KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Relational Approaches for
Learning, Transferring and
Mining

Jan Van Haaren

Supervisor: Dissertation presented in partial
Prof. dr. J. Davis fulfillment of the requirements for the
degree of Doctor of Engineering

Science (PhD): Computer Science

December 2016

Relational Approaches for
Learning, Transferring and Mining

Jan VAN HAAREN

Examination committee: Dissertation presented in partial
Prof. dr. A. Bultheel, chair fulfillment of the requirements
Prof. dr. J. Davis, supervisor for the degree of Doctor of Engi-
Prof. dr. ir. H. Blockeel neering Science (PhD): Computer
Prof. dr. ir. E. Steegmans Science

Prof. dr. Pascal Fua

(Ecole Polytechnique Fédérale de Lausanne,
Switzerland)
Prof. dr. Ulf Brefeld

(Leuphana Universitédt Liineburg, Germany)

December 2016

© 2016 KU Leuven — Faculty of Engineering Science
Uitgegeven in eigen beheer, Jan Van Haaren, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

For a nostalgic like me, writing this acknowledgements section is a true joy. Not
only because it marks the end of my PhD but foremost because it provides an
excellent occasion to look back at the past five years of my life. My PhD has been
a fun, challenging, rewarding, and especially self-enriching experience in many
respects. It provided me with the opportunity to work with many wonderful
and inspiring people whom I would like to thank explicitly.

I am very grateful to my supervisor professor Jesse Davis for countless reasons.
As one of his first recruits, I have had the privilege of working with him very
closely in the early days of my PhD. This close collaboration has not only helped
me in becoming a better researcher but also in getting to know and understand
the academic scene. As Jesse’s group started to grow throughout the years, he
gave me more responsibilities and freedom to explore and develop my own
ideas, while still being actively involved in most of my scientific undertakings.
I cannot thank him enough for all his precious feedback and advice, which I
will certainly carry with me in my future endeavors. I look forward to continue
to work with him in the future on interesting and challenging sports problems.

I would like to thank professors Hendrik Blockeel, Eric Steegmans, Pascal
Fua, and Ulf Brefeld for serving on my examination committee and professor

ii ACKNOWLEDGEMENTS

Adhemar Bultheel for chairing my preliminary and public PhD defenses. I
am thankful for their insightful questions and constructive feedback on earlier
versions of this dissertation. I wish to thank Pascal in particular for offering
me the opportunity to do an internship in his lab. My stay in Lausanne was a
great experience that even lead to one of the contributions in this dissertation.
Furthermore, I also wish to thank the Agency for Innovation by Science and
Technology in Flanders (IWT), the Research Fund KU Leuven (CREA/11/015),
and the European Commission (FP7 Marie Curie Career Integration Grant
#294068) for their financial support.

Although my name appears first on all the publications included in this
dissertation, this work would not have been possible without the help of my
co-authors. In particular, I am very grateful to Guy Van den Broeck, Wannes
Meert, Andrey Kolobov, and Vladimir Dzyuba. They are not only excellent
researchers whom I have learned a lot from but also awesome people to work
with. Furthermore, I also enjoyed working with Tim Op De Beéck, Toon Van
Craenendonck, Anton Dries, Vincent Vercruyssen, Jan Lasek, Tom Decroos,
Albrecht Zimmermann, and Mehdi Kaytoue on other exciting sports projects.

I'would like to express my gratitude to all members of the Machine Learning
group in Leuven and the Computer Vision lab in Lausanne for providing a
pleasant and inspiring work environment. I have had the pleasure of sharing an
office with Irma Ravki¢, Tim Op De Beéck, Daan Fierens, Dimitar Shterionov,
Tom Decroos, and Amaury Dame. I truly appreciate their feedback, help, and
support. In particular, I wish to explicitly thank Daan for being an excellent
mentor and a source of inspiration at the start of my PhD.

Furthermore, I enjoyed the pleasant lunch-time conversations, which were
often a welcome distraction from work, with my former and current colleagues
in Leuven and Lausanne, including Adron Verachtert, Agata Mosinska,
Amaury Dame, Angelika Kimmig, Anna Latour, Antoine Adam, Anton
Dries, Behrouz Babaki, Benjamin Negrevergne, Bogdan Moldovan, Carlos
Becker, Celine Vens, Clément Charnay, Daan Fierens, Daniele Alfarone, Davide
Nitti, Denny Verbeeck, Eduard Trulls, Eduardo Costa, Elia Van Wolputte,
Evgeniya Korneva, Francesco Orsini, Gitte Vanwinckelen, Guy Van den Broeck,
Hendrik Blockeel, Horesh Ben Shitrit, Irma Ravkié, Jessa Bekker, Joana Corte-
Real, Jonas Vlasselaer, Joris Renkens, Kaja Zupanc, Kilian Hendrickx, Ksenia
Konyushkova, Kurt De Grave, Kwang Moo Yi, Leander Schietgat, Luc De Raedt,
Martin Znidarsi¢, Mathias Verbeke, Mathieu Salzmann, Matthijs van Leeuwen,
McElory Hoffmann, Pablo Marquez, Pedro Zuidberg, Réger Bermuidez, Samuel

ACKNOWLEDGEMENTS iii

Kolb, Sebastijan Dumanci¢, Sergey Paramonov, Siegfried Nijssen, Steffen
Michels, Thanh Le Van, Tias Guns, Tim Op De Beéck, Tom Decroos, Toon
Van Craenendonck, Vaishak Belle, Vincent Nys, Vincent Vercruyssen, Vladimir
Dzyuba, Xinchao Wang, and Yannick Verdie.

My special thanks goes to my friends and family. In addition to my team mates
and coaches at my football club KSK Weelde and my quiz team De LAT-relatie, 1
would like to thank Alexander van den Berghe, Harm Leenders, Michaél Derde,
Nicky Verheijen, Robin Peeters, Thomas Lefebvre, Thomas Plas, and Valérie
Van Damme for their support and the many great moments together.

Last but not least, the people I am particularly grateful to are my loving and
caring parents Ria and Jef, whom I cannot thank enough for their emotional
and financial support. I will be eternally grateful for the way they raised me,
and for allowing me to go my own way and to chase my dreams. I also wish
to thank my sister Sanne and her boyfriend Toon as well as my grandparents,
uncles, and aunts for showing sincere interest in my work and achievements.

Jan Van Haaren
Heverlee, December 2016

Abstract

Machine learning aims to design algorithms whose performance on a task
improves with experience, where experience is usually defined as the amount
of available data. Unfortunately, most traditional machine-learning algorithms
rely on assumptions that do not hold in important real-world applications. One
assumption is that the data have a simple structure, while most real-world
problems involve complex, relational data. Another assumption is that large
quantities of data are available to learn a sufficiently accurate predictive model,
while high-quality data are often scarce in real-world domains.

This dissertation aims to overcome the limitations of traditional machine-
learning algorithms by proposing approaches for learning predictive models in
domains that are characterized by a complex, relational structure and a shortage
of high-quality data to learn accurate models. Furthermore, this dissertation also
applies relational-learning techniques to spatio-temporal sports data, which
are illustrative for the challenges that many other real-world applications pose.

Most of the work in this dissertation relates to the field of statistical relational
learning, which is concerned with learning predictive models for domains
exhibiting both uncertainty and a complex structure. To address the inherent
challenges, statistical-relational-learning formalisms typically combine a prob-

vi ABSTRACT

abilistic model with a relational representation. This dissertation leverages
Markov logic networks, which combine Markov random fields with logic.

This dissertation presents five main contributions. The first contribution is an
algorithm for learning Markov random fields from binary data. The second
contribution is an algorithm for learning Markov logic networks from relational
data. The third contribution is an algorithm for transferring knowledge
across relational domains, where the domains can be entirely different. The
fourth contribution is an approach for discovering offensive strategies in
spatio-temporal soccer match data. The fifth contribution is an approach for
discovering offensive patterns in spatio-temporal volleyball match data.

Beknopte samenvatting

Automatisch leren streeft ernaar om algoritmes te ontwerpen waarvan de
prestaties op een taak verbeteren naargelang zij ervaring opdoen, waarbij
ervaring meestal gedefinieerd wordt als de hoeveelheid beschikbare gegevens.
De meeste traditionele automatische leeralgoritmes steunen echter op aannames
die helaas niet gelden voor belangrijke toepassingen in de echte wereld. Eén
aanname is dat de gegevens een eenvoudige structuur hebben, terwijl de
meeste problemen in de echte wereld complexe, relationele gegevens met
zich meebrengen. Een andere aanname is dat grote hoeveelheden gegevens
beschikbaar zijn om een voldoende nauwkeurig voorspellend model te leren,
terwijl kwalitatieve gegevens vaak schaars zijn in echte domeinen.

Dit proefschrift streeft ernaar om de beperkingen van traditionele automa-
tische leeralgoritmes te overwinnen door benaderingen voor te stellen om
voorspellende modellen te leren in domeinen die gekenmerkt worden door een
complexe, relationele structuur en een tekort aan kwalitatieve gegevens om
nauwkeurige modellen te leren. Dit proefschrift past daarnaast ook technieken
voor relationeel leren toe op spatio-temporele sportgegevens die illustratief zijn
voor de uitdagingen die vele andere echte toepassingen bieden.

viii BEKNOPTE SAMENVATTING

Het meeste werk in dit proefschrift heeft betrekking tot het veld van statistisch
relationeel leren dat zich toelegt op het leren van voorspellende modellen in
domeinen die gekenmerkt worden door zowel onzekerheid als een complexe
structuur. Benaderingen voor statistisch relationeel leren combineren meestal
een probabilistisch model met een relationele voorstelling om de inherente
uitdagingen aan te pakken. Dit proefschrift maakt gebruik van Markov logic
networks die Markov random fields met logica combineren.

Dit proefschrift stelt vijf hoofdbijdrages voor. De eerste bijdrage is een algoritme
om Markov random fields te leren uit binaire gegevens. De tweede bijdrage is een
algoritme om Markov logic networks te leren uit relationele gegevens. De derde
bijdrage is een algoritme om kennis over te dragen tussen relationele domeinen,
waarbij de domeinen volledig verschillend kunnen zijn. De vierde bijdrage is een
benadering om aanvallende strategieén in spatio-temporele voetbalgegevens te
ontdekken. De vijfde bijdrage is een benadering om aanvallende patronen in
spatio-temporele volleybalgegevens te ontdekken.

Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction

1.1
1.2

1.3

Contents

XV
XVii

xxi

Dissertation Statement 3

Contributions e 3

1.2.1 Statistical Relational Learning

122 Sports Analytics. o oL 5

Structure of the Dissertation

CONTENTS

2 Background

2.1 Logic and Inductive Logic Programming

211 Logic
2.1.2 Inductive Logic Programming . .
2.2 Markov Random Fields
221 Representation
222 Inference
223 Parameter Learning
224 Structure Learning
2.3 Markov Logic Networks
23.1 Representation
232 Inference
2.3.3 DParameter Learning
234 Structure Learning
2.4 Transfer Learning
241 Definition
242 Approaches

3 Structure Learning of Markov Random Fields

31 Algorithm
3.1.1 Initial Feature Set Construction . .
3.1.2 Feature Generation
3.1.3 Feature Selection
3.14 Algorithm Overview

3.2 Experimental Evaluation

321 Datasets

CONTENTS

Xi

322 Methodology
323 Results L

3.3 Conclusions

Lifted Structure Learning of Markov Logic Networks

41 Algorithm
411 Approach
41.2 Algorithm I: Perform a Tractability Check
41.3 Algorithm II: Design a Space of Tractable Models

42 Experimental Evaluation,
421 ExperimentalSetup.,
422 ResearchQuestions

43 RelatedWork oo

44 Conclusions e

Deep Transfer Learning in Relational Domains

51 Intuition o

5.2 Theoretical Framework L.
521 Generative Model fortheData
522 Transfer Learning with TODTLER

53 Approximate Algorithm 000
5.3.1 Learning Second-Order Model Posteriors
53.2 Target-Domain Learning

5.4 Experimental Evaluation,
54.1 Datasets
542 Methodology

28
29
36

39
41
42
43
44
44
45
47
53
54

CONTENTS

543 Results 67
55 Conclusions 75
Discovering Offensive Strategies in Soccer Data 77
6.1 Related Work 79
6.1.1 Knowledge Discovery 79
6.1.2 Sports Data Analysis 79
6.2 Dataset 80
6.2.1 StructureoftheData 80
6.2.2 Hierarchical Information. 80
6.3 Methodology 82
6.3.1 Pre-processingtheData 82
6.32 LearningtheClauses 83
6.4 Experimental Evaluation 84
6.4.1 Dataset and Experimental Setups 84
6.42 ResearchQuestions 84
6.43 Experiments 85
6.44 Quantitative Analysis (Qland Q2) 85
6.4.5 Qualitative Analysis (Q3) 85
6.4.6 Alternative Qualitative Analysis (Q3) 88
6.5 LessonsLearned. 89
6.6 Conclusions 90
Discovering Offensive Patterns in Volleyball Data 91
7.1 Problem Description 92

7.2 Backgroundon Volleyball 94

CONTENTS

xiii

73 Dataset
74 Methodology
7.5 Results and Discussion

7.6 Conclusions

8 Conclusions
81 Summary.
8.2 Discussion, Perspectives, and Future Work
821 StructureLearning
822 Transfer Learning

8.2.3 Sports Analytics

Bibliography

Curriculum Vitae

List of Publications

95
97
99
105

107
107
111
111
113
113

115

125

127

51
52

5.3

54

55

6.1

7.1
7.2

List of Figures

The data generation process.

The learning curves for predicting protein function in Yeast when
transferring knowledge from WebKB.

The learning curves for predicting protein function in Yeast when
transferring knowledge from Twitter.

The learning curves for predicting a web page’s class in WebKB
when transferring knowledge from Yeast.

The learning curves for predicting a web page’s class in WebKB
when transferring knowledge from Twitter.

The division of the soccer pitchintozones.

The division of the volleyball pitch into zones and positions. . .

A frequent successful offensive pattern by Poland in the men’s
final at the 2014 Volleyball World Championships.

XV

71

72

7.3

74

7.5

7.6

7.7

7.8

79

A frequent successful offensive pattern by Brazil in the men’s
final at the 2014 Volleyball World Championships.

A frequent successful offensive pattern by the USA in the
women’s final at the 2014 Volleyball World Championships.

A frequent successful offensive pattern by China in the women’s
final at the 2014 Volleyball World Championships.

A frequent offensive pattern by Poland that Brazil did not
frequently use in the men’sfinal.

A frequent offensive pattern by Brazil that Poland did not
frequently use in the men’s final.

A frequent offensive pattern by the USA that China did not
frequently use in the women’s final.

A frequent offensive pattern by China that the USA did not
frequently use in the women’s final.

LIST OF FIGURES

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39

4.1
4.2

List of Tables

An example dataset for Markov-random-field structure learning. 24

The characteristics of the datasets. 28
The test-set CMLL scores for each method and each dataset. . . 30
The runtimes for each method and each dataset. 31
The statistics for the best GSSL model for each dataset. 32
The statistics for the best L1 model for each dataset. 33
The statistics for the best DTSL model for each dataset. 34
The statistics for the best BLM model for each dataset. 35
The parameters and statistics for the best GSSL models. 36
The test-set log-likelihoods for the models learned by BUSL. . . 48
The test-set log-likelihoods for the models learned by MSL.. . . . 48

xvii

xviii

LIST OF TABLES

4.3 The test-set log-likelihoods for all the methods in all the domains
when learning tractablemodels. 49
4.4 A comparison of AUC and CLL results for all the methods in all
the domains when learning tractable models. 50
4.5 A comparison of AUC and CLL results for all the methods in all
the domains when learning intractable models. 51
4.6 The test-setlog-likelihoods for LSL in all the domains for different
time-outvalues. o 52
4.7 The average number of formulas in the models learned by each
algorithm in each domain. 52
4.8 The average length of the formulas in the models learned by each
algorithm in eachdomain. 53
5.1 The characteristics of the datasets. 65
5.2 The average relative differences in AUCPR and CLL between
TODTLER and DTM-5 for all the settings. 68
5.3 The average relative differences in AUCPR and CLL between
TODTLER and DTM-10 for all the settings. 68
5.4 The average relative differences in AUCPR and CLL between
TODTLER and LSM for all the settings. 69
5.5 The average relative differences in AUCPR and CLL between
DTM-5 and LSM for all the settings. 69
5.6 The average runtimes for TODTLER and DTM-5. 73
5.7 The average runtimes for TODTLER and DTM-10. 73
5.8 The ten top-ranked templates in the Yeast domain. 74
59 The ten top-ranked templates in the WebKB domain. 74
5.10 The ten top-ranked templates in the Twitter domain. 74
6.1 The statistics for each of the experimental setups. 86

LIST OF TABLES Xix

6.2 The top rules in terms of m-estimate for discovering spatial
patterns without hierarchical information. 86

6.3 The top rules in terms of m-estimate for discovering spatial
patterns with hierarchical information. 86

6.4 The top rules in terms of m-estimate for discovering player-
interaction patterns without hierarchical information. 87

6.5 The top rules in terms of m-estimate for discovering player-
interaction patterns with hierarchical information. 87

6.6 The top rules in terms of weighted relative accuracy for discov-
ering spatial patterns with hierarchical information. 88
7.1 The statistics for the men’s and women'’s final match at the 2014

FIVB Volleyball World Championships. 96

7.2 The number of positive and negative examples for each task. . . 97

List of Algorithms

GSSL — FEATURE GENERATION . . .« v v v v v e e e e e e e e o 26
GSSL — FEATURE SELECTION v v v vt i e e e e e e 27
LSL — LIFTED STRUCTURE LEARNING 43
TODTLER — FRAMEWORK v v v v i i i e e e e 60

TODTLER — APPROXIMATION . . « + v v v e e e e e e e e e o 62

XXi

Introduction

The field of machine learning aims to design algorithms that enable computers
to learn without being explicitly programmed. Like humans, computers are said
to learn if their performance on a task improves as they gain more experience.
The current paradigm in machine learning defines experience as the amount of
available training data. Hence, machine-learning algorithms ideally produce
more accurate predictive models by processing more data. However, traditional
algorithms typically rely on a number of assumptions that often do not hold in
practice and restrict their applicability to important real-world problems.

One limitation of standard machine-learning algorithms is that they operate
on simply-structured data. Most traditional algorithms expect the data to be
tabular, where each row represents an entity and each column corresponds
to an attribute. However, many real-world domains involve complexly-structured
data. These data comprise different types of entities, which can have different
attributes, and different relationships between these entities. For example, in
a soccer domain, we wish to store distinct attributes for players, managers,
and clubs. In addition, we also want to express different types of relationships
between these entities. For example, we wish to model that a player plays for a
certain club, or that a manager manages a certain player.

2 INTRODUCTION

The field of statistical relational learning (SRL, De Raedt et al. 2008; Getoor and
Taskar 2007) aims to upgrade machine-learning approaches to handle complex
data. Statistical relational learning focuses on learning compact models that
allow reasoning in domains involving uncertainty and complex data. To this end,
statistical-relational-learning formalisms try to exploit the relational structure of
the data. One challenge is to automatically learn the models from data. Another
challenge is to ensure that the learned models allow efficient reasoning.

Another limitation of standard machine-learning algorithms is that they assume
large quantities of training data are available, while high-quality data are often
scarce or unavailable in real-world domains to learn a sufficiently accurate predictive
model. High-quality training data can often be time consuming and expensive
to collect or even impossible to obtain at all. Moreover, whenever training
data are available in large quantities, the data are often inconsistent and
noisy. For example, in a soccer domain, the data collection process during
matches requires teams of human annotators in addition to expensive optical-
tracking systems (Bialik 2014b). While tedious and time consuming, the manual
annotation of data can easily lead to inconsistencies and errors (Bialik 2014a).

The field of transfer learning (TL, Pan and Yang 2010) aims to overcome the
dependence of traditional machine-learning approaches on large quantities of
high-quality data. Transfer learning aims to learn accurate predictive models in
domains where data are scarce by leveraging data from other related domains.
One challenge is to automatically discover knowledge that can be transferred
from one domain to the other. Another challenge is to represent the discovered
knowledge in a domain-independent way as different domains can consist of
different entities and relationships.

The high-level objective of this dissertation is developing novel algorithms
and approaches that enable machine-learning techniques to be applied to
important real-world problems. More specifically, the work in this dissertation
concerns learning predictive models in domains involving uncertainty, learning
predictive models in domains where training data are scarce, and learning
predictive models that allow for efficient reasoning. In addition, this dissertation
presents applications of relational approaches to spatio-temporal sports data,
which are illustrative for the challenges that many real-world domains pose.

Despite the restricted applicability of traditional machine-learning algorithms to
real-world problems, several machine-learning successes have appeared in the
newspapers recently. Examples of notable success stories include autonomous

DISSERTATION STATEMENT 3

vehicles (e.g., Kang 2016), personal voice assistants in mobile devices (e.g., Chen
2016), and AlphaGo (Silver et al. 2016), which was the first computer program to
defeat a human professional player in the ancient game of Go. Most of the recent
successes in machine learning are powered by deep-learning techniques (LeCun
et al. 2015). However, the necessary conditions for deep-learning algorithms to
be successful are limiting in real-world applications.

Deep learning’s appetite for huge quantities of training data and inability to
learn interpretable models prevent the paradigm from being applicable to a
wider range of important real-world problems. Therefore, the machine-learning
community should keep exploring innovations that alleviate these limitations
as well as alternative paradigms. This dissertation adds to that by presenting
novel algorithms that can handle complex relational data in a natural way as
well as learn from small quantities of high-quality training data. Although
developed under a different paradigm and valuable on their own, the insights
from this dissertation can likely also inspire future deep-learning research.

1.1 Dissertation Statement

This dissertation presents novel relational approaches that allow machine
learning to be applied to important real-world problems, which are typically
characterized by uncertainty, complexly-structured data, and a limited amount
of high-quality training data. This dissertation also explores the application of
relational approaches to spatio-temporal sports data.

1.2 Contributions

This dissertation presents five main contributions. The first three contributions
are relevant to the domain of statistical relational learning, while the remaining
two contributions are relevant to the field of sports analytics.

1.2.1 Statistical Relational Learning

The field of statistical relational learning (SRL, De Raedt et al. 2008; Getoor and
Taskar 2007) is concerned with domains involving uncertainty on one hand

4 INTRODUCTION

and complexly-structured data on the other hand. Statistical-relational-learning
formalisms typically leverage a probabilistic model to handle the uncertainty
and use a relational representation to model the complexly-structured data. This
dissertation relies on Markov logic networks, which use Markov random fields
as the probabilistic model and first-order logic as the relational representation.

Structure Learning of Markov Random Fields

The first main contribution of this dissertation is a novel algorithm called
GSSL (Generate Select Structure Learning) for automatically learning Markov
random fields from binary data. The algorithm, which combines some of the
benefits of existing structure-learning approaches, views structure learning as a
feature-induction problem. GSSL first quickly generates a large set of candidate
features in a data-driven way and then selects a subset of the generated features
to include in the final model.

An extensive empirical evaluation on 20 real-world datasets demonstrates the
advantages of the proposed algorithm. In addition to learning more accurate
models than the baseline approaches, GSSL is also much faster.

The Java source code of the GSSL implementation is available for download
from https://dtai.cs.kuleuven.be/software/gssl.

Lifted Structure Learning of Markov Logic Networks

The second main contribution of this dissertation is a novel algorithm called LSL
(Lifted Structure Learning) for automatically learning tractable Markov logic
networks from relational data. The algorithm, which performs a greedy search
in the space of candidate models, leverages techniques from lifted inference
to optimize the exact training-set log-likelihood and to learn models that are
guaranteed to support certain types of queries efficiently.

An extensive empirical evaluation on three real-world datasets demonstrates
the advantages of the proposed algorithm. LSL learns more accurate models
than the baseline approaches in terms of both generative and predictive quality.
Moreover, LSL even outperforms off-the-shelf structure-learning approaches
that learn intractable models on prediction tasks, suggesting that tractable
models are a powerful hypothesis space that is sufficient for many problems.

https://dtai.cs.kuleuven.be/software/gssl

CONTRIBUTIONS 5

The Java source code of the LSL implementation is available for download from
https://dtai.cs.kuleuven.be/software/wfomc.

Deep Transfer Learning in Relational Domains

The third main contribution of this dissertation is a novel framework called
TODTLER (Two-Order-Deep Transfer Learning) for performing deep-transfer
learning in relational domains. The framework views knowledge transfer as
the process of first learning a declarative bias in one domain and then applying
that bias to another domain to improve the learning process.

The concrete implementation of the framework performs deep-transfer learn-
ing, where the source and target domains can consist of entirely different
sets of entities and relationships, in the context of Markov logic networks.
TODTLER represents the transferable knowledge as a distribution over domain-
independent second-order templates, which give rise to first-order Markov
logic formulas in a particular domain.

An extensive empirical evaluation on three real-world datasets shows that the
algorithm outperforms the state-of-the-art deep-transfer-learning algorithm as
well as the state-of-the-art inductive-learning algorithm in terms of accuracy.
In addition to learning more accurate models, TODTLER is also much faster
than the existing deep-transfer-learning algorithms.

The Java source code of the TODTLER implementation is available for download
from https://dtai.cs.kuleuven.be/software/todtler.

1.2.2 Sports Analytics

The broad field of sports analytics (SA, Alamar 2013) is concerned with the
use of data in the sports industry. Since the field lacks a formal definition,
almost any research in the context of sports that leverages data is considered
sports analytics nowadays. However, this dissertation adopts a more restrictive
definition, which views sports analytics as leveraging data to improve the
performance of individual athletes and sports teams.

https://dtai.cs.kuleuven.be/software/wfomc
https://dtai.cs.kuleuven.be/software/todtler

6 INTRODUCTION

Discovering Offensive Strategies in Soccer Match Data

The fourth main contribution of this dissertation is an inductive-logic-pro-
gramming approach that automatically discovers offensive strategies in spatio-
temporal soccer match data. The approach aims to discover patterns that
frequently occur in situations leading to a goal attempt.

An empirical study on a large number of matches from a Belgian professional
soccer club demonstrates that the proposed approach is able to automatically
discover interesting and relevant offensive strategies in match data.

Discovering Offensive Patterns in Volleyball Match Data

The fifth main contribution of this dissertation is an inductive-logic-programming
approach that automatically discovers offensive patterns in spatio-temporal
volleyball match data. The approach aims to discover patterns that occur
frequently in won rallies and infrequently in lost rallies. In addition, the
approach also aims to reveal patterns that are used by one team in a particular
match but not the opposing team.

An analysis of both the men’s and women’s final match at the 2014 FIVB
Volleyball World Championships demonstrates that the proposed approach is
able to discover meaningful offensive patterns in volleyball match data.

1.3 Structure of the Dissertation

The structure of this dissertation is as follows.

Chapter 2 provides the necessary background on logic and inductive logic
programming, Markov random fields, Markov logic networks, and transfer
learning. This chapter is based on the publications cited in chapters 3 to 7.

Chapter 3 introduces a novel algorithm for automatically learning Markov
random fields from data and presents an extensive empirical evaluation on 20
real-world datasets. This chapter is based on the following publication:

Jan Van Haaren and Jesse Davis (2012). “Markov Network Structure Learning: A
Randomized Feature Generation Approach”. In: Proceedings of the Twenty-Sixth

STRUCTURE OF THE DISSERTATION 7

AAAI Conference on Artificial Intelligence (AAAI 2012; Toronto, Ontario, Canada;
22-26 July 2012), pages 1148-1154

Chapter 4 introduces a novel algorithm for automatically learning tractable
Markov logic networks from data and presents an extensive empirical evaluation
on three real-world datasets. This chapter is based on the following publications:

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2016).
“Lifted Generative Learning of Markov Logic Networks”. In: Machine Learning
103(1), pages 27-55

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2014c).
“Tractable Learning of Liftable Markov Logic Networks”. In: Proceedings of
the ICML 2014 Workshop on Learning Tractable Probabilistic Models (LTPM 2014;
Beijing, China; 26 June 2014)

Chapter 5 introduces a novel framework for performing deep-transfer learning
in relational domains and presents an extensive empirical evaluation on three
real-world datasets. This chapter is based on the following publication:

Jan Van Haaren, Andrey Kolobov, and Jesse Davis (2015). “TODTLER: Two-
Order-Deep Transfer Learning”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015; Austin, Texas, United States; 25-30
January 2015), pages 3007-3015

Chapter 6 introduces an approach for automatically discovering offensive
strategies in spatio-temporal soccer match data and presents an empirical study
on a large volume of matches from a Belgian professional soccer club. This
chapter is based on the following publication:

Jan Van Haaren, Vladimir Dzyuba, Siebe Hannosset, and Jesse Davis (2015).
“Automatically Discovering Offensive Patterns in Soccer Match Data”. In:
Advances in Intelligent Data Analysis X1V (IDA 2015; Saint-Etienne, France; 22-24
October 2015), pages 286—297

Chapter 7 introduces an approach for automatically discovering offensive
patterns in spatio-temporal volleyball match data and presents an analysis
of both the men’s and women’s final match at the 2014 FIVB Volleyball World
Championships. This chapter is based on the following publication:

Jan Van Haaren, Horesh Ben Shitrit, Jesse Davis, and Pascal Fua (2016).
“Analyzing Volleyball Match Data from the 2014 World Championships Using
Machine Learning Techniques”. In: Proceedings of the Twenty-Second ACM

8 INTRODUCTION

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2016; San Francisco, California, United States; 13-17 August 2016)

Chapter 8 summarizes the contributions presented in this dissertation and
provides promising avenues for future research.

Background

This chapter provides the necessary background on logic and inductive logic
programming, Markov random fields, Markov logic networks, and transfer
learning that this dissertation relies on.

2.1 Logic and Inductive Logic Programming

Logic is a commonly used representation language for relational data. Inductive
logic programming (ILP, DZeroski and Lavrac¢ 2001) is a well-known framework
for learning models from relational data.

2.1.1 Logic

Logic is a powerful and expressive language. This section introduces the relevant
subsets of first-order and second-order logic that we use in this dissertation.

10 BACKGROUND

First-Order Logic

We use a subset of first-order logic with an alphabet consisting of three symbols.
A constant starts with a lowercase letter and refers to specific objects in a domain.
For example, the constant alice refers to a person called Alice. A variable starts
with an uppercase letter and ranges over multiple objects in a domain. For
example, the variable People refers to a group of people. A predicate either
represents a relation between objects in a domain or defines a property of an
object. For example, the predicate Friends indicates that two people are friends,
while the predicate Mother indicates that a person is someone’s mother.

Using these three symbols, we define the following constructs. A term is either
a variable or a constant. An atom is a predicate applied to one or multiple
terms. For example, the atom Friends(alice, bob) expresses that Alice and Bob
are friends. A literal is either an atom or its negation. A formula is a finite set of
literals that are connected using the conjunctive operator A or the disjunctive
operator V. For example, the formula Friends(alice, bob) A Friends(bob, carol)
expresses that Alice is friends with Bob and that Bob is friends with Carol. A
clause is a formula, where the literals are solely connected using the disjunctive
operator V. For example, the formula Friends(alice, bob) V Siblings(alice, bob)
expresses that Alice and Bob are friends or siblings. A definite clause is a clause
that has exactly one positive literal. A definite program is a collection of definite
clauses. A term, atom, or formula are ground if they only contain constants.

Second-Order Logic

We use a limited form of second-order logic that augments the alphabet of our
subset of first-order logic with one additional symbol. A predicate variable is a
variable that ranges over multiple predicates in a domain. For example, in the
second-order literal P(alice, bob) the predicate variable P can take the name of
any predicate in the domain (e.g., Friends or Siblings).

2.1.2 Inductive Logic Programming

This section introduces the inductive-logic-programming learning task and
presents the widely-adopted Aleph system.

LOGIC AND INDUCTIVE LOGIC PROGRAMMING 11

Definition

Inductive logic programming allows to directly model important relationships
and facilitates incorporating domain knowledge into the learning process.
Informally, ILP attempts to learn a definite program that, in combination
with background knowledge, can be used to distinguish positive and negative
examples. More formally, we define the ILP learning task as follows:

Given: A target predicate T, background knowledge BK, a non-empty set of
positive examples E+ of T, and a set of negative examples E— of T.

Learn: A set of definite clauses S such that BKAS = E" and BKAS [~ E™.

In practice, it is often not possible to ensure BK A S = E~. Hence, this condition
is typically relaxed by permitting clauses in S to cover negative examples as
well. A clause covers an example if the clause, in combination with BK, can be
used to derive that the target predicate T is true for the given example. The goal
in the relaxed setting is to achieve a balance between the number of positive
and negative examples that each clause covers.

Aleph

In this dissertation, we employ the widely-used Aleph ILP system (Srinivasan
2001) to address the above task. Aleph learns a set of definite clauses by
iteratively applying the following two-step approach.

In the saturation step, the system first selects a random positive example, called
the seed example, and finds all facts in the background knowledge that are true
for this example. Aleph forms a clause where the body is the conjunction of all
these true facts and the head is the target predicate. This is the most-specific
clause, or bottom clause, that covers the seed example.

In the search step, the system performs a top-down search over clause bodies
that generalize the bottom clause. The key idea is that a subset of the facts can
be used to explain the seed example’s label and that this explanation is likely
to apply to other examples as well.

12 BACKGROUND

2.2 Markov Random Fields

A Markov random field is a compact representation of a joint probability
distribution over multiple variables. This section introduces the relevant aspects
of representation, inference, and learning for Markov random fields.

2.2.1 Representation

A Markov random field (MRF) or Markov network (MN) is a graphical model
that compactly represents a joint probability distribution over a collection of
variables X = (X1, X, ..., X5,), where n is the number of variables (Della Pietra
et al. 1997). A Markov random field consists of an undirected graph G and a set
of potential functions ¢. The graph contains a node for each variable and the
model has a potential function for each clique in the graph. A Markov random
field represents the following joint probability distribution:

P(X=x)= él;[‘f’k(x{k})r 21)

where x ;) is the state of the variables that appear in the k-th clique, and Z is a
normalization constant.

Markov random fields are often conveniently represented as log-linear models,
where each clique potential is replaced by an exponentiated weighted sum of
features of the state of the variables:

P(X=x)= %exp (Z:wlf,(x)) : (2.2)

A feature f;(x) may be any real-valued function of the state of the variables. For
discrete data, a feature typically is a conjunction of tests of the form X; = x;,
where X; is a variable and x; is a value of that variable. A feature matches an
example if it is true in that example.

MARKOV RANDOM FIELDS 13

2.2.2 Inference

The main inference task in graphical models is to compute the conditional
probability of a set of variables V = (V4, V5, ..., X;) given the values assigned
to another set of variables W = (Wy, Wy, ..., W,,) by summing over all possible
assignments to the remaining variables U; ¢ V U W. The set of variables V is
called the guery, while the set W is called the evidence.

Since computing conditional probabilities is a #P-complete problem, this task
requires approximate inference techniques. One widely used method is Markov
chain Monte Carlo (MCMC, Gilks et al. 1996) and Gibbs sampling in particular.
Markov chain Monte Carlo proceeds by sampling each variable in turn given
its Markov blanket, which is the set of variables that it appears with in a
potential. Another popular method for approximate inference is Loopy Belief
Propagation (LBP, Murphy et al. 1999).

2.2.3 Parameter Learning

The parameter learning task is to automatically learn the weights w; associated
with the features f; from data by optimizing a given objective function. Ideally,
each candidate Markov random field is scored by its training set log-likelihood
(LL), which is a convex function of its weights. Hence, learning the optimal
weights can be solved via convex optimization. However, this typically requires
an iterative optimization technique where each step of the optimization must
calculate both the log-likelihood and its gradient. This is often computationally
infeasible as it requires computing the partition function Z in Equation 2.2.
Moreover, Kulesza and Pereira (2008) have found that employing approximate
inference can mislead parameter learning algorithms.

A more efficient alternative that has been widely used in domains such as spatial
statistics, social network modeling and language processing is optimizing the
pseudo-log-likelihood (PLL, Besag 1975). This approximation is defined as:

<
1=

log PZ:,(X = X) = log Pw(X]',l' = X]',1'|MBX(X]',1‘)) (2.3)

1j=1

where V is the number of variables, N is the number of training examples, Xji

14 BACKGROUND

is the value of the i-th variable of the j-th example, MB,(X;) is the state of the
Markov blanket of X;; in the data. The pseudo-log-likelihood is much more
efficient to compute than the actual log-likelihood and can also be optimized

via convex optimization.

2.2.4 Structure Learning

The structure learning task is to automatically learn the features f; as well as
their corresponding weights w; from data. The traditional approach to this
task is to view structure learning as a feature induction problem. The existing
approaches that address this task can be largely divided into two categories:
search-based approaches and local-model-based approaches.

Search-based Approaches

The standard algorithm to Markov-random-field structure learning by Della
Pietra et al. (1997) uses a greedy, general-to-specific (i.e., top-down) search. The
algorithm starts with a set of atomic features, which correspond to the variables
in the domain. It creates candidate features by conjoining each feature to each
other feature, including the original atomic features. The algorithm evaluates
each candidate feature f by estimating how much including f in the model
would improve the pseudo-log-likelihood of the model. It adds the feature that
results in the largest pseudo-log-likelihood gain to the feature set. The algorithm
terminates when no candidate feature improves the pseudo-log-likelihood.

The more recent BLM algorithm by Davis and Domingos (2010) employs a
greedy, specific-to-general (i.e., bottom-up) search. BLM starts by treating each
complete example as a long feature in the Markov random field. The algorithm
repeatedly iterates through the feature set and considers generalizing each
feature to match its k nearest previously unmatched examples by dropping
variables. If incorporating the newly generalized feature improves the pseudo-
log-likelihood of the model, it is retained in the model. The process terminates
when no generalization improves the pseudo-log-likelihood of the model.

The drawback of search-based approaches is that they must perform parameter
learning to score each candidate feature. This is computationally expensive even
when optimizing the pseudo-log-likelihood instead of the actual log-likelihood.

MARKOV LOGIC NETWORKS 15

Local-Model-based Approaches

The more recent approaches to Markov-random-field structure learning first
learn a set of local models and then combine them into a global model. At a
high level, these algorithms proceed in two steps. In the first step, they aim
to discover the Markov blanket of each variable X; by building a model that
predicts the value of X; given the remaining variables. In the second step, they
add all discovered features to the model and globally learn their corresponding
weights using any standard weight learning algorithm.

The L1 algorithm by Ravikumar et al. (2010) employs L;-logistic-regression
models as local models. In the limit of infinite data, consistency is guaranteed
such that X; is in the Markov blanket of X; if and only if X; is in the Markov
blanket of X;. In practice, however, this is often not the case and there are two
methods to decide which features to include in the model. The first method
includes a feature if either X; is in the Markov blanket of X; or X; is in the
Markov blanket of X;. The second method includes a feature if both X; is in the
Markov blanket of X; and X; is in the Markov blanket of X;. A weakness of the
L1 algorithm is that it only constructs pairwise features.

The DTSL algorithm by Lowd and Davis (2010) employs the same general
strategy using a probabilistic decision-tree learner as local model. The algorithm
first learns a probabilistic decision tree for each variable and then converts each
tree into a set of conjunctive features. The most straightforward conversion
method constructs one feature for each root-to-leaf path through the tree
although the paper proposes several other conversion methods as well.

The drawback of local-model-based approaches is that it can be computationally
expensive to learn the local models if the dataset contains a large number of
variables or examples.

2.3 Markov Logic Networks

A Markov logic network combines Markov random fields with first-order logic
to allow for probabilistic inference. This section introduces the relevant aspects
of representation, inference, and learning for Markov logic networks.

16 BACKGROUND

2.3.1 Representation

A Markov logic network (MLN, Richardson and Domingos 2006) softens first-
order logic by associating a weight to each formula. More formally, a Markov
logic network is a collection of pairs (F;, w;), where each F; is a first-order
formula and w; € R its associated weight. As w; increases, the strength of the
constraint that F; imposes on the world increases too. Thus, worlds that violate
formulas become less likely but not impossible as is the case in first-order logic.
Formulas with infinite weights represent pure first-order logic formulas.

A Markov logic network provides a template for constructing a Markov random
field. For a given set of constants, which we call the domain, the MLN formulas
define a Markov random field. The graph contains a node for each variable,
which are the ground instances of the atoms that appear in the formulas. The
edges in the graph connect the literals that appear in the same ground instance
of a formula. A Markov logic network induces the following joint probability
distribution over a relational database db:

P(db) = %exp <2 wini(db)> (24)
i=1

where w; is the weight of the i-th formula, n;(db) is the number of true ground
instances of formula F; in database db, and Z is a normalization constant.

2.3.2 Inference

An important inference task in MLNs is to compute the conditional probability
of a formula F; given the truth value of another formula F, by summing over
the truth values of the remaining formulas F;. The formula F; is called the query,
while the formula F, is called the evidence.

Since a Markov logic network provides a template for constructing a Markov
random field, the inference tasks in MLNs and MRFs are tightly connected
with each other. The standard way of performing inference in an MLN is by
first constructing the corresponding MREF for a given set of constants and then
performing inference in the resulting MRF. For large domains, this approach

MARKOV LOGIC NETWORKS 17

often leads to performing inference in very large and densely-connected MRFs
causing inference to become intractable.

The popularity of statistical-relational-learning languages such as Markov logic
networks has motivated a new class of lifted inference algorithms, which aim to
speed up inference by exploiting the high-level structure and symmetries of
the first-order logic formulas (Kersting 2012; Poole 2003). Van den Broeck (2011)
introduces the notion of domain-lifted inference which formalizes the intuition
that lifted inference algorithms should efficiently deal with large domains by
running in time polynomial in the domain size. However, although domain-
lifted inference algorithms should be polynomial in the number of constants,
they can still be exponential in other parameters such as the number of formulas.

2.3.3 Parameter Learning

The parameter learning task is to automatically learn the weights w; associated
with the features F; from data by optimizing a given objective function. Ideally,
each candidate MLN is scored by its training set log-likelihood, which is a
convex function of its weights. Hence, learning the optimal weights can be
solved via convex optimization. However, parameter learning for MLNs poses
the same challenges as parameter learning for MRFs that are discussed in
Section 2.2.3. Therefore, the standard approach for learning the weights of an
MLN is optimizing the pseudo-log-likelihood as defined in Equation 2.3 (Huynh
and Mooney 2009; Lowd and Domingos 2007; Richardson and Domingos 2006;
Singla and Domingos 2005).

The observation that parameter learning quickly becomes intractable, motivated
Van den Broeck, Meert, et al. (2013) to leverage lifted-inference techniques to
address the parameter-learning task. Their lifted-parameter-learning approach
efficiently and exactly learns the maximum-likelihood weights for a given MLN.
The algorithm compiles the MLN into a more convenient circuit language that
permits inference in polynomial time in the domain size of the MLN.

2.3.4 Structure Learning

The structure learning task is to automatically learn the formulas F; as well as
their corresponding weights w; from data. Structure learning is an incredibly
challenging task as there is a huge number of candidate formulas and an

18 BACKGROUND

even larger space of candidate models. The traditional approach to this task
is to greedily add one formula at a time to the MLN. The existing approaches
that address this task can be largely divided into two categories: top-down
approaches and bottom-up approaches.

Top-down Approaches

The first category of structure learners adopts a top-down approach. The MSL
algorithm by Kok and Domingos (2005) is a canonical example of a top-down
approach. Starting from an MLN that only contains the unit formulas, MSL
proceeds as follows. After constructing all formulas of length two, it runs a
beam search to find the current best formula and adds that formula to the
model. In each iteration, MSL constructs new candidate formulas by adding
literals to the best formulas in the beam. The search iterates until no formula
improves the score of the MLN.

To evaluate the merit of each formula, MSL uses weighted pseudo-log-likelihood
(WPLL), which is an extension of pseudo-log-likelihood that diminishes the
importance of predicates with a large number of ground instances. It does this
by normalizing a predicate’s pseudo-log-likelihood by its number of possible
ground instances (Kok and Domingos 2005). To avoid overfitting, each formula
receives a penalty term proportional to the number of literals that differ between
the current formula and the initial formula.

Bottom-up Approaches

The second category of structure learners adopts a bottom-up approach.
Structure learners in this category, such as the BUSL algorithm by Mihalkova
and Mooney (2007) and the LSM algorithm by Kok and Domingos (2010), use
the data to restrict the search space.

The BUSL algorithm proceeds in two steps. First, it constructs a template Markov
random field from a ground Markov random field by discovering recurring
paths of true atoms. Second, it transforms the template Markov random field into
candidate formulas. It greedily iterates through the set of candidate formulas
adding the formula to the MLN that most improves the weighted pseudo-log-
likelihood of the model. The search terminates when no formula improves the
weighted pseudo-log-likelihood of the model.

TRANSFER LEARNING 19

2.4 Transfer Learning

Transfer learning is a subfield of machine learning that aims to learn predictive
models leveraging data from the domain at hand as well as another, possibly
unrelated, domain. This section introduces the relevant aspects of deep-transfer
learning and reviews existing approaches. Pan and Yang (2010) provides a more
thorough discussion of transfer-learning approaches and algorithms.

2.4.1 Definition

Transfer learning is a broad field and lacks a widely-adopted formal definition.
Therefore, we formally define transfer learning as follows:

Given: A target task T, a target domain D; and a source domain D, where the
source domain D; differs from the target domain D;.

Learn: A target predictive function f; in D; using knowledge acquired in D;.

Hence, the key difference between inductive learning and transfer learning
is that the latter approach leverages additional data from a source domain to
learn a more accurate predictive function.

2.4.2 Approaches

The work in this dissertation belongs to the class of deep-transfer-learning
methods, which are capable of generalizing knowledge between distinct
domains. DTM (Davis and Domingos 2009) and TAMAR (Mihalkova, Huynh,
et al. 2007) are two state-of-the-art methods that perform deep-transfer learning
in the context of Markov logic networks.

Furthermore, the field of analogical reasoning (Falkenhainer et al. 1989) is
closely related to transfer learning. Analogical-reasoning approaches apply
knowledge from one domain to another via a mapping between the objects
and relations in the two domains. A human usually needs to provide possible
mappings for each pair of domains, which can be tedious and time consuming.

20 BACKGROUND

DTM

DTM transfers knowledge from one domain to another using second-order
cliques, which are sets of literals with predicate variables representing a set of
formulas. For example, the clique {R(X,Y),R(Y, X)}, where R is a predicate
variable and X and Y are object variables, gives rise to the second-order formulas
R(X,Y)AR(Y,X),R(X,Y)AN=R(Y,X), =R(X,Y) AR(Y,X),and =R(X,Y) A
—R(Y, X). In turn, each of these second-order formulas gives rise to one or
multiple first-order formulas.

DTM uses the data in the source domain to evaluate a set of second-order cliques
and transfers a user-defined number of these cliques to the target domain. In
the target domain, DTM first considers models only involving the formulas
from the transferred cliques and then refines the models to tailor them more to
the data in the target domain.

TAMAR

TAMAR first takes a first-order model for the source domain and then attempts
to map each clause in that model to the target domain. The algorithm replaces
the predicate symbols in each of the clauses with predicates from the target
domain in all possible ways. TAMAR is less scalable than DTM in certain
scenarios. In particular, exhaustively mapping each source clause to the target
domain is time consuming for long clauses or clauses with constants if the
target domain has many predicates or constants.

Structure Learning of
Markov Random Fields

Markov random fields are undirected graphical models for compactly represent-
ing joint probability distributions over sets of random variables. The objective
of structure learning is to automatically discover conditional dependencies and
independencies in the data in order to represent the joint probability distri-
butions more compactly. Markov random fields are often more conveniently
represented as log-linear models, where the structure-learning task resorts to a
feature-induction problem.

The traditional approach to structure learning is through standard search-
based techniques. Algorithms that follow this strategy use the current feature
set to construct a set of candidate features. After evaluating each feature, the
highest-scoring feature is added to the model. The search can follow a top-
down, general-to-specific strategy (e.g., Della Pietra et al. 1997; McCallum 2003)
or bottom-up, specific-to-general strategy (e.g., Davis and Domingos 2010;
Mihalkova and Mooney 2007). Search-based approaches tend to be slow due
the large number of candidate structures that they need to explore. Furthermore,
scoring each candidate structure requires learning the weights of the features
through iterative optimization. Unfortunately, each iteration of weight learning
requires running inference in the model, which is often intractable.

An alternative approach involves first learning a set of local models and then

21

22 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

combining them into a global model. Algorithms that follow this strategy
consider each variable in turn and build a model to predict the value of a
variable given the values of the remaining variables. Each predictive model
is transformed into a set of features, which are included in the final, global
model. Two approaches that use this strategy are the algorithm by Ravikumar
et al. (2010), which employs L; logistic regression as the local model, and DTSL
by Lowd and Davis (2010), which uses a probabilistic decision-tree learner as the
local model. Unfortunately, learning the local models can be computationally
expensive in domains containing a large number of variables or examples.

Contributions of this Chapter

The first contribution of this chapter is a novel Markov-random-field structure-
learning algorithm called GSSL, which combines some of the benefits of recent
approaches to structure learning. The proposed algorithm proceeds in two
steps. The first step involves quickly generating a large set of candidate features
by combining aspects from randomization and specific-to-general search. GSSL
proceeds in a data-driven, bottom-up fashion to explore the space of candidate
features and thus only constructs features that have support in the data. The
second step selects a subset of the features to include in the final model. GSSL
follows the philosophy of local-model-based approaches that try to minimize
the computational expense of weight learning by performing weight learning
only once to select the best features.

The second contribution is a large-scale empirical evaluation on 20 real-world
datasets, which demonstrates the advantages of the proposed algorithm.
Despite its simplicity, GSSL learns more accurate models than the baseline
approaches while being much faster. The empirical evaluation introduces seven
additional datasets, which have commonly been used as a benchmark for
evaluating Markov-random-field structure-learning algorithms in recent years.

The Java source code of the GSSL implementation as well as a manual and
tutorial are available on https://dtai.cs.kuleuven.be/software/gssl.

The content of this chapter is based on the following publication:

Jan Van Haaren and Jesse Davis (2012). “Markov Network Structure Learning: A
Randomized Feature Generation Approach”. In: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI 2012; Toronto, Ontario, Canada;
22-26 July 2012), pages 1148-1154

https://dtai.cs.kuleuven.be/software/gssl

ALGORITHM 23

Structure of this Chapter

Section 3.1 introduces the key elements of the proposed GSSL algorithm.
Section 3.2 presents an extensive empirical evaluation on 20 real-world
datasets that compares GSSL to three baseline approaches. Section 3.3 provides
conclusions and directions for future work.

3.1 Algorithm

We now describe GSSL (Generate Select Stucture Learning), an algorithm for
Markov-random-field structure learning. GSSL has two main steps: feature
generation and feature selection. In the feature generation step, starting from
an initial feature set, GSSL quickly generates a large set of candidate features
by combining aspects from randomization and specific-to-general search. In
the feature selection step, GSSL attempts to discard irrelevant features through
a preprocessing step and by applying weight learning with an L;-penalty.

The four key elements of GSSL, which are introduced in the next subsections,
are how to construct the initial feature set, how to generate new features, how
to perform feature selection and how the overall algorithm functions.

3.1.1 Initial Feature Set Construction

The algorithm requires an initial feature set. Since the generation process
generalizes features, the initial features should be specific so that it is possible
to generalize them. The training examples can provide very specific features
and GSSL considers two ways of converting them into the initial feature set.
The first approach creates one long feature for each unique training example by
forming a conjunction over all variables in that example. Because the features are
maximally specific, generalization can generate every feature that has support
in the data. The second approach works for problems that have only binary
variables and it builds “positive” features by forming a conjunction only over
those variables that have a value of true. Because many domains are sparse,
this conversion has the advantage of being more compact. Both approaches
have the advantage that every initial feature has support (i.e., occur) in the
data. Consequently, generalizing any of these features yields a feature that is
guaranteed to match at least one training example.

24 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Vo \'Z] V, V3 Vy

true false false true true
true false true false true
false true true true true
true false true false true

= W N = | 3

Table 3.1: An example dataset for Markov-random-field structure learning.

The example dataset in Table 3.1 illustrates the conversion process. Each row in
the table corresponds to one training example.

The first approach yields the following initial feature set:

la Voy=1AV; =0AVa=0AVz=1AV, =1
2a Vog=1AV,=0AVh=1AV3=0AV, =1

3a y=0AV=1AV,=1AV3=1AV; =1
The second approach yields the following initial feature set:

b Vy=1AVz=1AV, =1
2b Vo=1AVa=1AV, =1

3b Vi=1AV,=1AV3=1AV,=1

In this example, the initial feature set is smaller than the example dataset since
GSSL removes duplicate training examples as a preprocessing step. The second
feature matches both the second and the fourth training example.

3.1.2 Feature Generation

The key step involves generating the features. To create a new feature, GSSL
uniformly picks a feature, f, at random from the feature set. It generalizes f by
dropping 7 arbitrary variables, where 7 is drawn from the uniform distribution
between 1 and [— 2, with [the length of f. The lowerbound ensures that the
new feature is actually a generalization. The upperbound ensures the length of

ALGORITHM 25

the generalized feature is at least length two since atomic features (i.e., features
of length one) cannot be further generalized. To decide which variables to drop
from the feature, GSSL shulffles the order of the variables in the ungeneralized
feature and drops the first n to create a new feature f/. Since f/ is added back
into the feature set, it can be selected for generalization in the future. Although
this does not change which features can be generated, it biases the generation
towards shorter features. This process is repeated for a fixed number of times
and the same generalization can be produced multiple times. As a final step,
GSSL adds an atomic feature for each variable, which captures its marginal
probability, to its feature set. The atomic features are known to improve the
performance in practice as they allow the conjunctive features to focus on the
interactions between the variables.

To illustrate the process, suppose that GSSL picks feature 1a from the dataset
shown in Table 3.1. Since this feature is of length five, it uniformly draws an
arbitrary number between one and three. Let us assume that this number is
two. The algorithm then continues with dropping two arbitrary variables, say
V, and V3, such that the resulting feature is Vy = 1 A V; = 0A V4 = 1. The new
feature is more general and now also matches the second and fourth training
example in addition to the first training example.

3.1.3 Feature Selection

GSSL does feature selection in two steps. In the first step, GSSL tries to identify
and discard unnecessary features. One idea would be to perform pruning based
on the support of each feature (i.e., how many examples it matches) in the
data. However, GSSL does not count the number of training examples that
each feature matches as this is a computationally expensive endeavor. As a
result, GSSL requires another mechanism to identify features that potentially
have high support in the data. GSSL removes any feature that was generated
fewer times than a given threshold value. The use of a threshold is based on the
assumption that GSSL is likely to generate features with high support in the
data more often. In a second step, the algorithm performs L; weight learning on
the remaining features to produce the final model. Placing a L{-penalty on the
magnitude of the weight forces many of the weights to be zero, which has the
effect of removing them from the model. Hence, the weight learning process
helps select the most relevant features.

© 0 NN S Ul R W N =

=
(=]

26 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

The feature-selection approach is similar to that of Huynh and Mooney (2008)
for discriminative structure learning for Markov logic networks, which are
templates for constructing Markov random fields. Their approach first generates
features in the form of first-order definite clauses and then uses weight learning
with L;-regularization to select a subset of the features.

3.1.4 Algorithm Overview

The overall control structure of GSSL proceeds in two phases. The first step,
outlined in Algorithm 1, generates a large number of features. As input, this
subroutine receives a set of training examples, TS, and the desired number of
non-unique features to be generated, max. The set TS is converted into the initial
feature set FS. Then, a feature f is randomly selected, generalized to f', and
f'is added to FS. The procedure iterates until it has generated max number of
non-unique features. Finally, it adds an atomic feature for each variable to FS.

Algorithm 1: GSSL — FEaTURE GENERATION

Input: TS — set of training examples
max — maximum number of non-unique features
Output: FS — set of features

Feature set FS < Convert TS into features
while |[FS| < max do
Uniformly draw a feature f from FS
Let I be the length of f
Uniformly draw a number n ~ [1,] — 2]
Drop n arbitrary variables from feature f
FS <+ FSU{f}
end
Add unit clause for each variable to FS
return FS

The second step is outlined in Algorithm 2. As input, this subroutine receives
the set of generated features, FS, and a lower bound, thres, on the number
of times each feature was proposed in the feature-generation step. First, the
algorithm loops through the feature set and discards those features that were
generated fewer than thres times. Second, the algorithm learns the weights for
each feature through L;-optimization, which reduces the number of features in
the model by forcing many weights to be zero.

N S ok 0N =

EXPERIMENTAL EVALUATION 27

Algorithm 2: GSSL — FEATURE SELECTION

Input: FS — initial set of features
thres — lower bound on the desired number of occurrences
Output: FS — final set of features

foreach feature f in FS do
if f occurs < thresh times then
| FS <« FS\ {f}
end
end
Perform L; weight learning on FS
return FS

3.2 Experimental Evaluation

In this section, we evaluate GSSL on 20 real-world datasets. The evaluation
consists of two parts. In the first part, we compare GSSL to three state-of-the art
Markov-random-field structure-learning algorithms in terms of accuracy and
runtime. More specifically, we compare GSSL to the DTSL algorithm by Lowd
and Davis (2010), the L1 algorithm by Ravikumar et al. (2010) and the BLM
algorithm by Davis and Domingos (2010). In the second part, we investigate
the effect of GSSL’s parameter values on its performance.

3.2.1 Datasets

Table 3.2 describes the characteristics of each dataset. Note that each dataset only
contains binary variables. The datasets are shown in ascending order by number
of variables. We used the 13 datasets from Lowd and Davis (2010). Additionally,
we used seven new datasets: Accidents,! Ad,2 BBC,3 DNA,* Kosarak,! Pumsb
Star! and Retail.! For Ad and DNA, we used all the provided binary features.
For BBC, we created one binary feature for each word in the training set. The
remaining four datasets are for frequent itemset mining. We subsampled these
datasets and divided our subsample into a training, a tuning, and a test set. We

IThese datasets are available on http://fimi.ua.ac.be/data/.

2This dataset is available on http://archive.ics.uci.edu/ml/datasets.html.
3This dataset is available on http://mlg.ucd.ie/datasets/bbc.html.

4This dataset is available on http: //www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/.

http://fimi.ua.ac.be/data/
http://archive.ics.uci.edu/ml/datasets.html
http://mlg.ucd.ie/datasets/bbc.html
http://www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/

28 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Size of Size of Sizeof Number of

Dataset train set tuneset testset variables Density
NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.199
Jester 9,000 1,000 4,116 100 0.608
Netflix 15,000 2,000 3,000 100 0.541
Accidents 12,758 1,700 2,551 111 0.291
Retail 22,041 2,938 4,408 135 0.024
Pumsb Star 12,262 1,635 2,452 163 0.270
DNA 1,600 400 1,186 180 0.253
Kosarak 33,375 4,450 6,675 190 0.020
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
EachMovie 4,524 1,002 591 500 0.059
WebKB 2,803 558 838 839 0.064
Reuters-52 6,532 1,028 1,540 889 0.036
20 Newsgroups 11,293 3,764 3,764 910 0.049
BBC 1,670 225 330 1,058 0.078
Ad 2,461 327 491 1,556 0.008

Table 3.2: An overview of the characteristics of the datasets showing, for each
dataset, the number of features in the train, tune, and test set as well as the
number of variables and density.

counted each item’s number of occurrences in the training set. We constructed
one binary feature for each item that met a particular threshold on the training
set: 500 for Accidents and Pumsb Star, and 50 for Kosarak and Retail.

3.2.2 Methodology

We used the training data to learn the structure and weights for all four methods.
The code for GSSL is publicly available.” We used the publicly available code
for DTSL and BLM to learn the models. For L1, we used the OWL-QN software
package from Andrew and Gao (2007) for performing L; logistic regression.

5The implementation is available on https://dtai.cs.kuleuven.be/software/gssl.

https://dtai.cs.kuleuven.be/software/gssl

EXPERIMENTAL EVALUATION 29

For GSSL, we generated half a million, one million, two million and five million
features and used pruning thresholds of one, two and five. We tried both
methods for converting the training set to the initial feature set. For the baseline
algorithms, we used the parameter settings described in Lowd and Davis (2010).

Since GSSL, DTSL and L1 all produce feature sets, it is necessary to learn the
weights for each feature. For weight learning, we used the Libra Toolkit® to
optimize the train set pseudo-likelihood, which was done for computational
tractability. In order to allow for a fair comparison, we performed the exact
same weight learning procedure and employed the same set of L1 regularization
parameters for all three algorithms. For each dataset, we used Gaussian priors
with standard deviations of 0.1, 0.5 and 1, combined with L; norm weights of 1,
5 and 10, resulting in nine different setups. For each algorithm, we selected the
model that maximized the pseudo-log-likelihood on the validation set.

We evaluated the best model using test set conditional marginal log-likelihood
(CMLL) (Lee et al. 2007; Lowd and Davis 2010). First, we divided the variables
into a query set Q and an evidence set E. Then, we computed CMLL(X =
x) = YiecologP(X; = x;|E) for each example in the test set. We divided the
variables into four disjoint groups for each dataset. One set served as query
variables while the remaining three sets served as evidence. We repeated this
procedure such that each set served as the query variables once. We computed
the conditional marginal probabilities using the Gibbs sampler that is part of
the Libra Toolkit. We used a burn-in of 100 samples and then computed the
probability using the next 1,000 samples.

3.2.3 Results

Table 3.3 reports the CMLLs, averaged over all test examples, for each of the
algorithms on all 20 datasets. We compared GSSL with each of the baselines
using a Wilcoxon signed-rank test, which is a non-parametric, paired difference
test. The comparison between any two algorithms involves 20 paired samples,
where each sample corresponds to the test set CMLL scores on a different dataset.
GSSL achieves the best overall CMLL score on 8 of the 20 datasets. According
to the Wilcoxon signed-rank test, GSSL is equivalently accurate to L1, where
it achieves a better CMLL score on 11 of the 20 datasets. GSSL significantly
outperforms DTSL at the 0.0193 significance level according to a Wilcoxon

6The Libra Toolkit is available on http://libra.cs.uoregon.edu.

http://libra.cs.uoregon.edu

30 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Dataset GSSL L1 DTSL BLM

NLTCS -5.175 -5.232 -5.209 -5.248
MSNBC -5.947 -6.281 -5.727 -5.815
KDDCup 2000 -2.071 -2.108 -2.046 -2.077
Plants -9.854 -10.739 -10.709 -10.445
Audio -36.803 -36.878 -37.484 -37.452
Jester -49.464 -49.476 -50.252 -52.762
Netflix -52.339 -52.401 -53.342 -56.521
Accidents -18.180 -16.543 -16.957 -37.558
Retail -10.547 -10.534 -10.578 -10.620
Pumsb Star -17.245 -13.905 -19.508 -133.155
DNA -81.034 -69.035 -69.197 -99.560
Kosarak -10.137 -10.183 -10.068 -10.217
MSWeb -8.819 -8.959 -16.201 -8.848
Book -34.048 -34.025 -34.120 -34.650
EachMovie -49.873 -50.002 -51.448 -58.582
WebKB -144.206 -143.290 -148.192 -164.844
Reuters-52 -79.501 -78.743 -81.267 -90.852
20 Newsgroups -148.565 -147.007 -151.723 -160.841
BBC -242.424 -239.642 -250.302 -265.486
Ad -14.848 -15393 -16.751 -45.638

Table 3.3: An overview of the test-set CMLL scores averaged over all test
examples for each method and each dataset. The best score for each dataset is
shown in bold. GSSL achieves the best CMLL score on 8 of the 20 datasets.

signed-rank test, producing a better CMLL score on 15 of the 20 datasets. GSSL
significantly outperforms BLM at the 0.0002 significance level according to a
Wilcoxon signed-rank test, beating BLM on 19 of the 20 datasets. Despite its
simplicity, GSSL is often significantly more accurate than its competitors.

GSSL performs remarkably worse than its closest competitor L1 in Pumsb Star
and DNA. The characteristics of the domains are a likely explanation for this
observation. Both domains combine a reasonably large number of variables
with a reasonably high density, which leads to a large search space for our
randomized approach. This result suggests that GSSL would likely achieve
better performance in these domains for a larger number of generated features.

GSSL exhibits outstanding runtime performance, which is reported in Table 3.4.
GSSL is the fastest algorithm on 13 of the 20 datasets, being slower to L1 or

31

EXPERIMENTAL EVALUATION

"S9[eLIEA M3J AI9A dARY Sjaseep uaym AJUo TSI(] I0 17 03 IMO[S 3ulaq ‘s}aserep (g 9} JO £ UO POLIou }S9)Sey A}
SI TSSO "PIOq Ul UMOYS SI J9Sejep ok I0J SWNUNI }S9q], 'SWIIUNI [e30) pue ‘duwr) (TA) Sutures[-)ydem ‘owmn (D)
uoneIaUI3-9IN)ELay A} SUIMOYS “}ase)ep yoea pue poyIaw Yoes I0J SPU0ds U SOWNUNI 3} JO MITAIIAO UY ¢ d[qeL

SY¥'LL9°T | 956 91c 0¥L 616’8 80C 112’8 | oFL 1l 6 134
L9%'ST9 09¢ 48 el €899 ggg 8209 | L¥IL 9¢T 1T odd
0SS°64T°G | SYI'C 069 SSV'T | 066'TC SL£CT S19%61 | ¥L9 €99 11 sdnoi8smaN 0z
G89'8S1°T | LEC'T 8VL 68S 0SF'IT 660°T T€E0L | PSE /4% 01 CG-SIMNY
808'SLL 6LE 91 CI¢ 08’8 814 T99°L | L6l 981 11 a9°M
LT1'T0L a9¢ 21 16l €T9 01¢ Tce’s | e yee 01 SIAONYOEY
LOST¥6 V6. 8¢G 94¢ 120C 06C 1€L'T | ¥€T 144 1T oog
€96'CLL'T | 88L €0c 498y 0c8'c 981 ¥€9Cc | ogT (444 8 PPMSIN
€6£'188 [4%i4 ¥1¢ 8¢C ¥8CT LI CIT'T | 89¢C 65¢ 6 eresox
¥19'0¢C 0¢C 4! 9 87 °14 €9 Ly 8¢ 6 VNd
84E791 651 911 ¢V 8ST'T 61C 6€6 006 168 6 Tejs qsund
789'71¥ 8€C 9¢l <Cl1 867 00T 86¢ €L1 Q91 8 [re1sy
£92/991 €8¢ [4 7% % 6¥6 911 €e8 08T'T TZI'T 6 SIUapIOY
Gav'881 €8¢ 9¢ce Ly 204 [44) g8¢ £€ve €ee 01 XIJ19N
941’201 Sel 801 Z¢ 45 €61 Ice c0¢ 61 01 10183
8498781 <0¢ €qal 6v c6¢ 9Cl 991 6l 981 6 orpny
68’8t STL ¥8 V¢ [4%4 8¢ ¥61 €8¢ GLE 8 Siue[d
688 18T | 9S8 Gz 084 <v9 1¢ ¥29 Il 488 Z 000 dndaa
169'85¥ 90¢ 08 91 OIT 8¢ [44 €ce 81¢ q OINSIN
8¢/'8 L q 4 6 ¥ q 74 69 g SOI'IN
[e10L e M DA el0L. IM L g0l IM o4 jesejeq
W14 1S1Ld 1 1SSO

32 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Generated Retained Average

Dataset features features length
NLTCS 12,184 8,881 3.83
MSNBC 52,591 52,355 418
KDDCup 2000 102,666 21,023 3.34
Plants 52,709 52,499 3.24
Audio 12,991 11,317 2.20
Jester 9,679 9,461 1.99
Netflix 9,393 9,335 1.99
Accidents 40,669 39,236 3.28
Retail 19,617 8,813 251
Pumsb Star 26,419 24,337 3.16
DNA 39,088 25,936 2.99
Kosarak 97,023 24,193 2.85
MSWeb 57,576 24,234 2.90
Book 101,451 15,930 1.97
EachMovie 113,171 58,792 2.54
WebKB 179,472 43,787 2.01
Reuters-52 163,970 93,233 2.12
20 Newsgroups 159,012 88,005 2.01
BBC 215,000 43,566 1.97
Ad 78,797 33,222 231

Table 3.5: An overview of the statistics for the best GSSL model for each dataset,
showing the number of generated features after thresholding, the number of
features after weight learning, and the average feature length.

DTSL only when datasets have very few variables. GSSL is faster than L1 on 16
of the 20 datasets. On average, it exhibits a runtime that is 15 times faster than
L1. GSSL is faster than DTSL in addition to being significantly more accurate.
GSSL's runtime is lower than DTSL's on 13 of the 20 datasets and is twice as
fast on average. Naturally, GSSL is significantly faster than BLM, showing an
average speed-up of 4634, as it avoids the computational cost associated with
running weight learning to evaluate each candidate feature.

Tables 3.5, 3.6, 3.7, and 3.8 show statistics for the best learned model on each
dataset for each algorithm. The GSSL and L1 models have more features. L1 has
the lowest average feature length because it is restricted to atomic and pairwise
features. On average, GSSL results in shorter features than either DTSL or BLM.

EXPERIMENTAL EVALUATION 33

Generated Retained Average

Dataset features features length
NLTCS 134 134 1.88
MSNBC 153 152 1.88
KDDCup 2000 2,080 1,433 1.95
Plants 2,404 2,286 1.96
Audio 5,049 4,878 1.97
Jester 5,008 4,966 1.97
Netflix 4,985 4,952 1.97
Accidents 5,840 5,786 1.98
Retail 9,113 3,383 1.96
Pumsb Star 6,475 6,392 1.97
DNA 4,302 4,167 1.96
Kosarak 7,771 4,725 1.95
MSWeb 33,828 11,548 1.97
Book 120,833 10,647 1.95
EachMovie 70,568 15,900 1.96
WebKB 216,123 35,901 1.97
Reuters-52 172,730 91,373 1.99
20 Newsgroups 193,177 120,881 1.99
BBC 270,623 42,297 1.97
Ad 212,663 23,786 1.93

Table 3.6: An overview of the statistics for the best L1 model for each dataset,
showing the number of generated features, the number of features after weight
learning, and the average feature length.

Apart from weight learning, GSSL relies on only two parameters: a desired
number of features and a pruning threshold. Table 3.9 shows the parameters
that yield the best model for GSSL as well as the effect of thresholding on the
number of features. The number of features needed to get the best performance
depends on the characteristics of the dataset. Generally, if a dataset has more
variables or a higher density (i.e., a greater proportion of the variables that are
true), it is necessary to generate more features. Intuitively, this makes sense.
More variables increases the number of possible features such that we need to
try more combinations to get the best feature set. A higher density suggests
the presence of more regularities in the data such that the models will need
more features to capture them. GSSL got the best results based on tune-set
pseudo-log-likelihood with 0.5 million features three times, 1 million features

34 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Generated Retained Average

Dataset features features length
NLTCS 2,958 2,185 6.15
MSNBC 24,530 21,435 10.33
KDDCup 2000 8,585 6,039 7.64
Plants 12,289 6,243 6.50
Audio 4,946 4,805 3.08
Jester 4,796 4,751 3.70
Netflix 6,659 6,604 3.74
Accidents 10,194 5,390 6.85
Retail 4,439 3,944 5.26
Pumsb Star 4,666 4,434 5.24
DNA 2,246 2,221 3.11
Kosarak 8,724 6,402 5.37
MSWeb 14,788 11,911 18.17
Book 11,720 6,589 3.57
EachMovie 19,568 9,399 4.44
WebKB 17,939 10,633 3.43
Reuters-52 30,684 19,660 4.33
20 Newsgroups 21,008 18,915 2.69
BBC 4,417 4,131 191
Ad 13,708 11,335 3.34

Table 3.7: An overview of the statistics for the best DTSL model for each dataset,
showing the number of generated features, the number of features after weight
learning, and the average feature length.

four times, 2 million features seven times and 5 million features six times. Our
experiments show that using a pruning threshold value of two is generally
better than a threshold value of one. Furthermore, using a threshold value of
five seems to be too strict and rules out too many potentially useful features.

On average, GSSL spends more than 95% of its time on weight learning, which
is reported in Table 3.4. The time depends on both the number of generated
features and the pruning threshold. Generally, generating smaller feature
sets and using a higher pruning threshold yields the lowest runtimes for
weight learning. Averaged across all datasets and pruning thresholds, GSSL
spends 124.87 seconds on weight learning when generating 0.5 million features,
206.31 seconds when generating 1 million features, and 442.45 seconds when

EXPERIMENTAL EVALUATION 35

Generated Average

Dataset features length
NLTCS 385 417
MSNBC 4213 4.69
KDDCup 2000 4,877 3.25
Plants 2,469 5.95
Audio 1,938 2.21
Jester 992 8.27
Netflix 1,140 5.82
Accidents 1,329 8.33
Retail 2,823 2.12
Pumsb Star 5,789 28.20
DNA 1,413 10.74
Kosarak 3,860 2.95
MSWeb 5,756 3.01
Book 6,077 1.97
EachMovie 2,561 4.10
WebKB 3,029 8.61
Reuters-52 5,907 11.33
20 Newsgroups 4,256 9.69
BBC 2,299 9.56
Ad 2,370 3.87

Table 3.8: An overview of the statistics for the best BLM model for each dataset,
showing the number of generated features and the average feature length.

generating 2 million features. We have omitted the runtime for 5 million features
as running weight learning using a pruning threshold is often intractable.
Averaged across datasets and number of generated features, GSSL spends 414.83
seconds on weight learning for a pruning threshold of one, 235.22 seconds for
a threshold of two, and 123.52 seconds for pruning of five.

The other choice that GSSL has is in terms of its set of initial features. Using
an initial feature set of only “positive features” (i.e., features that are only
conjunctions over true variables) is better on 14 of the 20 datasets. Generally,
limiting the feature set to positive features yields much faster weight learning.

36 STRUCTURE LEARNING OF MARKOV RANDOM FIELDS

Generated Unique Selected Prune Thres-

Dataset features features features rate hold
NLTCS 500,000 143,364 12,184 91.50% 2
MSNBC 2,000,000 491,885 52,591 89.31% 1
KDDCup 2000 5,000,000 373,041 102,667 72.48% 2
Plants 1,000,000 690,390 52,709 92.37% 1
Audio 1,000,000 524,688 12,991 97.52% 2
Jester 500,000 369,000 9,679 97.38% 2
Netflix 500,000 382,760 9,393 97.55% 2
Accidents 2,000,000 1,462,685 40,669 97.22% 1
Retail 2,000,000 168,979 19,617 88.39% 2
Pumsb Star 2,000,000 1,565,510 26,419 98.31% 1
DNA 2,000,000 1,383,102 39,088 97.17% 1
Kosarak 1,000,000 288,936 97,023 66.42% 1
MSWeb 1,000,000 149,689 57,576 61.54% 1
Book 2,000,000 855,347 101,451 88.14% 1
EachMovie 5,000,000 2,200,237 113,172 94.86% 2
WebKB 5,000,000 2,738,782 179,473 93.45% 2
Reuters-52 5,000,000 2,514,634 163,971 93.48% 2
20 Newsgroups 5,000,000 3,037,720 159,013 94.77% 2
BBC 5,000,000 2,975,003 215,000 92.77% 2
Ad 2,000,000 578,322 78,797 86.37% 1

Table 3.9: An overview of the parameters and statistics for the best GSSL model
for each dataset, showing the number of generated features, the number of
unique features, the number of features left after thresholding, the percentage
of features pruned by thresholding, and the threshold value.

3.3 Conclusions

This chapter investigated the task of learning Markov random fields from data
and presented a novel algorithm called GSSL that addresses this task.

The proposed GSSL algorithm explores the search space in an efficient way by
combining a data-driven feature-generation procedure with randomization.
The data-driven search ensures that only the relevant areas of the potentially huge
search space are explored. At the same time, the randomization ensures that all
relevant areas of the search space can be explored. GSSL avoids the computational
cost of building local models and needs to perform weight learning only once.

CONCLUSIONS 37

Our extensive empirical evaluation on 20 real-world datasets shows that
GSSL offers outstanding performance in terms of both accuracy and runtime,
while striking in its simplicity. GSSL is 15 times faster than the L1 approach
by Ravikumar et al. (2010) while being equivalently accurate. GSSL is also faster
and significantly more accurate than both DTSL and BLM.

In the future, it may be possible to improve GSSL's runtime further by exploring
more sophisticated pruning strategies. Reducing the number of features
considered during weight learning would greatly improve its efficiency.

Lifted Structure Learning
of Markov Logic Networks

Markov logic networks are probabilistic graphical models that combine
Markov random fields with first-order logic. Although Markov logic networks
provide a powerful statistical-relational-learning framework, they pose a great
challenge for inference and learning. Using traditional algorithms, these
tasks reduce to inference and learning in densely-connected Markov random
fields with millions of random variables. A new class of lifted-inference
algorithms (Kersting 2012; Poole 2003), which exploit the abundant symmetries
in relational representations to speed up probabilistic inference, address the
intractability of reasoning. This chapter addresses the intractability of learning
by leveraging lifted-inference techniques. The objective is to learn models that
are tractable in the sense that they permit lifted inference.

Learning Markov logic networks from data consists of two tasks. The parameter-
learning task is to learn the weights associated with the formulas in a given
model. This task corresponds to learning the feature weights in a log-linear
Markov random field. The structure-learning task is to learn the formulas
themselves in addition to their associated weights. For both tasks, the data
consist of a set of relational databases.

The success of lifted-inference algorithms raises three important questions
for the learning task. The first question is whether leveraging lifted-inference

39

40 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

techniques in the parameter-learning task improves the quality of the learned
models. The second question is whether lifted inference can be used to learn
models that support certain types of queries efficiently. The third question
is whether the use of lifted-inference techniques affects the learned models
in terms of generative and predictive quality. This chapter addresses these
questions for the generative learning task, where the objective is to learn models
that maximize the probability of observing the data.

Contributions of this Chapter

The first contribution of this chapter is a lifted-structure-learning algorithm
called LSL that learns tractable MLN models. Leveraging the lifted-parameter-
learning algorithm called LWL introduced by Van den Broeck, Meert, et al.
(2013) as a subroutine, LSL optimizes the exact training-set log-likelihood and
learns models that are guaranteed to support certain types of queries efficiently.
In contrast, traditional MLN structure-learning algorithms resort to optimizing
an approximate metric such as the pseudo-log-likelihood, which often leads
to highly intractable models. The proposed LSL algorithm follows in a long
tradition of tractable structure-learning algorithms for probabilistic graphical
models (e.g., Chechetka and Guestrin 2007), and is among the first tractable
structure-learning algorithms for statistical-relational-learning formalisms.

The second contribution is an extensive empirical evaluation of the proposed
LSL algorithm as well as the LWL algorithm introduced by Van den Broeck,
Meert, et al. (2013) on three real-world datasets. The LWL algorithm learns
models with better test-set log-likelihoods than the baseline approaches.
When learning tractable models, the LSL algorithm outperforms existing
structure-learning algorithms in terms of test-set log-likelihood as well as
conditional log-likelihood and area under the precision-recall curve on
prediction tasks. Moreover, the LSL algorithm even outperforms off-the-shelf
intractable structure learners on prediction tasks. This surprising result suggests
that tractable models are a powerful hypothesis space, which is sufficient for
many standard learning problems.

The Java source code of the LSL implementation, which is part of the WFOMC
package, is available on https://dtai.cs.kuleuven.be/software/wfomc.

The content of this chapter is based on the following publications:

https://dtai.cs.kuleuven.be/software/wfomc

ALGORITHM 41

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2016).
“Lifted Generative Learning of Markov Logic Networks”. In: Machine Learning
103(1), pages 27-55

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2014c).
“Tractable Learning of Liftable Markov Logic Networks”. In: Proceedings of
the ICML 2014 Workshop on Learning Tractable Probabilistic Models (LTPM 2014;
Beijing, China; 26 June 2014)

Structure of this Chapter

Section 4.1 first discusses possible approaches to learning tractable models and
then introduces the LSL algorithm. Section 4.2 presents an extensive empirical
evaluation that evaluates both the LWL algorithm introduced by Van den Broeck,
Meert, et al. (2013) and the proposed LSL algorithm. More specifically, the
evaluation investigates how accurate the learned weights are, how accurate the
learned models are, and how well the learned models perform on prediction
tasks. Section 4.3 briefly discusses relevant related work. Section 4.4 provides
conclusions and directions for future work.

4.1 Algorithm

In this section, we describe a general structure learning approach and present
two learning algorithms that use lifted-inference techniques. To optimally
benefit from the existing lifted inference algorithms, we need a structure
learning approach that learns liftable models, which are models that are
tractable in the sense that they permit lifted inference.

The ideal approach to learn a liftable model is to design a search space that
only contains liftable models. This is complicated by the fact that we still lack a
full characterization of which models are liftable. We know that models where
each formula contains at most two distinct logical variables are always liftable
but this class of models may be too restrictive. However, many models that
contain more expressive formulas are also liftable. This process is complicated
further by the fact that two formulas may be liftable when they are considered
independently but may lead to a model that is not liftable when they are
combined into a single model. Furthermore, even if a model is liftable, the

42 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

underlying circuit representation may be too big to fit in memory or too time-
consuming to evaluate. Hence, it is difficult to design a suitable search space.

We propose three possible solutions to this problem. The first solution is to
integrate a check into the search procedure that verifies whether each candidate
model is liftable such that unliftable models are discarded from the search
space. Furthermore, a bias can be inserted into the search to avoid liftable
models that are too big to fit in memory or too complex to be evaluated in
practice. The second solution is to design a search space where each candidate
formula contains at most two distinct logical variables such that the learned
model is always liftable. The third solution is to run an off-the-shelf structure
learning algorithm, such as BUSL or MSL, using the default objective function
of WPLL, and to perform parameter tuning in such a way that the final learned
model is liftable. However, the parameter-tuning process can be tedious and
time-consuming since we have little understanding of which models are liftable.

In the following, we first introduce our general lifted-structure-learning
approach and then present algorithms for the first two solutions. The algorithms
can be viewed as concrete instances of the general approach.

4.1.1 Approach

Algorithm 3 outlines our Lifted Structure Learning (LSL) approach, which
learns a model of MLN formulas and their associated weights given a
set of candidate MLN formulas and a set of relational training databases.
The approach optimizes the training-set log-likelihood by iteratively adding
formulas to an initially empty model.

In each iteration, the LSL approach performs three steps. First, LSL builds a
set of candidate models by adding each candidate formula to a distinct copy
of the current model. Second, LSL learns the associated formula weights and
computes the training-set log-likelihood for each candidate model. Third, LSL
replaces the current model by the best candidate model in terms of training-
set log-likelihood if that model yields a log-likelihood improvement over the
current best model. The algorithm terminates when no more candidate formulas
are available or none of the remaining candidate models yields a log-likelihood
improvement over the current best model.

To compute the training-set log-likelihood for a candidate model, LSL employs
an internal cross-validation approach. LSL learns the formula weights on all-but-

© ® N U AR W N R

N R T T T S S S O Sy
S © ® N & Gk W N R O

ALGORITHM

43

Algorithm 3: LSL — LiFTED STRUCTURE LEARNING

Input: CFS — set of candidate MLN formulas
DB — set of relational training databases
Output: M — the learned MLN model

MO

M <0

while |CFS| > 0 do

BCM +— O

BCF < ©

BCMpr <0

forall the candidate formula CF € CFS do
CM <+ MUCF

WCM < LirrepWEeiGHTLEARNING(CM,DB)

if WCM;; > BCM;j; then
BCM +— WCM
BCF + CF
BCMLL — WCMLL
end
end
M + BCM
CFS < CFS\ {BCF}
end
return M

WCM;1 < ComruteLogLikeLiHoono(WCM,DB)

one training database and computes the log-likelihood on the left-out database.

LSL repeats this procedure such that each database served as the validation
database once. To obtain the log-likelihood for a candidate model, LSL simply

averages the log-likelihoods across the validation databases.

4.1.2 Algorithm I: Perform a Tractability Check

The first algorithm checks the tractability of candidate models by restricting
the time spent on the second step (i.e., lines 9-10 in Algorithm 3), which is
concerned with learning the formula weights and computing the training-set
log-likelihood. Each candidate formula that cannot be compiled into a circuit
or whose weight cannot be learned within the allotted time, is discarded. By

44 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

biasing the search process towards formulas that can be compiled into a circuit,
the tractability of the final model is ensured.

The initial set of candidate formulas can be constructed either by running
the candidate formula construction step of an off-the-shelf structure learning
algorithm such as BUSL or MSL, or by greedily enumerating all formulas
satisfying certain constraints. In our experiments, we enumerate all valid
formulas having at most three literals and at most three distinct object variables.
Furthermore, we only consider the subset of “connected” formulas for which a
path via the arguments exists between any two literals.

4.1.3 Algorithm II: Design a Space of Tractable Models

The second algorithm gets around the tractability check by restricting the initial
set of candidate formulas (i.e., input variable CFS in Algorithm 3) to formulas
that meet certain constraints. As a result, we can easily exploit the observation
that models consisting of formulas containing at most two distinct logical
variables are always tractable. Specifically, we can design an appropriate search
space by enumerating all valid formulas comprising at most two distinct object
variables up till a specific number of literals.

4.2 Experimental Evaluation

In this section, we evaluate both the Lifted Weight Learning (LWL, Van den
Broeck, Meert, et al. 2013) and Lifted Structure Learning (LSL) approaches.l
We first present the experimental setup and then address the following five
research questions related to weight learning and structure learning.

* Q1: Does exactly optimizing the log-likelihood during weight learning
with LWL lead to more accurate formula weights?

* Q2: How does LSL compare to the off-the-shelf structure learners in terms
of log-likelihood when learning tractable models?

* Q3: How does LSL compare to the off-the-shelf structure learners in terms
of AUC and CLL when learning tractable models?

!The implementations of both LWL and LSL are available on https://dtai.cs.kuleuven.be/
software/wfomc as part of the WFOMC package.

https://dtai.cs.kuleuven.be/software/wfomc
https://dtai.cs.kuleuven.be/software/wfomc

EXPERIMENTAL EVALUATION 45

* Q4: How does LSL compare to the off-the-shelf structure learners in terms
of AUC and CLL when learning intractable models?

® (5: What is the effect of the formula-evaluation time-out in LSL on the
complexity and quality of the models for each of the algorithms?

4.2.1 Experimental Setup

This subsection introduce the datasets, explains how the different models are
learned, and discusses the inference setup for the prediction tasks.

Datasets

In our experiments, we use the following three real-world datasets:

¢ The IMDb dataset comes from the IMDb.com website (Mihalkova and
Mooney 2007). The dataset contains information about attributes (e.g.,
gender) and relationships among actors, directors, and movies. The
dataset consists of five different databases or folds.

e The UWCSE dataset contains information about the University of
Washington CSE Department (Richardson and Domingos 2006). The data
contains information about students, professors and classes, and models
relationships (e.g., teaching assistant and advisor) among these entities.
The dataset consists of five databases; one database for each of the five
different groups in the CSE Department.

e The WebKB dataset consists of Web pages from the computer science
departments of four universities in the United States (Mihalkova and
Mooney 2007). The dataset contains information about labels of pages
(e.g., student and course). The dataset consists of four databases; one
database for each of the four universities.

In all domains, we perform cross-validation by holding out one fold as test set
and learning a model on the remaining folds. Each fold serves as test set once.

46 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

Models

We compare tractable models learned by LSL with both tractable and intractable
models learned by the bottom-up structure learner BUSL (Mihalkova and
Mooney 2007) and the top-down structure learner MSL (Kok and Domingos
2005). We learned the considered models as follows:

* Tractable LSL models: LSL is run with all valid “connected” MLN
formulas containing up to three literals and three distinct object variables
as the initial set of candidate formulas. LSL discards any candidate model
for which the LWL subroutine fails to find weights within the allotted
time limit of five minutes.

* Tractable BUSL and MSL models: To enforce tractability, both BUSL and
MSL are run with the restriction of learning formulas that contain no
more than four literals and three distinct object variables.

¢ Intractable BUSL and MSL models: BUSL and MSL are run with
their default parameter settings, which allows them to learn formulas
containing up to five literals and five distinct object variables.

Inference Setup

In each domain, we predict the marginal probabilities of each predicate given
evidence about all other predicates. Since lifted inference approaches cannot
efficiently handle arbitrary binary evidence (Van den Broeck and Darwiche
2013), we use MC-SAT, which is part of the Alchemy package, to compute the
probabilities. We use a burn-in of 10,000 samples and compute the probabilities
with the following 100,000 samples. We measure the area under the precision-
recall curve (AUC) and the test-set conditional log-likelihood (CLL) for the
predicate of interest. AUC is insensitive to the large number of true negatives
in the datasets, whereas CLL measures the quality of the probability estimates.

In our evaluation, we report the number of wins, losses, and ties for each
algorithm. Since AUC and CLL are both skew-dependent metrics and the skew
of a predicate varies across different predicates and different databases, simply
averaging AUCs and CLLs, as has commonly been done in the past, is incorrect
and leads to misleading results (Boyd et al. 2012).

EXPERIMENTAL EVALUATION 47

4.2.2 Research Questions

Q1: Does Exactly Optimizing the Log-Likelihood During Weight Learning
Lead to More Accurate Formula Weights?

This question investigates whether exactly optimizing the log-likelihood yields
better models than optimizing the approximated likelihood during weight
learning. We use the tractable BUSL and MSL models to address this question.
For each structure, we learn the weights with the following three algorithms:

e PLL: This approximate approach optimizes the pseudo-log-likelihood of
the weights via the limited-memory BFGS algorithm (Liu and Nocedal
1989). We use the implementation that is available in the Alchemy
package (Kok, Sumner, et al. 2010).

* PSCG: This discriminative weight-learning approach by Lowd and
Domingos (2007) optimizes the log-likelihood of the data by making
all the predicates query atoms and hence leaving the evidence set empty.
We use the implementation that is available in the Alchemy package (Kok,
Sumner, et al. 2010).

* LWL: This is the lifted weight learning approach by Van den Broeck, Meert,
et al. (2013). The approach uses the WFOMC package (Van den Broeck,
Taghipour, et al. 2011) to compute the gradient and the limited-memory
BFGS algorithm to optimize the weights.

First, each weight learning algorithm learns the weights for the given structures
using the same data that produced each structure. Second, we compute the test-
set log-likelihood for each model. Since we use the WFOMC package to compute
the test-set log-likelihoods, the only difference among the three algorithms is
in how the formula weights are learned.

Table 4.1 reports the test-set log-likelihoods for all three methods in all three
domains for the models learned by BUSL. The table shows that LWL consistently
outperforms both PLL and PSCG. Table 4.2 reports the test-set log-likelihoods
for all three methods in all three domains for the models learned by MSL. The
table shows that LWL again consistently outperforms both PLL and PSCG.
These empirical results confirm our hypothesis that exactly optimizing the
training-set log-likelihood results in more accurate formula weights.

48 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

IMDb UWCSE WebKB
PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 -566 -548 -378 | -1,774 -1,860 -1,524 -863 -858 -778
F2 -548 -689 -390 -601 -594 -535 | -1,422 -1,422 -1,331
F3 -1,223 -1,157 -851 | -1,415 -1,462 -1,245 -717 -717 =702
F4 -425 -415 -285 | -2,781 -2,820 -2,510 | -1,224 -1,224 -1,052
F5 -423 -413 -267 | -2,634 -2,763 -2,357 | N/JA N/A N/A

Table 4.1: The test-set log-likelihoods for all the methods in all the domains
for the models learned by BUSL. LWL consistently outperforms both PLL and
PSCG for all 14 models. The best result for each fold in each domain is in bold.
The N/ A entries arise because the WebKB dataset only contains four folds.

IMDb UWCSE WebKB
PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 -558 -831 -440 | -1,761 -1,705 -1,469 | -869 -868 -797
F2 561 944 -477 | 594 -574 -509 | -1426 -1,426 -1,324
F3 -1336 -1576 -909 | -1382 -1,358 ~-1,198 | -711 -711 -677
F4 -442 393 -315 | 2,745 -2,758 -2,449 | -1207 -1,207 -1,054
F5 443 388 -353 | 2,616 2582 -2,254 | N/A N/A N/A

Table 4.2: The test-set log-likelihoods for all the methods in all the domains
for the models learned by MSL. LWL consistently outperforms both PLL and
PSCG for all 14 models. The best result for each fold in each domain is in bold.
The N/ A entries arise because the WebKB dataset only contains four folds.

Q2: How Does LSL Compare to the Off-the-Shelf Structure Learners in
Terms of Log-Likelihood When Learning Tractable Models?

This question investigates whether models learned by LSL yield better test-set
log-likelihoods than tractable models learned by the off-the-shelf structure
learning algorithms. We compare the tractable LSL. models to the tractable
BUSL and MSL models to address this question. We use LWL to learn the
weights for the BUSL and MSL models since this approach outperforms the
traditional weight learning algorithms (see Q1).

Table 4.3 reports the test-set log-likelihoods for tractable models learned by

EXPERIMENTAL EVALUATION 49

IMDb UWCSE WebKB
PSCG PLL LSL PSCG PLL LSL PSCG PLL LSL

F1 -378 -440 -274 | -1,524 -1,469 -1,407 -778 -797 =777
F2 -390 -477 -311 -535 -509 -543 | -1,331 -1,324 -1,341
EF3 -851 909 -737 | -1,245 -1,198 -1,157 -702 -677 -662
F4 -285 -315 -222 | -2,510 -2,449 -2,409 | -1,052 -1,054 -1,049
F5 -267 -353 -220 | -2,357 -2,254 -2,089 | N/JA N/A N/A

Table 4.3: The test-set log-likelihoods for all the methods in all the domains
when learning tractable models. LSL outperforms both BUSL and MSL in terms
of test-set log-likelihood in 12 of the 14 settings, doing only marginally worse
than MSL on the second fold of the UWCSE and WebKB dataset. The best result
for each fold in each domain is in bold. The N/A entries arise because the
WebKB dataset only contains four folds.

BUSL, MSL, and LSL. LSL outperforms both BUSL and MSL in terms of test-set
log-likelihood in 12 of the 14 settings, doing only marginally worse than MSL
on the second fold of the UWCSE and WebKB datasets. These experimental
results show that there is no reason to prefer an off-the-shelf structure learner
to our lifted-structure-learning approach for learning tractable models when
optimizing the test-set log-likelihood.

Q3: How Does LSL Compare to the Off-the-Shelf Structure Learners in
Terms of AUC and CLL When Learning Tractable Models?

This question investigates whether models learned by LSL are better at
answering queries than tractable models learned by the off-the-shelf structure
learning algorithms. We compare the tractable LSL models to the tractable BUSL
and MSL models to address this question. We use LWL to learn the weights
for the BUSL and MSL models since this approach outperforms the traditional
weight learning algorithms (see Q1).

Table 4.4 reports the number of times LSL wins, loses, and ties against the
off-the-shelf structure learners BUSL and MSL in terms of both AUC and CLL.
In terms of AUC, LSL beats BUSL in 61 of the 95 settings, ties in 6 settings, and
loses in 28 settings. In terms of CLL, LSL beats BUSL in 72 of the 95 settings
and loses in 23 settings. In terms of AUC, LSL beats MSL in 50 of the 95 settings,

50 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

IMDb UWCSE WebKB
Baseline Metric W L T W L T W L T
BUSL AUC 20 5 5|14 6 0|27 17 1
BUSL CLL 25 5 0|15 5 0|32 13 0
MSL AUC 10 8 12|12 8 0|28 16 1
MSL CLL 23 7 0|15 5 0|32 13 0

Table 4.4: A comparison of AUC and CLL results for all the methods in all the
domains when learning tractable models. In comparison to BUSL, LSL wins in
133 of the 190 settings, ties in 6 settings, and loses in 51 settings. In comparison
to MSL, LSL wins in 120 of the 190 settings, ties in 13 settings, and loses in 57
settings. The most frequent result for each comparison is in bold.

ties in 13 settings, and loses in 32 settings. In terms of CLL, LSL beats MSL in
70 of the 95 settings and loses in 25 settings.

LSL consistently leads to better models, achieving more wins than both BUSL
and MSL on both metrics. Although we relearned the weights for the BUSL and
MSL models using LWL, during structure learning these algorithms initially
optimize WPLL, which has a very similar objective to CLL, and thus should
be to their advantage on that metric. This makes it surprising that LSL does
particularly well at CLL compared to BUSL and MSL.

Q4: How Does LSL Compare to the Off-the-Shelf Structure Learners in
Terms of AUC and CLL When Learning Intractable Models?

This question investigates whether models learned by LSL are better at
answering queries than models learned by the off-the-shelf structure learning
algorithms. We compare the tractable LSL models to the intractable BUSL and
MSL models to address this question. We use PLL to relearn the weights for
the BUSL and MSL models. We cannot use LWL to relearn the weights since
these models cannot be compiled into a circuit representation.

Table 4.5 reports the number of times LSL wins, loses, and ties against the
off-the-shelf structure learners BUSL and MSL in terms of both AUC and CLL.
In terms of AUC, LSL beats BUSL in 50 of the 95 settings, ties in 12 settings, and
loses in 33 settings. In terms of CLL, LSL beats BUSL in 65 of the 95 settings,
ties in 1 setting, and loses in 29 settings. In terms of AUC, LSL beats MSL in 47

EXPERIMENTAL EVALUATION 51

IMDb UWCSE WebKB
Baseline Metric W L T W L T W L T
BUSL AUC 12 7 11 (12 8 0|2 18 1
BUSL CLL 17 12 1|115 5 0133 12 0
MSL AUC 7 11 12 9 11 0|31 14 O
MSL CLL 16 14 0|11 9 0|28 17 0

Table 4.5: A comparison of AUC and CLL results for all the methods in all
the domains when learning intractable models. In comparison to BUSL, LSL
wins in 115 of the 190 settings, ties in 13 settings, and loses in 62 settings. In
comparison to MSL, LSL wins in 102 of the 190 settings, ties in 12 settings, and
loses in 76 settings. The most frequent result for each comparison is in bold.

of the 94 settings, ties in 12 settings, and loses in 36 settings. In terms of CLL,
LSL beats MSL in 55 of the 95 settings and loses in 40 settings.

Surprisingly, BUSL and MSL do only slightly better at answering queries when
they are no longer bound to learning tractable models. Their performance
remains roughly the same. These results show that learning longer, more
complex formulas does not necessarily lead to much better inference results.
A possible explanation is that more complex models may fit the data better
but also lead to more complicated inference tasks, which in turn leads to a
decreased predictive performance.

Q5: What Is the Effect of the Formula-Evaluation Time-Qut in LSL on the
Complexity and Quality of the Models for Each of the Algorithms?

This question investigates whether a restriction on the formula evaluation time
leads to simpler models. To answer this question, we modify the off-the-shelf
structure learners such that they can only spend a specified amount of time to
evaluate each candidate formula. We run all three structure learning algorithms
with three different formula evaluation time-outs: one minute, two minutes,
and five minutes. Keeping all other parameter values unchanged, we learn both
tractable and intractable models with the off-the-shelf structure learners.

Table 4.6 reports the test-set log-likelihoods for the models learned by LSL
for all three formula-evaluation time-outs. In most settings, the time-out has
either a small impact or no impact at all on the test-set log-likelihood. The only

52 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

IMDb UWCSE WebKB
Im. 2m. 5m. 1m. 2m. 5m. 1m. 2m. 5m.

F1 -276 -275 -274 | -1454 -1421 -1,407 =777 -794 =777
F2 -309 -310 -311 -594 -562 -543 | -1,341 -1,341 -1,341
F3 -739 -739 -737 | -1,209 -1,162 -1,157 -664 -663 -662
F4 -222 -222 -222 | -2434 -2406 -2,409 |-1,049 -1,043 -1,049
F5 -219 -220 -220 | -2,089 -2,142 -2,089

Table 4.6: The test-set log-likelihoods for LSL in all the domains for three
different time-out values: one, two, and five minutes. In most settings, the
time-out value has either a small impact or no impact at all on the test-set
log-likelihood. The best result for each fold in each domain is in bold.

IMDb UWCSE WebKB
LSL (5-minute time-out) 5.40+1.14 | 10.20 +0.45 | 4.75 + 1.50
BUSL tractable 1.40 + 0.55 7.60 £3.21 | 3.25 £ 0.50
MSL tractable 3.00 £ 0.00 6.80 £0.45 | 4.00 £1.15
BUSL intractable 6.60 = 3.36 | 18.60 + 10.55 | 8.50 £ 4.20
MSL intractable 420+ 0.84 4.60 £1.95 | 4.00 £1.15

Table 4.7: The average number of formulas in the models learned by each
algorithm in each domain.

domain that seems to benefit from a longer run time is UWCSE, which is the
most complicated domain in terms of number of predicates and facts. These
results show that LSL is robust to the formula-evaluation time-out value and
confirm our observation that most structures can be compiled into a circuit
either relatively quickly or not at all. Hence, restricting the formula-evaluation
time for LSL does not lead to simpler models.

Furthermore, the formula-evaluation time-out also does not have an impact
on the complexity of the models learned by the off-the-shelf structure learners.
Both BUSL and MSL learn the same structures for all three time-out values.
Since these algorithms do not need to run inference to evaluate a candidate
formula, they require only little time per formula evaluation. Hence, restricting
the formula evaluation time for the off-the-shelf structure learners does not
lead to simpler models either.

RELATED WORK

IMDb UWCSE WebKB
LSL (5-minute time-out) 2.69 £0.14 | 2.69 £ 0.09 | 2.85 + 0.17
BUSL tractable 3.00+£0.35 | 218 £0.25 | 2.35 £ 0.31
MSL tractable 2.67 £0.00 | 2.65 +£0.07 | 2.53 £0.22
BUSL intractable 312£051 | 271 £0.22 | 3.02 £ 0.37
MSL intractable 4.23+0.33 | 3.27+£048 | 2.53 £0.22

53

Table 4.8: The average length of the formulas in the models learned by each
algorithm in each domain.

Tables 4.7 and 4.8 report the average number of formulas in a learned model
and the average formula length for all learning methods in each domain. We
compute these metrics because they are indicative of model complexity and
allow us to further explore if LSL has a bias towards simpler models. Both BUSL
and MSL include a complexity penalty based on formula length. The results
show that all approaches tend to learn similarly-sized models. The exception
is that BUSL, in the intractable setting, learns more formulas than the other
approaches, and its formulas tend to be slightly longer on average.

These experimental results provide some evidence that LSL does not offer better
performance simply because it has a preference for simpler models. Instead,
regularization by liftability and support for maximume-likelihood learning
account for the performance of the lifted-structure-learning approach.

4.3 Related Work

Learning tractable probabilistic models, that is, models that always permit
efficient inference for certain types of queries, is an emerging area of research.
The largest body of work restricts the structure of the learned models (e.g.,
Chechetka and Guestrin 2007), which can generally be done in two ways.

The first way is only considering low-tree-width models (Chechetka and
Guestrin 2007; Narasimhan and Bilmes 2004). The second way is simultaneously
learning an alternative representation that permits efficient inference in addition
to a Bayesian network or Markov random field. This alternative representation
is often an arithmetic circuit of the model. The model is penalized by the
cost of inference, which can be calculated based on well-defined properties

54 LIFTED STRUCTURE LEARNING OF MARKOV LOGIC NETWORKS

of the representation. By penalizing the circuit size of the associated model,
it is possible to bias the learning algorithm towards models where efficient
inference is possible (Lowd and Domingos 2008; Lowd and Rooshenas 2013).

Our work follows the latter approach as our structure-learning approach learns
models that allow lifted inference. As a result, the learned models are guaran-
teed to support tractable inference for certain types of queries. While tractable
statistical-relational languages have been investigated before (Domingos and
Webb 2012), we believe our work is among the first to consider the problem of
learning such tractable representations.

4.4 Conclusions

This chapter investigated the task of learning Markov logic networks from data
and presented a novel algorithm called LSL that addresses this task. More
specifically, this chapter focused on the generative learning task, where the goal
is to maximize the probability of observing the data.

The proposed LSL algorithm learns tractable Markov logic networks in the
sense that they permit lifted inference. Unlike the competing approaches that
resort to optimizing the pseudo-log-likelihood, LSL optimizes the exact log-
likelihood. As a result, LSL is able to take better-informed decisions during the
search as to whether to include a certain candidate formula into the model.

Our extensive empirical evaluation on three real-world datasets shows that LSL
learns models with better test-set likelihood than the competing approaches.
Furthermore, LSL also outperforms the competing approaches in terms of
log-likelihood and area under the precision-recall curve on prediction tasks.
More surprisingly, the tractable models learned by LSL also achieve better
performance than intractable models on prediction tasks. This observation
provides some evidence that tractable models are a powerful hypothesis space
that is sufficient for many standard problems.

In the future, it may be possible to improve LSL's performance further by
employing a beam-search strategy that explores several candidate models
simultaneously. Alternatively, the current greedy-search strategy can be sped
up by discarding the lowest-ranked candidate formulas in each iteration.

Deep Transfer Learning
in Relational Domains

Traditional machine-learning algorithms focus on the paradigm of inductive
learning, where a learning algorithm tries to generalize from the available
training data in order to accurately classify test data from the same distribution
as the training data. Learning accurate predictive models in this way can be
challenging if only a limited amount of training data are available. Unfortunately,
this is often the case in important real-world problems, where training data can
be time-consuming, expensive or even impossible to obtain at all.

The field of transfer learning aims to exploit the observation that humans
cope with a lack of training data quite well by transferring knowledge and
intuitions from one setting to another. For example, people who are native
Spanish speakers typically have fewer problems learning Italian than those who
are native in Mandarin Chinese. Unlike inductive learning, transfer learning
leverages additional data from a related domain in addition to data from the
target task. In transfer learning, the former domain is considered the source
domain, while the latter domain is considered the target domain.

55

56 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

Contributions of this Chapter

The first contribution of this chapter is a theoretical deep-transfer-learning
framework called TODTLER. While traditional transfer-learning approaches,
which perform shallow-transfer learning (Banerjee et al. 2006; Baxter et al.
1995), are concerned with tasks from the same domain, TODTLER can
perform knowledge transfer between tasks from completely different domains.
Moreover, TODTLER offers a principled view of transfer learning, unlike
existing approaches for deep-transfer learning that offer ad-hoc solutions.

The second contribution is a practical implementation of the TODTLER
framework. Unfortunately, an exact implementation of the framework would
likely be very expensive computationally. Therefore, this dissertation presents
an approximation, which allows the framework to be useful in practice.

The third contribution is an extensive empirical evaluation on three real-world
datasets, which compares the proposed TODTLER framework to two baseline
approaches. The evaluation shows that our approximation of the TODTLER
framework outperforms the state-of-the-art deep-transfer-learning algorithm as
well as the state-of-the-art inductive-learning algorithm in terms of accuracy. In
addition to learning more accurate models, the TODTLER approximation is also
much faster than the existing deep-transfer-learning algorithms. Furthermore,
the empirical evaluation also introduces a novel Twitter dataset.

The Java source code of the TODTLER implementation as well as the Twitter
dataset are available on https://dtai.cs.kuleuven.be/software/todtler.

The content of this chapter is based on the following publication:

Jan Van Haaren, Andrey Kolobov, and Jesse Davis (2015). “TODTLER: Two-
Order-Deep Transfer Learning”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015; Austin, Texas, United States; 25-30
January 2015), pages 3007-3015

The theoretical framework is largely the work of Andrey Kolobov, while the
practical implementation of the framework and the empirical evaluation are
the work of the author of this dissertation.

https://dtai.cs.kuleuven.be/software/todtler

INTUITION 57

Structure of this Chapter

Section 5.1 provides the intuition behind the TODTLER framework. Section 5.2
presents the theoretical framework and shows how it can be used to transfer
knowledge from one domain to another. Section 5.3 introduces an approxi-
mation to the TODTLER framework, which allows it to be used in practice.
Section 5.4 presents an extensive empirical evaluation on three real-world
datasets that compares TODTLER to two baseline approaches. Section 5.5
provides conclusions and directions for future work.

5.1 Intuition

At a high level, TODTLER views knowledge transfer as the process of learning
a declarative bias in the source domain and transferring that bias to the target
domain to improve the learning process. More specifically, we concentrate on
automatically learning Markov logic networks from data. We treat an MLN as
an instantiation of a set of second-order templates expressible in a language
called SOLT. The likelihood of an MLN model is thus partly determined by the
learner’s prior distribution over the sets of these second-order templates.

The main insight of our work is that transferring knowledge amounts to
acquiring a posterior over the sets of second-order templates by learning in the
source domain and using this posterior when learning in the target domain. As
an example, consider the concept of transitivity, which can be expressed as a
second-order template R(X,Y) AR(Y,Z) = R(X,Z), where R is a predicate
variable. Therefore, this template is not specific to any domain, although its
instantiations, e.g., Knows(X,Y) A Knows(Y,Z) = Knows(X,Z), are. In
our framework, if learning in the source domain reveals instantiations of the
transitivity template to contribute to highly likely models, the learning process
in the target domain will prefer models with transitive relations as well.

5.2 Theoretical Framework

This section introduces the TODTLER framework in a more formal way.
Suppose we have two datasets, one characterizing the smoking habits of
a group of people and the other describing connections between terrorists.

58 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

An MLN learned on the smokers dataset may contain the first-order clause
Smokes(X) A Friends(X,Y) == Smokes(Y), which captures the regularity
that a friend of a smoker may likely be a smoker. A similar regularity may
appear in the terrorism dataset: a person in the same organization with a
terrorist may likely be a terrorist. We aim to generalize such regularities from
one model to another but simply transferring first-order clauses does not help
because the datasets are described by different relationships and properties.

What the domains have in common is the concept of multirelational transitivity
described by the second-order clause

R1(X)/\R2(X,Y) — Rl(Y) (5.1)

where R; and R, are predicate variables. It are these types of important
structural patterns that TODTLER attempts to identify in the source domain and
transfer to other domains. More specifically, the knowledge transfer occurs by
biasing the learner in the target domain to favor models containing previously
discovered regularities in the source domain.

5.2.1 Generative Model for the Data

TODTLER views data in any domain as being generated by the hierarchical
process shown in Figure 5.1. The process starts by producing a second-order
model of the data, which is denoted as M 2), Formally, M (2) is a set of second-
order templates, where each template is a clause from a special language called
SOLT (Second-Order Language for Templates). SOLT is a restriction of second-
order logic that allows only predicate variables and restricts the length of the
clause. Equation 5.1 provides an example of a SOLT template. The power of
SOLT stems from its ability to use predicate variables in order to state rules
that reason about relations and thus describe domain-independent knowledge.
The second-order model M(?) is sampled from a prior P(M®)) induced by
independently including each template T expressible in SOLT into M(?) with
some probability pr. In particular, letting pr = 0.5 for every template T € SOLT
results in a uniform prior over all possible second-order models.

Given a second-order model M(?, a first-order MLN model M(1) is generated
by instantiating all templates in M(?) with the set of predicates relevant to the

THEORETICAL FRAMEWORK 59

Figure 5.1: The data generation process.

data at hand in all possible ways. Instantiating a template with predicates means
grounding each predicate variable in the template with a first-order predicate.
In the earlier example, it is at this stage that the template in Equation 5.1 gives
rise to the first-order formula Smokes(X) A Friends(X,Y) = Smokes(Y) as
well as to many others. The weights for the first-order clauses produced in this
way, which are necessary for a well-defined MLN, are sampled from a prior
probability density, which is omitted in Figure 5.1. To complete the process, data
is generated from the MLN using a relevant set of object constants to ground
the first-order clauses. In the case of the smokers dataset, the data could include
the ground facts Friends(Alice, Bob), Smokes(Alice), and Smokes(Bob).

Thus, letting a random variable D denote the data, the hierarchical generative
model above yields a joint probability density p(D, M M), M) factorizing as

p(D, MY, M®P) = p(D|MW)p(MV | MP))P(MP). (5.2)

In this formula, p(D|M()) is given by Equation 2.4, P(M(?) is given by the
probabilities pr of including each template T into the second-order model, and
p(MM|M®@)) is positive if the set of clauses in M(!) is the complete instantiation
of M) and 0 otherwise. The set of clauses of an MLN M) is the complete
instantiation of a second-order model M) if this set contains all first-order
instantiations of all templates in M(?), with some formulas possibly having zero
weights, and no other formulas.

For the cases when p(M(|M®) > 0, we can write the joint density
p(D, M), M) in the following form, which is derived from Equation 2.4:

p(D, M(l),M(2)) _ H

XeD

% H pTexp< Z wF”F(f)>] , (5:3)

TeT FeFr

60 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

where p7 is the probability of including template T into second-order model
M (2), Fr is the set of all first-order instantiations of the template T, and .7 is
the set of all second-order templates expressible in SOLT. Equation 5.3 differs
from Equation 2.4 in only one crucial aspect: the set of all first-order formulas
is now divided into disjoint subsets of formulas corresponding to particular
templates, where each subset has an associated probability pr of being part
of M1, The probabilities pr are the key means by which TODTLER transfers
knowledge from one domain to another, as we explain next.

Algorithm 4: TODTLER — FrRaMEWORK

Input: Dy — source dataset
D; — target dataset

P(M (2?) — prior over second-order models
Output: MEW — an MLN for the target domain

1 1. Find the posterior distribution P;(M(?)|Ds) over second-order models such
that P;(M()| D) is encoded by the set of template probabilities pr s, given the

data in the source domain and a similarly encoded prior P(M (2>) over
second-order models:

me P(DS,M§1)|M(2>)p(M(2))

P,(M®?)|Dy) 2 20N (5.4)

3 2. Determine the first-order MLN model that maximizes the joint probability

of the data and the first-order model in the target domain if Ps(M®|Dy) is
used as a prior over second-order models:

P(M®)) « P, (MP)|Dy) (5.5)

Mt(l)* +— argr§%>)<p(Dt|Mt(l))) p(Mt(l)|M(2))Pt(M(2)) (5.6)

APPROXIMATE ALGORITHM 61

5.2.2 Transfer Learning with TODTLER

The TODTLER procedure is briefly summarized in Algorithm 4. Let Ds, Mgl),

D;, and Mt(l) stand for the data and first-order MLN in the source and target
domain, respectively. TODTLER performs transfer learning in two steps:

(1) Learning the Second-Order Model Posterior

In the first step, TODTLER finds the distribution Ps(M(®)|D;) over second-order
models that results from observing the data in the source domain given some
initial belief P(M(?)) over second-order models (Equation 5.4 in Algorithm 4).
In view of Equation 5.3, determining P;(M(?)| Ds) amounts to computing the
template probabilities pr s according to the source domain data and the prior.

(2) Target-Domain Learning Using the Posterior from the Source Domain

In the second step, TODTLER determines an MLN Mt(l)* that maximizes the
joint probability of the data and the first-order model in the target domain
if the posterior Ps(M(®|Ds) learned in the first step from the source data is
used as the prior over second-order models (Equation 5.6 in Algorithm 4). As
a result, TODTLER biases model selection for the target domain by explicitly
transferring the experience of the learner from the source domain.

5.3 Approximate Algorithm

Despite the conciseness of TODTLER's procedural description (Algorithm 4),
implementing it is non-trivial for several reasons. In this section, we discuss
the challenges involved and present a series of appropriate approximations
to the basic TODTLER framework. Algorithm 5 presents a pseudocode of the
resulting implementation, which we will refer to throughout this section.

»

O© 0 N Syl e

10
11
12
13
14
15

16
17
18

19

20

21

22

23

24
25
26

27

62 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

Algorithm 5: TODTLER — APPROXIMATION

Input: Dy — source dataset
D; — target dataset
L — maximum template length
V — maximum number of distinct object variables
P(M®)) = {p%}resorr — prior over second-order models

Output: Mgl)* — an MLN for the target domain

T <+ EnumerateSecondOrderTemplates(L,V)
Zs < EnumerateFirstOrderFormulas(.7",D;)
Z71 < EnumerateFirstOrderFormulas(.7,D;y)

foreach second-order template T € .7 do

foreach first-order formula Fr; € %5 do
Ir s < WPLL of optimal Fr ;-MLN with respect to D;
Sps < lp s rescaled to [0, 1]

end

prs < P averager, ¢z {5r;s}

foreach first-order formula Fr; € %1 do
Ir s <~ WPLL of optimal Fr ;-MLN with respect to D;
spt < Ir rescaled to [0, 1]
PEt < SEt- PTs

end

end

M 4y

previous_WPLL < —co

Or < listof all Fr; € Uy o Fr in decreasing order of pr;

foreach first-order formula Fr; € Or do
1 1)*

MY« MY U {Fry}

th < relearn weights

if WPLL of Mt(l) with respect to Dy > previous_ WPLL then
previous_WPLL < WPLL of Mgl)' with respect to D
MY — MM

end

end

(1

return M,

APPROXIMATE ALGORITHM 63

5.3.1 Learning Second-Order Model Posteriors

The main difficulty presented by TODTLER is computing the posterior
distribution Ps(M®|D;) over second-order models. Since we do not assume
the distributions in Equation 5.4 to have any specific convenient form, it is not
immediately obvious how to efficiently update the prior P(M(?)). Moreover,
Equation 5.4 involves summing over first-order MLNSs, suggesting that an exact
update procedure would likely be very expensive computationally.

Instead, we take a more heuristic approach. Our procedure exhaustively
enumerates all SOLT templates that can form a user-specified maximum
clause length L and maximum number of distinct object variables V' (line 1).
These conditions ensure that the number of second-order templates under
consideration is finite and amount to adopting a prior P(M?)) that assigns
probability 0 to any second-order model containing templates that violate these
restrictions. Additionally, we assume that for each template T, its probability
of inclusion pt s under Ps(M ()| D) is correlated with the “usefulness” of the
first-order instantiations of T for modeling the data in the source domain and
with its prior probability p9.

For each first-order instantiation Fr ; in the finite set .% of all such instantiations
of T generated by replacing T’s predicate variables with predicates from the
source domain, we calculate F’s usefulness score, aggregate these numbers across
Zs,and use the result, along with the prior pJ, as a proxy p7 s of pr,s. The notion
of usefulness of a single first-order formula is fairly crude — each formula
typically contributes to the model along with many others, and its effect on the
model’s performance cannot be easily teased apart from that of the rest of the
model. Nonetheless, as we explain next, this notion’s simplicity also has a big
advantage: a formula’s usefulness can be computed very efficiently.

More specifically, for each Fr; € %5, we perform weight learning in the MLN
that contains only the formula Fr ;. This MLN is denoted as the Fr ;-MLN. The
weight learning process makes its own approximations as well. It optimizes the
weights so as to maximize the weighted pseudo-log-likelihood (WPLL) of the
model, which is an approximation to optimizing the log-likelihood. That, and
the fact that our MLN contains only one formula, makes weight learning very
fast. When the learning process finishes, it yields the WPLL I ; of the acquired
MLN with respect to the source data (line 6). We then rescale the WPLL to lie
between 0 and 1 as different domains can have different ranges of WPLLs, and
denote the obtained value as the usefulness score sr 5 (line 7).

64 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

Intuitively, sr ¢ reflects how much including Fr s into an MLN helps the model’s
discriminative power. To estimate the usefulness score st of a template T, we
average the usefulness scores sr s across %g. Thus, we define the approximate
sampling probabilities for each template T as ps ~ p% - s7s (line 9).

In the target domain, we similarly compute a probability pr ; for each formula
Fr+, which estimates that formula’s probability of inclusion in the target domain
model. In a first step, we compute a usefulness score sr ; for each formula Fr;
using the same procedure as in the source domain (line 11). In a second step,
crucially, we multiply the resulting usefulness score with p g, the posterior
probability of inclusion of the corresponding second-order template learned
from the source domain (line 13).

5.3.2 Target-Domain Learning

TODTLER builds the target domain model MEl)* incrementally, starting from an
empty one in the following way. It arranges the formulas in J7¢ & %7 in order
of decreasing approximate probability pr; (line 18). For each formula in the
ordered list, the approximation procedure attempts to add that formula to Mt(l)* ,
jointly learning the weights of all already included formulas and computing the
model’s WPLL (lines 20-21). A formula is added to the model only if it increases

the WPLL of Mt(l)* with respect to the target data (lines 22-25).

5.4 Experimental Evaluation

Our experiments compare the performance of TODTLER to DTM, which is the
state-of-the-art transfer learning approach for relational domains (Davis and
Domingos 2009). We also compare to learning from scratch using LSM, which
is the state-of-the-art MLN structure learning algorithm (Kok and Domingos
2010). We evaluate the performance of the algorithms using data from three
domains and address the following four research questions:

e Does TODTLER learn more accurate models than DTM?
e Does TODTLER learn more accurate models than LSM?

e Is TODTLER faster than DTM?

EXPERIMENTAL EVALUATION 65

® Does TODTLER discover interesting SOLT templates?

5.4.1 Datasets

We use three datasets of which the first two have been widely used and
are publicly available.! The Yeast protein dataset comes from the MIPS?
Comprehensive Yeast Genome Database (Davis, Burnside, et al. 2005; Mewes
et al. 2000). The dataset includes information about protein location, function,
phenotype, class, and enzymes. The WebKB dataset consists of labeled web
pages from the computer science departments of four universities (Craven and
Slattery 2001). The dataset includes information about links between web pages,
words that appear on the web pages, and the classifications of the pages. The
Twitter® dataset contains tweets about Belgian soccer matches. The dataset
includes information about follower relations between accounts, words that are
tweeted, and the types of the accounts.

Table 5.1 reports the number of types, predicates, constants, true ground atoms,
and possible ground atoms in all three domains.

Twitter WebKB Yeast

Types 3 3 7
Predicates 3 3 7
Constants 378 4,396 3,105
True ground atoms 3,142 50,432 15,015

Possible ground atoms 53,748 4,732,804 1,387,014

Table 5.1: An overview of the characteristics of the datasets showing, for each
dataset, the number of types, predicates, constants, true ground atoms, and
possible ground atoms.

5.4.2 Methodology

Each of the datasets is a graph, which is divided into databases consisting of
connected sets of facts (Mihalkova, Huynh, et al. 2007). Yeast and WebKB consist
of four databases while Twitter consists of two. We trained each learner on a

IThe Yeast and WebKB datasets are available on http://alchemy.cs.washington.edu.
2Munich Information Center for Protein Sequence
3The dataset is available on http: //dtai.cs.kuleuven.be/software/todtler.

http://alchemy.cs.washington.edu
http://dtai.cs.kuleuven.be/software/todtler

66 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

subset of the databases and tested it on the remaining databases. We repeated
this cycle for all subsets of the databases.

We transferred with both TODTLER and DTM in all six possible source-target
settings. Within each domain, both transfer learning algorithms had the same
parameter settings. In each domain, we optimized the WPLL for the predicate
of interest. We learned the weights of the formulas in the target model using
Alchemy (Kok, Sumner, et al. 2010) and applied a pruning threshold of 0.05 on
the weights of the clauses.

For DTM, we generated all clauses containing at most three literals and three
object variables, and transferred five and ten second-order cliques to the target
domain. Since DTM’s refinement step can be computationally expensive, we
limited its runtime to 100 hours per database.

For TODTLER, we enumerated all second-order templates containing at
most three literals and three object variables. We assumed a uniform prior
distribution over the second-order templates in the source domain, which
means TODTLER’s p. parameter was set to 0.5 for each template.

To evaluate each system, we jointly predict the truth value of all groundings
of the Function predicate in Yeast, the PageClass predicate in WebKB, and the
AccountType predicate in Twitter given evidence about all other predicates. We
computed the probabilities using MC-SAT. After a burn-in of 1,000 samples,
we computed the probabilities with the next 10,000 samples.*

We measured the area under the precision-recall curve (AUCPR) and the test
set conditional log-likelihood (CLL) for the predicate of interest. CLL measures
the quality of the probability estimates. AUCPR gives an indication of the
predictive accuracy of the learned model. Furthermore, AUCPR is insensitive
to the large number of true negatives in these domains. Unlike in ROC space,
random guessing in PR space does not always correspond to a value of 0.50
but is skew-dependent (Boyd et al. 2012). In our experimental setup, random
guessing yields an AUCPR of 0.07 for WebKB, 0.08 for Yeast, and 0.37 for Twitter.

We report the average relative difference in terms of AUCPR and CLL between
the different methods. We compute these average relative differences as follows:

4The DTM paper performs leave-one-grounding-out inference while this chapter jointly infers
all groundings of the target predicate.

EXPERIMENTAL EVALUATION 67

AUCPRtoprLER — AUCPRpTM
AUCPRTODTLER

Relative difference AUCPR =

CLLptMm — CLLTODTLER
CLLT1ODTLER

Relative difference CLL =

5.4.3 Results

This section presents a comparison of TODTLER to the baseline methods in
terms of accuracy, learning curves for all methods, a run time analysis, and the
top-ranked templates discovered by TODTLER in each domain.

Comparison of TODTLER to the Baseline Methods

Tables 5.2 and 5.3 present the average relative differences in AUCPR between
TODTLER and transferring five (DTM-5) as well as ten (DTM-10) cliques with
DTM. The tables show the average relative differences for increasing amounts
of training data. For example, the “3 DB” column presents the results for
training on all subsets of three databases and evaluating on the remaining
database. The N/A entries arise because the Twitter dataset only contains two
databases. Positive average relative differences denote settings where TODTLER
outperforms DTM. In terms of AUCPR, TODTLER outperforms both DTM-10
and DTM-5 in all 14 settings. In terms of CLL, TODTLER outperforms DTM-10
in 12 of the 14 settings and DTM-5 in 11 of the 14 settings.

Tables 5.4 and 5.5 present the average relative differences in AUCPR and CLL
between TODTLER and LSM as well as DTM-5 and LSM. These experiments
represent a comparison between performing transfer as opposed to learning
from scratch in each domain with the state-of-the-art structure learner LSM.5
TODTLER outperforms LSM in all 14 settings in terms of both AUCPR and CLL.
DTM-5 outperforms LSM in 12 of the 14 settings in terms of both AUCPR and
CLL. Hence, transferring knowledge from a source task leads to more accurate
learned models than simply learning from scratch in the target domain.

5We picked DTM-5 as it generally exhibits better performance than DTM-10.

68 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

AUCPR CLL
1DB 2DB 3DB 1DB 2DB 3DB

WebKB — Yeast 0.231 0.344 0540 | -0.097 1.137 2.112
Twitter — Yeast 0.171 0353 0.260 | -0.065 0.748 -0.127
Yeast — WebKB 0479 0.607 0.627 | 0.121 0.095 0.191
Twitter — WebKB 0.578 0.587 0.605 | 1.055 0.155 0.156
WebKB — Twitter 0.150 N/A N/A | 5140 N/A N/A
Yeast — Twitter 0.152 N/A N/A | 5469 N/A N/A

Table 5.2: The average relative differences in AUCPR and CLL between
TODTLER and DTM-5 as function of the amount of training data. Positive
differences indicate settings where TODTLER outperforms DTM-5. TODTLER
outperforms DTM-5 in all 14 settings in terms of AUCPR and in 11 of the 14
settings in terms of CLL. The N/ A entries arise because the Twitter dataset
only contains two databases.

AUCPR CLL
1DB 2DB 3DB 1DB 2DB 3DB

WebKB — Yeast 0.213 0.390 0.331 | -0.114 0.650 0.517
Twitter — Yeast 0.190 0.325 0.362 | -0.063 0.126 0.017
Yeast —+ WebKB 0479 0.614 0.638 | 0.121 0.098 0.196
Twitter - WebKB 0.578 0.596 0.607 | 1.055 0.158 0.157
WebKB — Twitter 0224 N/A N/A | 3945 N/A N/A
Yeast — Twitter 0226 N/A N/A | 4210 N/A N/A

Table 5.3: The average relative differences in AUCPR and CLL between
TODTLER and DTM-10 as function of the amount of training data. Positive
differences indicate settings where TODTLER outperforms DTM-10. TODTLER
outperforms DTM-10 in all 14 settings in terms of AUCPR and in 12 of the 14
settings in terms of CLL. The N/ A entries arise because the Twitter dataset
only contains two databases.

EXPERIMENTAL EVALUATION

69

AUCPR CLL

1DB 2DB 3DB 1DB 2DB 3DB
WebKB — Yeast 0471 0.671 0.583 5.075 12.156 8.841
Twitter — Yeast 0479 0.676 0589 | 6.091 14.356 10.486
Yeast — WebKB 0576 0561 0562 | 0.079 0.073 0.070
Twitter — WebKB 0576 0561 0562 | 0.072 0.066 0.064
WebKB — Twitter 0.599 N/A N/A | 13463 N/A N/A
Yeast — Twitter 0.600 N/A N/A | 14.238 N/A N/A

Table 5.4: The average relative differences in AUCPR and CLL between
TODTLER and LSM as function of the amount of training data. Positive
differences indicate settings where TODTLER outperforms LSM. TODTLER
outperforms LSM in all 14 settings in terms of both AUCPR and CLL. The N/A
entries arise because the Twitter dataset only contains two databases.

AUCPR CLL

1 DB 2DB 3DB 1DB 2DB 3DB
WebKB — Yeast 0.311 0518 0.161 | 5.725 6.537 3.328
Twitter — Yeast 0.371 0542 0459 | 6584 8764 12.832
Yeast — WebKB 0.186 -0.018 0.032 | -0.037 0.001 0.006
Twitter — WebKB -0.004 0.003 0.058 | -0.478 0.003 0.007
WebKB — Twitter 0528 N/A N/A | 1355 N/A N/A
Yeast — Twitter 0528 N/A N/A | 1355 N/A N/A

Table 5.5: The average relative differences in AUCPR and CLL between DTM-5
and LSM as function of the amount of training data. Positive differences indicate
settings where DTM-5 outperforms LSM. DTM-5 outperforms LSM in 12 of the
14 settings in terms of both AUCPR and CLL. The N/ A entries arise because
the Twitter dataset only contains two databases.

70 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

Learning Curves for All Methods

Figure 5.2 presents learning curves for predicting protein function in the
Yeast dataset when transferring from WebKB. TODTLER outperforms DTM-10,
DTM-5 and LSM in terms of both AUCPR and CLL. Since LSM obtains a much
worse CLL than the other systems, its curve falls out of the range of the graph.

Figure 5.3 presents learning curves for predicting protein function in the
Yeast dataset when transferring from Twitter. TODTLER outperforms DTM-10,
DTM-5 and LSM in terms of AUCPR and exhibits similar performance as
DTM-10 in terms of CLL. Since LSM obtains a much worse CLL than the other
systems, its curve falls out of the range of the graph.

Figure 5.4 presents learning curves for predicting a web page’s class in the
WebKB dataset when transferring from Yeast. TODTLER outperforms DTM-10,
DTM-5 and LSM in terms of both AUCPR and CLL. TODTLER'’s performance
improves for an increasing amount of training data.

Figure 5.5 presents learning curves for predicting a web page’s class in
the WebKB dataset when transferring from Twitter. TODTLER outperforms
DTM-10, DTM-5 and LSM in terms of both AUCPR and CLL. TODTLER’s
performance improves for an increasing amount of training data.

0.25 T 0.00
— B £l
0.20 -0.50
& ot L L L
0. 15 = verrzzced . _ocommm= RN ~©--
® i ae e = .1.00 | 0.
2010 F e O T
PRI i i
0.05 LSM z DTM-10 :g: 1.50 LSM z DTM-10 :g:
DIM-5 =)= TODTLER DTM-5 == TODTLER
0.00 L -2.00 L
1 2 3 1 2 3
Number of databases Number of databases
(a) AUCPR (b) CLL

Figure 5.2: The learning curves for predicting protein function in Yeast when
transferring knowledge from WebKB.

EXPERIMENTAL EVALUATION 71

0.05 LSM z DTM-10 :g: 0.75 1 LSM -ztv’ DTM-10 :g_-_
DTM-5 =@= TODTLER DTM-5 =@= TODTLER
0.00 L -1.00 !
1 2 3 1 2 3
Number of databases Number of databases
(a) AUCPR (b) CLL

Figure 5.3: The learning curves for predicting protein function in Yeast when
transferring knowledge from Twitter.

. 0.00 .
] -0.10 .
1 =2 -020
| 80—
.........'.'.EM'A--.-.-.---------I‘ 0 30 | |
LSM =+ DIM-10 =©-] e LSM =+ DTM-10 -©-
DTM-5 == ITODTLER -=- 0.40 DTM-5 =@= ITODTLER =
2 3 | 2 3
Number of databases Number of databases
(a) AUCPR (b) CLL

Figure 5.4: The learning curves for predicting a web page’s class in WebKB
when transferring knowledge from Yeast.

72

DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

0.50 . 0.00 .
0.40,& E -0.10 .
[a7
é 0.30 1 . 5 —O.ZOmT__—__ ______ ‘;ﬂ_ ___________ﬂ
= 0.20-k o - -0.30 ”“,‘ i
0.10 F wLsm z DTM-10 :g:' -0.40 L."Lsm z DTM-10 :g_-'
DTM-5 =@~ TODTLER DTM-5 =@~ TODTLER
0.00 . —O.SOY .
1 2 3 1 2 3

Number of databases
(a) AUCPR

Number of databases
(b) CLL

Figure 5.5: The learning curves for predicting a web page’s class in WebKB
when transferring knowledge from Twitter.

Runtime Analysis

In addition to learning more accurate models, TODTLER also exhibits a much
faster runtime than DTM as is shown in Tables 5.6 and 5.7. Across all the
considered settings, TODTLER is 8 to 44 times faster in Yeast, 5 to 29 times
faster in WebKB, and 132 to 264 times faster in Twitter.

A couple of reasons contribute to TODTLER’s improved runtime. First, for
learning in the target domain, DTM runs an iterative greedy strategy that
picks the single best candidate formula in each step. This is more expensive
than TODTLER’s non-iterative target-domain strategy for picking formulas.
Second, DTM performs a refinement step, which improves accuracy but is
computationally costly as it is another greedy search approach.

Templates Discovered by TODTLER

Tables 5.8, 5.9, and 5.10 present the ten top-ranked second-order templates in
the Yeast, WebKB, and Twitter domains, respectively.

One example is R; (X, Y) V =R; (Y, X), which represents symmetry and ranks
first in Yeast and WebKB and second in Twitter. When transferred to the
Twitter problem, this template gives, among others, rise to the first-order

EXPERIMENTAL EVALUATION

TODTLER DTM-5

1DB 2DB 3DB 1DB 2DB 3DB
WebKB — Yeast 103 199 338 | 1,766 6,234 14,896
Twitter — Yeast 93 181 277 707 2,496 9,555
Yeast — WebKB 16 26 45 84 478 753
Twitter — WebKB 13 21 44 122 294 464
WebKB — Twitter 1 N/A N/A 49 N/A N/A
Yeast — Twitter 1 N/A N/A 50 N/A N/A

73

Table 5.6: The average runtimes in minutes for TODTLER and DTM-5. TODTLER
is consistently faster than DTM-5. The N/ A entries arise because the Twitter
dataset only contains two databases.

TODTLER DTM-10

1DB 2DB 3DB 1DB 2DB 3DB
WebKB — Yeast 103 199 338 | 1,759 6,671 9,206
Twitter — Yeast 93 181 277 725 1,683 4,635
Yeast — WebKB 16 26 45 95 571 1,323
Twitter — WebKB 13 21 44 142 392 840
WebKB — Twitter 1 N/A N/A 75 N/A N/A
Yeast — Twitter 1 N/A N/A 76 N/A N/A

Table 5.7: The average runtimes in minutes for TODTLER and DTM-10.

TODTLER is consistently faster than DTM-10. The N/ A entries arise because
the Twitter dataset only contains two databases.

formula Follows(X,Y) V —Follows(Y, X), meaning that if an account Y follows
an account X, X is likely to follow Y as well.

Another example is R1(X,Y) V—-R1(Z,Y) V =Ry(X, Z), which ranks third in
Yeast, eighth in WebKB and ninth in Twitter. This template represents the
concept of homophily, which means that related objects (X and Z) tend to

have similar properties (Y). This template gives, among others, rise to the first-

order formula Has(X,Y) V —Has(Z,Y) V —Linked (X, Z) when transferred to
the WebKB problem. This formula means that if a web page X links to a web
page Z, both web pages are likely to contain the same word Y.

74 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

Template

Ry (X, Y) vV —‘Rl(
R4 (X, Y) V —|R1(
R4 (X, Y) V ﬁRl(
Ry (X, Y) V —|R1(
—Ry (X, Y) vV Rl(
(
(
(
(
(

=
>

=
<
J
=

N

(X,
X
Y,

7

V =Ry
V =Ry (
V =Ry (X
V =R; (Y
V =Ry (Xr
V -R((Z,

(

(

~

NN X < N XN < X

< XN

~
<

NXXNNNXNN

—Rq (X, Y) V Ry
—R; (X, Y) V Ry
Ri(X,Y) V —R;
R (X,Y) V R
R (X,Y) V R

<NX

=

V —R1(Z,
V =R (Y,

OO XIS UT = WN -~ | FHF
~— o

_
X

Table 5.8: The ten top-ranked second-order templates in the Yeast domain.

Template

R (X,Y) V =Ry (Y, X)
“Ri(X,Y) VR (X,Z) V -Ry (Y,
“Ri(X,Y) V=R (Y, X) V Ry
—R1(X,Y) VR1(Y,Z) V =Ry (
—R; (X, Y) V =Ry (X, Z) \ Rl(
R1(X,Y) V =Ry (X, Z) V —Ry (
“Ri(X,Y) V —Ri(Z,Y) V Ry(

(

(

Ri(X,Y)V-R(ZY) VR,
—Ri(X,Y) VR (X,Z) VR

OO OO ULk WN — | FH*

—_

Table 5.9: The ten top-ranked second-order templates in the WebKB domain.

=

Template

R (X,Y) V —R; (X, Z)
Ry (X, Y) V =Ry (Y, X)
-Ry (X/ Y) V =Ry (Y/X) v Rl()
“R1(X,Y) VR (X, Z) V -Ry (Y, X)
R (X, Y) V=R (X, Z) V=R (Y, Z)
—Ri(X,Y) VR(Z,Y) V ~Ryo(X, Z)
(X,Z)

(Z,X)

Z)

X)

“R1(X,Y)VR1(Y,X) VR,
—R1(X,Y) VR (Y, X) V —Ry
Ry (X/Y) V =Ry (Z/Y) N _‘RZ(’
R1(X,Y) V —R1(X,Z) V =Ry (Y,

SOOI UTLH WN -

—

Table 5.10: The ten top-ranked second-order templates in the Twitter domain.

CONCLUSIONS 75

Discussion

Several possible explanations exist about why TODTLER learns more accurate
models than DTM. First, TODTLER transfers fine-grained knowledge because it
performs transfer on a per-template basis instead of a per-clique basis. As
discussed in the background, DTM’s second-order cliques group together
multiple second-order formulas. Then, each of these second-order formulas
gives rise to one or multiple first-order formulas. Within a clique, only a small
subset of these formulas will be helpful for modeling the target domain. Second,
TODTLER transfers both the second-order templates (i.e., structural regularities)
as well as information about their usefulness (i.e., the posterior of the formulas,
Py(M®)|Dy)). In contrast, DTM just transfers the second-order cliques and the
target data is used to assess whether the regularities are important. Finally,
TODTLER transfers a more diversified set of regularities whereas DTM is
restricted to a smaller set of user-selected cliques. This increases the chance that
TODTLER transfers something of use for modeling the target domain.

5.5 Conclusions

This chapter investigated the task of performing transfer learning in relational
domains and presented a novel framework called TODTLER that addresses
this task. More specifically, this chapter focused on the deep-transfer-learning
task, where the source and target domains can consist of entirely different sets
of entities and relationships, in the context of Markov logic networks.

The proposed TODTLER framework views knowledge transfer as the process
of learning a declarative bias in one domain and transferring it to another to
improve the learning process. TODTLER applies a two-stage procedure, which
discovers patterns that are useful in the source domain and biases the learning
process in the target domain towards models that have these patterns as well.

Our extensive empirical evaluation on three real-world datasets shows that
TODTLER outperforms the previous state-of-the-art deep-transfer-learning
approach DTM as well as the state-of-the-art inductive-learning algorithm LSM
in terms of accuracy. While producing more accurate models, TODTLER is also
significantly faster than DTM and LSM.

In the future, it may be possible to improve TODTLER’s performance further

76 DEEP TRANSFER LEARNING IN RELATIONAL DOMAINS

by enabling it to transfer a richer set of patterns and regularities than any deep-
transfer-learning algorithm can currently handle. Furthermore, it would be
worth investigating whether TODTLER could be used as a stand-alone structure-
learning algorithm. Moore and Danyluk (2010) presented some evidence that
DTM is well-suited for that task.

Discovering Offensive
Strategies in Soccer Data

Moneyball (Lewis 2004) tells the story of Oakland A’s General Manager Billy
Beane who relies on statistics to build a competitive baseball team. Despite a
tight budget, Beane achieved to assemble a successful team that manages to
win a record-number of 20 consecutive matches. In recent years, Beane’s work
has been an example for many other ball sports like basketball, football, and
soccer. While several aspects of baseball matches can be analyzed in a rather
straightforward way, analyzing more continuous sports where players can freely
move around the pitch is much harder. As a result, objectively quantifying the
performances of individual players and teams can be very challenging.

Although simple statistics such as the number of shots on target in soccer can
easily be collected, they fail to capture the complex movements and interactions
among the players on the pitch. Therefore, companies such as ChyronHego,!
Prozone,? and STATS? have developed optical tracking systems that capture the
locations of the players and the ball at a high frequency. These positional data
do not only tell how often a particular event happened in a match but also when,
where, and how the event happened. While many professional sports clubs

1ChyronHego TRACAB: http://www.chyronhego.com/sports-data/tracab
2Prozone: http://prozonesports.stats.com
3STATS SportVU: http://www.stats.com/sportvu-basketball/

7

http://www.chyronhego.com/sports-data/tracab
http://prozonesports.stats.com
http://www.stats.com/sportvu-basketball/

78 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

have access to large volumes of performance data, the valuable information
that is hidden in these data is only used to a limited extent. Sports clubs simply
lack the computational methods to analyze these data in greater depth.

This chapter proposes and addresses the task of automatically discovering
offensive strategies in professional soccer matches. More specifically, the
objective is to automatically reveal the player interactions that are most likely
to lead to a goal attempt. This is a challenging task due to the low-scoring and
continuous nature of soccer matches. This chapter introduces an inductive-
logic-programming approach that can deal with the relational data that is
omnipresent in sports domains in a natural way.

Contributions of this Chapter

The first contribution of this chapter is an inductive-logic-programming
approach that automatically discovers offensive strategies in spatio-temporal
soccer match data. More specifically, the approach aims to discover patterns
that occur more often than not in phases leading to a goal attempt.

The second contribution is an empirical study on a large volume of soccer
matches that was acquired through a collaboration with a Belgian professional
soccer club. The study demonstrates that the proposed approach is able to
automatically discover interesting and relevant offensive strategies.

The content of this chapter is based on the following publication:

Jan Van Haaren, Vladimir Dzyuba, Siebe Hannosset, and Jesse Davis (2015).
“Automatically Discovering Offensive Patterns in Soccer Match Data”. In:
Advances in Intelligent Data Analysis XIV (IDA 2015; Saint-Etienne, France; 22-24
October 2015), pages 286-297

The methodology and experimental study are the work of the author of this
dissertation. The analysis of the experimental results is joint work between
Vladimir Dzyuba and the author of this dissertation.

Structure of this Chapter

Section 6.1 provides relevant background on knowledge discovery and the
analysis of sports data. Section 6.2 describes the structure and content of the

RELATED WORK 79

dataset. Section 6.3 introduces the proposed inductive-logic-programming
approach. Section 6.4 presents an empirical study on a large volume of
soccer matches. Section 6.5 lists several important lessons learned. Section 6.6
provides conclusions and directions for future work.

6.1 Related Work

This section provides an overview of the related work on supervised knowledge
discovery and sports analytics. The relevant background on inductive logic
programming, which is the core of our approach, is provided in Section 2.1.2.

6.1.1 Knowledge Discovery

The problem addressed in this chapter is an instance of supervised descriptive
rule discovery (Kralj Novak et al. 2009). A common variant of this problem
is subgroup discovery (Herrera et al. 2011). Although early variants already
supported multi-relational data (Wrobel 1997), the data are typically merged
into a single table before applying subgroup discovery algorithms (Lavrac,
Cestnik, et al. 2004). By contrast, inductive logic programming techniques allow
us to work directly with the relational (logical) representation of data. This is
important for our task, where we want to capture both spatial and temporal
patterns as well as interactions among groups of players. An alternative
perspective on relational data mining relies on database theory (Knobbe 2004).

6.1.2 Sports Data Analysis

The amount of available sports data is constantly increasing, most importantly
tracking data and event data (Mutschler et al. 2013). Within soccer, the analysis
of tracking data focuses on discovering individual or collective movement
patterns, e.g., spectral clustering of trajectories (Knauf and Brefeld 2014),
strategy analysis with occupancy maps (Lucey et al. 2013), or formation analysis
via minimum entropy partitioning (Bialkowski et al. 2014). Gyarmati et al. (2014)
use event data to discover motif patterns in pass sequences. Most of the research
studies large datasets encompassing multiple teams or even leagues, whereas
we focus on a single team, with the ultimate goal to improve its performance.

80 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

6.2 Dataset

Through our collaboration with a Belgian soccer club, we obtained play-by-play
data for 70 soccer matches in the 2013/2014 and 2014 /2015 seasons. The dataset
consists of 59 matches in the Belgian Pro League, nine matches in the UEFA
Europa League and two matches in the Belgian Cofidis Cup. The data were
collected by data provider Prozone. We first discuss the structure of the data
and then introduce additional hierarchical information to enrich the dataset.

6.2.1 Structure of the Data

The data for each match is provided as an XML file which consists of three
parts: a match sheet with information on the players and managers, a sequence
of events, and tracking data for all players as well as the ball. While the first
two parts are available for all matches, the third part is only available for 10
Jupiler Pro League and 4 UEFA Europa League matches.

The match sheet contains each player’s name, position on the pitch, jersey
number, and team. In addition, it also specifies which players were starters and
which players were substitutes.

The sequence of events contains roughly 2,600 events per match. Over 40
different types of events are recorded. The most frequent events include passes
between players, players running with the ball, players receiving a ball, players
shooting towards goal, players fouling another player, players crossing the ball,
and players clearing the ball. Furthermore, events exist to mark the start and
end of each half as well as yellow cards, red cards, and substitutions.

For each event, the following information is available: the type of the event,
the players that are involved, a timestamp, the start location of the event, and
the end location of the event if applicable. Depending on the type of event,
additional information is available such as the body part involved (e.g., foot or
head), type of play (i.e., open or set play), or whether or not a shot was blocked.

6.2.2 Hierarchical Information

Since we prefer more general patterns to very specific patterns, we enrich the
dataset with hierarchical information about both the pitch and the players. This

DATASET 81

Half of the pitch

e e [y ol

Penalty Area (PA) Around PA Midfield

AYANA 4

to 7 8 to 10

Figure 6.1: The division of the pitch into zones. Each half of the pitch is divided
into ten zones, which we group together into three bigger areas. Zones 1 to 4
are the penalty area, zones 5 to 7 the area around the penalty area, and zones 8 to
10 the midfield. The division is identical for the defensive and offensive half.

information groups together parts of the pitch and players that fulfill a similar
role and hence can be treated in a similar way. As a result, this information
facilitates generalizing from very specific to more general knowledge.

We divide each half of the pitch into ten zones resulting into twenty different
zones as is shown on the right side of Figure 6.1. Assuming the team of interest
always plays from left to right, we define a hierarchy as follows. We group
together zones 1 to 4 as the penalty area, zones 5 to 7 as the area around the penalty
area, and zones 8 to 10 as the midfield. The division is identical for the defensive
and offensive half of the pitch.

Similarly, we group together players that play in a similar position. We define
four groups of players for the team of interest: goalkeepers, defenders (i.e.,
center backs, full backs, wing backs, and sweepers), midfielders (i.e., defensive
midfielders, central midfielders, attacking midfielders, and wing midfielders),
and attackers (i.e., wingers, supporting strikers, and strikers).

82 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

6.3 Methodology

This section introduces our inductive-logic-programming approach to automat-
ically discover patterns that frequently appear in successful offensive strategies.
We explain how we pre-process the data and learn the clauses.

6.3.1 Pre-processing the Data

As explained in Section 6.2.1, the dataset consists of one long sequence of events
for each match. We split each sequence into a number of phases, each of which
is a subsequence of related events. A phase typically starts with a goal kick
or a throw-in and ends when the ball goes out of play or a foul is made. We
only consider passes, crosses, set pieces and shots, and discard all other events.
We also only consider phases in which the team of interest is dominant, which
is when its players are involved in at least half of the events. Although this
rarely happens, both teams can be seen as the dominant team in the same phase.
However, this is not a problem since we are only looking at the team of interest.

Building Examples

In our setting, we define positive examples as phases during which the
team of interest attempts a shot, and we label all other phases as a negative
examples. Thus, the target predicate is shot(Phase), which denotes whether
the team attempted a shot in a phase Phase. In the background knowledge,
we represent each phase as a set of ground facts using four predicates.
The pass(Phase, Player;,Playery, Zone, Zoney) predicate denotes that in a
phase Phase a player Player; in zone Zone; passed the ball to Player; in
zone Zoney. Similarly, the cross(Phase,Player;, Players, Zones, Zones) and
set_piece(Phase,Player;,Playery, Zone, Zoney) predicates denote crosses
and set pieces. For positive examples, we discard all events following a shot.

Adding Background Knowledge

We add the hierarchical information about both the pitch and the players
as background knowledge. The following are two examples of background
knowledge for the pass predicate.

METHODOLOGY 83

pass(Ph, ply,pla,Z1,Zy) — pass(Ph, pMidfielder, pAttacker,Zs,Zy) (6.1)

pass(Ph,Py,Py, 29, z7) — pass(Ph, Py, Py, zPenaltyArea, zMidfield) (6.2)

Assuming player pl; is a midfielder and player pl; is an attacker, Equation 6.1
denotes that if p1; passes the ball to pl,, then also a midfielder passes the ball to
an attacker. Assuming zone z; belongs to the penalty area and zone z7 belongs
to the midfield (see Figure 6.1), Equation 6.2 denotes that a player who passes
the ball from z; to z7 also passes the ball from the penalty area to midfield.

As a practical optimization akin to view materialization in databases, we specify
the background knowledge like this rather than by adding additional predicates.

6.3.2 Learning the Clauses

The Aleph system supports many different learning modes and search
strategies (Srinivasan 2001). We apply the induce_max search strategy. Unlike
the default search strategy, this strategy uses each positive example as a seed
example. While slower, it produces a larger set of clauses that are of potential
interest to the user. However, this is a natural choice when doing exploratory
data mining as our goal is to generate interesting clauses as opposed to learning
a very compact predictive model, which is the traditional goal of ILP.

Since we are interested in as many potentially interesting clauses as possible, we
run Aleph with as few restrictions as reasonably possible. We set the maximum
number of literals per clause (i.e., clauselength) to 5, the minimum number
of positive examples covered (i.e., minpos) to 5, the maximum number of
negative examples covered (i.e., noise) to 25, and the minimum precision of
acceptable clauses (i.e., minacc), which is the ratio between the number of
positive examples covered and the total number of examples covered, to 5%.

We sort the learned clauses in descending order according to their m-estimates
(Cestnik 1990; Lavracd, Dzeroski, et al. 1996). The m-estimate of a rule can be
viewed as a smoothed version of its precision.

84 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

6.4 Experimental Evaluation

In this section, we present the dataset as well as the different experimental
setups, define the research questions, and discuss the experimental results.

6.4.1 Dataset and Experimental Setups

After pre-processing the raw data as described earlier, the dataset contains
3,803 examples (phases), including 526 (13.8%) positive examples (shots), and
26,338 ground facts in total, including 24,786 passes (94.1%), 1,063 crosses
(4.0%), and 489 set pieces (1.9%). An average example consists of 6.93 ground
facts, including 6.52 passes, 0.28 crosses, and 0.13 set pieces. Furthermore, there
are 34 constants corresponding to the players of the team of interest.

We investigate the performance of the proposed approach in five setups:
discovering spatial patterns with and without hierarchical information, player-
interaction patterns with and without hierarchical information, and the
combined setup with the hierarchical information, in order to evaluate the
utility of each type of background knowledge.

6.4.2 Research Questions

This experimental study addresses the following three research questions:

* Q1: Do the learned clauses capture the relevant regularities? The
ultimate goal of the analysis is to describe the team’s successful offensive
actions. We quantify the ability of the proposed approach to accomplish
this by computing the average m-estimate of the top-ten clauses.

* Q2: Does the hierarchical background knowledge improve the quality
of the learned clauses? One motivation for using ILP is its ability to
represent relational data such as the player and zone hierarchies in
a natural way. We investigate whether the addition of the hierarchies
improves the quality of the learned clauses.

* Q3: Do the learned clauses describe meaningful patterns? The purpose
of this work is to discover patterns that help the team understand what

EXPERIMENTAL EVALUATION 85

works well and what does not work well in terms of creating goal-scoring
opportunities. Therefore, we qualitatively analyze the discovered patterns.

The proposed approach is meant to facilitate offline performance analysis, e.g.,
between matches or even seasons. Therefore, it is not necessary to produce
instant results. All experiments are run on a single core of a Linux machine
with an Intel Xeon E5645 CPU running at 2.40 GHz and 128 Gb of RAM. We
allow the Aleph system to run for 48 hours in each setup.

6.4.3 Experiments

We first address research questions Q1 and Q2 by comparing the five different
setups using statistics on the sets of discovered clauses. We then address
research question Q3 by evaluating the utility of the clauses for the first four
setups from a performance analysis point of view.

6.4.4 Quantitative Analysis (Q1 and Q2)

Table 6.1 contains an overview of the experimental results. We expect that
adding hierarchical background knowledge allows Aleph to find clauses of
higher quality. We observe a considerable improvement in terms of average m-
estimate in the player-interaction setup, while this increase is rather modest in
the spatial setup. However, the runtime cost of adding hierarchical information
is substantial since the search space becomes much larger. In the player-
interaction setup, Aleph still manages to explore the whole search space and to
generate high-quality candidate clauses in terms of m-estimate, which it fails
to accomplish in the combined setup.

6.4.5 Qualitative Analysis (Q3)

Tables 6.2 and 6.3 present the top-three clauses in terms of their m-estimates
for discovering spatial patterns both with and without hierarchical infor-
mation. These settings have two of their three top-ranked clauses in com-
mon (i.e., clauses A and B). Clause A describes a situation where the ball
is passed between two players in the left defensive zone (d5), from the defensive
midfield (d10) to the right offensive wing (09), and between two players in

86 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

Max. Avg.
Setup Hierarchy = Rules m-est. m-est. Time
Spatial X 276 0.7396 0.6638 1.15
Spatial v 323 07396 0.7065 441.76
Player interactions X 91 0.7396 0.4855 2.95
Player interactions 4 257 0.7396 0.6606 2,761.64
Combined 4 (x)426 0.6374 0.6138 2,880.00

Table 6.1: An overview of the number of rules, the maximum and average m-
estimate of the precision for the top-ten rules, and the runtime in minutes for
each setup. In the setup marked by (x), Aleph exceeds the runtime threshold of
48 hours. Hence, the m-estimate is computed on the intermediate output.

Clause (C) |C| |C"]
A pass(d10,09) A pass(d5,d5) A pass(010,010) 5 5
B pass(d10,d8) A pass(d10,08) A pass(d6,ds6) 5 5

C pass(d10,09) A pass(d5,d8) Apass(010,07) Apass(09,010) 5 5

Table 6.2: An overview of the top-three rules in terms of their m-estimates for
discovering spatial patterns without hierarchical background information. For
each rule, we report the total number of examples covered and the number of
positive examples covered.

Clause (C) |C| |CT]|

D pass(d6,d9) A pass(dAPA,dPA) A pass(010,07) 5 5
A pass(d10,09) A pass(d5,d5) A pass(010,010) 5 5
B pass(d10,d8) A pass(d10,08) Apass(d6,d6) 5 5

Table 6.3: An overview of the top-three rules in terms of their m-estimates for
discovering spatial patterns with hierarchical background information. For
each rule, we report the total number of examples covered and the number of
positive examples covered.

EXPERIMENTAL EVALUATION 87

Clause (C) |C| |CT|
A pass(pl,p21) Apass(p8,p18) 5 5
B pass(p18,p9) Apass(p2,pl8) 6 5
C pass(p2,p26) Apass(p3,pl) 8 5

Table 6.4: An overview of the top-three rules in terms of their m-estimates
for discovering player-interaction patterns without hierarchical background
information. For each rule, we report the total number of examples covered
and the number of positive examples covered.

Clause (C) |C| |CT]
A pass(pl,p21) A pass(p8,p18) 5 5
D pass(att,att) A pass(mid, att) A pass(mid,def) A pass(p4,pl6) 5 5
E pass(def,att) A pass(def,mid) A pass(opp,p2) A pass(p8,opp) 7 6

Table 6.5: An overview of the top-three rules in terms of their m-estimates
for discovering player-interaction patterns with hierarchical background
information. For each rule, we report the total number of examples covered
and the number of positive examples covered.

the offensive midfield (010). Clause B describes a situation where the ball
is passed between two players in the right defensive zone (d6) and from the
defensive midfield (d410) to both the left defensive wing (d8) and the left offensive
wing (08). Both clauses suggest that the team is particularly successful at
creating goal attempts when moving the ball from one flank to the other.

Clause D, which leverages the hierarchical information, describes a situation
where the ball is passed from the area around the defensive penalty area (dAPA)
into the defensive penalty area (dPA), from the right defensive zone (d6) to the
right defensive wing (d9), and from the offensive midfield (010) to the central
offensive area around the penalty area (o7). This pattern most probably depicts
a counter-attack following a set piece from the opponent.

Tables 6.4 and 6.5 present the top-three clauses in terms of their m-estimates
for discovering player-interaction patterns both with and without hierarchical
information. These settings have only one of their three top-ranked clauses in
common (i.e., clause A). Clause A describes a situation where the goalkeeper (p1)
passes the ball to a central defender (p21) and an attacking midfielder (p8) passes

88 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

Clause (C) |C| |CT| WRA m-est.
A pass(olMF, oMF) A pass(oMF, oPA) A pass(oPA, oAPA) 62 18 0.025 0.275
B pass(o4,07) 43 15 0.024 0.324
C set_piece(dAPA,dPA) 51 16 0.024 0.295

Table 6.6: An overview of the top-three rules in terms of their weighted
relative accuracies for discovering spatial patterns with hierarchical background
information. For each rule, we report the weighted relative accuracy and m-
estimate. These rules are more general and less pure than the top-ranked rules
according to m-estimate for the same setup.

the ball to an offensive wing midfielder (p18). This pattern makes sense from a
sports perspective as both p8 and p18 are generally considered key players and
responsible for creating a large number of goal-scoring opportunities.

Clause B describes a situation where an offensive full back (p2) passes the ball
to an offensive wing midfielder (p18) and the latter player passes the ball to
another wing midfielder (p9). This pattern makes sense as well as p2 has had a
foot in many goals scored by the team of interest. Clause C describes a similar
pattern involving a goalkeeper (p1), a central defender (p3), an offensive full
back (p2), and a central midfielder (p26).

Clauses D and E leverage the hierarchical information about player roles as
they include both specific players (e.g., p4 and p16) and positions (e.g., mid
and att). Clause D describes an attack over the left wing involving both an
offensive full back (p4) and an offensive wing midfielder (p16), while clause E
describes a situation where an offensive full back (p2) intercepts a pass from an
opponent (opp) and an attacking midfielder (p8) attempts a possibly risky pass
that is briefly intercepted or touched by an opponent.

6.4.6 Alternative Qualitative Analysis (Q3)

We observed that the top-ranked clauses according to m-estimate are markedly
specific. Therefore, we compare these clauses with the top-ranked clauses in the
same set of clauses according to weighted relative accuracy, which is a common
quality measure that aims to balance rule coverage and specificity:

LESSONS LEARNED 89

_Cl /et |ET
WRA(C)‘(c‘m)

Table 6.6 presents the top-three clauses in terms of WRA for discovering spatial
patterns with hierarchical knowledge. These patterns have a substantially higher
coverage, while their m-estimates are much lower. In the same setup, the average
m-estimate for the top-ten clauses was 0.707. This contrasts with Op De Beéck
et al. (2015), where in a similar setting, the coverage of the top-ranked clauses
according to m-estimate ranges from 30 to 90 examples. This suggests that
different quality measures could reveal different patterns in a dataset. Therefore,
if the initial results are unsatisfactory from the domain perspective, ranking
the clauses with another quality measure is a reasonable next step.

Clause A describes an attack through the middle, where the ball is passed
between two players in the offensive midfield (oMF), from the offensive midfield
to the offensive penalty area (oPA), and from the offensive penalty area to the
area around the offensive penalty area (oAPA). Clause B describes a pass from the
right side of the offensive penalty area (04) to the area in front of the offensive
penalty area (o7). Clause C describes a set piece from the area around the
defensive penalty area (dAPA) into the defensive penalty area (dPA). Hence, this
clause describes a situation where a counter-attack results in a goal-scoring
opportunity. These patterns are different from those in Tables 6.2 and 6.3.

6.5 Lessons Learned

While undertaking this study, we learned the following three lessons.

First, it is possible to apply inductive logic programming to the task of revealing
recurring patterns in soccer match data. It provides the advantages of coping
with the relational nature of the data in a straightforward way. Furthermore, it
produces interpretable results, which facilitates debugging the data, analyzing
the results, and communicating with domain experts.

Second, the discovered patterns make sense from a soccer perspective and are
interesting to a domain expert. However, taking the next step forward would
require the full tracking data (i.e., the positions of the players and the ball at

90 DISCOVERING OFFENSIVE STRATEGIES IN SOCCER DATA

regular intervals) as this will allow for more fine-grained analysis. Fortunately,
this type of data is becoming commonplace.

Third, selecting the most interesting clauses is difficult as there is no natural
metric or heuristic for this task. A human domain expert is still needed to assist
in the interpretation of the discovered patterns.

6.6 Conclusions

This chapter investigated the task of automatically discovering recurring
patterns in successful offensive strategies in soccer matches and presented
an inductive-logic-programming approach that addresses this task.

The proposed approach views a soccer match as a long stream of events and
performs the following three steps. First, the approach splits each match into a
set of phases, which are subsequences of related events. Second, it labels the
phases that lead to a goal attempt as positive and all others as negative. Third,
the approach learns rules describing patterns that appear more often in phases
labeled positive than in phases labeled negative.

Our experimental evaluation on a large number of matches from a Belgian
professional soccer club shows that the proposed approach is able to discover
both spatial (e.g., a pass from one zone to another) and player-interaction (e.g., a
pass from one player to another) patterns that are likely to lead to goal attempts.

In the future, it may be possible to improve the performance of the approach
by explicitly taking into account the order of the events, the positions of the
players as well as the ball, and the differences in playing style of the different
opponents. Furthermore, it would be helpful to develop a tool that visualizes
the discovered patterns (e.g., on a soccer pitch as partially shown in Figure 6.1)
to help communicate the discovered patterns to a domain expert.

Discovering Offensive
Patterns in Volleyball Data

Like in soccer and all other dynamic sports, automatically detecting and
understanding tactics in volleyball is a challenging problem. Optical tracking
provides sufficient context about the game state, which enables to gain insights
into tactics and strategies that go beyond simple descriptive statistics. Volleyball
tactics comprise complex interactions among multiple players that evolve across
both time and space. Hence, strategy detection must consider and evaluate a
huge number of possible spatio-temporal movement patterns.

This chapter addresses the task of automatically discovering attacking strategies
in volleyball matches based on camera-tracking data of the players and the ball.
In particular, this chapter considers data that were collected during the final
matches from the 2014 FIVB Volleyball World Championships.

Contributions of this Chapter

The first contribution of this chapter is an inductive-logic-programming
approach that automatically discovers offensive patterns in spatio-temporal
volleyball match data. More specifically, the approach aims to discover patterns
that occur frequently in won rallies and infrequently in lost rallies. In addition,

91

92 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

the approach also aims to find patterns that are used by one team in a particular
match but not the opposing team.

The second contribution is an analysis of both the men’s and women’s
final match at the 2014 FIVB Volleyball World Championships. The analysis
demonstrates that the proposed approach is able to discover spatio-temporal
patterns on multiple different levels of granularity that characterize successful
attacking play in professional volleyball matches.

The content of this chapter is based on the following publication:

Jan Van Haaren, Horesh Ben Shitrit, Jesse Davis, and Pascal Fua (2016).
“Analyzing Volleyball Match Data from the 2014 World Championships Using
Machine Learning Techniques”. In: Proceedings of the Twenty-Second ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2016; San Francisco, California, United States; 13-17 August 2016)

Structure of this Chapter

Section 7.1 formally defines the addressed task. Section 7.2 provides the
necessary background on volleyball. Section 7.3 describes the spatio-temporal
dataset. Section 7.4 introduces the proposed approach. Section 7.5 presents the
analysis of both the men’s and women’s final match at the 2014 FIVB Volleyball
World Championships. Section 7.6 provides the conclusions.

7.1 Problem Description

In this chapter, we consider the following two tasks:

Task 1: Identify a team’s attacking patterns in volleyball matches that occur
frequently in won rallies and infrequently in lost rallies.

Task 2: Identify attacking patterns in a volleyball match that are used by one
team but not the opposing team.

In contrast to most existing approaches, we attempt to identify patterns that
account for both spatial and temporal aspects of the game. That is, we want to
model partial or complete configurations of players’ positions on the court as

PROBLEM DESCRIPTION 93

Left Center Right A 91192193194]95]96]97]98]99
Front Front Front 81]82183184]85]86|87]88]89
(LF) (CF) (RF) 71| 72| 73|74 75|76 | 77] 78 79
Left Center Right 61]62]163|64]65]166]67]68]|69
Middle Middle Middle 51]52]53|54]55]56]57]58]59
(LM) (€M) (RM) 41| 42| 43| 44] 45] 46 [47] 48] 49
Left Center Right 31132|33)34|35]36|37]38]39
Back Back Back 21|22|23|24|25]26|27|28]29
(LB) (CB) (RB) 11[12]13]14] 15[16[17] 18] 19
Locations encoded as 3 meter by 3 meter zones. Locations encoded as 1 meter by 1 meter positions.

Figure 7.1: The division of the pitch in higher-level zones (left) and lower-level
positions (right). The direction of play is from bottom to top, where the thick
line at the top represents the net.

well as how play evolves over time. To illustrate this, consider the following
simple pattern that was automatically discovered by our approach:

IF player #13 performs the dig AND NEXT
player #1 performs the set
in the front center zone AND NEXT
player #8 performs the spike
in position 81 of the court
THEN the attack is likely to be successful.

This pattern is temporal as the dig occurs first, the set second, and the spike
third. The pattern is spatial as it states the location on the court where the set
and spike occur. Figure 7.1 shows a description of the locations.

In order to automatically identify patterns like the one above, we use an
approach based on relational-learning techniques. As much as possible, we
attempt to employ a data-driven approach that can automatically determine
which players and characteristics of the game state are relevant to the strategy
and should be included in the patterns.

94 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

7.2 Background on Volleyball

Volleyball (FIVB 2015) is a ball sport that is played by two teams of six players
each. A volleyball court is 18 meters (59 feet) long and 9 meters (29.5 feet) wide.
Each team occupies one half of the court, which is 9 meters by 9 meters. The
halves are separated by a net whose top is 2.43 meters above the floor in men’s
competitions and 2.24 meters in women’s competitions. The overall goal is to
score points by grounding the ball on the opponent’s court.

Volleyball matches are won by the first team to win three sets. A set is won by
the first team to score 25 points and lead by two points. However, a possible
fifth set is typically played to 15 points only. Each set consists of rallies and
either of both teams is awarded a point at the end of each rally. A rally starts
by serving the ball from behind the back-line over the net into the opponent’s
court. The opponent may touch the ball up to three times to prevent it from
hitting the court and to get the ball back over the net. A rally ends when a team
makes either a kill by grounding the ball on the opponent’s court or a foul.

The players follow a rotation scheme, where they must rotate one time in
clockwise direction after their team wins the serve. Nevertheless, players do
have different roles in the team and are free to move within their half of the
court after the serve. Typically, the best offensive players will move towards
the net, while the best defensive players will move to the back of the court.
Although the rotation scheme imposes some restrictions, this tactical freedom
allows teams to adopt a wide variety of match strategies. Therefore, volleyball
players need to master the following six basic skills:

Serve The serve is the skill of moving the ball from behind the back-line into
the opponent’s court. While many different types of serves are used, the
most popular type is the jump serve, where the server first tosses the ball
high in the air and then jumps to hit it.

Dig The dig is the defensive skill of preventing the ball from hitting the court
when the ball is nearly touching the floor after a serve or attack from the
opponent. The dig is a reflex-based skill which often requires a player to
dive towards the ball.

Pass The pass is very similar to the dig. However, in addition to preventing the
ball from hitting the court, this defensive skill also involves moving the
ball towards a team mate that is well-placed to set up an attack.

DATASET 95

Set The set is the offensive skill of pushing the ball into the air such that a team
mate can hit it into the opponent’s court. The setter, who is the player
performing the set, coordinates the offensive play of the team by deciding
who will eventually attack the ball.

Spike The spike is the offensive skill of hitting the ball such that the opponent
cannot prevent it from touching their court. The spiker, who is the player
performing the spike, first makes a few steps and then jumps to swing at
the ball.

Block The block is the skill of stopping or altering an opponent’s attack by
players standing at the net. An offensive block aims at keeping the ball
into the opponent’s court, while a defensive block aims at getting the ball
under control by slowing it down.

Typically, the dig is the first contact with the ball, the set the second, and the
spike the third. In this chapter, we will focus on these three skills.

7.3 Dataset

The data were collected at the FIVB Volleyball World Championships finals
that were held in Poland' and Italy? in 2014. PlayfulVision® recorded several
men’s and women'’s matches, including the final matches of both tournaments.
They first captured each match using 8 video cameras placed at different angles
at 30 frames per second and then used their ball and player tracking code
to automatically determine the locations of the players and the ball in each
frame. Furthermore, a human manually annotated each frame with the skills
performed by the players (i.e., serve, dig, set, spike, and block) for both finals.
The dataset does not distinguish between digs and passes.

In this chapter, we focus on the final matches of the world championships for
which both the tracking information and the annotations are available. Table 7.1
shows the number of sets, rallies, and attacks in both matches as well as relevant
statistics for each team such as the number of won rallies and how often they
performed each of the five considered skills.

http://poland2014.fivb.org/en
2http://italy2014.fivb.org/en
3PlayfulVision Volleyball Tracking System: http://www.volleyballtracking.com.

http://poland2014.fivb.org/en
http://italy2014.fivb.org/en
http://www.volleyballtracking.com

96 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

Men'’s final Women'’s final
Brazil Poland China USA
Total sets 4 4 4 4
Sets Won sets 1 3 1 3
Lost sets 3 1 3 1
Total rallies 185 185 188 188
Rallies Won rallies 92 93 94 94
Lost rallies 93 92 94 94
Attacks Total attacks 246 248 300 306
Total serves 86 89 95 93
Total digs 124 120 167 173
Skills Total sets 105 106 145 154
Total spikes 112 112 148 156
Total blocks 39 42 51 52

Table 7.1: The statistics for the men’s and women'’s final match at the 2014 FIVB
Volleyball World Championships.

We divide each rally into a series of attacks, where each attack consists of a
sequence of consecutive skills performed by the same team. In this work, we
only consider attacks that involve each of a dig, a set, and a spike. Based on this
preprocessing, we construct positive and negative examples for four settings
on each task. In task 1, the positive examples are a team’s attacks that result
in a point, while the negatives are all the team’s other attacks. In task 2, the
positives are the attacks from one team (e.g., Brazil), while the negatives are the
attacks from the opponent (e.g., Poland). Table 7.2 lists the number of positive
and negative examples for each setup.

To represent an attack, we take a snapshot of the pitch configuration at the time
of each skill. Each snapshot is described by the performed skill (i.e., dig, set
or spike) as well as information about the location of each player and the ball.
Each snapshot describes the locations on two levels of granularity: high-level
zones (see Figure 7.1 left) and lower-level positions (see Figure 7.1 right).

METHODOLOGY 97

Men'’s final Women'’s final
Brazil Poland China USA
Positive examples 51 49 55 61
Task 1 Negative examples 18 17 25 36
Task 2 Positive examples 96 95 132 144
Negative examples 95 96 144 132

Table 7.2: The number of positive and negative examples for each task.

7.4 Methodology

Pattern mining typically focuses on finding patterns that occur frequently in
the data. Our problem has several other important characteristics that we must
account for and which distinguish it from standard pattern mining. First, each
of our tasks requires differentiating between two classes of examples, either
successful and unsuccessful attacks or attacks done by two different teams.
Second, we want to be able to simultaneously reason about multiple different
levels of granularity in the data. For example, we may want to represent the
court with both high-level zones and lower-level positions as illustrated in
Figure 7.1. Furthermore, we would like to be able to discover patterns that
involve specific players in a specific position as well as patterns that involve any
player in a specific position. Third, this problem is inherently relational and it is
crucial to find patterns that account for relationships such as changes over time.
For example, we may want to know how the configuration of players changes
between a dig and a set. Finally, we have specific knowledge about volleyball
and we would like to be able to incorporate it into the pattern mining process.

Based on the above requirements, we pursue an approach based on inductive
logic programming (ILP, Muggleton and De Raedt 1994). ILP is a relational-
learning approach that permits modeling multiple granularities, capturing
relationships, and incorporating background knowledge. The goal of ILP is to
learn a model that distinguishes positive examples from negative examples. The
model is a set of IF-THEN rules. The IF portion of a rule is a set of conditions
and the THEN portion has an outcome. If all the conditions in the IF portion are
met, then the outcome can be expected with a certain probability. An advantage
of rules of this form is that they are easy for domain experts to interpret.

98 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

However, we do have to make a number of modifications to the standard ILP
setup to adapt it to our needs. ILP is traditionally used for learning classifiers,
and hence it has a preference for smaller models. That is, models with as few
rules as possible with each rule being as short as possible. In contrast, for
knowledge discovery we want to find all interesting rules. Furthermore, all
other things being equal, we would prefer a detailed pattern that gave as much
information about the strategy (e.g., assigns positions and actions to as many
players as possible). Thus, unlike model learning, we tend to prefer more specific
or detailed patterns to more general ones. To address these problems, we use a
two-step process involving pattern generation and pattern post processing.

Pattern Generation

We use the well-known and publicly available Aleph ILP system (Srinivasan
2001) to generate rules. Depending on the task, we define a set of positive
and negative examples as described in the Data section. Aleph constructs one
rule at a time, with the goal of discovering a set of conditions such that the
condition applies to as many positive and as few negative examples as possible.
In other words, it tries to maximize the precision of the rule or the conditional
probability that the outcome is true given that the condition is true.

Instead of learning one rule at a time, we define a set of criteria and attempt to
identify rules that satisfy the criteria. We consider patterns of up to size 15. Each
pattern must apply to at least five examples (i.e., a frequency threshold). Each
pattern must have a precision of at least 25%. Given the size of the search space
(e.g., there are on the order of 1022 patterns of size 15 alone), an exhaustive
approach is infeasible so we employ a beam search. We collect all rules found
by the beam search that meet these conditions.

When constructing a pattern, the learning algorithm can make use of both levels
of granularity for the location and it automatically decides, based on the data,
which to use. In fact, a single pattern can simultaneously make use of both
granularities. The patterns can refer to specific players (e.g., player 1 is in the
front center zone) or generic ones (e.g., a player is in the front center zone).
Referring to generic players allows us to find patterns that generalize across
different lineups for a team as teams may substitute during the match.

RESULTS AND DISCUSSION 99

Pattern Post-processing

Even with our constraints, a huge number of patterns were generated. For task
1, there were 53,212 patterns generated for Brazil, 79,907 for Poland, 51,593 for
China, and 77,509 for the USA. For task 2, there were 190,956 patterns generated
for Brazil, 197,467 for Poland, 269,753 for China, and 327,731 for the USA. We
post processed the patterns and only retained those that included all three skills
(dig, set, and spike) we were interested in. This resulted in 1,527 patterns for
Brazil, 1,301 for Poland, 242 for China, and 2,037 for the USA in task 1. For task
2, there were 65,484 patterns generated for Brazil, 41,763 for Poland, 73,011 for
China, and 84,639 for the USA.

Then, we ranked the patterns by the number of specific players and locations
the patterns contained. This enforces a preference for longer, more specific
patterns. We broke ties by considering pattern coverage (number of positives
the pattern applies to), pattern precision, and pattern length.

7.5 Results and Discussion

We present the top-ranked pattern for each of the eight setups we consider. Most
of these patterns capture the same offensive strategy, which involves attacking
over one side of the court. The patterns do have some small variations, such as
about whether the attack is on the left or right side. This attacking pattern is
a well-known volleyball strategy. Next, we discuss the top-ranked pattern in
each setup in more detail.

Task 1: Which Offensive Strategy is Most Successful for Each
Team?

Figures 7.2 through 7.5 visualize the offensive patterns that occur in successful
attacks but not unsuccessful ones. In all figures, numbers represent specific
players, the capital letter X represents the location of the ball, and other capital
letters (A, B, and C) represent generic players. That is, they denote the presence
of a player in that location, but do not specify which player is there, and hence
account for the fact that teams can substitute players. The net is shown by a
thick line at the top of the image.

100 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

Phase 1: Dig Phase 2: Set by #5 Phase 3: Spike by B
H
A B A
17
10

Figure 7.2: A frequent successful offensive pattern by Poland in the men’s final.
The setter, who is the player with jersey number 5, is already close to the net at
the time of the dig. He sets the ball to the front left zone, where another player
B spikes it. Here, player B could denote any other Polish player.

Phase 1: Dig Phase 2: Set by #1 Phase 3: Spike by #4

1 1 1| x
[

Figure 7.3: A frequent successful offensive pattern by Brazil in the men’s final.
The setter, who is the player with jersey number 1, is already close to the net at
the time of the dig. He sets the ball from the front center zone to the back right
corner of the front right zone, where the player with jersey number 4 spikes it.
X denotes the location of the ball.

Figure 7.2 shows the top-ranked pattern for the Poland men’s team. The setter,
who is the player with jersey number 5, is already close to the net at the time of
the dig. He sets the ball to the front left zone, where another player B spikes it.
The pattern covers five successful attacks and no unsuccessful ones. Looking at
the location of the spike, the Polish team had 36 successful (including the five
covered by this pattern) and 16 unsuccessful spikes in the front left zone.

Figure 7.3 shows the top-ranked pattern for the Brazil men’s team. This pattern
is very similar to the one for the Polish team, but with two important exceptions.
First, the spike occurs on the right side of the court. Second, the spike occurs
in a very specific location, at the back right corner of the front right zone.

RESULTS AND DISCUSSION 101

Phase 1: Dig Phase 2: Set by #1 Phase 3: Spike by B

X
1 A B

12

Figure 7.4: A frequent successful offensive pattern by the USA in the women's
final. Player 1, who is the setter, is in the front center at the time of the dig.
Player 1 sets the ball to the front left where player B spikes it. A player denoted
A moves from the left center to the left front between the dig and the set. It
appears that the setter could set to either side for a spike. X denotes the location
of the ball.

Phase 1: Dig Phase 2: Set by #5 Phase 3: Spike by #8
[x]
A A B
C

Figure 7.5: A frequent successful offensive pattern by China in the women’s
final. In this pattern, player 5 sets the ball and it is spiked by player 8 in the
front right corner of the court. X denotes the location of the ball.

The pattern covers five successful attacks and no unsuccessful ones. Here, the
specific location is important to the pattern as, in the entire front right zone,
Brazil had 22 successful attacks (including the five covered by this pattern) and
13 unsuccessful attacks. In terms of the specific position where player 4 was
located, Brazil attempted 11 spikes of which nine were successful. Thus the
team was much more successful in this location than in the zone in general.
The Polish team was less successful from this specific location, attempting 15
spikes of which 10 were successful. Also, in contrast to the women’s final, the
USA and China only attempted four spikes in aggregate in this specific location
and none of them were successful.

102 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

Phase 1: Dig by A Phase 2: Set by #5 Phase 3: Spike by #10
X 5 X
5 10

A

Figure 7.6: A frequent offensive pattern by Poland that Brazil did not frequently
use in the men’s final. Player with jersey number 5 sets the ball from the front
center to the front right where it is spiked by player number 10. X denotes the
location of the ball.

Figure 7.4 shows the top-ranked pattern for the USA women'’s team. This again
illustrates an attack from the side of the court at the front. Given that player B
spikes the ball and the ball is located in the front left zone, that is the location
where the spike was performed. Notice that a player denoted A moves from the
left middle to the left front between the dig and the set. Thus, the setter could
have set to either side for the spike. The pattern covers five successful attacks
and no unsuccessful ones. The USA attempted 56 spikes in the front right zone
of which 37 were successful (including the five covered by this pattern) and 19
were unsuccessful.

Figure 7.5 shows the top-ranked pattern for the China women’s team. This
pattern is less specific than the previous three, but it still shows the same
general scheme of attacking from the side of the court on the front. Given that
the ball is in the front rightmost corner next to the net at the time of the spike, we
can infer that this is where player 8 is located. The pattern covers five successful
attacks and no unsuccessful ones. Over all spikes in this specific position, China
had eight successful spikes (including the five covered by this pattern) and two
unsuccessful ones.

Task 2: Which Common Offensive Strategy Distinguishes a
Team from Its Opponent?

Figures 7.6 through 7.9 show the offensive patterns that distinguish between
two teams playing against each other. The patterns are illustrated in the same

RESULTS AND DISCUSSION 103

Phase 1: Dig Phase 2: Set by #1 Phase 3: Spike by #10
1 10
10 8 8

Figure 7.7: A frequent offensive pattern by Brazil that Poland did not frequently
use in the men’s final. The player with jersey number 1 is located in the front
center at the time of the dig. He sets the ball from the front center to the front
left. Player 10 moved from the middle left zone at the time of the dig to the
front left zone, where he spiked the ball.

Phase 1: Dig by #2 Phase 2: Set by #1 Phase 3: Spike by B
X
1
1
A 2 2

Figure 7.8: A frequent offensive pattern by the USA that China did not frequently
use in the women’s final. The ball is set by the player with jersey number 1 in
the front center zone. Afterwards, another player spikes the ball. X denotes the
location of the ball.

manner as for Task 1.

Figure 7.6 shows the top-ranked pattern employed by the Poland men’s team
that is not used by the Brazilian team in their match. Figure 7.7 shows the
top-ranked pattern for the Brazil men’s team that is not used by the Polish team.
These patterns are quite similar, with a set in the middle and a spike by player
10 on the outside in the front. The difference is that the Polish number 10 attacks
on the right and the Brazilian number 10 on the left. One possible explanation
is that these players have different dominant hands. Typically in volleyball the
spiker wants his dominant hand closest to where the ball is coming from (that is,
right-handed players want to spike from the front left, and left-handed players

104 DISCOVERING OFFENSIVE PATTERNS IN VOLLEYBALL DATA

Phase 1: Dig by A Phase 2: Set by #5 Phase 3: Spike by #1
5 X 5
5/B B
A

Figure 7.9: A frequent offensive pattern by China that the USA did not frequently
use in the women’s final. The ball is set by player 5 in the front center zone.
Afterwards, player 1 spikes the ball. X denotes the location of the ball.

want to spike from the front right). We could not verify this hypothesis.

Figure 7.8 shows the top-ranked pattern for the USA women'’s team that is
not used by the Chinese team. Figure 7.9 shows the top-ranked pattern for the
China women’s team that is not used by the USA team. These patterns are
slightly less informative as they do not indicate the location of the spike. All
the patterns tell is that the ball is set in the front center zone.

How Do Men’s and Women’s Volleyball Compare to Each
Other?

Another natural question to ask is how do the men’s and women’s game
compare to each other. The statistics in Table 7.1 show that there are some
commonalities between them. Namely, the number of rallies is roughly the
same in both finals. However, the women'’s match features many more attacks
than the men’s final. Furthermore, the number of digs, set, spikes, and blocks
is much higher in the women’s final than in the men’s final. This is most likely
due to the faster pace of men’s volleyball, which makes it harder to gain control
of the ball after an attack from the opponent.

CONCLUSIONS 105

7.6 Conclusions

This chapter investigated the task of automatically discovering recurring
patterns in successful offensive patterns in volleyball matches and presented
an inductive-logic-programming approach that addresses this task.

The proposed approach views a volleyball match as a sequence of events and
performs the following three steps. First, the approach splits each match into
a set of subrallies, which are subsequences of events within a rally. Second, it
labels the subrallies that lead to a point as positive and all others as negative.
Third, the approach learns rules describing patterns that appear more often in
subrallies labeled positive than in subrallies labeled negative.

Our experimental evaluation on both the men’s and women’s final match of the
2014 FIVB Volleyball World Championships demonstrates that the proposed
approach is able to discover spatio-temporal patterns on multiple different
levels of granularity that characterize successful attacking play in volleyball.

In the future, it may be possible to improve the performance of the approach
by explicitly taking into account the differences in playing style of the
different opponents. The proposed approach might also benefit from a more
sophisticated, domain-driven procedure to assign the labels to the subrallies.

Conclusions

This chapter summarizes the presented contributions and discusses promising
avenues for future research on the topics that this dissertation encompasses.

8.1 Summary

Most traditional machine-learning algorithms cannot be applied directly to
important real-world problems as they rely on assumptions that do not hold in
practice. One assumption is that the data are represented in a simple, tabular
format, while most real-world domains exhibit a complex, relational structure
involving different types of entities and relationships. Another assumption is
that plenty of data is available to learn an accurate predictive model, while
real-world domains often exhibit a shortage of high-quality data.

This dissertation aims to overcome the limitations of traditional machine-
learning techniques by presenting novel algorithms in the field of statistical
relational learning, which can deal with uncertainty and complexly-structured
data in a natural way. Furthermore, this dissertation also applies existing
relational-learning techniques to spatio-temporal sports data, which exhibit the
many challenges that real-world applications pose.

107

108 CONCLUSIONS

Contributions

This dissertation presents five main contributions. The first three contributions
are relevant to the domain of statistical relational learning, while the remaining
two contributions are relevant to the field of sports analytics. We identify the
following five main contributions:

1. A novel algorithm for learning Markov random fields from data
2. A novel algorithm for learning tractable Markov logic networks from data

3. A novel framework and approximate algorithm for performing deep-
transfer learning in relational domains

4. An inductive-logic-programming approach for automatically discovering
offensive strategies in spatio-temporal soccer match data

5. Aninductive-logic-programming approach for automatically discovering
offensive patterns in spatio-temporal volleyball match data

Structure Learning of Markov Random Fields

The first main contribution is a novel algorithm called GSSL (Generate Select
Structure Learning) for automatically learning Markov random fields from
data. The algorithm views structure learning as a feature-induction problem.
GSSL first quickly generates a set of candidate features and then selects a subset
of those features to include in the final Markov random field.

The proposed algorithm combines some of the benefits of existing structure-
learning approaches. Unlike search-based approaches, GSSL avoids the
computational cost of performing parameter learning to evaluate each candidate
feature. Unlike local-model-based approaches, GSSL avoids the burden of
learning the local models, which can quickly become computationally expensive
in domains containing a large number of variables or examples.

An extensive empirical evaluation on 20 real-world datasets demonstrates the
advantages of the proposed algorithm. Striking in its simplicity, GSSL learns
more accurate models and is much faster than the baseline approaches.

SUMMARY 109

Lifted Structure Learning of Markov Logic Networks

The second main contribution is a novel algorithm called LSL (Lifted Structure
Learning) for automatically learning tractable Markov logic networks from
data. The algorithm views structure learning as performing a greedy search
in a space of candidate models. LSL first generates a set of candidate formulas
and then iteratively adds formulas to an initially empty Markov logic network.
To enforce the tractability of the final model, LSL discards all candidate models
that do not allow lifted inference and therefore are considered intractable.

The proposed algorithm leverages techniques from lifted inference to optimize
the exact training-set log-likelihood and to learn models that are guaranteed
to support certain types of queries efficiently. In contrast, standard structure-
learning algorithms resort to approximate techniques that lead to intractable
models and thus inaccurate predictions.

An extensive empirical evaluation on three real-world datasets demonstrates the
advantages of the proposed algorithm. LSL learns more accurate models than
other tractable learners in terms of test-set log-likelihood as well as area under
the precision-recall curve and conditional log-likelihood on prediction tasks.
Surprisingly, LSL even outperforms standard algorithms that learn intractable
models on prediction tasks, suggesting that tractable models are a powerful
hypothesis space that is sufficient for many standard problems.

Deep Transfer Learning in Relational Domains

The third main contribution is a novel framework called TODTLER (Two-Order-
Deep Transfer Learning) for automatically performing deep-transfer learning
in relational domains. The framework views knowledge transfer as the process
of first learning a declarative bias in a source domain, where the data are ample,
and then applying that bias to a target domain, where the data are scarce, to
improve the learning process. The framework exploits the observation that many
domains share structural regularities although their high-level descriptions
(e.g., properties, entities, and relationships) can be entirely different.

The concrete implementation of the TODTLER framework performs deep-
transfer learning, where the source and target domains can consist of entirely
different sets of entities and relationships, in the context of Markov logic
networks. TODTLER represents the transferable knowledge as a distribution

110 CONCLUSIONS

over domain-independent second-order templates, which give rise to first-order
Markov logic formulas when applied to a particular domain.

An extensive empirical evaluation on three real-world datasets demonstrates
the advantages of the proposed framework. TODTLER learns more accurate
models than the state-of-the-art deep-transfer learning algorithm as well as
the state-of-the-art inductive-learning algorithm. In addition to learning more
accurate models, TODTLER is also much faster and can transfer a broader range
of knowledge than the existing deep-transfer-learning algorithms.

Discovering Offensive Patterns and Strategies in Sports Data

The fourth main contribution is an inductive-logic-programming-approach that
automatically discovers offensive strategies in spatio-temporal soccer match
data. The approach views a soccer match as a long stream of events. First, it
identifies subsequences of related events, which are called phases. Second, it
discovers recurring patterns in the identified phases. The approach aims to
discover patterns that frequently occur in phases leading to a goal attempt.

An empirical study on a large volume of matches from a professional soccer
club demonstrates that the proposed approach is able to automatically discover
interesting and relevant offensive strategies in soccer match data.

The fifth main contribution is an inductive-logic-programming approach that
automatically discovers offensive patterns in spatio-temporal volleyball match
data. The approach views a volleyball match as a set of sequences of events,
where each sequence corresponds to a rally. First, it identifies subsequences of
events in each rally, which are called subrallies. Second, it discovers recurring
patterns in the identified subrallies. The approach aims to discover patterns
that frequently occur in won rallies and infrequently in lost rallies.

An analysis of both the men’s and women’s final match at the 2014 FIVB
Volleyball World Championships demonstrates that the proposed approach is
able to discover offensive patterns in volleyball match data.

The crucial difference between the fourth and fifth contribution is in the way
the raw tracking data are transformed into a logical representation. Soccer and
volleyball are inherently different sports and our logical representation needs
to account for at least the following mutual differences:

DISCUSSION, PERSPECTIVES, AND FUTURE WORK 111

1. Soccer players can freely move around the pitch and often directly interact
with their opponents. Volleyball players are separated by a net.

2. Soccer pitches are much larger than volleyball pitches. Hence, analyzing
volleyball matches requires a more fine-grained pitch representation than
analyzing soccer matches, where minor movements are less important.

3. Soccer players have fixed positions on the pitch. Volleyball players rotate
one position to the left each time they gain the right to serve.

4. Soccer events can happen in almost any order. Volleyball events tend to
follow the dig-set-spike pattern in most rallies.

8.2 Discussion, Perspectives, and Future Work

The contributions presented in this dissertation provide valuable advances and
insights concerning the applicability of statistical-relational-learning techniques
in real-world domains, which are often characterized by complex relational data
and a shortage of high-quality training data. Nevertheless, many open questions
remain and should be addressed to enable a broader adoption of machine-
learning techniques in challenging but important real-world applications.

This section presents several possible avenues for future work with respect to
structure learning and transfer learning as well as sports analytics.

8.2.1 Structure Learning

Although the structure-learning tasks in Markov random fields and Markov
logic networks somewhat differ, they follow a similar paradigm and pose similar
challenges. This dissertation views structure learning as a task of first generating
candidate features and then selecting a subset of the features to include in
the final model. However, evaluating candidate features requires parameter
learning and thus inference, which can quickly become computationally
expensive in large domains. Hence, the challenge is to reduce the space of
possible models by generating the candidate features in a clever way.

The lack of a general understanding of what makes a good feature, complicates
the structure-learning task further. The main reason is that a feature’s quality
does not only depend on the feature itself but also on the other features in the

112 CONCLUSIONS

model. If candidate features Vy = 1AV} =land Vj = 1AV, =1 AV, = 1have
similar support in the data, does adding the latter feature yield a better model if
the former feature is already present? Since the latter feature is likely to improve
the model’s accuracy, the underlying question is whether a possibly marginal
improvement in accuracy justifies an increase in the model’s complexity.

Markov Random Fields

In the context of Markov random fields, generating a more diverse set of
candidate features is a promising research direction to improve the structure-
learning process. A disadvantage of GSSL's naive feature-generation approach is
that certain regions of the search space are likely to be explored more than others,
which can lead to homogeneous candidate-feature sets. A similar problem arises
in clique mining, where diverse cliques are often more interesting than largely
overlapping cliques. Bogdanov et al. (2013) address this problem by proposing
a scalable algorithm for mining diverse cliques in weighted graphs. The feature-
generation problem can easily be casted into this setting by constructing a graph
where the nodes represent the variables and the edge weights denote how often
the variables occur together in the training data.

Markov Logic Networks

In the context of Markov logic networks, leveraging the semantics of the
predicates is a promising research direction to improve the structure-learning
process. A disadvantage of LSL's and TODTLER'’s naive formula-generation
approach, which simply enumerates all valid formulas up to a certain number of
literals and logical variables, is that many generated formulas intuitively make
little sense. A possible solution to this problem is leveraging domain knowledge
to restrict the number of literals and logical variables per type instead of the
total number of literals and logical variables appearing in the formula.

Furthermore, an alternative way of speeding up the lifted-structure-learning
approach is to incrementally compile the candidate models into circuits.
Currently, each candidate model is compiled from scratch, yielding many
unnecessary computations in each structure-learning iteration.

DISCUSSION, PERSPECTIVES, AND FUTURE WORK 113

8.2.2 Transfer Learning

Current deep-transfer learning approaches, including the presented TODTLER
framework, assume that an appropriate source domain is available when
addressing a task in a particular target domain. However, in the real world, it is
likely that several different candidate-source domains are available. Hence, the
task is either to select the most appropriate source domain or to combine the
knowledge acquired from several different appropriate source domains.

One possible research direction is developing a source-selection algorithm that
identifies the most appropriate source domain from a set of candidate-source
domains given a target domain. This problem can be posed as a clustering
problem, where the distance between two domains is defined in terms of their
meta features. Possibly relevant meta features include the number of distinct
types of entities and relationships in the domain as well as the average number
of relationships that each entity is involved in.

Another possible research direction is adapting the proposed TODTLER
framework to support multi-source transfer learning. The natural way of doing
this is assigning a weight to each domain and taking this weight into account
when computing a formula’s probability of inclusion in the target domain
model. More specifically, in Algorithm 5, this would correspond to performing
lines 5 to 8 for each source domain and taking the weight into account when
computing the approximate sampling probability for each template on line 9.

8.2.3 Sports Analytics

Sports analytics is a broad field that encompasses many different tasks
and disciplines. This dissertation focuses on techniques for automatically
discovering the strategies used by a particular team. Due to a lack of powerful
computational methods that can operate on complexly-structured spatio-
temporal sports data, strategy discovery is virtually unexplored to date.

One possible research direction is developing a dedicated language to describe
sports tactics and strategies. Sports scientists and machine-learning researchers
currently speak different languages and a dedicated language that both sides
understand would bridge this gap. While powerful enough to describe a wide
range of tactics and strategies, the language should also be easily translatable
into a more powerful representation such as first-order logic. For example,

114 CONCLUSIONS

in soccer, the language should have constructs for common concepts such as
overlapping defenders and wingers cutting inside. The language would ideally
be developed in close collaboration with sports scientists and practitioners.

Another possible research direction is developing a relational expected-goals
model for soccer. The most-widespread advanced performance metric in soccer
is the expected-goals value of a goal attempt. Given that luck plays an important
role in soccer, this metric aims to measure the quality of goal attempts in an
objective manner. Current expected-goals models largely ignore the context of
goal attempts by only considering simple characteristics such as the distance
and angle to the goal. However, given that relational-learning techniques can
deal with complex sports data in a natural way, they are able to take the context
into account as well and therefore are likely to learn more accurate models.

Bibliography

Benjamin Alamar (2013). Sports Analytics: A Guide for Coaches, Managers, and
Other Decision Makers. Columbia University Press (cited on p. 5).

Galen Andrew and Jianfeng Gao (2007). “Scalable Training of Li-Regularized
Log-Linear Models”. In: Proceedings of the Twenty-Fourth International Confer-
ence on Machine Learning (ICML 2007; Corvallis, Oregon, United States; 20-24
June 2007). ACM Press, pages 33—40 (cited on p. 28).

Bikramjit Banerjee, Yaxin Liu, and Michael Youngblood, editors (2006). ICML
2006 Workshop on Structural Knowledge Transfer for Machine Learning (cited on
p- 56).

Jonathan Baxter, Rich Caruana, Tom Mitchell, Lorien Pratt, Daniel Silver, and
Sebastian Thrun, editors (1995). NIPS 1995 Workshop on Learning to Learn:
Knowledge Consolidation and Transfer in Inductive Systems (cited on p. 56).

Julian Besag (1975). “Statistical Analysis of Non-Lattice Data”. In: Journal of the
Royal Statistical Society. Series D. (The Statistician) 24(3), pages 179-195 (cited
on p. 13).

Carl Bialik (2014a). Statkeepers Call the Shots, but They Can’t Agree on Them. URL:
https://www. fivethirtyeight . com/ features/statkeepers-call - the-
shots-but-they-cant-agree-on-them (cited on p. 2).

Carl Bialik (2014b). The People Tracking Every Touch, Pass and Tackle in the World
Cup. urL: https : / /www . fivethirtyeight . com/ features/ the - people -

115

https://www.fivethirtyeight.com/features/statkeepers-call-the-shots-but-they-cant-agree-on-them
https://www.fivethirtyeight.com/features/statkeepers-call-the-shots-but-they-cant-agree-on-them
https://www.fivethirtyeight.com/features/the-people-tracking-every-touch-pass-and-tackle-in-the-world-cup
https://www.fivethirtyeight.com/features/the-people-tracking-every-touch-pass-and-tackle-in-the-world-cup

116 BIBLIOGRAPHY

tracking-every-touch-pass-and-tackle-in-the-world-cup (cited on
p-2).

Alina Bialkowski, Patrick Lucey, Peter Carr, Yisong Yue, Sridha Sridharan, and
Iain Matthews (2014). “Identifying Team Style in Soccer Using Formations
Learned from Spatiotemporal Tracking Data”. In: Proceedings of the ICDM
2014 Workshop on Spatial and Spatiotemporal Data Mining, pages 9-14 (cited on
p-79).

Petko Bogdanov, Ben Baumer, Prithwish Basu, Amotz Bar-Noy, and Ambuj
Singh (2013). “As Strong as the Weakest Link: Mining Diverse Cliques
in Weighted Graphs”. In: Proceedings of the 2013 European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD 2013; Prague, Czech Republic; 23-27 September 2013). Springer,
pages 525-540 (cited on p. 112).

Kendrick Boyd, Vitor Santos Costa, Jesse Davis, and David Page (2012).
“Unachievable Region in Precision-Recall Space and Its Effect on Empirical
Evaluation”. In: Proceedings of the Twenty-Ninth International Conference on
Machine Learning (ICML 2012; Edinburgh, Scotland; 26 June - 1 July 2012),
pages 639-646 (cited on pp. 46, 66).

Bojan Cestnik (1990). “Estimating Probabilities: A Crucial Task in Machine
Learning”. In: Proceedings of the Ninth European Conference on Artificial
Intelligence (ECAI 1990; Stockholm, Sweden; 6-10 August 1990). Volume 90,
pages 147-149 (cited on p. 83).

Anton Chechetka and Carlos Guestrin (2007). “Efficient Principled Learning of
Thin Junction Trees”. In: Advances in Neural Information Processing Systems 20
(NIPS 2007; Vancouver, British Columbia, Canada; 3-8 December 2007), pages 273—
280 (cited on pp. 40, 53).

Brian Chen (2016). Siri, Alexa and Other Virtual Assistants Put to the Test. URL:
http://www.nytimes.com/2016/01/28/technology/personaltech/siri-
alexa-and-other-virtual-assistants-put-to-the-test.html (cited on
p-3).

Mark Craven and Sean Slattery (2001). “Relational Learning with Statistical
Predicate Invention: Better Models for Hypertext”. In: Machine Learning 43(1),
pages 97-119 (cited on p. 65).

Jesse Davis, Elizabeth Burnside, Ines de Castro Dutra, David Page, and
Vitor Santos Costa (2005). “An Integrated Approach to Learning Bayesian
Networks of Rules”. In: Proceedings of the Sixteenth European Conference on
Machine Learning (ECML 2005; Porto, Portugal; 3-7 October 2005), pages 84-95
(cited on p. 65).

https://www.fivethirtyeight.com/features/the-people-tracking-every-touch-pass-and-tackle-in-the-world-cup
https://www.fivethirtyeight.com/features/the-people-tracking-every-touch-pass-and-tackle-in-the-world-cup
http://www.nytimes.com/2016/01/28/technology/personaltech/siri-alexa-and-other-virtual-assistants-put-to-the-test.html
http://www.nytimes.com/2016/01/28/technology/personaltech/siri-alexa-and-other-virtual-assistants-put-to-the-test.html

BIBLIOGRAPHY 117

Jesse Davis and Pedro Domingos (2009). “Deep Transfer via Second-Order
Markov Logic”. In: Proceedings of the Twenty-Sixth International Conference on
Machine Learning (ICML 2009; Montreal, Quebec, Canada; 14-18 June 2009),
pages 217-224 (cited on pp. 19, 64).

Jesse Davis and Pedro Domingos (2010). “Bottom-Up Learning of Markov Net-
work Structure”. In: Proceedings of the Twenty-Seventh International Conference
on Machine Learning (ICML 2010; Haifa, Israel; 21-24 June 2010). ACM Press,
pages 271-278 (cited on pp. 14, 21, 27).

Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggleton (2008).
Probabilistic Inductive Logic Programming: Theory and Applications. Springer
(cited on pp. 2, 3).

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty (1997). “Inducing
Features of Random Fields”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, pages 380-392 (cited on pp. 12, 14, 21).

Pedro Domingos and Austin Webb (2012). “Tractable Markov Logic”. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAIL
2012; Toronto, Ontario, Canada; 22-26 July 2012) (cited on p. 54).

Saso Dzeroski and Nada Lavra¢ (2001). An Introduction to Inductive Logic
Programming (cited on p. 9).

Brian Falkenhainer, Kenneth Forbus, and Dedre Gentner (1989). “The Structure-
Mapping Engine: Algorithm and Examples”. In: Artificial Intelligence 41(1),
pages 1-63 (cited on p. 19).

FIVB (2015). Official Volleyball Rules. urL: http://www.fivb.org/EN/Refereeing-
Rules/documents/FIVB_Volleyball_Rules_2015-2016_EN_V3_20150205. pdf
(cited on p. 94).

Lise Getoor and Ben Taskar, editors (2007). An Introduction to Statistical Relational
Learning. MIT Press (cited on pp. 2, 3).

Wally Gilks, Sylvia Richardson, and David Spiegelhalter (1996). Markov Chain
Monte Carlo in Practice. Chapman and Hall (cited on p. 13).

Laszlo Gyarmati, Haewoon Kwak, and Pablo Rodriguez (2014). “Searching
for a Unique Style in Soccer”. In: Proceedings of the KDD 2014 Workshop on
Large-Scale Sports Analytics (LSSA 2014; New York City, New York, United States;
24 August 2014) (cited on p. 79).

Franciso Herrera, Cristébal José Carmona, Pedro Gonzélez, and Maria José
del Jesus (2011). “An Overview on Subgroup Discovery: Foundations and
Applications”. In: Knowledge and Information Systems 29(3), pages 495-525
(cited on p. 79).

Tuyen Huynh and Raymond Mooney (2008). “Discriminative Structure and
Parameter Learning for Markov Logic Networks”. In: Proceedings of the Twenty-

http://www.fivb.org/EN/Refereeing-Rules/documents/FIVB_Volleyball_Rules_2015-2016_EN_V3_20150205.pdf
http://www.fivb.org/EN/Refereeing-Rules/documents/FIVB_Volleyball_Rules_2015-2016_EN_V3_20150205.pdf

118 BIBLIOGRAPHY

Fifth International Conference on Machine Learning (ICML 2008; Helsinki, Finland;
5-9 July 2008). ACM Press, pages 416423 (cited on p. 26).

Tuyen Huynh and Raymond Mooney (2009). “Max-Margin Weight Learning
for Markov Logic Networks”. In: Proceedings of the 2009 European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD 2009; Bled, Slovenia; 7-11 September 2009), pages 564-579 (cited
onp. 17).

Cecilia Kang (2016). Self-Driving Cars Gain Powerful Ally: The Government. urL:
http://www.nytimes.com/2016/09/20/technology/self-driving-cars-
guidelines.html (cited on p. 3).

Kristian Kersting (2012). “Lifted Probabilistic Inference”. In: Proceedings of the
Twentieth European Conference on Artificial Intelligence (ECAI 2012; Montpellier,
France; 27-31 August 2012), pages 33-38 (cited on pp. 17, 39).

Konstantin Knauf and Ulf Brefeld (2014). “Spatio-Temporal Convolution
Kernels for Clustering Trajectories”. In: Proceedings of the KDD 2014 Workshop
on Large-Scale Sports Analytics (LSSA 2014; New York City, New York, United
States; 24 August 2014) (cited on p. 79).

Arno Knobbe (2004). “Multi-Relational Data Mining”. PhD thesis. Utrecht
University (cited on p. 79).

Stanley Kok and Pedro Domingos (2005). “Learning the Structure of Markov
Logic Networks”. In: Proceedings of the Twenty-Second International Conference
on Machine Learning (ICML 2005; Bonn, Germany; 7-11 August 2005), pages 441-
448 (cited on pp. 18, 46).

Stanley Kok and Pedro Domingos (2010). “Learning Markov Logic Networks
Using Structural Motifs”. In: Proceedings of the Twenty-Seventh International
Conference on Machine Learning (ICML 2010; Haifa, Israel; 21-24 June 2010),
pages 551-558 (cited on pp. 18, 64).

Stanley Kok, Marc Sumner, Matthew Richardson, Parag Singla, Hoifung
Poon, Daniel Lowd, Jue Wang, Aniruddh Nath, and Pedro Domingos
(2010). The Alchemy System for Statistical Relational Al. Technical report.
Seattle, Washington, United States: Department of Computer Science and
Engineering, University of Washington. urL: http://alchemy.cs.washington.
edu (cited on pp. 47, 66).

Petra Kralj Novak, Nada Lavra¢, and Geoffrey Webb (2009). “Supervised
Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging
Pattern and Subgroup Mining”. In: Journal of Machine Learning Research 10,
pages 377403 (cited on p. 79).

Alex Kulesza and Fernando Pereira (2008). “Structured Learning with Ap-
proximate Inference”. In: Advances in Neural Information Processing Systems

http://www.nytimes.com/2016/09/20/technology/self-driving-cars-guidelines.html
http://www.nytimes.com/2016/09/20/technology/self-driving-cars-guidelines.html
http://alchemy.cs.washington.edu
http://alchemy.cs.washington.edu

BIBLIOGRAPHY 119

20 (NIPS 2007; Vancouver, British Columbia, Canada; 3-8 December 2007). MIT
Press, pages 785-792 (cited on p. 13).

Nada Lavraé¢, Bojan Cestnik, Dragan Gamberger, and Peter Flach (2004).
“Decision Support Through Subgroup Discovery: Three Case Studies and
the Lessons Learned”. In: Machine Learning 57(1-2), pages 115-143 (cited on
p-79).

Nada Lavra¢, Saso DZeroski, and Ivan Bratko (1996). “Handling Imperfect Data
in Inductive Logic Programming”. In: Proceedings of the Sixth International
Workshop on Inductive Logic Programming (ILP 1996; Stockholm, Sweden; 28-30
August 1996). Volume 32, pages 48—64 (cited on p. 83).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning”. In:
Nature 521(7553), pages 436—444 (cited on p. 3).

Su-In Lee, Varun Ganapathi, and Daphne Koller (2007). “Efficient Structure
Learning of Markov Networks Using L;-Regularization”. In: Advances
in Neural Information Processing Systems 19 (NIPS 2006; Vancouvet, British
Columbia, Canada; 4-9 December 2006). MIT Press, pages 817-824 (cited on
p- 29).

Michael Lewis (2004). Moneyball: The Art of Winning an Unfair Game. W. W.
Norton & Company (cited on p. 77).

Dong Liu and Jorge Nocedal (1989). “On the Limited Memory BFGS Method for
Large Scale Optimization”. In: Mathematical Programming 45(3), pages 503-528
(cited on p. 47).

Daniel Lowd and Jesse Davis (2010). “Learning Markov Network Structure with
Decision Trees”. In: Proceedings of the Tenth IEEE International Conference on
Data Mining (ICDM 2010; Sydney, Australia; 14-17 December 2010), pages 334—
343 (cited on pp. 15, 22, 27, 29).

Daniel Lowd and Pedro Domingos (2007). “Efficient Weight Learning for
Markov Logic Networks”. In: Proceedings of the Eleventh European Conference
on Principles and Practices of Knowledge Discovery in Databases (PKDD 2007;
Warsaw, Poland; 17-21 September 2007), pages 200-211 (cited on pp. 17, 47).

Daniel Lowd and Pedro Domingos (2008). “Learning Arithmetic Circuits”. In:
Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence
(UAI 2008; Helsinki, Finland; 9-12 July 2008), pages 383-392 (cited on p. 54).

Daniel Lowd and Amirmohammad Rooshenas (2013). “Learning Markov Net-
works with Arithmetic Circuits”. In: Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2013; Scottsdale,
Arizona, United States; 29 April - 1 May 2013), pages 406414 (cited on p. 54).

Patrick Lucey, Dean Oliver, Peter Carr, Joe Roth, and Iain Matthews (2013).
“Assessing Strategy Using Spatio-Temporal Data”. In: Proceedings of the

120 BIBLIOGRAPHY

Nineteenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2013; Chicago, Illinois, United States; 11-14 August 2013),
pages 1366-1374 (cited on p. 79).

Andrew McCallum (2003). “Efficiently Inducing Features of Conditional
Random Fields”. In: Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence (UAI 2003; Acapulco, Mexico; 7-10 August 2003),
pages 403410 (cited on p. 21).

Hans-Werner Mewes, Dmitrij Frishman, Christian Gruber, Birgitta Geier, Dirk
Haase, Andreas Kaps, Kai Lemcke, Gertrud Mannhaupt, Friedhelm Pfeiffer,
Christine Schiiller, S. Stocker, and B. Weil (2000). “MIPS: A Database for
Genomes and Protein Sequences”. In: Nucleic Acids Research 28(1), pages 3740
(cited on p. 65).

Lilyana Mihalkova, Tuyen Huynh, and Raymond Mooney (2007). “Mapping and
Revising Markov Logic Networks for Transfer Learning”. In: Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007; Vancouver,
British Columbia, Canada; 22-26 July 2007), pages 608-614 (cited on pp. 19, 65).

Lilyana Mihalkova and Raymond Mooney (2007). “Bottom-Up Learning of
Markov Logic Network Structure”. In: Proceedings of the Twenty-Fourth
International Conference on Machine Learning (ICML 2007; Coruvallis, Oregon,
United States; 20-24 June 2007), pages 625-632 (cited on pp. 18, 21, 45, 46).

David Moore and Andrea Danyluk (2010). “Deep Transfer as Structure Learning
in Markov Logic Networks”. In: Proceedings of the First International Workshop
on Statistical Relational Al (StaRAI 2010; Atlanta, Georgia, United States; 12 July
2010), pages 52-57 (cited on p. 76).

Stephen Muggleton and Luc De Raedt (1994). “Inductive Logic Programming;:
Theory and Methods”. In: The Journal of Logic Programming 19, pages 629—-679
(cited on p. 97).

Kevin Murphy, Yair Weiss, and Michael Jordan (1999). “Loopy Belief Propaga-
tion for Approximate Inference: An Empirical Study”. In: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI 1999; Stockholm,
Sweden; 30 July - 1 August 1999), pages 467-475 (cited on p. 13).

Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak (2013). “The DEBS
2013 Grand Challenge”. In: Proceedings of the Seventh International Conference
on Distributed Event-based Systems (DEBS 2013; Arlington, Texas, United States;
29 June - 3 July 2013), pages 289-294 (cited on p. 79).

Mukund Narasimhan and Jeff Bilmes (2004). “PAC-Learning Bounded Tree-
width Graphical Models”. In: Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI 2004; Banff, Alberta, Canada; 7-11
July 2004), pages 410417 (cited on p. 53).

BIBLIOGRAPHY 121

Tim Op De Beéck, Arjen Hommersom, Jan Van Haaren, Maarten van der
Heijden, Jesse Davis, Peter Lucas, Lucy Overbeek, and Iris Nagtegaal (2015).
“Mining Hierarchical Pathology Data Using Inductive Logic Programming”.
In: Proceedings of the Fifteenth Conference on Artificial Intelligence in Medicine
(AIME 2015; Pavia, Italy; 17-20 June 2015), pages 76-85 (cited on pp. 89, 128).

Sinno Jialin Pan and Qiang Yang (2010). “A Survey on Transfer Learning”. In:
IEEE Transactions on Knowledge and Data Engineering 22(10), pages 1345-1359
(cited on pp. 2, 19).

David Poole (2003). “First-Order Probabilistic Inference”. In: Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003;
Acapulco, Mexico; 9-15 August 2003), pages 985-991 (cited on pp. 17, 39).

Pradeep Ravikumar, Martin Wainwright, and John Lafferty (2010). “High-
Dimensional Ising Model Selection Using L_1-Regularized Logistic Regres-
sion”. In: Annals of Statistics 38(3), pages 1287-1319 (cited on pp. 15, 22, 27,
37).

Matthew Richardson and Pedro Domingos (2006). “Markov Logic Networks”.
In: Machine Learning 62(1-2), pages 107-136 (cited on pp. 16, 17, 45).

David Silver, Aja Huang, Chris Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis (2016). “Mastering
the Game of Go with Deep Neural Networks and Tree Search”. In: Nature
529(7587), pages 484489 (cited on p. 3).

Parag Singla and Pedro Domingos (2005). “Discriminative Training of Markov
Logic Networks”. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005; Pittsburgh, Pennsylvania, United States; 9-13 July 2005),
pages 868-873 (cited on p. 17).

Ashwin Srinivasan (2001). “The Aleph Manual”. In: Machine Learning at the
Computing Laboratory, Oxford University (cited on pp. 11, 83, 98).

Alexander van den Berghe, Jan Van Haaren, Stefan Van Baelen, Yolande Berbers,
and Wouter Joosen (2013). “Towards an Automated Pattern Selection
Procedure in Software Models”. In: Late Breaking Papers of the Twenty-Second
International Conference on Inductive Logic Programming (ILP 2012; Dubrovnik,
Croatia; 17-19 September 2012), pages 68-73 (cited on p. 128).

Guy Van den Broeck (2011). “On the Completeness of First-Order Knowledge
Compilation for Lifted Probabilistic Inference”. In: Advances in Neural
Information Processing Systems 24 (NIPS 2011; Granadam Spain; 12-17 December
2011), pages 1386-1394 (cited on p. 17).

122 BIBLIOGRAPHY

Guy Van den Broeck and Adnan Darwiche (2013). “On the Complexity and
Approximation of Binary Evidence in Lifted Inference”. In: Advances in Neural
Information Processing Systems 26 (NIPS 2013; South Lake Tahoe, Nevada, United
States; 5-10 December 2013), pages 2868-2876 (cited on p. 46).

Guy Van den Broeck, Wannes Meert, and Jesse Davis (2013). “Lifted Generative
Parameter Learning”. In: Proceedings of the Third International Workshop on
Statistical Relational Al (StaRAI 2013; Bellevue, Washington, United States; 15 July
2013) (cited on pp. 17, 40, 41, 44, 47).

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and
Luc De Raedt (2011). “Lifted Probabilistic Inference by First-Order Knowl-
edge Compilation”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI 2011; Barcelona, Spain; 16-22 July
2011), pages 2178-2185 (cited on p. 47).

Jan Van Haaren (2012). “Analyzing Football Matches Using Relational Per-
formance Data”. In: Workshop on Mining Football-related Data (MFD 2012;
Amsterdam, The Netherlands; 7 June 2012) (cited on p. 130).

Jan Van Haaren (2014). Waarom onze Rode Duivels maar best snel twee keer scoren
tegen Algerije. URL: https: //www . kuleuvenblogt .be/2014/06/16/waarom-
onze-rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije
(cited on p. 130).

Jan Van Haaren (2015). Statistische simulatie van de Belgische Pro League 2014-
2015: De samenstelling van de play-offs voorspeld. CW Reports CW682. Leuven,
Belgium: Department of Computer Science, KU Leuven (cited on p. 129).

Jan Van Haaren (2016). Belgié heeft 7,6% kans op EK-titel. URL: https: //www.
kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel (cited
on p. 130).

Jan Van Haaren, Horesh Ben Shitrit, Jesse Davis, and Pascal Fua (2016).
“Analyzing Volleyball Match Data from the 2014 World Championships
Using Machine Learning Techniques”. In: Proceedings of the Twenty-Second
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2016; San Francisco, California, United States; 13-17 August 2016) (cited
on pp. 7,92, 128).

Jan Van Haaren and Jesse Davis (2012). “Markov Network Structure Learning:
A Randomized Feature Generation Approach”. In: Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI 2012; Toronto, Ontario,
Canada; 22-26 July 2012), pages 1148-1154 (cited on pp. 6, 22, 127).

Jan Van Haaren and Jesse Davis (2014). Performance Analysis of the 2014 FIFA
World Cup Group Stage. CW Reports CW673. Leuven, Belgium: Department
of Computer Science, KU Leuven (cited on p. 129).

https://www.kuleuvenblogt.be/2014/06/16/waarom-onze-rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije
https://www.kuleuvenblogt.be/2014/06/16/waarom-onze-rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije
https://www.kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel
https://www.kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel

BIBLIOGRAPHY 123

Jan Van Haaren and Jesse Davis (2015a). “Predicting the Final League Tables of
Domestic Football Leagues”. In: Proceedings of the Fifth International Conference
on Mathematics in Sport (MathSport International; Loughborough, United Kingdom;
29 June - 1 July 2015), pages 202-207 (cited on p. 128).

Jan Van Haaren and Jesse Davis (2015b). Prestatie-analyse van de clubs in de
Belgische Pro League 2014-2015: De reguliere competitie doorgelicht. CW Reports
CW683. Leuven, Belgium: Department of Computer Science, KU Leuven
(cited on p. 129).

Jan Van Haaren, Jesse Davis, Martijn Lappenschaar, and Arjen Hommersom
(2013). “Exploring Disease Interactions Using Markov Networks”. In: Proceed-
ings of the AAAI 2013 Workshop on Expanding the Boundaries of Health Informatics
Using Al (HIAI 2013; Bellevue, Washington, United States; 15 July 2013) (cited
on p. 129).

Jan Van Haaren, Vladimir Dzyuba, Siebe Hannosset, and Jesse Davis (2015).
“Automatically Discovering Offensive Patterns in Soccer Match Data”. In:
Advances in Intelligent Data Analysis XIV (IDA 2015; Saint-Etienne, France; 22-24
October 2015), pages 286—297 (cited on pp. 7, 78, 128).

Jan Van Haaren, Siebe Hannosset, and Jesse Davis (2016). “Strategy Discovery
in Professional Soccer Match Data”. In: Proceedings of the KDD 2016 Workshop
on Large-Scale Sports Analytics (LSSA 2016; San Francisco, California, United
States; 14 August 2016) (cited on p. 129).

Jan Van Haaren, Andrey Kolobov, and Jesse Davis (2015). “TODTLER: Two-
Order-Deep Transfer Learning”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015; Austin, Texas, United States;
25-30 January 2015), pages 3007-3015 (cited on pp. 7, 56, 127).

Jan Van Haaren, Tim Op De Beéck, and Jesse Davis (2014a). Prestatie-analyse
van de clubs in de Belgische Pro League 2013-2014: De play-offs doorgelicht. CW
Reports CW665. Leuven, Belgium: Department of Computer Science, KU
Leuven (cited on p. 129).

Jan Van Haaren, Tim Op De Beéck, and Jesse Davis (2014b). Prestatie-analyse van
de clubs in de Belgische Pro League 2013-2014: De reguliere competitie doorgelicht.
CW Reports CW658. Leuven, Belgium: Department of Computer Science,
KU Leuven (cited on p. 129).

Jan Van Haaren and Guy Van den Broeck (2011). “Relational Learning
for Football-related Predictions”. In: Latest Advances in Inductive Logic
Programming (ILP 2011; Windsor Great Park, United Kingdom; 31 July - 3 August
2011), pages 237-244 (cited on p. 128).

Jan Van Haaren and Guy Van den Broeck (2012). “Relational Learning for
Football-related Predictions”. In: Proceedings of the Twenty-First Belgian-Dutch

124 BIBLIOGRAPHY

Conference on Machine Learning (BeNeLearn 2012; Ghent, Belgium; 24-25 May
2012), page 85 (cited on p. 130).

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2014c).
“Tractable Learning of Liftable Markov Logic Networks”. In: Proceedings of
the ICML 2014 Workshop on Learning Tractable Probabilistic Models (LTPM 2014;
Beijing, China; 26 June 2014) (cited on pp. 7, 41, 129).

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2016).
“Lifted Generative Learning of Markov Logic Networks”. In: Machine Learning
103(1), pages 27-55 (cited on pp. 7, 41, 127).

Jan Van Haaren, Albrecht Zimmermann, Joris Renkens, Guy Van den Broeck,
Tim Op De Beéck, Wannes Meert, and Jesse Davis (2013). “Machine Learning
and Data Mining for Sports Analytics”. In: LStat 25th Anniversary Scientific
Event (LStat 25; Leuven, Belgium; 13-14 December 2013) (cited on p. 130).

Stefan Wrobel (1997). “An Algorithm for Multi-Relational Discovery of
Subgroups”. In: Proceedings of the First European Symposium on Principles of
Data Mining and Knowledge Discovery (PKDD 1997; Trondheim, Norway; 24-27
June 1997), pages 78-87 (cited on p. 79).

Curriculum Vitae

Jan Van Haaren was born on March 11th 1988 in Turnhout and grew up in
Weelde. He attended high school at the Sint-Pietersinstituut in Turnhout. He
obtained a Bachelor of Science in Informatics degree from KU Leuven in 2010
and a Master of Science in Engineering degree specialized in computer science
and artificial intelligence from the same university in 2011. His Master’s thesis
was entitled Relational Learning for Football-related Predictions.

He began doctoral studies under the supervision of Prof. dr. Jesse Davis in
the Machine Learning group within the Declarative Languages and Artificial
Intelligence lab at KU Leuven in September 2011. He received a four-year
PhD fellowship from the Agency for Innovation by Science and Technology
in Flanders (IWT) in 2013. He was a visiting student for three months in the
Computer Vision lab of Prof. dr. Pascal Fua at the Ecole Polytechnique Fédérale
de Lausanne (EPFL) in 2015. He will defend his doctoral dissertation entitled
Relational Approaches for Learning, Transferring and Mining in December 2016.

125

List of Publications

Journal Article

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2016).
“Lifted Generative Learning of Markov Logic Networks”. In: Machine Learning
103(1), pages 27-55

Highly-Selective Conference Papers

Jan Van Haaren and Jesse Davis (2012). “Markov Network Structure Learning: A
Randomized Feature Generation Approach”. In: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI 2012; Toronto, Ontario, Canada;
22-26 July 2012), pages 1148-1154

Jan Van Haaren, Andrey Kolobov, and Jesse Davis (2015). “TODTLER: Two-
Order-Deep Transfer Learning”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015; Austin, Texas, United States; 25-30
January 2015), pages 3007-3015

127

128 LIST OF PUBLICATIONS

Jan Van Haaren, Horesh Ben Shitrit, Jesse Davis, and Pascal Fua (2016).
“Analyzing Volleyball Match Data from the 2014 World Championships Using
Machine Learning Techniques”. In: Proceedings of the Twenty-Second ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2016; San Francisco, California, United States; 13-17 August 2016)

Other Conference Papers

Jan Van Haaren, Vladimir Dzyuba, Siebe Hannosset, and Jesse Davis (2015).
“Automatically Discovering Offensive Patterns in Soccer Match Data”. In:
Advances in Intelligent Data Analysis XIV (IDA 2015; Saint-Etienne, France; 22-24
October 2015), pages 286—297

Jan Van Haaren and Jesse Davis (2015a). “Predicting the Final League Tables of
Domestic Football Leagues”. In: Proceedings of the Fifth International Conference
on Mathematics in Sport (MathSport International; Loughborough, United Kingdom;
29 June - 1 July 2015), pages 202-207

Jan Van Haaren and Guy Van den Broeck (2011). “Relational Learning for
Football-related Predictions”. In: Latest Advances in Inductive Logic Programming
(ILP 2011; Windsor Great Park, United Kingdom; 31 July - 3 August 2011), pages 237—
244

Alexander van den Berghe, Jan Van Haaren, Stefan Van Baelen, Yolande Berbers,
and Wouter Joosen (2013). “Towards an Automated Pattern Selection Procedure
in Software Models”. In: Late Breaking Papers of the Twenty-Second International
Conference on Inductive Logic Programming (ILP 2012; Dubrovnik, Croatia; 17-19
September 2012), pages 6873

Tim Op De Beéck, Arjen Hommersom, Jan Van Haaren, Maarten van der
Heijden, Jesse Davis, Peter Lucas, Lucy Overbeek, and Iris Nagtegaal (2015).
“Mining Hierarchical Pathology Data Using Inductive Logic Programming”. In:
Proceedings of the Fifteenth Conference on Artificial Intelligence in Medicine (AIME
2015; Pavia, Italy; 17-20 June 2015), pages 76-85

LIST OF PUBLICATIONS 129

Workshop Papers

Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis (2014c).
“Tractable Learning of Liftable Markov Logic Networks”. In: Proceedings of
the ICML 2014 Workshop on Learning Tractable Probabilistic Models (LTPM 2014;
Beijing, China; 26 June 2014)

Jan Van Haaren, Siebe Hannosset, and Jesse Davis (2016). “Strategy Discovery
in Professional Soccer Match Data”. In: Proceedings of the KDD 2016 Workshop on
Large-Scale Sports Analytics (LSSA 2016; San Francisco, California, United States; 14
August 2016)

Jan Van Haaren, Jesse Davis, Martijn Lappenschaar, and Arjen Hommersom
(2013). “Exploring Disease Interactions Using Markov Networks”. In: Proceed-
ings of the AAAI 2013 Workshop on Expanding the Boundaries of Health Informatics
Using Al (HIAI 2013; Bellevue, Washington, United States; 15 July 2013)

Technical Reports

Jan Van Haaren and Jesse Davis (2014). Performance Analysis of the 2014 FIFA
World Cup Group Stage. CW Reports CW673. Leuven, Belgium: Department of
Computer Science, KU Leuven

Jan Van Haaren, Tim Op De Beéck, and Jesse Davis (2014b). Prestatie-analyse van
de clubs in de Belgische Pro League 2013-2014: De requliere competitie doorgelicht.
CW Reports CW658. Leuven, Belgium: Department of Computer Science, KU
Leuven

Jan Van Haaren, Tim Op De Beéck, and Jesse Davis (2014a). Prestatie-analyse van
de clubs in de Belgische Pro League 2013-2014: De play-offs doorgelicht. CW Reports
CW665. Leuven, Belgium: Department of Computer Science, KU Leuven

Jan Van Haaren and Jesse Davis (2015b). Prestatie-analyse van de clubs in de
Belgische Pro League 2014-2015: De reguliere competitie doorgelicht. CW Reports
CW683. Leuven, Belgium: Department of Computer Science, KU Leuven

Jan Van Haaren (2015). Statistische simulatie van de Belgische Pro League 2014-2015:
De samenstelling van de play-offs voorspeld. CW Reports CW682. Leuven, Belgium:
Department of Computer Science, KU Leuven

130 LIST OF PUBLICATIONS

Abstracts

Jan Van Haaren and Guy Van den Broeck (2012). “Relational Learning for
Football-related Predictions”. In: Proceedings of the Twenty-First Belgian-Dutch
Conference on Machine Learning (BeNeLearn 2012; Ghent, Belgium; 24-25 May 2012),
page 85

Jan Van Haaren (2012). “Analyzing Football Matches Using Relational Perfor-
mance Data”. In: Workshop on Mining Football-related Data (MFD 2012; Amsterdam,
The Netherlands; 7 June 2012)

Jan Van Haaren, Albrecht Zimmermann, Joris Renkens, Guy Van den Broeck,
Tim Op De Beéck, Wannes Meert, and Jesse Davis (2013). “Machine Learning
and Data Mining for Sports Analytics”. In: LStat 25th Anniversary Scientific Event
(LStat 25; Leuven, Belgium; 13-14 December 2013)

Popularizing Articles

Jan Van Haaren (2014). Waarom onze Rode Duivels maar best snel twee keer scoren
tegen Algerije. URL: https://www.kuleuvenblogt.be/2014/06/16/waarom-onze-
rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije

Jan Van Haaren (2016). Belgié heeft 7,6% kans op EK-titel. URL: https: //www.
kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel

https://www.kuleuvenblogt.be/2014/06/16/waarom-onze-rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije
https://www.kuleuvenblogt.be/2014/06/16/waarom-onze-rode-duivels-maar-best-snel-twee-keer-scoren-tegen-algerije
https://www.kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel
https://www.kuleuvenblogt.be/2016/06/10/belgie-heeft-76-kans-op-ek-titel

FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

DECLARATIVE LANGUAGES AND ARTIFICIAL INTELLIGENCE
Celestijnenlaan 200A box 2402

B-3001 Leuven

jan.vanhaaren@cs.kuleuven.be
http://people.cs.kuleuven.be/~jan.vanhaaren

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Dissertation Statement
	Contributions
	Statistical Relational Learning
	Sports Analytics

	Structure of the Dissertation

	Background
	Logic and Inductive Logic Programming
	Logic
	Inductive Logic Programming

	Markov Random Fields
	Representation
	Inference
	Parameter Learning
	Structure Learning

	Markov Logic Networks
	Representation
	Inference
	Parameter Learning
	Structure Learning

	Transfer Learning
	Definition
	Approaches

	Structure Learning of Markov Random Fields
	Algorithm
	Initial Feature Set Construction
	Feature Generation
	Feature Selection
	Algorithm Overview

	Experimental Evaluation
	Datasets
	Methodology
	Results

	Conclusions

	Lifted Structure Learning of Markov Logic Networks
	Algorithm
	Approach
	Algorithm I: Perform a Tractability Check
	Algorithm II: Design a Space of Tractable Models

	Experimental Evaluation
	Experimental Setup
	Research Questions

	Related Work
	Conclusions

	Deep Transfer Learning in Relational Domains
	Intuition
	Theoretical Framework
	Generative Model for the Data
	Transfer Learning with TODTLER

	Approximate Algorithm
	Learning Second-Order Model Posteriors
	Target-Domain Learning

	Experimental Evaluation
	Datasets
	Methodology
	Results

	Conclusions

	Discovering Offensive Strategies in Soccer Data
	Related Work
	Knowledge Discovery
	Sports Data Analysis

	Dataset
	Structure of the Data
	Hierarchical Information

	Methodology
	Pre-processing the Data
	Learning the Clauses

	Experimental Evaluation
	Dataset and Experimental Setups
	Research Questions
	Experiments
	Quantitative Analysis (Q1 and Q2)
	Qualitative Analysis (Q3)
	Alternative Qualitative Analysis (Q3)

	Lessons Learned
	Conclusions

	Discovering Offensive Patterns in Volleyball Data
	Problem Description
	Background on Volleyball
	Dataset
	Methodology
	Results and Discussion
	Conclusions

	Conclusions
	Summary
	Discussion, Perspectives, and Future Work
	Structure Learning
	Transfer Learning
	Sports Analytics

	Bibliography
	Curriculum Vitae
	List of Publications

