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Review
Changes in environmental nutrients play a crucial role in
driving disease dynamics, but global patterns in nutri-
ent-driven changes in disease are difficult to predict. In
this paper we use ecological stoichiometry as a frame-
work to review host–parasite interactions under chang-
ing nutrient ratios, focusing on three pathways: (i)
altered host resistance and parasite virulence through
host stoichiometry (ii) changed encounter or contact
rates at population level, and (iii) changed host commu-
nity structure. We predict that the outcome of nutrient
changes on host–parasite interactions depends on
which pathways are modified, and suggest that the
outcome of infection could depend on the overlap in
stoichiometric requirements of the host and the para-
site. We hypothesize that environmental nutrient enrich-
ment alters infectivity dynamics leading to fluctuating
selection dynamics in host–parasite coevolution.

Anthropogenic nutrient enrichment alters disease
dynamics: how and why?
Anthropogenic disturbances in global biogeochemical
cycles of nitrogen (N) and phosphorus (P) have not only
led to increased nutrient loading in the environment but
also to changed carbon (C) to nutrient ratios (C:N:P) avail-
able to organisms. Based on the assumptions of ecological
stoichiometry, C:N:P of resources are reflected in the stoi-
chiometric content of the organisms consuming those
resources (Box 1). For example, spatial imbalances in
atmospheric loading of N cause spatial variation in N:P
ratios in organisms, with a shift towards higher N:P in
organisms in areas with high loading of N [1,2]. Owing to
fundamental differences in allocation of these three key
elements (C, N, P) to major biomolecules (e.g., nucleic
acids, amino acids), or to chemical structures between
organisms [3] and in their life-history strategies, changes
in C:N:P ratios will either favor or impinge upon the
function and fitness of organisms. The elemental ratio
(C:N:P) in a resource thus defines resource quality for a
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consumer. For example, decreases in environmental C:P
ratios (i.e., increase in P) are likely to favor fast growing
organisms that allocate P strongly to P-rich ribosomal RNA
(rRNA), which is needed for protein synthesis and growth
[4,5]. By changing population dynamics, increased nutri-
ent loading has the potential to modify species interactions
at different trophic levels and in different ecosystem func-
tions [2,6,7].

In recent years, increases in parasitic and infectious
diseases have been connected to increased nutrient load-
ing in the environment [8–10]. These studies have mainly
focused on resource quantity-driven changes in disease
dynamics, examining increased host production under
conditions of nutrient enrichment. However, parasites
can also be considered as consumers, and thus changes
in their resource quality – in other words, in the stoichio-
metric content of hosts – could alter their fitness and
function in similar ways as resource quality-driven
changes in producer stoichiometric content affect herbi-
vores (Box 1). Indeed, to predict how and why hosts and
parasites respond at the individual, population, and eco-
system levels to changed ratios of elemental nutrients,
the framework provided by ecological stoichiometry can
be utilized (Box 1). Based on the assumptions of ecological
stoichiometry, anthropogenic increases in N and P con-
centrations in the environment would not only support
the growth of individual hosts and host populations but
would also increase the nutrient content of hosts, thus
increasing resource quality and availability to parasites.
By contrast, increased nutrient levels could also facilitate
host resistance and hence suppress parasite growth and
transmission.

We review here what is known about the effects of
environmental nutrient changes on host–parasite interac-
tions in a stoichiometric framework. We focus on endopar-
asites, which exploit host tissues or storage biomolecules
metabolized from the food (described e.g., in [11]). We
propose a three-pathway perspective (Figure 1). Pathway
1 focuses on the interactions between individual hosts and
parasites modified by nutrient levels. Pathway 2 describes
how environmental nutrient levels change parasite trans-
mission efficiency via altering host population density.
With respect to pathways 1 and 2, we review the effects
that changes in environmental nutrient ratios are likely to
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Box 1. Ecological stoichiometry

Sterner and Elser [100] define ecological stoichiometry as: ‘the

balance of multiple chemical substances in ecological interactions

and processes, or the study of this balance. Also sometimes refers to

the balance of energy and matter’.

The assumptions that ecological stoichiometry makes are based on

the law of conservation of matter, which states that the ‘amount of

matter in a closed system is conserved’ and that ‘in an ordinary

chemical reaction, the total mass of the products must equal the total

mass of the reactants’. From the perspective of ecological stoichio-

metry, this means that all elements in the resources that an organism

consumes must be converted either into biomass of that organism or

into waste (Figure I) [100].

All organisms are built from three key elements: carbon (C),

nitrogen (N), and phosphorus (P). C is the main component of

biomolecules involved in energy metabolism (e.g., lipids and

carbohydrates), while N and P are constituents of biomolecules

(e.g., nucleic acids, amino acids) and of functional and structural

compounds [100]. In ecosystems, N and P are the usually the two

elements that limit biomass production – in other words, are

‘nutrients’ – whereas C is generally found in excess, meaning that

the environmental C:N and C:P ratios are high [101]. Most studies on

ecological stoichiometry have focused on P because it is necessary for

building essential compounds for life (DNA, RNA, and ATP) and is

more commonly found to limit growth of organisms than N (as

reviewed in [102]).

Each organism has an unique elemental content, in other words the

ratio between carbon and nutrients (C:N:P), reflecting the extent to

which it allocates elements to major biomolecules and to chemical

structures [3]. This again is related to the life-history strategy of the

organism. Indeed, one of the central concepts in ecological stoichio-

metry, the growth rate hypothesis (GRH), suggests that fast-growing

organisms have low C:P and N:P ratios (high P content) because they

allocate P strongly to P-rich ribosomal RNA (rRNA) which is needed

for protein synthesis and growth [4,5]. GRH is most applicable to

small heterotrophic P-limited organisms [102], and does not apply

under special conditions: for example, under co-limitation of essential

nutrients [103].

The connection between life-history traits and stoichiometric

composition of an organism means that acquisition of C and

elemental nutrients in imbalanced ratios impinges on the function

and fitness of the organism. Each organism has a defined threshold

elemental ratio (TER) after which it transitions from energy limitation

to elemental limitation [102]. Some organisms need to maintain

constant chemical compositions under varying resource quality

(resource C:N:P) – in other words, they are more stoichiometrically

homeostatic than others. Autotrophs are generally considered to be

less homeostatic than consumers and suffer less from imbalanced

resource quality because they can incorporate excess C into

structures and storage matter. Consumers are considered to be more

stoichiometrically homeostatic. They allocate resources strongly

towards nucleic acids and to other N- and P-rich compounds needed

for growth and reproduction, and consequently need to maintain high

nutrient content and require high quantities of nutrients (low C:N:P)

[100]. When consuming resources with imbalanced C:N:P, they suffer

from reduced function and fitness and need to actively remove excess

C [102]. Previous studies in ecological stoichiometry have focused on

producer–herbivore interactions because there is significant stoichio-

metric mismatch between plant and animal tissue. However, poor

resource quality (high C:N:P) may cascade up to the food chain to

constrain secondary and tertiary consumers [104], and possibly

parasites [28].

Water fleas from the genus Daphnia have been the main study

organisms in ecological stoichiometry because they are common

herbivores in aquatic ecosystems and have high P requirements,

meaning that they commonly suffer from P-limitation [101].

C

PC

N

C
P

C

N

TRENDS in Parasitology 

Figure I. Law of conservation of matter in consumer–resource interactions. All

the elements gained are either incorporated into new biomass of the consumer

or are secreted as waste.
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have on host–parasite coevolution. Pathway 3 then
describes how nutrient-driven changes in the host commu-
nity can modify host–parasite interactions.

Pathway 1. Nutrient-driven within-host infection
dynamics
In pathway 1 we focus on the interactions at the level of a
host individual (Figure 1). At the onset of the infection
process, parasite infectivity will largely depend on factors
other than host nutrients, such as genetic compatibility
between the parasite and the host [12]. However, after
successful onset and establishment of infection, the para-
site is able to retrieve host resources and even to manipu-
late host resource allocation to acquire energy and
nutrients. For example, host ‘castrating’ parasites make
the host divert resources from reproduction to growth,
which the parasites in turn exploit for their propagule
production [13,14]. Some microbes have been found to
trigger biosynthesis and degradation pathways of the hosts
to acquire essential biochemical compounds [15,16].

Following the assumptions of ecological stoichiometry,
higher environmental nutrient levels can be expected to
cascade via the food web from primary producers into
increased resource quality for consumer-hosts. However,
whether these higher-quality hosts (higher resource
334
quality for parasites) will result in increased parasite
fitness is determined by resource allocation between host
resistance and parasite growth. If the host is able to invest
elemental resources into resistance before parasite exploi-
tation, higher resource quality (low C:N or C:P) could lead
to decreased parasite load, even though such resistance
mechanisms may be costly to the host [17]. In accordance, a
nutrient-supplemented high-quality diet has been docu-
mented to lead to increased immune activity and/or re-
duced parasite multiplication rate (e.g., [18–23]). However,
if the parasite is able to steal the nutritional elements
before the host can allocate them to immune defense,
higher host quality (high amount of P and/or N) can lead
to increased parasite growth rate and production of infec-
tive propagules within individual hosts (Figure 2). Higher
nutrient (N and/or P) availability has been found to pro-
mote the replication of various parasites, including fungal
foliar pathogens in plants [24], bacteria and fungi in corals
[25,26], trematodes in snails [27], and bacteria and fungi in
water fleas [28,29]. In addition, host resource-driven
increases in parasite replication rate have been found to
enhance the negative effect of parasites on host fitness (i.e.,
parasite virulence) [20,30]. Parasite fitness may also de-
pend on host tolerance, in other words the ability of the
host to maintain normal physiological functions when
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Figure 1. Schematic representation of the three suggested pathways describing the mechanisms by which environmental nutrient levels may alter parasite epidemics in

nature. In pathway 1, environmental nutrient levels drive changes in parasite infection patterns through altering host resistance and parasite virulence; in pathway 2,

through host availability; and in pathway 3, through shaping host communities (+, positive effect; �, negative effect; NS, non-significant effect). Broken arrows indicate

connections between different pathways. Unbroken arrows indicate within-pathway connections.
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infected. Increase in resource quantity has been demon-
strated to increase host tolerance [30], and high resource
quality could be expected to have a similar effect if hosts
are able to allocate increased nutrients to increased toler-
ance. From a stoichiometric perspective, however, hosts
may have innate differences in their ability to tolerate
parasite-driven nutrient depletion owing to differences
Host without
parasite
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resource

quality

Low
resource

quality
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stoichiometric
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stoichiometric
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Figure 2. A mechanistic explanation of the effect of host resource quality on

within-host parasite growth and virulence. The white square represents the host

and the grey square the parasite within the host. Box size reflects the growth

response of the host or the parasite. In the absence of the parasite, low resource

quality reduces host fitness. Under similar stoichiometric demands of parasite and

host, the parasite shows high growth rate and virulence under high resource

quality conditions, and low growth rate and virulence under poor resource quality

conditions. By contrast, if parasite and host have different stoichiometric demands,

parasite could show low virulence regardless of resource quality.
in the level of homeostasis (Box 1). Less-homeostatic hosts
might suffer less from elemental exploitation of parasites
than strictly homeostatic hosts. Currently, however, there
are no studies concerning resource quality-driven changes
in host tolerance.

Differences in parasite life-history strategies can be
expected to lead to differences in the stoichiometric
demands of the parasites and hence to different host
exploitation strategies (Figure 2) [31]. For example, fast-
growing parasites should have higher requirements for P
(growth rate hypothesis, Box 1), and they would therefore
preferentially exploit either ingested P or P-rich tissues of
their hosts. Whether the hosts then suffer from decreasing
P availability or not depends on their stoichiometric
demands. We suggest that, in addition to resource alloca-
tion between the host and the parasite, the outcome of
infection can be expected to depend also on the overlap in
the stoichiometric requirements between the host and the
parasite – in other words, the strength of their resource
competition (Figure 2) [32,33]. Under high nutrient input,
parasites with high nutrient demands will show a high
replication rate and high virulence, while upon nutrient-
deficiency of the host their replication rate will be de-
pressed. This expectation is based on the model of evolu-
tion of virulence stating that the rates at which parasites
extract resources from their hosts equates to their viru-
lence [34]. By contrast, if stoichiometric demands of host
and parasite differ – for example, if the parasite has lower
or different requirements for nutrients than the host – then
335
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the parasite could show low virulence (or the host could
show high tolerance) independently of parasite replication
rate (Figure 2). For example, the parasites of Daphnia
water fleas that depend on host nutrient content (N and/or
P) show high virulence [28,29], while a benign microspor-
idian parasite Glugoides intestinalis is not fostered by host
P enrichment, but possibly by increased host carbon intake
(food quantity) [33,35].

In multiple infections, the combined negative effect of
the parasites will depend on whether the parasites require
nutrients that are essential for the host. If multiple infec-
tions involve both a parasite that depends on the essential
and a parasite that depends on the non-essential nutrients
for the host, the outcome of the infection might not differ
from single infections with a parasite dependent on the
essential nutrients [36]. Furthermore, the type of interac-
tion between the parasites will be important: antagonistic
interactions (e.g., competition for nutrients) between para-
sites can decrease virulence [37], while a reciprocal facili-
tation could lead to increased virulence levels [38]. This
has not been studied directly but, in coinfection of plant
Avena sativa with two virus species, low N supply to host
plant led to one virus species, barley yellow dwarf virus
species PAV (BYDV-PAV), outcompeting the other (cereal
yellow dwarf virus species RPV), and this was explained by
higher nutrient competition ability of BYDV-PAV support-
ing its higher replication rate [39,40]. Latent infections can
benefit the host, preventing other infections from estab-
lishing or becoming more severe [41]. This can be food
quality-dependent: the water flea Daphnia magna popula-
tions were protected against a virulent bacterial parasite
by the less-virulent microsporidian parasite under low food
quality conditions [42].

Pathway 2. Nutrient-driven parasite transmission
patterns through changes in host population-level
responses
At the population level, we suggest that changes in envi-
ronmental nutrient levels are likely to alter transmission
patterns mainly through changes in contact rates between
infected and uninfected individuals, or in encounter rates
between hosts and parasite propagules. First, high re-
source quality (low C:N:P) may increase transmission by
promoting the growth and reproduction of individual hosts,
therefore increasing host density. This production-mediat-
ed effect on infection dynamics has been well established in
nature and in several experimental host–parasite systems.
For example, McKenzie and Townsend [43] presented
several examples where increased nutrients (N and/or P)
promoted parasite epidemics via increasing intermediate
host or vector density. Johnson et al. [27] noticed that
higher N and P input promoted trematode parasite Ribeir-
oia ondatrae infection in amphibians via enhanced algal
production and increased density of the intermediate host,
the snail Planorbella trivolvis. Colwell [44] explained the
positive parallel patterns between environmental nutrient
levels and cholera outbreaks in susceptible human popula-
tions via an increase in copepod abundance through nutri-
ent loading. Copepods act as an attachment base for the
cholera bacteria Vibrio cholerae. However, high resource
quality (low C:N:P) may increase transmission efficiency
336
and parasite prevalence in host population also through
increasing host stoichiometric quality, which then
increases parasite growth (production of infective propa-
gules as indicated in pathway 1) and host–parasite en-
counter rates [27,45]. In addition, increased parasite
growth might lead to increased doses of parasite propa-
gules being encountered by individual hosts [46], and this
might increase the probability of infection but also curtail
parasite production in that particular host [47], with con-
trasting effects on parasite epidemics.

In addition to host and parasite densities, encounter
rates between hosts and parasites may be modified by
indirect trait-mediated effects (TMIEs) such as host aggre-
gation [48] and the feeding efficiency of individual hosts
[49]. TMIEs have been associated with resource quality
[50] and have been investigated substantially in tri-trophic
plant–herbivorous insect–parasite systems where plant
defense chemistry and nutrient content alter parasite
transmission [51,52]. Furthermore, changes in host re-
source quality can change the quantity or quality of host
excreta that some parasites use for host localization [53],
again affecting infection probability determined by host–
parasite encounter rates. Different stoichiometric require-
ments between the host and parasites might also change
the encounter rates in ways not anticipated from host–
parasite interactions at the individual host level. In a
recent experiment [35], nutrient limitation decreased host
density but did not alter parasite within-host production,
leading to higher per capita exposure rates and increased
parasite intensity in host populations under nutrient limi-
tation.

When enhancing parasite growth, environmental nutri-
ent enrichment may also increase parasite virulence,
which will decrease host population production and have
a negative impact on infection dynamics via decreased
encounter rates. However, high resource quality (low
C:N:P) may also enhance host fecundity compensation
for fitness losses, and a nutrient-induced increase in viru-
lence therefore might not immediately manifest itself as
negative effects at the host population level [54]. For ex-
ample, in a recent study one particular water flea species,
Daphnia magna, was shown to be more susceptible to
infections at high nutrient levels, but this was compensat-
ed by better growth conditions [55]. Nutrient-induced
increases in parasite intensity might also be translated
into higher mortality of the oldest/largest host individuals,
releasing resources for compensatory population growth,
and paradoxically increasing host density.

Nutrient-driven changes in host–parasite coevolution
Changes in environmental resource quality (C:N:P) not
only modify the epidemiology of host–parasite interactions
but are also suggested to change the strength and direction
of selection in host–parasite interactions [56,57]. If envi-
ronmental nutrient enrichment is translated into higher
population sizes, then increased host–parasite interac-
tions, in terms of within-host competition and parasite
transmission (pathways 1 and 2), may intensify the coevo-
lutionary arms race between hosts and parasites. Evolu-
tionary host population responses with respect to
resistance towards parasites are assumed to be strongest
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Figure 3. Effects of environmental nutrient enrichment on (A) host genotypes and

(B) their coevolutionary oscillations with parasite genotypes. Black unbroken line,

nutrient-rich host genotype; grey unbroken line, nutrient-intermediate host

genotype; black broken line, nutrient rich parasite genotype; grey unbroken line,

nutrient-intermediate parasite genotype.
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in highly-productive systems [58–60]. Larger host and
parasite populations broaden the genetic variation avail-
able for selection and increase encounter rates between
hosts and parasites [61]. Higher encounter and transmis-
sion rates are associated with more-virulent parasite
strains [34], which pose stronger selection pressures for
host defenses, further increasing the selection pressure on
parasites for counter-defense [62]. High environmental
nutrient levels are found to favor P-rich and rapidly-grow-
ing species (growth rate hypothesis, GRH; Box 1) [6,63]
which would, following pathway 1, then offer high-quality
resources for parasites, and this could again favor rapidly-
growing parasites that have high P demands and conse-
quently express high virulence (as described above). Fast
growth rates can be expected to intensify coevolutionary
cycles via accelerating population turnover and increasing
the number of mutations. Thus, environmental nutrient
enrichment is expected to direct host evolution towards
higher resistance, and parasite evolution towards higher
virulence [59,64], intensifying the coevolutionary arms
race and reducing the period of coevolutionary frequen-
cy-dependent oscillations [65]. Nutrient availability may
also affect host tolerance [23]. Because tolerance does not
diminish parasite within-host growth, it is thought to
impose less selection pressure on parasite virulence than
resistance does [66]. However, if increased tolerance leads
to increased parasite loads, prevalence, and transmission
[67,68], it may promote evolution towards elevated viru-
lence [68].

Changes in resource quality have been demonstrated
to drive shifts in genotype frequencies [69–72]. For ex-
ample, P-rich resources favored water flea Daphnia
pulicaria clones with higher P demands (higher P ho-
meostasis) whereas, under P-depleted conditions, clones
having lower requirements for P could outcompete P-rich
ones [70]. Based on this, we suggest that nutrient en-
richment could favor and drive selection for particular
host–parasite genetic combinations. In this scenario,
environmental nutrient enrichment could increase the
frequency of nutrient-rich hosts, and this consequently
would increase the frequency of nutrient-rich parasite
genotypes – and these would, as suggested in pathway 1,
be virulent (Figure 3). However, intense selection im-
posed by parasites might eliminate nutrient-rich hosts
quickly, providing an opportunity for less nutrient-rich
host genotypes with intermediate growth rates to in-
crease in frequency (Figure 3). These nutrient-interme-
diate host genotypes could then favor less-virulent
parasite genotypes with low nutrient demands, or the
host might also be less affected, even if exploited by
virulent parasite genotypes with high nutrient demands,
because those would not be able to grow as aggressively
as in nutrient-rich host genotypes. Nevertheless, if nu-
trient-rich host genotypes were able to recover, they
could rapidly increase and outcompete nutrient-interme-
diate host genotypes under nutrient-enriched conditions
[70]. We expect these recovery periods to shorten with
increasing nutrient levels, implying that environmental
nutrient enrichment might increase the frequency
of genotype fluctuations – in other words, intensify
frequency-dependent selection (Figure 3).
Pathway 3. Nutrient-driven infection dynamics at the
host community level
Next to effects on the host density, nutrient-driven changes
in parasite infection dynamics can be even more complex
and are structured via changes in trophic patterns in the
host community composition. Environmental resource
quality (C:N:P) can alter disease patterns via changes in
species diversity and host availability because particular
nutrient levels favor only some species as a function of to
their stoichiometric demands and level of homeostasis (Box
1). For instance, P enrichment has been found to promote
malaria transmission via altering plant community struc-
ture to favor the more-efficient mosquito vector of malaria,
Anopheles vestipennis, over the less-efficient A. albimanus
[73]. In addition, Turner et al. [74] showed recently that
nutrients released from carcasses infected by Bacillus
anthracis improved vegetation growth and attracted her-
bivores to contaminated spots, thereby increasing the
potential for transmission.

The pattern between resource quantity and taxa rich-
ness is commonly found to be hump-shaped [75], indicating
that an intermediate increase in nutrient input could be
expected to increase biodiversity. Increased biodiversity
may modify infection dynamics via dilution effects, where-
by increased numbers of non-competent hosts act as sinks
for the disease and thus decrease infection prevalence [76–
80]. The effect of increased biodiversity on disease preva-
lence might, however, depend on the scale of examination
[81,82]. In contrast to positive biodiversity response at
intermediate nutrient levels, high resource nutrient con-
tent has also been found to reduce biodiversity (e.g., [83]),
for example by favoring rapidly-growing P-rich species that
are able to outcompete others [6,63]. This could lead to
337

ellendecaestecker
Sticky Note
is wat we zagen in OM2 voor Pasteuria!! Integreren in discussie JEB paper Lien!!

ellendecaestecker
Highlight

ellendecaestecker
Highlight



Box 2. Outstanding questions

� Are the stoichiometric demands of parasites linked to life-history

traits, and are they parasite species- or genotype-specific?

� Does the growth rate hypothesis (GRH) apply to parasites?

� Does GRH apply to parasitized hosts?

� What types of connections are there between stoichiometric

demands, parasite virulence, host tolerance, and host resistance?

� Is there innate stoichiometric tolerance? – in other words, does the

degree of homeostasis define how tolerant the host is to parasite

nutrient exploitation?

� Which factor – nutrient-driven increase in host production or in

host quality – has the major role in controlling infection dynamics

at the host population level?

� What is the role of nutrients other than N and P (e.g., K [105]) in

regulating disease dynamics?

� How do changes in environmental nutrient quality alter host–

parasite coevolution?

� Does nutrient enrichment decrease or increase biodiversity, and

how does it affect infection dynamics?

� What tools can be used to examine nutrient-driven infection

dynamics in nature?
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increased transmission rate and infection prevalence if the
favored P-rich species are competent hosts.

Environmental resource quality (C:N:P) may also in-
crease or decrease the survival of transmission propagules
independently of the host population or community. Brown
et al. [84] suggested that adaptation to the outside-host
environment may pre-adapt an opportunistic pathogen for
virulent growth within a susceptible host. This was ob-
served in a fish microbial community, where originally
benign microbes were transformed into virulent ones in
a nutrient-rich environment [85]. Penczykowski et al. [86]
illustrated that an increase in nutrient levels supported
the onset and size of fungal epidemics in lake zooplankton,
and this was mediated by both abiotic and biotic interac-
tions. Higher nutrient input led to a shallower light-pene-
tration, which facilitated disease-spreading predators and
UV-sensitive parasite production. Dallas and Drake [29]
observed that high environmental nitrate levels increased
the mortality of fungal spores and reduced the transmis-
sion of a fungal pathogen in a Daphnia population.

Further, it is important to note that nutrient-mediated
changes in host–parasite interactions and in their coevo-
lution may shape trophic dynamics and ecosystem level
processes. For example, high resource quality may lead to
higher parasite-mediated apparent competition if one
high-quality host species supports higher parasite produc-
tion, which then has a greater detrimental effect on other
host species (e.g., [87]). In addition, high resource quality
may reduce interspecific resource competition between
host and non-host species if there is a resource quality-
driven increase in parasite virulence (see pathway 1).
Furthermore, nutrient-induced increase in within-host
parasite growth might decrease the stability of host popu-
lations [88], and consequently lead to sudden collapse of
parasite populations [89], especially in presence of selec-
tive predators [90], and this might again alter trophic
dynamics. In addition, nutrient-driven changes in host–
parasite dynamics may alter nutrient cycling. Because
parasites can alter host stoichiometry [91–93] and diet
choice (e.g., [18,22,94,95]), they are likely to change the
nutritional value of hosts for higher consumers [91] or the
flux of elemental nutrients through the host [96]. Higher
environmental nutrient levels could accentuate parasite-
driven changes in nutrient cycling, if they are expected to
lead to increased parasite epidemics, or to drive selection
towards host–parasite genotypic combinations with high
nutrient demands.

Concluding remarks and future perspectives
Each of the perspectives presented here highlights that
interactions between environmental nutrient ratios and
host–parasite dynamics are diverse and depend on several
factors at the within-host (pathway 1), host population
(pathway 2), host community, and ecosystem levels (path-
way 3). We argue that even though host resource quality
can shape the onset and progression of infection in indi-
vidual hosts (pathway 1), the ultimate outcome depends on
the similarity of stoichiometric demands between the host
and the parasite. Currently we have only limited under-
standing of the mechanisms by which changes in environ-
mental nutrient levels can modify infection dynamics at
338
the within-host-level, and knowledge is even scarcer at the
population and community levels. Outstanding questions
for future research are proposed in Box 2.

Determining parasite species- or genotype-specific stoi-
chiometric requirements with, for example, radioisotope
technique [97,98], and comparing these against the life-
history traits of the parasites, could help to resolve wheth-
er the assumptions of ecological stoichiometry can be
applied to host–parasite interactions. In particular, exper-
imental evidence on the connections between host resource
quality, parasite virulence, and host resistance or toler-
ance could provide interesting new perspectives on host–
parasite studies which have primarily focused on the
parasite response to nutrient-increased host production.
For this, traditional life-table experiments with host–par-
asite combinations having different stoichiometric
demands could be applied, but one could also utilize
next-generation methods – for example to follow para-
site-induced changes in host gene expression as a function
of nutrient use, or differential parasite gene expression
under different host resource regimes – using functional
genomics [99]. Knowledge of the connections between stoi-
chiometric demands and infection traits would provide
interesting opportunities for experimental studies con-
cerning mechanisms at the host population and communi-
ty levels, and for examining how environmental nutrients
alter host–parasite co-evolution dynamics – for example,
whether nutrient enrichment intensifies arms-race dy-
namics and negative frequency-dependent selection. The
final goal would be to find an efficient genetic method
which could be used for rapid screening of infection pat-
terns in natural host–parasite communities under differ-
ent nutrient regimes.

Detailed knowledge on disease under different nutrient
regimes could also provide a tool for disease management –
given that there are likely to be positive connections be-
tween environmental nutrient levels and parasite preva-
lence, decreases in anthropogenic nutrient input could
suppress disease and parasite infections at the ecosystem
level. The role of nutrients in controlling disease might
be especially important in aquatic ecosystems, where
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nutrients accumulate through deposition and run-off from
terrestrial catchment.
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66 Råberg, L. et al. (2009) Decomposing health: tolerance and resistance
to parasites in animals. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 364,
37–49
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