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Abstract—Considerable energy savings in industrial 

environment are possible in an industrial environment by 

detecting installations not working at their optimum 

operating point. The present paper proposes a new 

generalized data driven FDD method capable of 

automatically detecting the abnormal energy demand of 

different types of installations or machines based on process 

data. The paper contains a comprehensive overview of the 

research, focusing on a trade-off between performance and 

computing time together with minimizing the human input. 

The proposed method contains an automated feature 

selection, a hyper-parameter optimization of the chosen SVM 

regression algorithm and a residual control algorithm. The 

method was tested in several industrial installations and two 

case studies are presented to demonstrate the performance of 

the proposed method, while underlining the significance of a 

decent number of relevant features.  

 

Index Terms—Energy prediction, SVM-regression, FFD, 

Energy Management 

 

I. INTRODUCTION 

In Europe 25.06% of the total energy use can be 

assigned to the industrial sector [1]. A study shows a 

considerable energy reduction is possible by implementing 
and applying an integrated control system (ICS) and/or 

sub-metering the system [2]. A system, not located in its 

optimum operating point, causes overconsumption. 

Buildings (and systems) frequently absorb more energy 

than anticipated or desired [3]. As has been described in 

Mavromatid clearly demonstrate that there are three ways 

to deal with similar problems [4]. The first and most 

expensive approach will take action the moment a 
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component of the system fails. A repeatedly applied 

second method used in industrial environment is based on 

a periodic maintenance, independent of the state of the 

installation. The third and last approach makes use of a 

program to measure the performance of an installation and 

automatically demands maintenance the moment a 

significant loss of performance has been detected. During 

the last decades extensive research has been conducted 

into developing automatic Fault Detection and Diagnostics 

(FDD) algorithms. A comprehensive overview of relevant 

FDD methods, complemented with examples can be found 
in the papers [5]-[7]. In the literature specific results are 

presented for chillers [8], buildings [9], chemical processes 

[10] and centrifugal Pumps [11], [12]. The present paper's 

purpose is to propose a generalized method to 

automatically monitor the energy demand of an industrial 

system and to detect and diagnose faults at low severity 

levels. The method includes data preprocessing, automatic 

feature selection, parameter optimisation of the model and 

the development of a fault detection method. Since the 

proposed method applicable to different processes and the 

input of human expertise should be reduced to the bare 
minimum, a data driven approach is used. LIBSVM, an 

open source machine learning library for support vector 

machine regression (SVM regression) will be used as a 

framework for the regression model to predict energy 

consumption. The working principle of SVM regression 

(SVR) is extensively covered in [13]. Based on the 

difference between the actual and the predicted values (the 

residuals), the method can detect and diagnose deviant 

energy consumption of a system or machine.  
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II. METHOD 

Similar to other methods, using a data driven FDD 

algorithm, the proposed method contains both an offline 

and online section represented in figure 1. The offline 

section of the method is responsible for selecting the 

relevant features, optimizing the hyper- parameters for the 

SVR algorithm and defining the confidence interval of the 

prediction. The online section uses the results of the offline 

section for the online validation of the energy consumption 

of a given installation. 

The regression model of LIBSVM used within the scope 
of this paper is based on a number of relevant features as 

input, and a target (the energy consumption of the plant). 

In the offline training phase the labelled data, a set of 

features available at the time j: 𝑋𝑗  corresponds with a 

target 𝑌𝐽 , allows the SVR algorithm to determine the 

relations between the various features and the target. The 

model has to be trained, based on error-free data. Error-

free data does not contain any data measured during a fault 

situation or inefficient operation and is a representation of 

the working range of the installation.  

 

Figure 1.  Proposed method. 

The model predicts the energy consumption at a given 

time. If the difference between the predicted energy 

consumption and the actual energy consumption exceeds a 

certain level, a non-optimal operation of the installation 

can be assumed. 

A. Data Pre-Processing and Automatic Feature 

Selection 

1. Data Pre-processing: The first stage of 

preprocessing checks the data for missing data points and 

non-realistic values. SVM algorithms assume that the 

variance of the features are in the same order and centered 

around zero. Stage two is responsible for the required 

scaling of the dataset, because a feature with a substantial 

variance will have an important influence on the model 

causing a negative impact on the performance. 

Normalization (1) scales the values of a given data set in 

the range [0,1] and will not be used for two reasons. First 

of all the feature is not centered around zero and more 

important outliers cause a majority of the data being 

located in a very small interval. 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

Standardization (2) on the other hand does not contain 

any absolute limits but uses the mean and the variation of 

the data set for scaling. This has the advantage that the 

dataset is centered around zero and the distribution of the 

relevant data (not the outliers) is approximately equal for 

any feature. 

𝑋′ =
𝑋 − 𝜇

𝜎
 (2) 

2. Automatic feature selection: As mentioned under 

[14], the performance of the SVR algorithm is sensitive to 

irrelevant or redundant features. There are multiple options 

to select the ns significant features from a data set with n 

features. An obvious method is to investigate the 

performance of each possible combination of n features 

((2n-1) combinations in total). Because the number of 

features is not known in advance, this may lead to an 

extreme computation-intensive operation. 

Automatic feature selection aims to retain the relevant 

features in a more efficient way and discard the remaining 

features. Feature selection can either be obtained by using 

the machine learning algorithm as evaluator (the wrapper 

approach) or by using a different evaluator (the filter 

approach). The computational time of the filter approach 

is generally smaller but results in a worse performance and 

has therefore been excluded from the method used. 

According to [15], essentially four strategies can be 

applied for the wrapper approach to retrieve the n 

significant features in a more efficient way: 

 Forward selection, 

 Backward elimination, 

 Stepwise regression, 

 Least angle regression. 

As forward selection approaches the performance of the 

brute-force method [14] and has a considerably smaller 
calculation time, it will be used as a simple but effective 

option. 

Forward selection is a wrapped method starting with an 

empty subset of features. At each iteration of the algorithm 

a feature, not being part of the subset, is added to the subset 

of features. In the first iteration all ns features are evaluated 

separately by training ns SVR algorithms, each with one of 

the ns features as input and the energy consumption as 

target. The hyper-parameters of each SVR are kept a 

constant (Cost= 1, kernel='RFB', gamma=1/number of 

features). The feature generating the most accurate 
prediction of the energy consumption using the SVR 

algorithm is added to the subset of relevant features. The 

accuracy of the prediction is determined by the standard 

deviation of the difference between the actual measured 

and the predicted energy consumption (residual). 



𝑠 = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 (3) 

The second iteration compares the standard deviation of 

𝑛 − 1 SVR algorithms utilizing the feature in the subset of 

features and one of the 𝑛 − 1 other features. The feature 

improving the standard deviation the most is added to the 

subset of features. This iterative process stops the moment 

the standard deviation of the residual diminishes on two 

successive iterations. 

B. SVR Model and Optimization 

1. Model: The working principal of SVR will be 

kept minimal in this paper, as there are plenty of excellent 

papers on that topic [13]. ɛ-SVR is a regression technique 

using a training data set (4) where  ℝ𝑑 denotes the input 

feature space. 

(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙) ⊂ 𝜒 ∙  ℝ𝑑 (4) 

The goal is to determine a function 𝑓(𝑥) whereby the 

maximal deviation between the target 𝑦1 and the function 

𝑓(𝑥) amounts to ɛ and the function 𝑓(𝑥) itself is as flat as 

possible. Given that this form of hard margins is harmful 

for the generalization of a model (and results in 

overfitting), it is recommended to use soft margins. This is 

achieved by allowing a larger deviation than ɛ but 
assigning a certain cost to this larger deviation. The cost is 

a trade-off between tolerance for deviations greater than ɛ 

and the flatness of the function 𝑓(𝑥). The input features 𝑋 

with feature space ℝ𝑑  will be mapped into a higher m-

dimensional feature space ℝ𝑚 . In this high-dimensional 

feature space the regression function 𝑓(𝑥)  will be 

constructed. Depending of the SVR kernel type the 

function 𝑓(𝑥)  is linear (kernel: 'Linear') or non-linear 

(kernels: 'RBF', 'Polynomal','Sigmoid'). The non-linear 

kernels possesses additional parameters: 

 𝛾  is a coefficient for RBF, Polynomal and 

Sigmoid kernels used to define the influence of 

a single training instance, 

 Coef0 is an independent coefficient in the 

‘Polynomal’ and ‘Sigmoid’ kernel functions, 

 Degree is a coefficient for the Polynomal 

kernel and represents the degree of the 

polynomial kernel function. 

2. Hyper-parameter optimalisation: The ɛ-SVR 

algorithm of LIBSVM contains a number of parameters 

such as: ɛ, C, kernel type having specific setting 

parameters. For optimal performance of the model, these 

parameters should be set correctly. A grid search is a 

common solution to obtain the optimal value for each of 

the parameters. A grid search is a brute-force technique 

that optimizes the performance of the SVR algorithm by 

assigning a number of values (𝐿(1) … 𝐿(𝑘)) to each of the 

𝑃 parameters (e.g. for ɛ-SVR it would be ɛ, cost C, kernel 

type and kernel parameters) and measures the performance 

of the SVR algorithm for every possible combination of 

the assigned values of the 𝑃  parameters. Measuring the 

performance can be obtained by dividing the data set into 

a training and a test data set or by using cross-validation 

on the complete data set. 

 

Figure 2.  Measured and predicted energy consumption, case1 



The grid search has to execute ∏ |𝐿(𝑘)|𝑃
𝑝=1  iterations, 

given 𝑃  parameters and 𝐿(1) … 𝐿𝑘  values for a certain 
parameter. The amount of iterations goes up exponentially 

with the number of parameters and results in a huge 

computational time. Bergstra [16] indicates that the 

random search method is both faster and more efficient 

than traditional grid search approach. Instead of using a 

fixed set of values for each parameter, random search picks 

random samples in a certain range for each parameter and 

the maximum number of iteration can be chosen instead of 

being dependent of ∏ |𝐿(𝑘)|𝑃
𝑝=1 . For the same or less 

amount of trials random search allows the exploration of 

more values and has a positive impact on the performance 

of the algorithm when some parameters are more 

important.  

C. Residual control 

The predicted energy consumption, generated by the 

SVR algorithm is compared to the actual measured energy 

consumption. Since the predicted energy consumption of 

an installation does not correspond a 100% with the 

measured energy consumption, an uncertainty interval is 

added. As applied by [4] an uncertainty interval of 95% 

will be utilized. As long as the actual energy consumption 
is within the borders of the uncertainty interval, it can be 

assumed as normal. However, since the transients of a 

dynamic system can only be modelled with detailed 

physical models, see [17], it is possible that the actual 

energy consumption will be outside the uncertainty 

interval. To avoid a high false alarm rate, an alarm will be 

generated when 5 consecutive measurements or the 

measurements over a period of 30 minutes, whichever is 

longest, are outside the confidence bounds. This is 

considered by [4] as a “good compromise between false 

alarms and early detection”. The magnitude of the 
deviation between the actual and the predicted energy 

consumption of those measurements divided by the 95th 

percentile of the actual energy consumption of the training 

data set, will be used to distinguish the size of the error and 

the potential impact of the error on the system. If this 

deviation is less than 10% for the measurements, there is a 

“Very Low Probability of Failure”, a deviation between 

10% and 20% corresponds to a “Low Probability of 

Failure”. When the difference between the actual and 

predicted energy consumption is between 20% and 30% a 

High Probability of failure can be assumed. If the 
difference exceeds 30%, a failure occurs. 

III. CASE STUDIES 

In this section two case studies will be presented on 

which the proposed method is applied. The two selected 

case studies will show both the importance of sufficient 

relevant features for an efficient modelling and versatility 

of the method for predicting the energy consumption of an 

installation. 

D. Industrial sterilization installation 

The first case study involves an industrial sterilization 

installation of a food company where 31 features are 

monitored  and captured every minute. After scaling the 

data and removing erroneous measurements, 10 of the 31 

features are selected by the automatic feature selection 

method. As shown in figure 3 the standard deviation 

reaches a minimum at the 10th iteration of the feature 

selection method. As mentioned earlier, the performance 

of the default model diminishes when too many irrelevant 

or redundant features are added to the subset of features. 

Fout! Verwijzingsbron niet gevonden. 4 shows the 

predicted and actual energy consumption of the installation 

using an optimized SVR algorithm by the random cross-

validated search of the parameters. 

 
 

Figure 3.  Automatic feature selection 

 

Figure 4.  Normal and fault situation  

Due to the dynamic behavior of the installation it is 

common the deviation between the actual and predicted 
energy consumption is temporally located outside the 

confidence bounds. This can be studied in figure 2 at 

measurement points 5753, 7183 and 7360. At those points 

no alarm is generated because five consecutive 

measurements need to exceed the confidence bounds. 

However the measurement values 5388 to 5433 in figure 4 

show a fault situation which can be classified as a deviant 

energy consumption with a “Very Low Probability of 

Failure” (less than 10%). Because of the temporally nature 

of the alarm (total alarm time 45 min) and the indication 

“Very Low Probability of Failure” it was not possible to 
determine the cause of the temporally overconsumption. 

 



Figure 5.     Shorting Machine 

E. Paper recycling machine 

The second case study is a sorting machine with three 

input parameters (A, B and C) and one output: the electric 

power consumption (figure 5). The automatic feature 

selection indicates all three input parameters appear to be 
correlated. The result of the training and validation can be 

seen in figure 6. There is no alarm detected in the dataset. 

It is important to notice the impact of the number of 

features on the performance of the proposed method and 

more specific on the width of the confidence bounds. In 

the first case study, the width of the confidence bound 

equals 5% of the maximum energy demand, meanwhile in 

the second case study the confidence bound equals 33.7% 

of the paper recycling machine's maximum energy 

demand. It is important to have enough significant 

parameters to make a good prediction with an accurate 
model. The three available input parameters are 

insufficient to detect small errors in the installation. The 

number of false alarm can be reduced by the registration 

of more correlated process parameters 

 

Figure 6.   Measured and predicted energy consumption, case 

IV. CONCLUSION 

The development of a FDD method to detect and 

diagnose abnormal energy consumption was discussed. A 

trade-off was established between the performance of the 

method and the computational time. The goal is to develop 

a method able to implement into different types of 

installations with a bare minimum of human input. The 

proposed method contains an automated feature selection 

to remove redundant and irrelevant input features, a hyper-

parameter optimization algorithm for the SVR model to 
obtain robust parameters and a residual control algorithm 

to detect and to classify errors based on confidence 

bounds. Case studies in industrial plants show the 

importance of the amount of relevant features to limit the 

confidence bounds and increase the accuracy of the 

method. An increase of accuracy has two main advantages. 

The FDD method will be able to detect faults in an early 

stage and will be capable to classify the faults more 

precisely. This general approach could be applied easily as 

one monitoring measure in the context of the ISO-50001 

whenever material quality, ambient temperature and other 
specific thresholds are considered beside the process 

parameters of the system. 
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