gamma, the

189 more accurate the model and the smaller the performance degradation. A discussion

wo on how to choose v can be found in Larsson (2011). A convex approximation

w1 of the set of acceptable models is obtained by requiring that Cupp(po) = 0 and
9Capp(Po)

e e = 0, so the set of acceptable model parameters is approximated by a

103 second-order Taylor expansion (Larsson et al., 2013, 2015):

E(y)={p: (»—po) Copp(po)(p —po) <277} (7)
1w Here, C’;,pp denotes the Hessian of the application cost with respect to p.

195

s In Larsson et al. (2013, 2015), this ellipsoid is called the application ellipsoid. The

17 goal of application oriented experiment design is to find an input with a high prob-
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108 ability to result in acceptable parameters while minimizing the cost of the identifi-
100 cation experiment. In Hjalmarsson (2009) it is suggested to formulate this aim as
200 P(a) C E(7) which means that the identification ellipsoid should be a subset of the
20 application ellipsoid. Mathematically this is equivalent to:

By - Dl ). 0
22 Here, > denotes the matrix inequality. So, this approach leads to a lower bound for
203 the Fisher information matrix based on the considered application.
204
205 Remark 1. A first important issue of this formulation is that both the com-
26 putation of the Fisher information matrix as well as C’;,pp(po) depend on pg, the
207 true system parameters for the theoretical derivation. However, the goal is to design
28 an experiment that yields the estimate pg. This means that in the formulations the
200 current best guess for the parameters, i.e., p has to be used instead of the unknown
20 po. As the values p are not the true parameter values, the obtained profile has to
an be robust with respect to the information content and with respect to constraint
22 satisfaction. This relates to the field of robust optimal experiment design/NMPC.
23 The approaches presented in the literature, i.e., a worst case approach (Korkel
2 et al., 2004) or an expected value approach (Ostrovsky et al., 2013; Li et al., 2008;
25 Galvanin et al., 2010; Telen et al., 2014b; Mesbah and Streif, 2015; Rasoulian and
26 Ricardez-Sandova, 2016), (possibly with chance constraints), can be used to extend
27 and to make the presented approaches more robust.
218
20 Remark 2. In Larsson (2011); Ebadat et al. (2014) several application costs have

220 been discussed. In this paper a least squares type of function is employed:

Cop(p) = / (£(T)p — (7)) TS (@) — £(r)po ) (9)

21 here, S is an user defined weighting matrix while z(7),, are the state profiles based
22 on parameter pg. The symbol x(7), denotes the state profiles based on parameter
23 p. The goal is to minimize the model and plant difference over, e.g., the NMPC

2¢  tracking profile. An advantage of such a least squares objective function is that the
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»s  Hessian can be consequently computed using a Gauss-Newton approximation. This

26 results in the following:

" b ax T ax
Capp(pO): 0 8_]) T S

S T)| dr. (10)

Po

27 The above formulation which resembles quite closely the Fisher information matrix
28 18 subsequently used as lower bound for the Fisher information matrix. In Larsson
2o et al. (2015) a relation between the different types of performance measures and the

20 application cost is discussed.

am 2.4. Economic experiment design

232 In this section, the main idea of economic optimal experiment design is reviewed.
23 Here, the main assumption is that the ultimate goal is to solve a parametric optimal

2 control problem of the form:

t+tp
(rr)lin()/ J(x(7),u(r))dr with

J(@(7), u(r)) =(2(7) = Tret (7)) "W (2(7) = Tret (7)) +

(u(r) — uref(T))TR(u(T) — Uref (7)) (11)
235 subject to:
j—i(ﬂ =f(x(r),u(r),p) V7T € [t,t +tp], (12)
u(r) el, z(r)eX, z(t+t,) e X, (13)
o(t) =7 (14)

26 The vectors o and uo denote the state and control reference profiles while the
27 matrices R and W are positive semidefinite weighting matrices. Recall that the
28 vector x contains the state variables while X is the set of the state bounds and X;
20 the terminal set. The set U is the set of admissible control values for the controls
a0 u. When, an optimal control problem is solved based on the current parameter

a1 estimate p, instead of the true system parameter py an optimality gap is obtained
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22 which is mathematically defined in Houska et al. (2015) as:

A(p) = J(& (s po), v (D)) — J (€ (o, po), u*(po)) ,

23 where the function £*(p, po) denotes the solution of the dynamic equations:

24 in dependence on p and pg. The vector u*(p) denotes an optimal solution for the
2s  control input profile u in dependence on p of the problem (11)-(14). In many
26 experiment design approaches the parameter variance is minimized by optimizing
27 some scalar measure of the Fisher information matrix. Instead, it is proposed
2 in Houska et al. (2015) to determine the parameter p in such a way that this
u9  expected loss of optimality, i.e., E, {A(p)} is minimized. Unfortunately, the exact
20 expectation value E, {A(p)} is rather difficult to compute, since the evaluation
1 of the function A requires to solve a parametric nonlinear programming problem.
2 However, under mild assumptions on the objective function and the constraints,
53 the function A can be approximated by a second-order Taylor expansion of the
4 Lagrangian based on the state and control profiles which have been obtained by
»5  solving the underlying optimal control problem on the current parameter estimate,

s see Houska et al. (2015) for more details:

E, A(p) %Ep ((p—po) "V (po)(p — po))

Q

_ %Tl" (V(po)Ey {(p — po)(p —p0) " }) -

»s7 The expression for the second-order expansion of the expected loss of optimality
s leads to the introduction of a weighted A-criterion of the form:

_ 1 JRgN,
(I)Economic(FA 1) = §TI‘(V(p)FA 1) .

p

0 Here, matrix V' and the Fisher information matrix has to be evaluated at the cur-
%0 rently best available estimate p, since the exact parameter pg is unknown. A formula

21 to compute the function V(p) can be found in Houska et al. (2015). Based on this
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%2 definition, the economic optimal experiment design proceeds in exactly the same
23 way as traditional optimal experiment design formulations with the only difference
x4 that a very particular choice for the scalar design criterion, namely the function
265 PEconomic, 1S used for solving the optimal experiment design problem. A particu-
x%6 lar feature of the economic experiment design criterion is that each parameter is

%7 directly weighted with the relative importance to the economic objective function.

xs 3. Integrated experiment design model predictive control

269 The goal of this section is to discuss variants of nonlinear model predictive con-
oo trol (NMPC) Rawlings (2000); Diehl et al. (2002) in order to control the system (1).
on However, instead of using a standard NMPC formulation, the focus of this paper
o2 18 on integrated optimal experiment design criteria for NMPC. Such iED-NMPC
o3 formulations are needed if the model parameters, which have been obtained in a
aa - past NMPC commissioning, are not necessarily able to describe the future system
o5 behavior properly. In this situation, the MPC controller has to be used in com-
a6 bination with an estimator, e.g., an extended Kalman filter, or a moving horizon
o7 estimator (Robertson et al. (1996); Bagterp Jorgensen et al. (2007); Sarkka (2007)),
23 in order to update the parameter estimates based on the incoming measurements.
29 Now, the actual challenge is that not only the nominal control performance of the
20 NMPC controller, but also the accuracy of future parameter estimates is influenced
2 by the choice of the control input u. Consequently, iED-NMPC objectives intend
22 to find a trade-off between optimizing the economic control performance and the
»3  information on future parameter estimates.

284

s Throughout this paper, it is assumed that the model structure itself remains valid
2 (but the parameter estimate may be inaccurate). An approach to distinguish
27 control-relevant system changes from variations in disturbance characteristics for
28 linear systems can be found in Mesbah et al. (2015). In the remainder of the pa-
280 per it is assumed that the controller has already been diagnosed with a significant
20 control-relevant system change. Consequently, the model output and the actual
21 systems behavior can be attributed to a slow degradation/evolution of natures pa-

22 rameters, as conceptually illustrated in Figure 1.

Journal homepage: http://www.iournaIs.elsevie{2com/chemicaI-engineering-science/
Original file available at: http://www.sciencedirect.com/science/article/pii/S0009250916305711




Postprint version of paper published in Chemical Engineering Science 2017, vol. 160, p. 370-383.

The content is identical to the published paper, but without the final typesetting by the publisher.

203

294

295

296

297

208

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

In this section, the specifics of an NMPC formulation are discussed first. Sub-
sequently, a naive integration of OED in NMPC is introduced. In the third sub-
section, the first integrated experiment design formulation is presented while the

section concludes with the second integrated experiment design formulation.

3.1. NMPC formulation

The optimal control problem (11)-(14) is solved at every step in the NMPC
formulation employed in this paper (Vallerio et al., 2014). It is assumed that 7 €
[0,t¢] denotes the time and t¢ denotes the total length of the simulation/operation
window. Note that in this paper a fixed final time for the NMPC is considered
which is similar to NMPC formulations for batch processes. This is also motivated
by the fact that also in continuous processes a limited experimental window can be
allowed. The variable ¢, is the prediction horizon in the NMPC algorithm. The

vector Ty denotes the state measurements or estimates at time instance .

3.2. Naive integration of OED in NMPC

A straightforward but naive formulation for integrating experiment design in

NMPC is the following:

t+tp
(rr)lin()/ J(x(7),u(r))dr with (15)

J(@(7),u(r)) =(z(1) — xref(T))TW(x(T) — Tref (7)) +

(w(7) = tret (7)) " R(u(7) — tret(7))

subject to:

Equations (2)-(3) and (12)-(14) and

t+1
B (F(t+1,) 2, it g [1t+1],
f
(I)(F(tf)) >0, ift¢ € [t,t—Ftp]. (16)

Equation (16) guarantees the excitation of the system because the above formula-

tion enforces a specific minimum value (@) of one of the scalar measures of the
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a5 Fisher information matrix at the end of experimental window ¢; of the NMPC run.
316

ar A potential way to choose ®pp could be by first performing an open loop multi-
as  objective optimization for the total simulation time ¢¢ by considering both the max-
a0 imization of the information content and the objective of the NMPC. Based on the
30 user preferences a compromise can be chosen as, e.g., suggested in Telen et al.
a1 (2012). A challenge which remains, is how the information content is related to the
3 future system behavior. The following two formulations tackle the issue of relating
33 information content to the expected system behavior in an integrated experiment
3¢ design setting.

325

26 INote. Besides an estimation or measurement of the actual states, the values of
37 the sensitivity and Fisher information matrix elements need to be acquired. In
s this paper the exact values of the predictions are employed. In practice, how-
29 ever, an estimation algorithm is required, e.g., an extended/unscented Kalman fil-
a0 ter (Sarkké, 2007; Bagterp Jorgensen et al., 2007) to estimate the actual sensitivity
s equations/Fisher information matrix elements from the noisy measurements of the
s actual state. For the illustrative purposes of the presented iED-NMPC approaches

;3 this aspect is considered out of the scope of the presented paper.

s 3.8, iED-NMPC Formulation 1: A matriz inequality based integrated experiment

335 design formulation

336 By using the consideration from Section 2.3, an iED-NMPC formulation based

s on application oriented OED is obtained:
t+tp
min / J(x(7),u(r))dr (17)
z()yu(s) Jy
J(@(),u(r)) =(@(7) = @ret (1) "W (@(7) = Trer (7)) +

((7) = tret (7)) T R(u(7) — tret(7))

18 subject to:

339
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s Equations (2)-(3) and (12)-(14) and

2(n " .
F(t+tp)po = %’YXQT(F’)C&pp(pO)v if tf ¢ [t7t+tp] ) (18)

2 n " .
Ft)py = 22l 0 (), if by € [t + 1),

s In the above formulation there is a hard, time-dependent constraint that at ¢¢ the
sz Fisher information matrix should satisfy the information constraint (18). This in-
w3 creases linearly as long as the final experimental time is not part of the prediction
s horizon and is fixed at the minimum required information content value when the
us  final experimental time is part of the prediction horizon. These time-dependent
us constraints are necessary to ensure that the controller does not postpone the con-
ur  trol actions indefinitely required to sufficiently excite the system.

38

u  Remark 1. An important issue in the presented approach is whether the lower
30 bound based on the application cost leads to a feasible or infeasible nonlinear ma-
1 trix inequality in the NMPC formulation. It is possible that for a given case study
52 (with the chosen values for 4 and the confidence level «) no Fisher information
33 matrix exists that satisfies the given bound in the given experimental window. The
3¢ idea is to increase the number of experiments (or the number of independent mea-
355 surements in a single experiment which is mathematically equivalent but due to,
36 €.g., lack of sensors can be harder to perform in practice) when a single experiment
7 1s expected not to be informative enough based on the a priori calculations. The

s following approach is suggested:

350 1. Compute MC” (p) based on the tracking NMPC profile of past opera-

app
360 tions, check whether F(tf)s NMPCrun > WC;W (p), if satisfied the NMPC
361 run is already sufficiently informative, re-estimate parameters based on the
362 NMPC data, if not, go to 2.

363 2. Solve an off-line optimal experiment design optimization problem that opti-
364 mizes one of alphabetic criteria, set nex = 1, check whether the F(t¢)s.0mp >
365 72%1(:;’) )O;,pp(ﬁ), if this is satisfied go to next step, otherwise nex = nex + 1
366 and iterate till satisfied considering all nqy experiments.

367 3. Perform ney times the NMPC run (or measure each point ney times) with the
368 information bound %@Cﬁpp (p), collect all measurements and re-estimate
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360 the parameters.

s There is always a trade-off between the information content in the experiment and
sn the economic objective. If the user is interested in a thorough numerical trade-off
m  investigation, the following papers are suggested (Telen et al., 2012) on optimal
w3 experiment design and (Vallerio et al., 2014) on NMPC and multi-objective opti-
s mization under uncertainty (Vallerio et al. (2015)).

375

s  NMPC is in general a nonconvex optimization problem. In addition Equation (18)
sz denotes a nonlinear matrix inequality. In a practical setting this nonlinear matrix
s inequality has to be addressed. A first approach to solve this can be a linearization
a9 such that a sequential semidefinite programming approach can be followed (Telen
0 et al., 2014a). A drawback of this approach is that dedicated semidefinite pro-
1 gramming solvers are required, which are not always available in standard NMPC
s packages. Furthermore, due to the linearization, convergence can be slow, especially
33 important in the context of online identification and control. A second approach is
s to employ Sylvester’s criterion (Wicaksono and Marquardt, 2013; Telen et al., 2015).
385

s Sylvester’s criterion: a real-symmetric matrix A € R™ "™ is positive-definite

s7  if and only if all of the leading principal minors have a positive determinant.
A= 0 < det (Aix1q) >0, Vi=1,...,n. (19)

s When this criterion is applied the following integrated experiment design NMPC
30 (IED-NMPC) formulation for Equation (18) is obtained:

T i(np) "
det ((F(t i) — E’YX 2 Capp(po))[l:ixlzi]> >0
with i=1,...,np, iftr & [t,¢+ 1]
min(7,te) Vx5 (np) A
det ((F(tf) -t app(po))[lzixlti]> >0

with i=1,...,np, iftf €[t +1tp)-

30 The reformulation of the nonlinear matrix inequality into Equation (20) results in
s a problem formulation with n;, additional nonlinear constraints. The motivation of
s the presented approach is that iED-NMPC formulation 1 based on the above formu-
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lation can subsequently be implemented in existing NMPC software (Houska et al.,
2011; Lucia et al., 2014; Bhonsale et al., 2016) without the need for adaptations of

the optimization routines.

3.4. tED-NMPC Formulation 2: Economic integrated experiment design in (N)MPC

Similar to the integrated experiment design approach of the previous paragraph,
the following formulation is proposed which includes the economic optimal experi-

ment design notation.

t+tp
I(Ivl)lfun(')/t J(x(7),u(r))dr (21)

J(@(7), u(r)) =(@(7) = Trer (7)) "W (@(7) = et (7)) +

(w(7) = urer(7)) " R(u(T) — tiret (7))

subject to:

Equations (2)-(3) and (12)-(14) and

1 N1 te .

5 TV F (t+1p)) < s Eup ifte ¢ [t,t+1tp], (22)
1
5 Tr(V(D)F, H(tr) < Bup  ifts € [t,t + 1] . (23)

The main difference between the proposed formulation of the current section and
that of the previous section is the addition of a single scalar information constraint.
This leads to a straightforward implementation in standard NMPC tools. A remain-
ing issue is the choice of the upper bound Eyp for the allowed economic optimality

gap. The following strategy is proposed:

1. Compute V(p) and Exmpc = 3 Tr(V([))Fﬁ_l) based on the computed NMPC
profile, assess with the NMPC objective function value if the predicted eco-
nomic loss is acceptable; if satisfied, perform experiment and re-estimate pa-
rameters, else, go to 2.

2. Solve an optimal experiment design optimization problem that minimizes,
EoED := min % Tr(V(]ﬁ)Fﬁ_l), for which Fogp < Enxmpc holds. This provides

the minimum achievable optimality loss for the given objective function.
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a1 3. Choose Fuyp € [Forp, Exmpc], based on preference.
416 4. Perform the NMPC with the given information bound, collect measurements
a7 and re-estimate the parameters.

as  As in this formulation p is used as well, the information content has to be robust in
a0 the neighborhood of p. Potential approaches have been referred to in Remark 2 in
a0 Section 3.3. These approaches can be extended to include the formulation of this

41 section.

w2 3.5. A discussion on the two approaches

23 Both of the presented approaches try to reconcile the control of the system with
w24 a sufficient excitation of the system such that the parameters can be estimated
w5 accurately. Furthermore, both methods require a previously available function with
w6 corresponding state profiles. In iED-NMPC formulation 1, this is the application
w27 cost while in formulation 2 this is the so-called economic objective function. In
w8 addition, both methods perform a second-order Taylor approximation with respect
w29 to the considered parameters. The first main difference is in how subsequently these
a0 matrices are employed. In formulation 1, a matrix inequality is obtained to ensure
a1 that the predicted parameter ellipsoid is contained in a lower bound determined by
a2 the Taylor expansion. In the second approach this expansion serves as a weighting
a3 function with respect to the parameter variance-covariance matrix. When the trace
s of this matrix is computed, an approximation of the expected economic loss function
.5 1s obtained. The second main difference is in the way the required information
a6 content is added to the optimization formulation. In formulation 1, this is through a
.7 nonlinear matrix inequality for which a dedicated treatment is required. In contrast,
s for the second formulation a single scalar constraint is sufficient which is easier to

s integrate in existing dynamic optimization software packages.

s Remark 3.1. Notice that even if the nominal objective is a strictly convex (least-
w1 squares) tracking term, the proposed iED-NMPC problem formulations lead to eco-
w2 nomic performance criteria that are in general neither convex nor in a least-squares
ws  tracking form anymore. In particular, the additional learning terms in the iED-
ws NMPC formulation might destabilize the controller, if the iED-NMPC' excites the

ws  system too extremely in order to be able to estimate the parameters. Unfortunately,
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wus  a mathematical stability analysis tailored for existing persistently exciting and iED-
wr - NMPC controllers is at the current status of research not available. However, the
ws  stability of general economic (N)MPC' controllers has been analyzed by many au-
wo  thors (Amrit et al. (2011); Angeli et al. (2012); Diehl et al. (2011); Grune (2011);
w0 Houska (2015)). In the sense that the proposed iED-NMPC controllers can be inter-
w1 preted as economic NMPC' controllers, the corresponding stability results can also be

w2 applied to analyze (and enforce) the stability of the proposed iED-NMPC' controller.

s34, Case study

454 The case study employed in this paper is the Droop model (Droop, 1968; Bernard,
5 2011). It describes the growth of micro algae in a photobioreactor under constant

w6 temperature and illumination conditions. The model equations are given by:

Cs = - p(Os)OX - D(Os - Sin) s (24)
Cq =p(Cs) — u(Cq)Cq . (25)
CX :,LL(OQ)OX - DCx . (26)

ss7 Here, the states, Cs, Cq, and Cx denote the substrate concentration (mg N/L),
w8 the intracellular quota (mg N/ mg C), and the biomass concentration (mg C/L).
w9 All states are assumed to be measurable with the following measurement variances,
w o2, =10 (mg N/L)* 02, =1.0-107° (mg N/ mg C)*, and 02 = 1.0 (mg C/L)%,
w1 the nondiagonal elements are assumed to be zero. The total simulation time or
w2 operation window is ¢y = 14 days, while the prediction time is ¢, = 7 days in the
w3 dynamic optimization problem. The control action is the dilution rate D, while
ws Sip is the fixed, pre-set substrate concentration in the feed. For all optimizations,
w5 a single shooting approach is employed, where the control action is discretized in
ws 7 steps (each corresponding to a single day) so u = (D(0),...,D(t, — 1))T. All
w7 simulations are performed using the ACADO toolkit (Houska et al., 2011). The
ws uptake rate is given by the following equation:

Cs

Cs) =pum
p( S) p Cs + K
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w9 while the growth rate is described by:

Qo

#(Ca) —tim (1 -2, (28)
Q

«o  For this case study the tracking of the biomass concentration at 100 mg C/L is

an considered as the objective function:
t+tp
J= / (Cx (t) — 100)?dt . (29)
0

a2 In the model the following three parameters are of interest for the optimal experi-
w3 ment design procedure, i.e., p = (um, K, pm) ' . Initially, the parameters have been
a  estimated to be p = (1.6 day ™ *, 7.5 mg N/L,0.10 mg N/ (mg C . day))". The sys-
a5 tem, however, has evolved as is quite common in biochemical systems and the true
as  system parameters for the simulations are given by:

a po = (1.2 day ', 6.75 mg N/L,0.125 mg N/ (mg C . day)) . Bounds on the oper-
as  ating conditions and numerical values for the remaining constants are described in
a0 Table 1.

280

w1 The application cost employed for the given case study is:
te
Capp(P) = / (Cx(1)p — CX(T)track,ﬁ)T(CX(T)p — Ox (7 )track,5)dT (30)
0

w2 while y = 0.1 (mg C/L)~2 and a 95% confidence level is targeted: Here, Cx (7)track,p
w3 denotes the obtained biomass state profile after a tracking NMPC run using the
ws  parameters p in the controller and pg in the bioprocess plant. To compute the lower
w5 bound for the Fisher information matrix, also the parameter sensitivity equations

ss  need to be computed from the NMPC run.

w7 5. Simulation results

488 In this section the obtained numerical results are discussed. The simulation
s results of the NMPC controller are described in Subsection 5.1. Subsection 5.2
w0 discusses the naive integration approach. In Subsection 5.3, the results for the

w1 integrated experiment design formulation 1 are presented while in Subsection 5.4 the
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w2 results obtained with the integrated experiment design formulation 2 are described.

w3 0.1. NMPC simulations

204 First, two linearized MPC implementations and a NMPC formulation are per-
w5 formed where the goal for all three is to track the biomass at 100 mg C/L. The
w6 corresponding biomass, substrate, internal quota and control profiles are displayed
w7 in Figure 2. A distinct difference is observed between the two linearized approaches.
ws Linearized MPC-1 which has the same sampling period and prediction horizon as
w0 the NMPC controller has a poor tracking performance and even seems to fail to con-
so  verge to the desired target of 100 mg C/L. This failure is considered to be caused
s by the long prediction horizon for which the linearized model results in poor predic-
s2  tions and the lack of timely feedback. For the linearized MPC-2 approach, a higher
s sampling rate (20 d~1) and a shorter prediction horizon (1 d) is chosen. Note that
sos  all control parameters are summarized in Table 2. A significant better control per-
sos formance is observed for the latter linearized MPC approach with some overshoot
so6 and a slight offset in the remainder of the simulation horizon. Furthermore, a signif-
sov icantly more oscillating control reaction with a switching type behavior is observed.
ss  Notice that all simulations are performed with the aforementioned model-plant mis-
soo  match. Thus, our numerical comparison of linearized MPC and NMPC illustrates
s that a more accurate nonlinear model can cope with slower sampling rates and a
su larger prediction horizon. In contrast, linearized MPC approaches for an inherent
sz nonlinear process can possibly lead to an acceptable control performance. The price
si3 to pay is however an increased sampling rate. In essence a reduction of the mod-
sie eling effort is moved to the hardware/sensors. This illustrates the arising dilemma
sis  for every practical (N)MPC implementation between on the one hand the model-
s ing/computational effort and the hardware/sampling rate requirement at the other
si7 - hand.

518

si9  In addition, both the resulting states of the actual system based on pg are depicted
s0 as well as the corresponding controller predictions based on p for the NMPC con-
s troller. It can be observed from Figure 2 that the biomass concentration is slower in
s» reaching the targeted value of 100 mg C/L. Predicted by the controller to reach the

s3  target after 2 days while it only arrives in the neighborhood after 6-7 days. If the
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s« actual biomass concentration of the plant is investigated in detail, it is noted that
5 the targeted of 100 mg C/L value is never actually reached and an offset is present
s26  throughout the simulation. This difference in predicted versus actual behavior is
sz partially managed by the feedback principle but the large difference to reach the

s targeted value is the motivation the perform an identification experiment.

s0  5.2. A naive integration

530 A first step in this naive approach is the investigation of the trade-off between
s the tracking objective J; and the maximization of the information content, i.e.,
s Jo = min —Apin(F(t¢)). So, an E-optimal design has been chosen. The resulting
533 trade-off between these objectives is computed in open loop, i.e., without an NMPC
s formulation using a multi-objective optimization approach. These simulations are
s35  carried out based on p as the true parameter values are not known. To illustrate the
s  trade-off, a Pareto front of mathematically speaking equivalent points is depicted in
sv Figure 3. These 11 points are computed based on a scalarization technique, i.e., the
s enhanced normalized normal constraint (Sanchis et al., 2008; Logist et al., 2010).
s39  Nevertheless, the weights of a classic weighted sum trade-off can be computed using
se0  the relations observed in Logist et al. (2012).

541

so A sharp trade-off is observed in the maximization of the information content and
3 the minimization of the tracking error in Figure 3. The corresponding state and
saa - control profiles are illustrated in Figure 4. Three profiles are presented, each of the
ss  two anchor points, i.e., the optimization of each of the two single objectives and a
s single compromise/trade-off point (in Figure 3 denoted by the green square). Note
sev  the slight difference in the obtained control action between the NMPC and the open
s loop optimization for the tracking objective (Figure 2 and 5). The difference can
ss9  be explained by the presence of feedback in the NMPC. The different aims of the
sso  different objectives and control actions is clearly visible in Figure 4. The dilution
ss1  rate starts for the maximization of the information content only at the 5th day
52 leading to a much slower growth of biomass. Furthermore, it reaches a maximum
5 of 140 mg C/L at the 6th day to decrease to 60 mg C/L at the 12th day at which
s« the feed stops. It thus depicts a strong oscillatory reaction to the feeding profile. In

s contrast, the initial biomass concentration for the tracking objective starts already
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sss much higher. The feeding starts much earlier and subsequently decreases as it is
ss7 targeted at maintaining the concentration at 100 mg C/L. The compromise exper-
s iment depicts properties of both extreme aims. It goes much faster to 100 mg C/L
59 than the maximization of the information content profile. Its overshoot is lower and
sso earlier and also its undershoot is not as high.

561

s2 1o illustrate the naive integration, an NMPC run is envisioned in which the mini-
52 mum eigenvalue (i.e., the E-criterion) has to be greater than 4.0 at the end of the
s simulation horizon. Mathematically, this is expressed this as Apmin(F(t¢)) > 4.0. For
ss  the practical implementation the Sylvester’s criterion is employed to enforce this
s minimum eigenvalue (Telen et al., 2015). The obtained state and control profiles
ss7 are displayed in Figure 5. In Figure 5, e.g., the biomass starts at almost the same
ss  concentration as in the NMPC tracking case where in Figure 4 this is notably lower.
sso T'he biomass increases at the same pace as in the tracking case but overshoots up to
so 120 mg C/L. Towards 7 days, the biomass concentration decreases to 100 mg C/L
sn  after which it increases again to 120 mg C/L at day 9. Subsequently it starts to
sz decrease to 90 mg C/L in day 12 to rise slowly to 100 mg C/L at the final time point.
573

s A difference is observed when comparing Figure 4 and Figure 5 in the expected
sis - state evolutions. Two reasons can be envisioned. In NMPC a shorter prediction
s horizon is used than the open loop dynamic optimization (7 intervals versus 14.).
sz Furthermore, in NMPC there is the aspect of feedback which is totally absent in
s.s the a priori open loop simulations. A first numerical simulation is performed by
st sampling 200 noise realizations for each of the 2 profiles and subsequently perform-
s0  ing a parameter estimation procedure. The results are given in Table 3. A decrease
ss1  in the standard deviation with respect to fimax is observed while for the remaining
s2  parameter estimates this is more or less in accordance. The main noticeable dif-
ss3  ference is that the mean parameter estimates of the naive approach are closer to
ss«  the true system parameters pg than the parameter estimates of the tracking profile.
sss  However, a significant problem with the naive approach is that an accurate assess-
sss  ment of the future model performance is not directly possible. In the following 2

se7  sections, the 2 presented integrated experiment design approaches are illustrated.
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ses 0.3, iED-NMPC Formulation 1

589 Based on the obtained profiles of Figure 2, the Hessian of the application cost
s is computed. Note that as pg is not known, this is computed based on p. The
s lower bound for the Fisher information matrix is computed where the aim is a 95%
s confidence region for the set of models which at most deviate 10 (mg C/L)? as mea-
s sured in the application cost, this results in v = 0.1 (mg C/L)~2. Next, the lower
sa  bound of the Fisher information matrix is computed and compared with the Fisher
sos information matrix of the NMPC run. Also an off-line optimization is performed
ss¢ where the minimal eigenvalue of the Fisher information matrix is maximized. Based
so7 on these computations a minimum number of 3 experiments is required to estimate
ss the parameters sufficiently accurate, i.e., do 3 NMPC runs with information content
s0 constraint/measure 3 times during a single NMPC run. For a relative small process
s0 model with 3 states and 3 considered parameters, the computational burden in the
s NMPC formulation increases already significantly. Besides the 3 states of the pro-
s cess model, 9 sensitivity equations are required in addition to 6 Fisher information
603 matrix elements. So, for a relative small system a total of 18 ordinary differential
64 equations are needed. Given the employed sampling rate, computational time is
6s not a concern for the considered system in this paper, however, for larger systems
e this may be a point of concern.

607

es The obtained state profiles are displayed in Figure 6. The first two days of the
e0 1ED-NMPC run, coincide with the NMPC run. After the biomass concentration
a0 reaches 90 mg C/L, the feeding rate is kept a 0.5 day~! resulting in a sharp de-
61 crease in biomass concentration but resulting in a slight increase in both the internal
sz quota as well as the substrate concentration. It is assumed that this action is per-
ez formed to increase the information content and to satisfy the information constraint.
ou  After seven days the period of feeding stops and the biomass concentration starts
ss  to increase again which is in the neighborhood of 100 mg C/L after 9 days. In the
a6 remaining part of the experiment the concentration of 100 mg C/L is maintained.
617

es A Monte Carlo simulation is performed to assess both the parameter accuracy as

si0  well as the performance with respect to the employed application cost. For each
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60 case, the normal NMPC run and the iED-NMPC run, 200 realizations with 3 mea-
e1 surements for each time point are sampled. The resulting mean parameter estimates
62 and the corresponding variances can be found in Table 4. It is observed that both
63 profiles are able to recover the true system parameters py. In addition, the tracking
64 profile leads to a similar standard deviation for all parameters, except for Ky which
s 1s almost 25% larger compared with the iIED-NMPC approach.

626

sz When the application cost and the number of violations (exceeding the target ap-
ws plication cost value) for each approach is computed, a value of 29.5% is obtained for
e20 the IED-NMPC approach while the NMPC leads to 63% violations. The a priori de-
s0 termined value of 5% is not reached. Consider that the Fisher information matrix
e 1s always an approximation of the true parameter variance-covariance matrix, in
62 particular for nonlinear systems. As the experiment is designed with p, the robust
13 experiment design approaches must/can be applied to guarantee the information
e level. However, this is out of scope for the current paper.

635

63 The distribution of the application cost is also reported. The distribution is pre-
s sented as a box plot in Figure 7 (note the logarithmic scale). Mind however that the
s application cost is skewed, so the quartiles (Q1, @2, and Q3) are emphasized instead
6 of mean and variance. For @)1 the iED-NMPC experiments lead to 2.96 while the
60 NMPC run leads to 6.1. For Q2 this is 5.9 versus 15.6 and for the third quartile,
61 Q3 this is 12.0 versus 37.2. So, the presented iED-NMPC formulation leads to more
sz informative NMPC runs compared with the tracking NMPC runs. Furthermore,
e3 this increased parameter accuracy leads to an enhanced control action in future

6a rTUNS, i.€., less deviations from the tracking biomass profile of py.

65 I.4. iED-NMPC Formulation 2

646 The obtained biomass, substrate and internal quota profiles for the NMPC track-
e7 ing objective are also depicted in Figure 8. Based on the obtained profiles and
ss control action the weighting matrix V is computed. The matrix V weighs the
&9 variance-covariance matrix such that an approximation of the expected economic
o0 loss can be computed. When the expected loss of the tracking profile is computed

e a value of 100 mg C/L is obtained. Furthermore, an off-line optimal experiment

Journal homepage: http://www.iournals.elsevieﬁscom/chemicaI-engineering-science/
Original file available at: http://www.sciencedirect.com/science/article/pii/S0009250916305711




Postprint version of paper published in Chemical Engineering Science 2017, vol. 160, p. 370-383.
The content is identical to the published paper, but without the final typesetting by the publisher.

62 design procedure is performed to determine the lowest obtainable economic loss.
s3It is observed that the lowest possible value is 7.25 mg C/L for a single experi-
o4 ment. Based on the value for the objective function, the target of the integrated
s experiment design is set to 19 mg C/L. The obtained state profiles and control
e action of the second integrated experiment design formulation are presented in Fig-
67 ure 8. In the integrated experiment design approach, a higher initial concentration
es of substrate is obtained while the initial biomass concentration is lower than in the
0o NMPC run. The feeding profile results in a biomass increase to 140 mg C/L at day
wo 5. Afterwards the biomass concentration is reduced to 100 mg C/L and maintained
e at this level for the remainder of the simulation time.

662

63 A Monte Carlo simulation is performed to assess both the parameter accuracy as
es  well as the performance with respect to the predicted expected economic loss. So,
s for each case, the normal NMPC run (note that the normal NMPC run is the same
w6 as in Section 6.1) and the iIED-NMPC run, 200 realizations of a single experiment
67 are sampled. The resulting mean parameter estimates and the corresponding vari-
es ance can be found in Table 5. It can be observed that the iED-NMPC experiments
60 are able to recover on average the true system parameters py with some uncertainty,
60 in particular when compared to the previous section. Note that as only a single
e experiment/measurement is taken, the uncertainty is higher than in the previous
o2 formulation. The tracking profile parameters deviate more from py. Furthermore, it
o3 leads to very large confidence regions. When these are compared with the obtained
e« confidence bounds of the previous section, the benefit of repeating measurements
o5 multiple times/performing multiple experiments is clearly observed. In addition, it
o6 seems that parameter py,ax benefits the most from the multiple repetitions. Its cor-
o7 responding confidence region increased by a factor 12 and 5 respectively compared
es  with the confidence region of the previous section. A point of interest while com-
o9 paring the two formulations is that the smallest confidence regions are obtained for
60  pm and ppy,. From a biochemical point of view this makes sense as these parameters
61 heavily influence the growth rate and the uptake rate, while it is known that the
62 Michaelis constant has a lesser impact.

683
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s Besides the parameter accuracy, the incurred economic loss is investigated. This
65 1s done in the simulation because it is known what the true system parameters pg
e are. The box plot of both the NMPC and the integrated MPC design are presented
s in Figure 9 (note again the logarithmic scale). As the economic loss is skewed,
s the median (Q2) is reported. For the tracking profile Q2 = 555 whereas for the
e0  1IED-NMPC formulation Q2 = 38 is obtained. With an objective function value
s0 of 1977 this means that in 50% of the parameter estimates a deviation of 2% or
s1 less from the objective function is reached. The first and third quartile are for the
ez tracking profile Q1 = 85 and Q3 = 1911 while the iED-NMPC leads to @1 = 9.0
e3  and @3 = 140. These quartiles illustrate that the iED-NMPC estimates those pa-
s rameters accurately which are relevant for the tracking objective and which leads
6s in turn to a model with minimal economic loss.

696

s Remark. In both formulations there is a difference in the predicted economic
s performance and the observed performance after the re-identification. The differ-
s0 ence can be attributed to the following factors: firstly, the predictions are performed
0 using parameter values p while the true system parameter values are pg. In an off
70 line setting this difference has been the field of robust optimal experiment design. It
72 s believed that the proposed formulations can benefit by formulating them in these
703 robust experiment design settings. Secondly, the information content is quantified
s using the Fisher information matrix. This is a linear approximation of the pa-
705 rameter variance-covariance matrix which can sometimes underestimate the actual

w6 parameter variance-covariance matrix (Heine et al., 2008).

w7 6. Conclusion

708 In this paper two practical formulations for the integration of optimal experi-
700 ment design in NMPC have been proposed with application to the Droop model.
7m0 The first formulation is an adaptation of a formulation used in linear MPC. For
m  nonlinear system, however, it results in a nonlinear matrix inequality. A solution
n2  strategy to reformulate the nonlinear matrix inequality has been presented based
n3 on Sylverster’s criterion. The second formulation is based on the notion of eco-

7ne  nomic optimal experiment design which aims at reducing the expected economic
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ns  loss. This results in a single inequality that has to be added to the NMPC formu-
ne lation. A distinct advantage of the suggested approaches is that they can be easily
n7 formulated in existing NMPC software packages without the need of tailored opti-
ns  mization tools. Furthermore, in contrast to a naive integration, an assessment of
no  the future model performance is possible. The Droop model has been successfully
=0 recalibrated in closed loop by the two presented formulations. Both approaches
=1 have been validated using Monte Carlo simulation which illustrates their potential

72 but also reveals the need to include more robust formulations in future work.
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Table 1: Overview of the operating conditions and the remaining constants.

Operating conditions Constants

Cs(0) € [0, 15] mg N/L Qo = 0.04 mg N/ (mg C)
Cq(0) € [0, 0.10) mg N/ (mg C) | Sin = 4.0 mg N/L

Cx(0) € [0, 40] mg C/L
D € [0,0.5] day "

901

Table 2: Overview of the simulation parameters for the different controllers of Figure 2.

Controller type Prediction horizon [d] | Sampling period [d]
Linearized MPC-1 7 1
Linearized MPC-2 1 0.05
NMPC 7 1

902

Table 3: Overview of the true system parameters and the obtained parameter estimates and their
corresponding standard deviation (between brackets) for the NMPC tracking profile and the naive

approach.
True system parameters | Tracking NMPC Naive integration
Hm,0 = 1.2 fim = 1.59 (0.52) fim = 1.24 (0.055)
Kso0=06.75 K, = 3.58 (2.50) Ky =6.20 (2.57)
Pm,0 = 0.125 Ppm = 0.085 (0.043) | pm = 0.113 (0.045)

903
904

905
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Table 4: Overview of the obtained parameter estimates and their corresponding standard deviation
(between brackets) for three tracking experiments and integrated experiment design formulation

1.

True system parameters | Tracking NMPC iED-NMPC 1

ftm0 = 1.2 fim = 1.22 (0.042) | jim = 1.22 (0.045)
Koo =6.75 K, =6.86 (2.15) | K, =6.65 (1.76)
pmo = 0.125 fra = 0.126 (0.032) | pm = 0.122 (0.032)

Table 5: Overview of the obtained parameter estimates and their corresponding standard deviation
(between brackets) for a tracking experiment and integrated experiment design formulation 2.

True system parameters | Tracking NMPC iED-NMPC 2
ftm0 = 1.2 fim = 1.59 (0.52) | jim = 1.30 (0.19)
Koo =6.75 K, =358 (2.50) | K,=6.07 (1.04)
prmo = 0.125 o = 0.085 (0.043) | pm = 0.114 (0.025)

NMPC commissioning @ time t

(

Plant with pg J L Controller p

with p = p,

NMPC operation@ time t + At

[

Plant with new pOJ L Controller p

Figure 1: Illustration of the parameter evolution in the plant after a At which induces a controller

update.
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Figure 2: Obtained plant state profiles (by po) for two linearized MPC settings, the NMPC
approach and the by the controller predicted state behavior (based on p for the NMPC approach).
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Figure 3: Pareto front illustrating the trade-off between the tracking objective J; = [1.0, 0.0] and
the maximization E-criterion J = [0.0, 1.0].
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Figure 4: States and control actions for the tracking objective(wgnync = [1.0, 0.0]), the max-
imization of the E-criterion (wgnynyc = [0.0, 1.0]) and a compromise (wgnync = [0.5, 0.5]) as

denoted in Figure 3.
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Figure 5: States and control actions for NMPC and a naive integration where Apin (¢¢) > 4.0.
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Figure 6: Obtained plant state profiles and applied control action for both the tracking and iED-
NMPC formulation 1.
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Figure 7: Box plot of the application cost in logarithmic scale for the NMPC and iED-NMPC
approach (the targeted application cost value is the dashed line).
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Figure 8: Obtained plant state profiles and applied control action for both the tracking and iED-
NMPC formulation 2.
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Figure 9: Box plot of the expected economic loss in logarithmic scale for the NMPC and iED-
NMPC approach (the targeted expected economic loss is the dashed line).
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