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Abstract

Within the field of Artificial Intelligence, there is a lot of interest in combining
probability and expressive representations for dealing with complex relational
and dynamic domains. A common approach to reason with these representations
is to rely on existing techniques for propositional models and thus requires to
first ground the underlying model into a propositional representation. This
strategy comes at a cost, however, as capturing the semantics of the original
representation might lead to a combinatorial explosion and quickly renders
inference intractable. This dissertation investigates how weighted model counting
and knowledge compilation can be used to directly perform inference on the
original representation.

This thesis has three main contributions. First, we propose an exact probabilistic
inference algorithm for propositional dynamic domains. Our approach allows
to exploit different types of structures by compiling the transition model into
an efficient circuit representation. Second, we propose an anytime probabilistic
inference algorithm for relational domains. An efficient circuit representation is
compiled in an incremental way and, at any time in the process, hard bounds
on the inferred probabilities can be computed. Third, we deal with relational
dynamic domains by combining principles from the first and second contribution.
In addition, our approach exploits the given observations to further scale-up
inference.

The techniques presented in this dissertation are evaluated empirically on
various real-world domains and applications such as biological and social network
analysis, web-page classification, electronic circuit diagnosis and game playing.
They outperform state-of-the-art approaches on these problems with respect to
time, space and quality of results.
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Beknopte samenvatting

Binnen het onderzoeksgebied van Kunstmatige Intelligentie is er een grote
interesse om probabilistische informatie en expressieve representaties te
combineren om zo complexe relationele en dynamische domeinen te kunnen
modelleren. Het redeneren met deze representaties wordt typisch gedaan door
gebruik te maken van bestaande technieken voor propositionele modellen, en
hiervoor is het noodzakelijk het onderliggende model eerst om te zetten naar
een propositionele representatie. Deze aanpak brengt echter een zekere kost met
zich mee aangezien de omzetting kan leiden tot een combinatorische ontploffing
en zo inferentie onmogelijk wordt. Dit proefschrift onderzoekt hoe we inferentie
rechtstreeks op de originele representatie kunnen uitvoeren door gebruik te
maken van kennis compilatie en het optellen van gewogen modellen.

Dit proefschrift heeft drie belangrijke bijdrages. Ten eerste stellen we een exact
probabilistisch inferentie algoritme voor propositionele dynamische domeinen
voor. Onze aanpak benut verschillende structuren in het netwerk door het
overgangsmodel te compileren naar een efficiënte circuit representatie. Ten
tweede stellen we een probabilistisch inferentie algoritme voor relationele
domeinen voor. Een efficiënte circuit representatie wordt gecompileerd op een
incrementele manier en, op elk moment van het proces, kunnen gegarandeerde
grenzen voor de probabiliteiten berekend worden. Ten derde beschouwen
we inferentie voor relationele dynamische domeinen en combineren hiervoor
principes van de eerste en tweede bijdrage. Daarbovenop laten we de inferentie
nog beter schalen door de gegeven observaties te benutten.

De technieken beschreven in dit proefschrift worden empirisch geëvalueerd
op verschillende reële domeinen en toepassingen zoals het analyseren van
biologische en sociale netwerken, het classificeren van web pagina’s, diagnose
van elektronische circuits en het spelen van spellen. Ze overtreffen de bestaande
technieken op deze problemen voor zowel tijd, geheugen als kwaliteit van de
resultaten.
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Chapter 1

Introduction

1.1 Artificial Intelligence

Not even that long ago, searching for a suitable route between two locations
involved staring at a road map for several minutes. Nowadays, we simply turn
on our GPS device or smart-phone and, after filling in the desired destination,
it only takes seconds before we get prompted with the shortest route, the fastest
route, a route without speed-ways, etc. The most critical component of these
devices is, arguably, the search algorithm that underlies the system. Despite all
recent developments in computational power, exhaustively exploring all possible
routes between two given locations is generally infeasible. Instead, the algorithm
should act intelligently in that it avoids considering routes which are certainly
known to be too long. In a sense, the algorithm has to perform some human
like reasoning and has to take into account that any reasonable route will be
centered around a straight line connecting the two locations of interest.

We are gradually evolving to a world were it is common to rely on intelligent
systems to assist us with every-day tasks. Recent developments in the automotive
industry, e.g. the driver assistant offered by most brands, is only one of the
applications that supports this claim. These systems should act intelligently in
that they have to deal with an ever changing environment and reasoning about
the past, present and future is needed to properly anticipate certain events.
Imagine a situation where the sensors of an autonomous vehicle detect a ball-
shaped object in front of a driving car and, at the same time, a kid is detected
on the sidewalk. Human like reasoning would advice the car to slow down, as
there is a non zero probability the kid will cross the street to pick-up the ball.

1



2 INTRODUCTION

The development of intelligent algorithms, where human-like reasoning is
combined with computational power, is one of the main incentives of Artificial
Intelligence (AI). While there are many definitions of what exactly AI is, one of
the most widely accepted interpretations is that artificial intelligence is the study
of agents that act intelligently. Furthermore, an agent is said to act intelligently
if it does the right thing, given what it knows (Poole and Mackworth 2010;
Russell and Norvig 2009). The broad area of artificial intelligence accommodates
different subfields and application domains, including; computer vision, speech
recognition, medical diagnosis, planning, game playing, robot tracking, etc.
Although it has drawn on many research methodologies, AI research arguably
builds on two formal foundations: probability and logic. This dissertation is
situated exactly on the intersection of these two fields.

1.2 Logic and Reasoning

The field of logic emerged thousands of years ago, way before AI or computers
were born, and has been studied ever since. Nowadays, logic is the standard
formalism for knowledge representation and is considered to be one of the
cornerstones of AI. Furthermore, logic has played a prominent role in the
development of automated reasoning, that is, the ability to infer new knowledge
in an automatic way. In general, one distinguishes between propositional logic
and first-order logic.

Propositional logic makes use of propositional variables to express knowledge
about single properties of the world. For example, propositional logic allows
us to express that; If it rains, the grass must be wet. We can represent this
knowledge with only the two propositional variables rain and wet, and both
of these variables can be either True or False. Then, an agent presented with
this knowledge that observes it is raining only requires simple reasoning to infer
that the grass will be wet.

First-order logic makes use of logical variables to express knowledge about
objects in the world. For example, first-order logic allows us to express that;
If a person Y has a smart-phone, then Y must be popular. In this case, Y is
a logical variable and our knowledge (potentially) deals with all people in the
world, i.e. we can replace Y by any person we want. Then, an agent presented
with this knowledge that observes a person named john has a smart-phone only
requires simple reasoning to infer that john will be popular.

Logical variables can be interpreted as placeholders for more specific entities,
making first-order logic an expressive formalism to represent complex knowledge
in a compact and structured way. Logic in general, however, is mostly limited to
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deterministic knowledge where propositions are either true or false. It does not
easily allow one to express non-deterministic dependencies where the amount of
non-determinism is precisely quantified. For example, logic cannot be used to
correctly express the knowledge that Only 80 % of bird species can fly.

1.3 Probability and Uncertainty

Where logic deals with deterministic dependencies, probability theory is
concerned with non-deterministic events or random phenomena. Similar to logic,
probability theory emerged hundreds of years ago and is by now embraced as one
of the cornerstones of AI. Intuitively, probabilities indicate our degree of belief
in the outcome of a non-deterministic event and reasoning with probabilities
allows us to properly estimate the outcome of a sequence of “random” actions.
In this dissertation, we adopt the notion of probability theory as laid out by
Kolmogorov (1933).

Consider the following simple experiment. We request an agent to throw five
different dice. For every die showing less than six pips, the agent should
move one step to the left, otherwise it should move to the right. Now, simple
(probabilistic) reasoning suffices to conclude the absolute displacement of the
agent is most likely towards left. Computing the likelihood of its exact new
position, however, requires some more advanced reasoning.

In general, probability theory allows one to capture the uncertainty that is
inherently present in the environment. Uncertainty might be caused by noisy
sensor measurements, hidden knowledge, unpredictable actions, etc. Therefore,
an agent cannot simply act pretending that it knows what is true and, ideally,
accommodates for this by modeling its uncertainty. Probability theory on its
own, however, does not provide us a framework to reason about objects and
relations amongst individuals. Therefore, it makes sense to combine logical
representations and probabilities, leading to the field of Statistical Relational
Artificial Intelligence (De Raedt, Kersting, et al. 2016).

1.4 Problem Statement and Motivation

It is an ever lasting dream of many AI researchers to build expressive models that
allow us to enhance the quality of our every-day life. For example, combining
the knowledge of all doctors in the world to build a model that can be queried
to quickly and accurately diagnose the disease of a patient. Or autonomous
agents that reflect human-like reasoning to accompany elderly and help them
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where needed. The typical models required in this context, ideally include three
different types of knowledge or information:
(1) probabilities to deal with uncertainty
(2) relations to deal with objects in the environment
(3) dynamics to deal with time related information

Within the last decade, researchers from the field of Statistical Relational AI
realized the need for combining these different types of knowledge, leading
to the realization of various formalisms (e.g. Manfredotti (2009), Nitti et al.
(2014), and Thon et al. (2011)). As these representations allow one to express
complex knowledge and dependencies, the task of probabilistic reasoning in the
underlying model is computationally very challenging. Therefore, one often has
to rely on approximate inference techniques that only provide estimates, or one
puts a restriction on the models that can be expressed by the representation.

We now use some examples from the domain of medical diagnosis to further
illustrate the models and concepts we will consider throughout this dissertation.

Probabilistic Models

One of the problems a doctor deals with on a daily basis is that of medical
diagnosis, i.e. he has to determine which disease a patient might have, based
on the observable symptoms. Additionally, the doctor might perform some
medical tests to confirm the presence of a certain disease. The task of diagnosis
is quite challenging as many of the symptoms are nonspecific and can have
different causes. For example, symptoms such as a headache or fever might
have been caused by dozens of diseases. Furthermore, medical tests are not
always reliable and the results might lead to wrong conclusions. Hence, in the
process of diagnosis, a doctor will not solely rely on the direct observations but
additionally tries to incorporate the uncertainty.

Modeling the task of medical diagnosis as an AI problem requires one to capture
the connection between diseases, symptoms and medical tests. For example,
if a disease is known to cause a certain symptom or a positive test, the model
should contain a dependency that describes this knowledge. Not all of the
available information is deterministic and, ideally, our model should include this
uncertainty. For example, to diagnose whether a patient has HIV, we should be
able to include the following information:

Four weeks after infection, 5 out of 100 HIV tests return a false negative.
HIV causes a headache only in 33 out of 100 cases.

The first rule states that an HIV test is not completely trustworthy if it is taken
four weeks after infection. The second rule states that only one out of three
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patients with HIV suffer from a headache caused by this disease.

Where logical inference suffices to draw conclusions from a deterministic model,
dealing with uncertainty and probabilities requires us to rely on probabilistic
reasoning techniques. For the above example, probabilistic reasoning will not
return a deterministic answer but, instead, compute the degree of belief that a
patient has HIV based on the observed symptoms and test-results. In case our
model includes several diseases, probabilistic reasoning allows one to compute
which disease the patient most likely suffers from. Intuitively, probabilistic
inference is harder than logical inference as it requires to take into account the
probabilities.

Probabilistic graphical models is one of the formalisms that allows us to combine
propositional knowledge and probabilities. Probabilistic reasoning in these
models is well-studied and gave rise to many inference methods. One state-of-
the-art approach, known as weighted model counting, has shown to outperform
other techniques by exploiting structure in the model. Probabilistic inference
techniques based on weighted model counting is the general theme of this
dissertation. We will deal with more complex models, however, containing
relational and/or dynamic (time-related) dependencies.

Relational Models

Medical diagnosis often benefits from taking into account information about
the environment of the patient. For hereditary diseases, it is relevant to know
whether one of the relatives is known to have the same disease. For contagious
diseases, it might be helpful to additionally know whether one of the close friends
of the patient has the disease. Hence, a doctor will combine this knowledge
together with the observed symptoms and medical tests to better estimate the
disease a patient might suffer from.

As a doctor takes into account knowledge about the relatives, friends and
colleagues of the patient, also our AI model should contain this information.
Therefore, we might want to include the following rules:

For all people X, the probability that X has the flu is 0.001.
For all people X and Y, if X and Y are friends and Y has the flu, the probability
that X has the flu is 0.1.

The first rule states there is only a small chance that a patient has the flu.
The probability of having the flu, which is known to be a contagious disease,
increases once it is known that one of the friends of the patients has the flu, as
stated by the second rule.
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Where propositional models would require us to explicitly write down all our
knowledge for each of the patients, relational models allow us to make abstraction
of the specific entities. The above rules makes use of logical variables, denoted
as X and Y, that act as a placeholder for all of the people we potentially care
about. Furthermore, our second rule describes some complex knowledge in a
compact way. To know whether the person Y has the flu, we can apply the same
rule again and, as such, we do not only consider the direct friends of person X
but also his indirect friends.

While relational representations allow us to express our knowledge in a rather
compact way, the underlying model is often very complex. Firstly, we have to
deal with large domains, e.g. all patients of a hospital. Secondly, our knowledge
might introduce cyclic dependencies in the model. For example, a person X can
be friends with a person Y who in turn is a friend of a person Z and Z is again
friends with X. Effectively dealing with these cyclic dependencies has shown to
be extremely challenging and is one of the issues we address in this dissertation.

Dynamic Models

In medical diagnosis it is common to take into account the medical history of a
patient. This allows a doctor to, for example, use his previous experience with
a patient to more quickly recognize certain symptoms or to specifically adapt
a new treatment. Furthermore, a doctor might want to combine information
from the past and the present to predict how a patient should evolve over time.
This allows one to more quickly intervene if the patient would diverge from
the expected behavior. Hence, a doctor might use information from each of its
appointments with the patient in order to make better decisions.

To reason about the past, present and future we have to extend our AI model
to cope with time-related information. For example, a model that describes
potential organ failures after a surgery (Sandri et al. 2014) might contain the
following information:

For any day T following a surgery, the probability that the patient has a lung
failure is 0.001.
For any day T following a surgery, if the patient has a heart failure at day T,
the probability of having a lung failure at day T` 1 is 0.1.

The first rule states there is only a small probability of having a lung failure
after having surgery. But, as stated by the second rule, the probability of having
a lung failure after having a surgery increased if the patient had a heart failure
the day before.
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Where static models typically only deal with information from one specific
moment in time, dynamic models allow us to deal with sequences of information
and time-related dependencies. In other words, dynamic models include
information from the past to better estimate the present or to predict the
future. Similar to relational models that make abstraction of specific entities,
dynamic models make abstraction of the specific time. The rules we present
above do not refer to any specific day and range over all days following a surgery.
Hence, dynamic models typically act as a template for (potentially) infinite
moments in time.

Dynamic models often range over a large time span, e.g. the complete medical
history of a patient, and dealing with all this knowledge is computationally hard.
Under certain assumptions, however, it is known that it suffices to maintain a
belief state which summarizes all information from the past. Then, probabilistic
reasoning involves updating this belief state in the presence of new observations.
Efficiently representing and updating this belief state are two of the issues we
address in this dissertation.

1.5 Contributions

Research on knowledge representation and automated reasoning has resulted
in different inference tasks for propositional logic. One of these tasks, known
as weighted model counting, serves as an assembly language for inference in
probabilistic models. In other words, one can translate a probabilistic model
into a weighted propositional logical formula, or knowledge base, after which
inference in the original model corresponds to computing the weighted model
count on the formula. Intuitively, weighted model counting enumerates the
weights of all models that satisfy the weighted formula. One of the key-steps
of the reduction approach is to actually encode the probabilistic model as a
formula in propositional logic.

The encoding of a propositional model, e.g. probabilistic graphical models,
into a propositional knowledge base is well-studied and different approaches
have been proposed in the literature. On the other hand, the encoding of an
expressive probabilistic model, including template models for dynamic domains
and logical models for relational domains, typically requires to first unfold the
model into a propositional representation. This unfolding can be with regard
to time (dynamic models) or with respect to cyclic dependencies (relational
models). Then, an existing encoding for propositional models can be applied.
An overview of such a sequential pipeline is depicted in Figure 1.1.
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Figure 1.1: A sequential pipeline for probabilistic inference.
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Figure 1.2: An incremental pipeline for probabilistic inference.

Unfolding of an expressive probabilistic model into a propositional model is
generally not desired, as capturing the characteristics and semantics of the
original model often leads to a blow-up of the corresponding knowledge base
and quickly renders probabilistic inference intractable. Therefore, the main
question we address in this dissertation is the following:

Can we exploit the characteristics of an expressive probabilistic model
to further scale-up probabilistic inference by weighted model counting?

Intuitively, we want to obtain an encoding that avoids the need to explicitly
unfold the model. Instead, it should act on the original representation and, if
possible, exploit its characteristics. In the ideal case, we would then obtain an
incremental pipeline as depicted in Figure 1.2, where reasoning on the original
model is interleaved with the encoding step.

The techniques we will present throughout this dissertation all use the
incremental strategy, as depicted in Figure 1.2, in contrast to many of the
existing techniques that rely on a sequential strategy. Important to note is that,
at the end, we perform inference on a propositional knowledge base. Hence, our
work is not situated in the field of lifted inference. We can identify three main
contributions:

The first contribution is the Structural Interface Algorithm, an exact
inference algorithm for propositional dynamic models. Reasoning in probabilistic
models is generally known to be computationally hard. Exponential speed
gains can be obtained, however, by exploiting independences between variables
and local structure in the model. Local structure might arise in the form of
deterministic dependencies between variables or by using equal probabilities
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when modeling uncertainty. Furthermore, specific purpose algorithms for
dynamic models are known to benefit from exploiting the repeated structure
in the model that arises by duplicating the template model along the time
dimension. In this dissertation, we show how inference techniques based on
weighted model counting and knowledge compilation allow us to exploit local
as well as repeated structure in the underlying model.

The second contribution is TP-compilation, an anytime inference algorithm
for relational models. Many of the typical applications for relational methods,
including social networks and linked web-pages, introduce cyclic dependencies
in the underlying model. Inherently, many of the existing inference approaches
do not support these cyclic dependencies and require to explicitly break down
cycles by means of a preprocessing step. This might lead to an exponential
blow-up of the model and probabilistic inference quickly becomes intractable. In
this dissertation, we propose a novel inference technique with built-in support
for cyclic dependencies, making exact inference for relational models much more
efficient. Furthermore, our approach can be stopped anytime and provides a
hard bound for the computed probabilities.

The third contribution is dynamic TP-compilation, an exact inference
algorithm for relational dynamic models. Specific purpose inference algorithms
for dynamic models maintain a belief state that represents the current belief
about the possible states, given all observations and information up to that
point. In the presence of new observations, probabilistic inference includes
updating this belief state. These observations can lead to additional structure,
in the form of deterministic dependencies, allowing us to represent the belief
state in a more compact way. In this dissertation, we show how we can exploit
the structure in the belief state to further boost inference in dynamic models.

1.6 Structure of the Thesis

The remainder of this text consists of 5 chapters.

Chapter 2 gives the necessary background on probability theory, propositional
representations and relational representations. This includes logical reasoning by
knowledge compilation and probabilistic reasoning by weighted model counting.

Chapter 3 introduces the structural interface algorithm. It unifies state-of-the-
art techniques for inference in static and dynamic models to exploit the repeated
nature of a dynamic model as well as the local structure. We experimentally
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show how our technique can tackle models that are considerably more complex
than what can currently be dealt with by exact inference techniques. This
chapter is based on the following publication:

J. Vlasselaer, W. Meert, G. Van den Broeck, and L. De Raedt (2016a).
“Exploiting local and repeated structure in dynamic Bayesian networks”. In:
Artificial Intelligence 232, pp. 43–53

Chapter 4 introduces the TP-compilation algorithm. It interleaves the
knowledge compilation step for weighted model counting with forward reasoning
on the logical representation and avoids the need to explicitly unfold cyclic
dependencies. An experimental evaluation demonstrates that the new
technique outperforms existing exact and approximate techniques on real-world
applications such as biological and social networks and web-page classification.
This chapter is based on the following two publications :

J. Vlasselaer, J. Renkens, G. Van den Broeck, and L. De Raedt (2014).
“Compiling probabilistic logic programs into sentential decision diagrams”. In:
Proceedings of the Workshop on Probabilistic Logic Programming (PLP)

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt
(2015). “Anytime inference in probabilistic logic programs with Tp-compilation”.
In: Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI)

Chapter 5 introduces the dynamic TP-compilation algorithm. It combines
the structural interface algorithm and TP -compilation to deal with dynamic
relational domains. Furthermore, we show how additional structure, introduced
by observation, can be exploited to further scale-up inference. This chapter is
based on the following publication:

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt
(2016b). “Tp-Compilation for inference in probabilistic logic programs”. In:
International Journal of Approximate Reasoning 78, pp. 15–32

Chapter 6 concludes this text with a discussion on the techniques presented
throughout this dissertation. Furthermore, we propose some interesting
directions for future work.



Chapter 2

Background

This chapter introduces the representations and methods on which we will build
further in the remainder of this text. The different formalisms can be separated
along two dimensions (see Table 2.1). Along the first dimension we have logical
representations, which only deal with purely deterministic dependencies, versus
probabilistic representations, which allow us to include probabilities to model
non-deterministic events. Along the second dimension we have propositional
representations, where we can only express knowledge about single entities,
versus relational representations, which allow us to express knowledge about
more abstract object in the world.

Logical Probabilistic

Propositional Propositional logic
Probabilistic graphical models,
Bayesian and Markov networks

Relational
First-order logic, Probabilistic first-order logic,
logic programs probabilistic logic programs

Table 2.1: An overview of the different formalisms used throughout this text.

We start by reviewing standard notions of probability theory in Section 2.1.
Section 2.2 lays out the foundations on propositional representations and
reasoning. This includes logical reasoning by knowledge compilation and
probabilistic reasoning by weighted model counting. Section 2.3 introduces
relational representations, including first-order logic and (probabilistic) logic
programming.

11
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2.1 Probability Theory

An agent that acts under uncertainty is essentially gambling on its outcome
and probability theory is the calculus of gambling (Poole and Mackworth 2010).
Probability theory allows us to precisely quantify uncertainty and is nowadays
an inherent part of many research in AI.

2.1.1 Random Variables

Probability theory is the branch of mathematics that deals with experiments
that are subject to random phenomena or chance. An experiment is said to be
non-deterministic if it has more than one possible outcome, and deterministic
if it has only one outcome. The sample space of an experiment is the set of all
its possible outcomes. An event is any subset of the sample space, including
the empty set and the sample space itself.

Probability theory is centered around random variables, that is, variables whose
value is subject to randomness. The domain of a random variable is the set of
possible different values it can take. A binary random variable has a domain of
exactly two values. Typically, the possible values of a variable represent the
possible outcomes of an experiment. Throughout this dissertation, we will only
consider discrete random variables with a finite domain.

Example 2.1 Consider the task of rolling a fair die. We could use the random
variable die to describe this experiment. The sample space of the experiment,
as well as the domain of the variable, is t1, 2, 3, 4, 5, 6u. A possible event would
be “More than 2 pips” for which we have t3, 4, 5, 6u as subset of the sample
space.

As convention, we use lower case letters (e.g. y) to denote random variables and
upper-case letters (e.g. Y ) to denote their instantiation or value assignment.
Bold letters represent sets of variables (e.g. y) and their instantiations (e.g. Y).

2.1.2 Probability Distributions

Each of the values in the domain of a random variable comes with an associated
probability. Intuitively, probabilities are a measure of our belief that a certain
event will occur. By convention, probabilities are denoted by means of a number
between 0 and 1 and, the higher the probability of an event, the more certain
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we are that it will occur. A probability of 0 indicates impossibility, i.e. the
event will never occur, and 1 indicates certainty, i.e. it will always occur.

A random variable induces a probability distribution on its domain. We use
Prpyq to denote the probability distribution of the random variable y on all
values Y i in its domain and Prpy “ Y iq denotes the probability that variable
y takes value Y i. The latter is often shortened to PrpY iq. It is common to
denote a probability distribution by means of a table. Intuitively, each of the
rows in the table correspond to a possible world, i.e. the world will be in one of
these states after performing the experiment. By convention, the probability of
all possible worlds sums op to 1.

die Prpdieq

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

1

Table 2.2: The probability distribution for the experiment from example 2.2.

Example 2.2 Continuing with our die example, the probability that the
random variable die takes one of the variables from the domain t1, 2, 3, 4, 5, 6u
is 1/6. The complete distribution is denoted by Table 2.2. Computing the
probability for an event comes down to enumerating the probability of each
of the values in the sample space that coincide with the event. For the event

“More than 2 pips”, we have:

Prpdie ą 2q “Prpdie “ 3q ` Prpdie “ 4q ` Prpdie “ 5q ` Prpdie “ 6q

“1{6` 1{6` 1{6` 1{6 “ 4{6

Joint Probability Distribution For more complex experiments it is often
cumbersome to describe all possible outcomes by only one variable and, instead,
one uses a set of different variables. A joint probability distribution Prpy1, . . . , ynq
expresses the distribution of the random variables y1, . . . , yn on all values
Y 1,1, . . . , Y n,j . Implicitly, a joint distribution combines random variables by
means of a conjunction and denotes a probability to all possible outcomes of an
experiment.



14 BACKGROUND

Example 2.3 Consider the task of tossing two fair coins where we use variable
coin1 to represent the first coin and coin2 to represent the second coin. The
joint probability distribution is given by Table 2.3, where we use H and T to
denote heads and tail, respectively. Again, computing the probability for an
event comes down to enumerating the probability of each of the possible worlds
that coincide with the event. For the event “At least one head”, we would have:

Prpcoin1 “ H _ coin2 “ Hq “Prpcoin1 “ H, coin2 “ Hq

` Prpcoin1 “ H, coin2 “ T q

` Prpcoin1 “ T, coin2 “ Hq

“ 1{4` 1{4` 1{4 “ 3{4

Marginal Probability Distribution Given a joint probability distribution
Prpy1, . . . , ynq, the probability distribution of any one of the random variables
yi can be obtained by summing over all values of the other variables. Concretely,
the marginal probability distribution of the random variable yi is obtained as:

Prpyiq “
ÿ

y1,...,yi´1,yi`1,...,yn

Prpy1, . . . , ynq

Example 2.4 Continuing with our coin example, given the joint probability
distribution for coin1 and coin2 , we can compute the marginal probability for
coin1 being heads (and similarly for coin1 being tails) as:

Prpcoin1 “ Hq “
ÿ

coin2

Prpcoin1 “ H, coin2 q

“Prpcoin1 “ H, coin2 “ Hq

` Prpcoin1 “ H, coin2 “ T q

“ 1{4` 1{4 “ 1{2
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coin1 coin2 Prpcoin1 , coin2 q

H H 1/4

H T 1/4

T H 1/4

T T 1/4

1

Table 2.3: The probability distribution for the experiment from example 2.3.

Conditional Probability Given a joint probability distribution Prpy1, y2q, the
conditional probability distribution of y2 given y1 is denoted as Prpy2|y1q and is
given by:

Prpy2|y1q “
Prpy1, y2q

Prpy1q

The conditional probability expresses the probability that the random variable
y2 takes a certain value given that the value of y1 is known and requires that
Prpy1q ‰ 0. If we know the value for a random variable, we say it is observed or
it is evidence. Note that conditional probabilities can also be defined in terms
of more than two random variables.

The notion of conditional probability is one of the most important concepts
in probability theory. It allows us to express the belief that a certain event
will occur, given that another event has occurred. Concretely, we can use
conditional probabilities to express Prpeffect|causeq, i.e. the belief that a
cause has a certain effect. In health diagnosis, for example, this would become
Prpsymptom|diseaseq or PrptestResult|diseaseq.

Example 2.5 The probability of a random person having fever is rather low.
Knowing that a person has the flu, however, increases its probability of having
fever. We can now simply express this knowledge as:

Prpfeverq “ 0.05

Prpfever|fluq “ 0.4

Bayes’ Rule Where conditional probabilities allow us to represent our belief
in the effect of a cause, reasoning often goes in the opposite direction. Based on
observed effects, e.g. symptoms, one is interested in computing the probability
that a certain cause actually caused these effects. Concretely, we typically
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want to compute Prpcause|effectq. This type of reasoning can be obtained by
exploiting the symmetric behavior of conditional probabilities. We can write
conditional probabilities, as defined above, in the following way:

Prpy2|y1qPrpy1q “ Prpy2, y1q “ Prpy1|y2qPrpy2q

from which follows that:

Prpy2|y1q “
Prpy1|y2qPrpy2q

Prpy1q

The above equation is known as the rule of Bayes and defines a conditional
distribution in terms of another conditional distribution, rather than a joint
distribution. This has shown to be extremely useful, and underlies most modern
AI systems for probabilistic inference.

Example 2.6 Continuing with our flu example, given additional knowledge
that Prpfluq “ 0.0001, we can now use Bayes’ rule to compute the probability
that a patient has the flu, after observing he has fever, in the following way :

Prpflu|feverq “
Prpfever|fluqPrpfluq

Prpfeverq
“

0.4 ¨ 0.0001

0.05
“ 0.0008

Hence, after observing the patient has fever, the posterior belief of having the
flu is increased compared to the prior belief.

2.1.3 Independence

The notion of independence between random variables is, besides conditional
probabilities, one of the most important concepts in probability theory. Firstly,
independence allows one to reduce the amount of information necessary to
specify the joint distribution. Secondly, one can exploit independences to
perform probability computations in a more efficient way. In practice, we
distinguish different types of independence. We now shortly introduce absolute
and conditional independence and deal with context-specific independence later
on (see Section 2.2.4).
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Absolute or Marginal Independence Two random variables are said to be
absolute or marginally independent if the occurrence of one does not effect
the probability of the other. In other words, two random variables y1 and y2

are absolute independent if their joint probability equals the product of their
probabilities, given as:

Prpy1, y2q “ Prpy1q ¨ Prpy2q

or:

Prpy2|y1q “ Prpy2q

Example 2.7 Tossing two fair coins is an example of two absolute independent
events. Observing whether the first coin results in heads or tails does not give
any information about the second coin. Hence we can write:

Prpcoin1 , coin2 q “ Prpcoin1 q ¨ Prpcoin2 q

Conditional Independence Two random variables are conditionally indepen-
dent given a third variable if information of the latter variable makes the former
two variables absolute independent. In other words, two random variables y1

and y2 are conditional independent given y3, if and only if given the value of
y3, the occurrence of y1 or y2 does not influence the probability of y2 or y1,
respectively. We can write this as:

Prpy1, y2|y3q “ Prpy1|y3q ¨ Prpy2|y3q

or:

Prpy2|y1, y3q “ Prpy2|y3q

Example 2.8 Lets continue with our flu example, but now with headache as a
second symptom. In case we do not know whether our patient has the flu, fever
and headache depend on each other. Indeed, observing one of the symptoms
will increase the probability of having the flu, hence increasing the probability
of also having the other symptom. Knowing that a patient has the flu, however,
breaks this dependency and the two symptoms become independent, allowing
us to write:

Prpfever, headache|fluq “ Prpfever|fluq ¨ Prpheadache|fluq
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2.2 Propositional Foundations

We start this section by reviewing propositional logic to represent deterministic
knowledge and reasoning by knowledge compilation. Next, we will discuss
probabilistic graphical models to represent non-deterministic logic and
probabilistic reasoning by weighted model counting.

2.2.1 Propositional Logic

Propositional or Boolean logic is the branch of logic that makes use of
propositional or Boolean variables to express knowledge about single properties
in the world. Propositional variables differ from random variables as their
domain is restricted to the values True (T ) and False (F ). A proposition or
sentence is a variable or a combination of variables and logical connectives. The
three primitive connectives are negation (NOT, ), disjunction (OR,_) and
conjunction (AND,^). Other connectives such as implication (ñ) or equivalence
(ô) can be defined in terms of the three primitive connectives.

Example 2.9 Assume we want to model the behavior of a digital electronic
circuit. Each of the gates can either be healthy, i.e. the output is a function of
the input , or broken, i.e. the output cannot be determined based on the input.
We can describe (part of) our knowledge about an inverter gate (NOT-gate)
with the following English sentence: “If a NOT-gate is healthy and the input is
low (false), the output should be high (true)”. We can express this knowledge
by means of the following logical sentence:

healthy ^ inñ out

where healthy , in and out are three propositional variables. We can rewrite the
sentence by only using primitive connectives as follows:

 healthy _ in_ out

A propositional theory or knowledge base is a set of sentences that implicitly
form a conjunction. A propositional literal is either a propositional variable x
or its negation  x and a clause is a disjunction of literals. A theory is said
to be in conjunctive normal from (CNF) if it is a conjunction of clauses. An
interpretation ω, also called possible world, is a truth value assignment to all
variables. An interpretation that satisfies a sentence λ is denoted as ω |ù λ and
is called a model of that sentence. We say that a sentence is satisfied if, for a
given truth value assignment to all variables, the sentence evaluates to True.
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Example 2.10 The sentence healthy^ inñ out contains three propositional
variables which each can take two values. Hence, this sentence has 23 “ 8
interpretations or possible worlds. The only interpretation which is not a model
of the sentence is thealthy, in, outu.

Given a propositional knowledge base, one can consider many logical inference
tasks. Arguably the best-known problem is that of satisfiability (SAT) where
the task is to find whether the knowledge base has at least one model. In case
the theory is unsatisfiable, the maximum satisfiability (MAX-SAT) task allows
us to find the interpretation that maximizes the number of satisfied clauses.
The partial maximum satisfiability (PMAX-SAT) task combines the principles
of SAT and MAX-SAT as it searches for an interpretation that certainly satisfies
the hard clauses, and maximally satisfies the soft clauses.

2.2.2 Knowledge Compilation

Knowledge compilation is a key direction of research for dealing with the
computational intractability of general propositional reasoning (Darwiche and
Marquis 2002). Logical inference on a given propositional knowledge base is
known to be computationally hard, unless the knowledge base comes with
certain restrictions. The key idea of knowledge compilation is to compile a
propositional theory into a specific target language or circuit representation that
allows one to perform inference in polytime. The main advantage of knowledge
compilation compared to other techniques, for example based on search, is
circuit reuse. A theory only has to be compiled once, after which the compiled
representation can be reused in order to answer different queries in polytime.

Research on knowledge representation and compilation has resulted in a wide
range of target languages. Each of them comes with certain restrictions allowing
them to support a set of inference tasks in polytime. We limit our discussion
to the languages relevant for probabilistic inference and refer to the literature
for a more elaborate overview (Darwiche 2011; Darwiche and Marquis 2002;
Van den Broeck and Darwiche 2015).

Example 2.11 A Boolean circuit representation for the sentence healthy ^
 inñ out is depicted in Figure 2.1a. More efficient representations, as they
support more operations, for the same sentence are depicted in Figures 2.1b,
2.2a and 2.2b.
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 healthy in out

_

(a) Boolean Circuit

 in out

in ^

_ healthy

 healthy ^

_

(b) d-DNNF Circuit

Figure 2.1: Circuit representation for the sentence healthy ^ inñ out.

A circuit in deterministic-Decomposable Negation Normal Form (d-
DNNF) (Darwiche 2004) for the sentence healthy ^ inñ out is depicted1 in
Figure 2.1b. A d-DNNF is a Boolean circuit with certain additional restrictions:
negation can only appear in the leafs, the children of a conjunction range over
disjoint sets of variables (decomposability), and the children of a disjunction
are mutually exclusive (determinism). Some tasks require the d-DNNF to be
smooth, that is, children of disjunctions should range over the same set of
variables. The d-DNNF for our example is not smooth, as the left-child of
the disjunction on the top of the circuit only mentions variable healthy while
the right-child additionally mentions variables in and out. A smooth d-DNNF
(sd-DNNF) for the same sentence is depicted in Figure 2.3a.

A Binary Decision Diagram (BDD) (Bryant 1992) for the sentence healthy^
 in ñ out is depicted in Figure 2.2a. A circular node represent a decision,
whether the variable in its label is true or false. Outgoing solid edges denote the
variable being true, and dashed edges denote the variable being false. When a
terminal is reached, the function is determined to either be true (J) or false (K).
In practice, the therm BDD almost always refers to Ordered BDD (OBDD),
where all paths from the root to the terminals should mention the variables in
the same order.

A Sentential Decision Diagram (SDD) (Darwiche 2011) for the sentence
healthy ^  in ñ out is depicted in Figure 2.2b. Circular nodes represent
disjunctions and pairs of boxes represent a conjunction between their two
children. More intuitively, circular nodes again represent decisions and the
decisions are themselves represented as SDDs. While for BDDs decisions are
only made over one single variable, SDDs can make decisions over mutually
exclusive complex sentences. While the difference between BDD and SDD might
not be immediately clear for our simple example sentence, a somewhat more
complex SDD representation will be discussed in Figure 4.5c and Example 4.11.

1Circuit representations depicted in this chapter are inspired by Van den Broeck (2013)
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out

in
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(a) Binary Decision Diagram
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¬In Out In ⊤

1

Healthy  ¬Healthy ⊤

(b) Sentential Decision Diagram

Figure 2.2: Decision diagrams for the sentence healthy ^ inñ out.

In general, one defines three key properties for each target language: its
succinctness, the class of tractable queries it supports and the class of tractable
transformations it admits. In general, a target representations is said to be
tractable for a given operation if it supports the operation in time polynomial in
its size. We limit our discussion to the properties relevant for this dissertation
and refer to the literature for a more elaborate overview.

Succinctness

Succinctness refers to the size of the smallest compiled circuit for every Boolean
formula. The succinctness ordering for the languages we consider in this text is

d-DNNF ă SDD ă OBDD,

where d-DNNFă SDD denotes that d-DNNF is strictly more succinct than SDD,
and SDD ă OBDD denotes that SDD is is strictly more succinct than OBDD.
Intuitively, there exists a Boolean formula whose smallest OBDD representation
is exponentially larger than its smallest SDD representation (Bova 2016; Xue
et al. 2012). The same holds for SDD representations compared to d-DNNF.

Tractable Queries

Typically, a propositional theory is queried in order to retrieve useful information
from it. Each of the target compilation languages supports a set of different
queries that can be answered in polytime. Table 2.4 summarizes the tractability
of model counting and equivalence checking for the three target compilation
languages introduced before.
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Language Equivalence Checking Model Counting
d-DNNF ?

‘

SDD
‘ ‘

OBDD
‘ ‘

Table 2.4: Efficient queries for the different languages. ? means “unknown” and
‘

means “satisfies”.

Language Negation Conjunction Disjunction Conditioning
d-DNNF ? ˝ ˝

‘

SDD
‘ ‘ ‘ ‘

OBDD
‘ ‘ ‘ ‘

Table 2.5: Efficient transformations for the different languages. ? means
“unknown”,

‘

means “satisfies”, while ˝ means “does not satisfy unless P=NP.
Boolean operations assume a bounded number of operands, that are OBDDs
with the same variable order, or SDDs with the same variable tree.

Equivalence checking is the task of testing whether two sentences are
equivalent, that is, if for every value assignment of the boolean variables,
the sentences evaluate to the same value. Both OBDD and SDD support this
query in polytime, for d-DNNF this is unknown.

Example 2.12 The sentence pa_ bq^ c is logical equivalent to pa^ cq_ pb^ cq
as all models of the first sentence are also models to the second sentence and
vice versa.

Model counting returns the number of models of a theory, that is, the number
of possible worlds that satisfy the theory. A smooth d-DNNF representation
is known the be the most general to support model counting. To do so, one
converts the sd-DNNF into an arithmetic circuit where each literal is replaced
by the constant 1, conjunctions by multiplications and disjunctions by additions.
Then, the model count of the sentence can be computed by evaluating the
circuit in a bottom-up manner. An sd-DNNF and corresponding arithmetic
circuit for the sentence healthy ^  in ñ out is depicted in Figure 2.3. As
OBDD and SDD are both a subset of the d-DNNF language, they also support
model counting in polytime.
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 out out  in

_ in ^

^

 healthy _ _ healthy

^ ^

_

(a) sd-DNNF circuit

1 1 1

`

2

1 ˆ

1ˆ

2
1 `

3

`

2

1

ˆ

4

ˆ

3
`

7

(b) Model counting circuit

Figure 2.3: Circuit representation for the sentence healthy ^ inñ out.

Example 2.13 The sentence healthy ^  in ñ out has eight interpretations
of which only one is not a model. Hence, the model count for this sentence is
seven, as also computed by the arithmetic circuit in Figure 2.3b.

Polytime Transformations

Where a query returns information about a theory without changing it, a
transformation is an operation that returns a modified theory, which is
then operated on using queries. Table 2.5 summarizes the tractability of
Boolean operations and conditioning for the three target compilation languages
introduced before.

Boolean operations on sentences are supported for OBDDs and SDDs by
means of an apply operator that is, two OBDDs or SDDs can be combined with
a Boolean operator (disjunction or conjunction) only requiring linear2 time
and space. Support for Boolean operations is especially useful for incremental
formula construction as we will further discuss in Chapter 4 and Chapter 5.
Boolean operations are not supported by the d-DNNF language.

Conditioning replaces the variables v in sentence λ by their assignment in V
and is denoted as pλ|Vq. Then, these values are propagated while preserving the
properties of the target representation. After this transformation, the sentence
λ will not mention any of the variables in v anymore. Each of the considered
target representations supports conditioning in polytime2.

2Note that the apply operator, as well as conditioning, is not guaranteed to be polynomial
for reduced SDDs. Fore more details, we refer to Van den Broeck and Darwiche (2015)
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Example 2.14 Assume we want to condition the sentence healthy^ inñ out
on  in, this will simply return the sentence healthy^ Trueñ out, which then
simplifies to healthy ñ out. Conditioning the same original sentence on in
would result in healthy ^ Falseñ out, which then simplifies to True.

Knowledge Compilation in Practice

The class of transformations admitted by a target representations defines the
strategy we can employ to actually compile a theory. We distinguish top-down
and bottom-up compilation techniques.

Top-Down Compilation Top-down knowledge compilers take as input a
complete knowledge base and recursively divide the knowledge base into smaller
fragments by means of conditioning. These smaller fragments are than compiled
and combined in order to obtain the compilation of the complete theory. To
obtain the smaller fragments in an efficient way, state-of-the-art compilers rely
on techniques from the SAT literature. All existing top-down compilers, e.g.
dsharp, c2d or minic2d, assume a knowledge base in CNF as input. Compilation
into a d-DNNF representation is always done in a top-down manner.

Bottom-Up Compilation Target languages that efficiently support Boolean
operations by means of an apply operator, such as OBDD and SDD, allow one to
compile a theory in a bottom-up manner. The compiler performs a bottom-up
pass through the knowledge base to first compile small pieces which are then
combined using the Boolean operations. While top-down compilation into d-
DNNF should result in more compact circuits (from a theoretical point of view),
bottom-up compilation into SDD has practically shown to often outperform
d-DNNF compilation (see, for example, Choi et al. (2013)). One of the reasons
is that bottom-up compilation does not require the knowledge base to be in a
CNF representation and this allows to more efficiently exploit structure in the
model.

2.2.3 Probabilistic Graphical Models

Standard logic, as presented in the previous sections, does not easily allow one
to express non-deterministic dependencies between propositions where the level
of uncertainty is precisely quantified. This is a severe limitation when modeling
problems with non-deterministic events or randomness. To accommodate for
this, principles from knowledge representation and probability theory have been
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combined, allowing one to effectively deal with uncertainty. The most important
stream of research in this direction is, arguably, that of probabilistic graphical
models.

A probabilistic graphical model (Koller and Friedman 2009) is a probabilistic
model for which a graph expresses the dependencies between random variables.
The graph encodes a joint distribution over all variables by means of a factorized
representation where one exploits the (conditional) independences that hold
in the distribution. The two main branches of graphical representations are
Bayesian networks and Markov networks. One of the main differences between
these two formalisms is the set of independencies they can encode. We will
focus on Bayesian networks as they underlie the dynamic models we discuss in
Chapter 3.

A Bayesian network (Pearl 1988) is a directed acyclic graph where each
node represents a random variable and each edge indicates a direct influence
among the variables. The network defines a conditional probability distribution
Prpxi|Papxiq for every variable xi, where Papxiq are the parents of xi in the
graph. The conditional probabilities are given by a parameter θx|Papxq and the
conditional distributions are usually represented by means of a Conditional
Probability Table (CPT).

out

in healthy
Prpinq

0.5

Prphealthyq

0.9

in healthy Prpout|in, healthyq

T T 0
T F 0.5
F T 1
F F 0.5

Figure 2.4: A Bayesian network modeling the behavior of a digital NOT-gate.

Example 2.15 Consider a Bayesian network that models the behavior of a
digital inverter (NOT-gate), as depicted in Figure 2.4. The input, output and
health state of the gate are each represented by a variable in the network. Each
of the variables comes with a conditional probability table that expresses the
probability of the variable given its parents. For example, the third row from
the table for variable out tells us that if the gate is healthy and the input is low
(False), the output should certainly be high (True).
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The distribution represented by a Bayesian network induces that a variable
depends on its parents and is independent of other variables (that are not its
descendants) given its parents. In other words, two nodes in the network are
conditionally independent, given the values of their parents. This allows us to
factor the joint distribution into a product of conditional distributions:

Prpx1, x2, . . . , xnq “
n
ź

i“1

Prpxi|Papxiqq

Conditional independence in a Bayesian network can also be defined in terms of
sets of variables. A set of variables z is said to d-separate two sets of variables
x and y, if knowing the values for the variables in z makes the variables in x
independent from the variables in y. For more details on how to find these sets
of variables, we refer to the literature (e.g. Pearl (1988)).

The main advantage of a Bayesian network is that its factorized representation
allows one to represent a joint distribution in a compact way. The distribution
induced by a network with n Boolean variables can be represented by a table
with 2n rows. Each of the rows corresponds to an unique assignment of truth
values to the variables and is called a possible world. In general, the total
number of rows required to represent each of the CPTs is much smaller than 2n.

Example 2.16 For the network depicted in Figure 2.4, the factored represen-
tation is given by the following expression:

Prpin, healthy, outq “ Prpout|in, healthyqPrpinqPrphealthyq

The network has three (Boolean) variables and, as such, 23 possible worlds.
The joint probability distribution induced by the network is shown in Table 2.6.

The most common inference task in Bayesian networks is, arguably, to ask
for marginal posterior probabilities, that is, the probability distribution of a
single variable given evidence. More formally, for a query variable q, a set of
observed variables e and a vector E with their observed truth values, we want
to compute Prpq|e “ Eq. Given a joint probability distribution, computing
marginal probabilities can simply be done by means of Bayes’ rule and involves
enumerating the probabilities of the possible worlds that coincide with the query
and evidence.

Example 2.17 A typical query for our example network would be to compute
the probability that a gate is healthy, given observed signals at the input and
output. For example:

Prph| in, outq “
Prph, in, outq

Prp in, outq
“

0.45

0.45` 0.225
“ 0.67
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in healthy out Prpin, healthy, outq

T T T 0.5 ¨ 0.9 ¨ 0
T T F 0.5 ¨ 0.9 ¨ (1-0)
T F T 0.5 ¨ (1-0.9) ¨ 0.5
T F F 0.5 ¨ (1-0.9) ¨ (1-0.5)
F T T (1-0.5) ¨ 0.9 ¨ 1
F T F (1-0.5) ¨ 0.9 ¨ (1-1)
F F T (1-0.5) ¨ (1-0.9) ¨ 0.5
F F F (1-0.5) ¨ (1-0.9) ¨ (1-0.5)

Table 2.6: The joint probability distribution encoded by the Bayesian network
depicted in Figure 2.4.

While the joint probability table defines the semantics of a Bayesian network,
exhaustively generating all possible world is computationally infeasible for all
but the smallest problems. For larger networks, when modeling real-world
problems, we have to rely on more efficient inference algorithms.

2.2.4 Probabilistic Inference by Weighted Model Counting

Probabilistic inference in graphical models, and more specifically Bayesian
networks, is a well studied problem and has resulted in many algorithms,
e.g. variable elimination, recursive conditioning and junction trees (Darwiche
2009; Koller and Friedman 2009). Throughout this dissertation we are mainly
interested in approaches based on weighted model counting, and this for two
reasons. Firstly, weighted model counting is a well-studied task that serves as
an assembly language for probabilistic inference, i.e. inference in different types
of probabilistic models can be reduced to the task of weighted model counting.
Secondly, techniques based on weighted model counting allow us to exploit local
structure in the distribution induced by the network.

Weighted Model Counting

Given a propositional sentence λ, model counting returns the number of
interpretations that satisfy the sentence. For weighted model counting (WMC),
a weight is associated with every model, and the task is to enumerate the weight
of all models. The weight of one model is the product of the weights associated
with the literals.
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The WMC of a sentence λ can then be computed as:

WMC pλq “
ÿ

ω|ùλ

ź

lPω

wplq

where l are the literals in the model ω. The weight function wp¨q assigns a weight
to each literal. Note that, in general, the weight of a literal is not required to be
between 0 and 1. We often use a short-hand notation where the weight function
for a variable is denoted by a tuple. In this case, the first element in this tuple
denotes the weight for the positive literal and the second element denotes the
weight for the negative literal.

Example 2.18 Assume the propositional sentence healthy ^ inñ out with
the following weight function: wphealthyq “ 0.4, wp healthyq “ 3,
wpinputq “ 2, wp inputq “ 27, wpoutputq “ 1, wp outputq “ 8.
The weighted model count of the sentence is 801, as depicted by Table 2.7. The
fourth interpretation is not a model of the sentence and its weight does not
contribute to the weighted model count.

Reduction to Weighted Model Counting

Weighted model counting is defined for a propositional sentence or knowledge
base and probabilistic inference by weighted model counting thus requires one
to encode the probabilistic model by means of a propositional knowledge base.
Intuitively, the reduction scheme for Bayesian networks constructs a knowledge
base such that each of the models of the knowledge base are in one-to-one
correspondence with the rows of the joint distribution induced by the network.
Additionally, the weights to the literals are assigned in such a way that the
weight of each model is equal to the probability of the corresponding row in the
joint distribution.

The literature proposes different reduction schemes or encodings for Bayesian
networks (Chavira and Darwiche 2008). Throughout this dissertation, we will
use the encoding proposed by Fierens et al. (2015) which is based on the
encoding presented by Sang et al. (2005b). We choose this encoding as it not
only applies to Bayesian networks, but also to probabilistic logic programs as
we will discuss in Section 4.2.3.
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healthy in out Weight

T T T 0.4 ¨ 2 ¨ 1
T T F 0.4 ¨ 2 ¨ 8
T F T 0.4 ¨ 27 ¨ 1
T F F -
F T T 3 ¨ 2 ¨ 1
F T F 3 ¨ 2 ¨ 8
F F T 3 ¨ 27 ¨ 1
F F F 3 ¨ 27 ¨ 8

total 801

Table 2.7: Weighted model counting for the sentence healthy ^ inñ out.

For Bayesian networks, the encoding introduces an indicator variable for each
random variable x and a parameter variable for each CPT parameter θx|Papxq.
Then, each row of a CPT is encoded as a conjunction of the literal variables and
a CPT is encoded as a disjunction of these conjunctions. The weight functions
sets a weight of (1,1) to each of the indicator variables and (θx|Papxq, 1 - θx|Papxq)
to each of the parameter variable.

Once the Bayesian network is encoded as a propositional knowledge base Σ,
we can perform probabilistic inference in the network by means of WMC on Σ.
Concretely, we compute the marginal probability for a query q as follows:

Prpqq “
WMCpΣ^ q, wq

WMCpΣ, wq

where w is the weight function.

The conditional probability for a query q given evidence E can be computed as:

Prpq|Eq “
WMCpΣ^ q ^E, wq

WMCpΣ^E, wq
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Example 2.19 We can encode the Bayesian network depicted in Figure 2.4
into to following knowledge base:

inô p in

healthy ô p healthy

outô pin^ healthy ^ p row1q

_ pin^ healthy ^ p row2q

_ p in^ healthy ^ p row3q

_ p in^ healthy ^ p row4q

where each of the p ∗ variables correspond to a CPT parameter θx|Papxq. We
have the following weight function for the indicator variables: wpinq “ p1, 1q,
wpoutq “ p1, 1q, wphealthyq “ p1, 1q, and for the parameter variables:
wpp inq “ p0.5, 0.5q, wpp healthyq “ p0.9, 0.1q, wpp row1q “ p0, 1q,
wpp row2q “ p0.5, 0.5q, wpp row3q “ p1, 0q, wpp row4q “ p0.5, 0.5q.

Local Structure

One of the benefits of the reduction to WMC is that it allows one to exploit local
structure in the model. Bayesian networks often exhibit abundant local structure
in the form of determinism and context-specific independence (CSI) (Boutilier
et al. 1996). Determinism is introduced by 0 and 1 parameters in the network
while CSI is often the result of equal parameters. Exploiting local structure can
lead to exponential speed gains and allows one to perform inference in networks
of high treewidth, where this is otherwise impossible (Chavira and Darwiche
2005).

In general, all entries in a CPT with a 0 parameter can be dropped as they give
rise to models with a weight of 0. Furthermore, our encoding allows to safely
omit parameter variables with a probability of 1 as they will not change the
weighted model count. Finally, entries in the CPT with equal parameters often
lead to context-specific independence and allows one to obtain a more compact
encoding by combining rows from the table.
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Example 2.20 When exploiting local structure, we can encode the Bayesian
network depicted in Figure 2.4 into to following knowledge base:

inô p in

healthy ô p healthy

outô p healthy ^ p faultyq

_ p in^ healthyq

where we have wpp faultyq “ p0.5, 0.5q. Intuitively, computing the weighted
model count of this formula can be done more efficiently, compared to the formula
from Example 2.19, as we were able to drop three (parameter) variables.

Weighted Model Counting and Knowledge Compilation

A given propositional knowledge base, as shown in Example 2.19 and 2.20, does
not allow one the efficiently perform weighted model counting. One way to
deal with this is to compile the knowledge base into a more tractable target
representation which supports WMC in polytime. The language often used as
target representation is sd-DNNF, as it is the best known language to support
weighted model counting in polynomial time. Similar to model counting, we
convert the sd-DNNF into an arithmetic circuit but now replace the literals by
the constant given by the weight function. Then, the weighted model count can
be computed by evaluating the circuit in a bottom-up manner.

 out out  in

_ in ^

^

 healthy _ _ healthy

^ ^

_

(a) sd-DNNF circuit

8 1 27

`

9

2 ˆ

27ˆ

18
3 `

45

`

29

0.4

ˆ

783

ˆ

18
`

801

(b) Weighted model counting circuit

Figure 2.5: Circuit representation for the sentence healthy ^ inñ out.

Example 2.21 For our example sentence healthy^ inñ out and the weight
function given in Example 2.18, the sd-DNNF and arithmetic circuit are depicted
in Figure 2.5. The WMC computed by evaluating the circuit in a bottom
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up manner is 801 and is the same as the WMC computed by exhaustively
enumerating all interpretations that satisfy the sentence, as was done in
Table 2.7.

The advantage of knowledge compilation, compared to other techniques for
WMC, is circuit reuse. In the presence of new observations or evidence, we
only have to adapt the weight function, in order to incorporate the evidence,
and there is no need to recompile the network. Hence, for a given knowledge
base we can summarize probabilistic inference by knowledge compilation and
weighted model counting as a three step procedure:

(1) Compile the knowledge base Σ into a sd-DNNF ∆ (or any of its sub-
languages).

∆ “ CompilepΣq

(2) Incorporate evidence E by setting to zero the weight of any literal that is
not compatible with the evidence.

w1pzq “

"

wpzq  z R E
0  z P E

(3) Traverse the compiled representation ∆ to either:
(a) compute the weighted model count with an upward pass only:

PrpEq “ EvalÒp∆, w
1q

(b) compute the marginal probability Prpz|Eq, for all variables Z in parallel,
with one upward and downward pass (Darwiche 2009, Algorithm 34):

Prpz|Eq “ EvalÖp∆, w
1q

In the presence of new evidence we do not have to recompile the theory, i.e. we
can omit step (1) of the above algorithm, and only need to redo step (2) and (3).
As a final remark, we would like to note that the conversion to an arithmetic
circuit, as shown in Figure 2.3 and 2.5, is not strictly required and one can
compute the (weighted) model count directly on an sd-DNNF representation.

2.3 Relational Foundations

We will now introduce relational representations where we mainly focus
on (probabilistic) logic programming. Reasoning techniques for these
representations will be dealt with in Chapter 4.
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2.3.1 First-Order Logic

First-order logic, also called predicate logic, extends propositional logic to
formulas involving quantified logical variables and predicate symbols. This
allows one to express general knowledge about multiple objects in the world
where, in propositional logic, we would need a specific proposition for each of
these objects. Hence, first-order logic offers us a more expressive formalism to
deal with structured knowledge in a compact way.

A term is a logical variable, a constant, or a functor applied on terms. A logical
variable is denoted with an upper-case letter (e.g. X). An atom is of the form
ppt1, . . . tnq where p is a predicate of arity n and the ti are terms. A literal is
an atom or its negation. A first order formula is recursively constructed from
atoms using logical connectives (as for propositional sentences) and quantifiers
(@ and D). A theory is a set of formulas that implicitly form a conjunction. An
expression is called ground if it does not contain variables.

Example 2.22 Consider the propositional sentence healthy^ inñ out that
we introduced in Example 2.9. We can now express more general knowledge by
means of first-order logic in the following way:

@X, inverterGatepXq ñ phealthypXq ^  inputpXq ñ outputpXqq

The logical variable X serves as a placeholder for, potentially, each digital
inverter gate (NOT gate) in the world. In case of propositional logic, dealing
with multiple gates would require to add a specific proposition and corresponding
knowledge for each of the gates.

The Herbrand Base of a FOL theory is the set if all ground atoms constructed
using the predicates, functors and constants in the theory. A Herbrand
interpretation, also called possible world, is a truth value assignment to all atoms
in the Herbrand base. It is common to write it as the subset of True atoms
(with all others being False), or as a conjunction of atoms. An interpretation
satisfying all formulas in the theory, i.e. if all formulas resolve to true, is a
model of the theory.

2.3.2 Logic Programming

Logic programming (Lloyd 1989) uses a subset of first-order logic where only
Horn clauses, are allowed. A Horn clause is a universally quantified clause
that has at most one positive literal. A definite clause is a Horn clause with
exactly one positive literal and, following the Prolog tradition, it is written
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as h :´ b1, ..., bn where h and the bi are atoms and the comma denotes a
conjunction. The atom h is called the head of the clause and b1, ..., bn the body.
The meaning of such a clause is that whenever the body is true, the head has to
be true as well. A fact is a clause that has true as its body, i.e. it is a definite
clause with no negative literals, and is written more compactly as h.

A logic program or definite clause program is a finite set of definite clauses,
also called rules. Let A be the set of all ground atoms that can be constructed
from the constants, functors and predicates in a definite clause program P. A
Herbrand interpretation, as defined before, satisfying all rules in the program P
is a Herbrand model. The model-theoretic semantics of a definite clause program
is given by its unique least Herbrand model, that is, the set of all ground atoms
a P A that are entailed by the logic program, written P |ù a. The task of logical
inference is to determine whether a program P entails a given atom, called
query. We will discuss techniques for logical inference in Section 4.2.

A normal logic program extends a definite clause program and allows for negation,
i.e., it is a finite set of normal clauses of the form h :´ b1, ..., bn where h are
atoms and the bi are literals. A literal is an atom (positive literal) or its negation
(negative literal). For normal logic programs, the least Herbrand Model extends
to a canonical model3.

a b

c

edgepb, aq. edgepb, cq.

edgepa, cq. edgepc, aq.

pathpX,Yq : - edgepX,Yq.

pathpX,Yq : - edgepX,Zq, pathpZ,Yq.

Figure 2.6: A logic program modeling a cyclic graph.

Example 2.23 Consider the definite clause program depicted in Figure 2.6.
The facts represent the edges between two nodes in a graph4 and the rules
define whether there is a path between two nodes. The least Herbrand model
is given by tedgepb, aq, edgepb, cq, edgepa, cq, edgepc, aq, pathpb, aq, pathpb, cq,
pathpa, cq, pathpc, aq, pathpa, aq, pathpc, cqu.

3For a full discussion of the semantics of general logic programs, we refer to Van Gelder
et al. (1991).

4Note the difference in arrows to differentiate between Bayesian networks and graphs.
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Logic Programs vs. First-Order Logic A crucial difference between the
semantics in logic programming and first-order logic is that the former makes
use of the closed world assumption. Under this assumption, everything that is
not certainly true is assumed to be false. Hence, in logic programming an atom
a is defined to be true if and only if at least one of the rule bodies, for which a
is the head, is true. As we will see later on, the difference in semantics between
first-order logic and logic programming is crucial in the conversion of a ground
logic program into a propositional formula.

Example 2.24 Consider the logical theory ta ð bu which has three models,
namely t a, bu, ta, bu and ta, bu. The syntactically equivalent logic program
ta : - b.u has only one model, namely the least Herbrand model t a, bu.

2.3.3 Probabilistic Logic Programming

Where probabilistic graphical models combine propositional knowledge with
probability theory, probabilistic logics combine relational or first-order
knowledge with probability theory. This allows for complex, yet compact,
models that express probabilistic relations between objects in the world. One
stream of research in this direction are probabilistic logic programs which enrich
logic programs, typically Prolog, with probabilities to deal with uncertainty.

Many probabilistic programming languages, including PRISM (Sato and Kameya
2001), ICL (Poole 1993), ProbLog (De Raedt, Kimmig, and Toivonen 2007), and
LPADs (Vennekens, Verbaeten, et al. 2004) are based on the same semantics,
known as Sato’s distribution semantics (Sato 1995). Throughout this dissertation
we will use ProbLog as it has the simplest syntax and comes with the least
restrictions. PRISM and ICL, for example, require rules to be acyclic and
cannot be used to model cyclic programs. For a general overview of probabilistic
logic programming, and more details on the relation between these languages,
we refer to De Raedt and Kimmig (2015).

A ProbLog program P consists of a set R of rules and a set F of probabilistic
facts. Without sacrificing generality, we assume that no probabilistic fact unifies
with a rule head. Every grounding fθ of a probabilistic fact p : : f independently
takes the value true (with probability p) or false (with probability 1´ p). For
ease of notation, we assume that F is ground.

Example 2.25 The logic program shown in Figure 2.6 can be extended with
probabilities as shown in Figure 2.7. The probabilistic facts represent that edges
between two nodes are only true with a certain probability. As a consequence,
the rules now express a probabilistic path.
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a b

c
0.8

0.9

0.4

0.3

0.4 : : edgepb, aq. 0.3 : : edgepb, cq.

0.8 : : edgepa, cq. 0.9 : : edgepc, aq.

pathpX,Yq : - edgepX,Yq.

pathpX,Yq : - edgepX,Zq, pathpZ,Yq.

Figure 2.7: A probabilistic logic program modeling a cyclic probabilistic graph.

A ProbLog program specifies a probability distribution over its Herbrand
interpretations, also called possible worlds. A total choice C Ď F assigns a
truth value to every ground probabilistic fact, and the corresponding logic
program C YR has a canonical model (Fierens et al. 2015); the probability of
this model is that of C. Interpretations that do not correspond to any total
choice have probability zero. For a probabilistic logic program with n ground
probabilistic facts, the number of distinct total choices is 2n.

Example 2.26 Consider the ProbLog program depicted in Figure 2.8. Each
of the total choices together with their corresponding model and weight is
depicted in Table 2.8. For example, tedgepa, bq, edgepa, cq, pathpc, bqu is an
interpretation that is not a model of the program because, as the rules in the
program state, if an edge is true its corresponding path should be true. Hence,
this interpretation has a probability of 0.

Where inference in logic programs considers the task of computing whether
a query atom q is entailed by the program, inference in probabilistic logic
programs considers the task of computing the probability that a query is
entailed. Concretely, the probability of a query is the sum over all total choices
whose program entails q and can be computed as follows:

Prpqq :“
ÿ

CĎF :CYR|ùq

ź

fiPC

pi ¨
ź

fiPFzC

p1´ piq . (2.1)

Exhaustively generating all total choices and computing whether their
corresponding program entails the query is computational infeasible for all but
the smallest programs. Therefore, we have to rely on more efficient algorithms
which we will discuss in Chapter 4.
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0.8

0.3

0.4

a b

c

0.8 : : edgepa, cq. 0.3 : : edgepa, bq.

0.4 : : edgepc, bq.

pathpX,Y q : - edgepX,Y q.

pathpX,Y q : - edgepX,Zq, pathpZ, Y q.

Figure 2.8: A probabilistic logic program modeling an acyclic probabilistic graph.

epa, bq epa, cq epc, bq ppa, bq ppa, cq ppc, bq weight

T T T T T T 0.3 ¨ 0.8 ¨ 0.4
T T F T T F 0.3 ¨ 0.8 ¨ (1-0.4)
T F T T F T 0.3 ¨ (1-0.8) ¨ 0.4
T F F T F F 0.3 ¨ (1-0.8) ¨ (1-0.4)
F T T T T T (1-0.3) ¨ 0.8 ¨ 0.4
F T F F T F (1-0.3) ¨ 0.8 ¨ (1-0.4)
F F T F F T (1-0.3) ¨ (1-0.8) ¨ 0.4
F F F F F F (1-0.3) ¨ (1-0.8) ¨ (1-0.4)

total 1

Table 2.8: All total choices for the ProbLog program depicted in Figure 2.8.

Example 2.27 Consider the ProbLog program depicted in Figure 2.8. With
Table 2.8 listing all total choices (abbreviating predicate names by initials), we
can compute the probability for a query atom q by simply enumerating the
weight of all rows (models) in which q is true. For an example query pathpa, bq,
we have to enumerate the weight of the first five rows from Table 2.8 and this
results in Prppathpa, bqq “ 0.524.

Example 2.28 Where probabilistic logic programs are especially useful to deal
with relational knowledge, they also allow us to represent propositional models.
Figure 2.9 depicts the Bayesian network introduced before and the probabilistic
logic program that describes this network. Without exploiting local structure,
we need a corresponding probabilistic fact for each of the parameters in the
network, and for each row in the CPTs we have a corresponding rule that
describes the dependencies.
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out

in healthy
Prpinq

0.5

Prphealthyq

0.9

in healthy Prpout|in, healthyq

T T 0
T F 0.5
F T 1
F F 0.5

0.5 : : p input. 0.9 : : p healthy.

0.5 : : p row1. 1.0 : : p row2. 0.5 : : p row3. 0.0 : : p row4.

input : - p input.

healthy : - p healthy.

output : - input, healthy, p row1.

output : - input, healthy, p row2.

output : -  input, healthy, p row3.

output : -  input, healthy, p row4.

Which we can rewrite by exploiting local structure as:

0.5 : : p input. 0.9 : : p healthy. 0.5 : : p faulty.

input : - p input.

healthy : - p healthy.

output : -  healthy, p faulty.

output : -  input, healthy.

Figure 2.9: A probabilistic logic program modeling the behavior of a digital
NOT-gate.



Chapter 3

Dynamic Bayesian Networks

3.1 Introduction

Bayesian Networks (BNs) have shown to be powerful and popular tools for
reasoning about uncertainty (Pearl 1988). While BNs were originally developed
for static domains, they have been extended towards dynamic domains to
cope with time-related or sequential data. These Dynamic Bayesian Networks
(DBNs) (Dean and Kanazawa 1989; Murphy 2002) allow us to reason about
the past, the present and the future and are widely used in applications such
as computer vision, speech recognition, robot localization, health monitoring,
bio-sequence analysis, machine monitoring, forecasting, games, etc (Boyen and
Koller 1998; Forbes et al. 1995; Huang et al. 1994; Kjaerulff 1995; Sandri et al.
2014; Theocharous et al. 2004; Zweig and Russell 1998).

Dynamic Bayesian networks allow us to compactly model a stochastic process
by making abstraction of time. In other words, we can fully model a dynamic
process by only defining a prior distribution and a transition model. The former
expresses our belief at the start of the process and the latter acts as a template
for (potentially) an infinite number of time instances. More specific models such
as the popular Hidden Markov Models (HMMs) (Rabiner 1989) and Kalman
filters (Kalman 1960) are all generalized by DBNs.

As a special kind of Bayesian networks, inference in dynamic networks can be
performed by applying any of the existing algorithms for static networks. These
inference methods, including junction trees and variable elimination, typically
exploit conditional independencies (CI) by using a factorized representation
of the probability distribution (Darwiche 2009; Koller and Friedman 2009).

39
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Approach CI LS RS
1. Traditional BN algorithm on the unrolled network X
2. Knowledge compilation on the unrolled network X X
3. Interface algorithm X X
4. Structural interface algorithm X X X

Table 3.1: Properties exploited by DBN inference algorithms.

More recent techniques, including knowledge compilation and weighted model
counting, additionally exploit local structure (LS) in the network. It is well
known that local structure, e.g. deterministic dependencies or equal parameters,
can induce additional independencies in the network and exponential speed
gains can be obtained by exploiting this structure, see for example Chavira and
Darwiche (2005).

Special purpose inference algorithms for DBNs, such as the interface algorithm
(Murphy 2002), exploit CI in the network as well as the repeated structure
(RS) obtained from duplicating the template model along the time dimension.
As a result, inference time is guaranteed to scale linearly with the number
of required time steps and memory resources remain nearly constant. These
specific inference algorithms for DBNs, however, are based on more traditional
inference methods and do not exploit any of the local structure in the network.

In this chapter, we show how to use weighted model counting and knowledge
compilation techniques for efficient exact inference in DBNs. Where current
techniques based on weighted model counting require to first unfold the network,
our approach directly acts on the transition model to exploit the repeated
structure. Our main contribution is the structural interface algorithm, an exact
inference algorithm for dynamic Bayesian networks that speeds up inference by
exploiting CI, RS and LS (see Table 3.1). As a result, we can tackle dynamic
models that are considerably more complex than what is currently possible with
exact solvers.

The structural interface algorithm and experimental results were previously
published in

J. Vlasselaer, W. Meert, G. Van den Broeck, and L. De Raedt (2016a).
“Exploiting local and repeated structure in dynamic Bayesian networks”. In:
Artificial Intelligence 232, pp. 43–53
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Structure of this Chapter

In Section 3.2 we introduce dynamic Bayesian networks and shortly discuss its
properties. Section 3.3 deals with existing inference methods for these networks,
including the interface algorithm. We then introduce our structural interface
algorithm in Section 3.4 where we investigate the trade-offs of compiling the
transition model of a DBN into a circuit representation. Section 3.5 proposes
some additional optimization to further speed up inference in DBNs. We evaluate
our algorithm on two classes of benchmark DBNs in Section 3.6. Related work
is discussed in Section 3.6 and we conclude this chapter with a discussion in
Section 3.7.

3.2 Preliminaries

We now formally introduce dynamic Bayesian networks as well as the relevant
inference tasks considered on these networks.

3.2.1 Representation

A Dynamic Bayesian Network (DBN) (Dean and Kanazawa 1989; Murphy
2002) is a directed acyclic graphical model that represents a stochastic process.
It models a probability distribution over a semi-infinite collection of random
variables z1, z2, z3, . . ., where zt are the variables at time t and z1:T denotes all
variables up until time T . In other words, each of the variables in a DBN is
associated with a time slice t, and the number of time slices required to model
a particular problem is the time span T. One often distinguishes the set of
unobserved or hidden variables xt, which are the state variables, and et, which
are the observed variables. The probability distribution over the state variables
xt, i.e. all unobserved variables for a certain time slice t, is referred to as the
belief state.

A dynamic Bayesian network is defined by two networks: B1, which specifies
the prior or initial state distribution Prpz1q, and BÑ, a two-slice temporal
BN (2TBN) that specifies the transition model Prpzt|zt´1q. Together, they
represent the distribution

Prpz1:T q “ Prpz1q

T
ź

t“2

Prpzt|zt´1q (3.1)
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w1

w2

w3

w4

(a) An electronic digital circuit.

w1 1

w2 1

w4 1

hn1

ha1

w3 1

(b) Prior distribution.

w1 t´1

w2 t´1

w4 t´1

hnt´1

hat´1

w3 t´1

w1 t

w2 t

w4 t

hnt

hat

w3 t

(c) Transition model.

Figure 3.1: A digital circuit and corresponding dynamic Bayesian network. The
dashed oval indicates the variables in the interface.

The initial network B1 is a regular Bayesian network, which factorizes the
distribution over its N variables as Prpz1q “

śN
i“1 Prpzi1|Papzi1qq, where zit is

the ith variable at time t and Papzitq are the parents of zit in the network.

The transition model BÑ is not a regular Bayesian network as only the nodes
in the second slice (for time t) of the 2TBN have an associated conditional
probability distribution. Thus, the transition model factorizes as Prpzt|zt´1q “
śN
i“1 Prpzit|Papzitqq, where Papzitq can contain variables from either zt or zt´1.

Example 3.1 Consider as an example the task of finding failing components
in the digital circuit depicted in Figure 3.1a. The circuit contains a logical
NOT-gate with wire w1 as input and wire w3 as output and a logical AND-gate
with wires w2 and w3 as input and wire w4 as output. The prior distribution
and transition model for the corresponding DBN is depicted in Figure 3.1b and
3.1c, respectively. We use hn to represent the state of the NOT-gate and ha for
the AND-gate. Hence, each of the variables in zt either represents the state of a
wire (e.g. high or low) or the state of a component (e.g healthy or faulty). The
transition model defines the dynamics of the components’ state over time. The
shaded nodes are observed.
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3.2.2 Semantics

A DBN is completely defined by the prior distribution and transition model
and implicitly represents an infinite number of time slices. The semantics of
a DBN, however, is defined by unrolling the transition model (2TBN) for a
finite number of time slices T . Intuitively, this comes down to take copies of the
transition model and “glue” them together. In practice, the number of required
time slices is determined by the available observations or the inference task.

Example 3.2 Figure 3.2 depicts the network from Figure 3.1b and 3.1c, but
now unrolled for three time slices. This implies we have observations for the
third time slice or we want to compute the posterior probability for some of the
variables of the third time slice.

w1 1

w2 1

w4 1

hn1

ha1

w3 1

w1 2

w2 2

w4 2

hn2

ha2

w3 2

w1 3

w2 3

w4 3

hn3

ha3

w3 3

Figure 3.2: An unrolled network for three time slices.

It is important to note that a DBN has the same structure at any time slice t
and the word “dynamic” implies that the network models a dynamic process,
not that the structure dynamically changes over time. This is easy to verify as
the unrolled network is obtained by duplicating the transition model along the
time dimension.

3.2.3 Markov Assumption

It is common to assume that a DBN models a first-order Markov process where
the current state only depends on the previous state and not on any earlier
states. In other words, cross-slice edges are only allowed from time slice t to
slice t ` 1. Hence, the belief state provides enough information to make the
future conditionally independent of the past, that is, the hidden state variables
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xt d-separate the past from the future and we have

Prpxt|x1:t´1q “ Prpxt|xt´1q (3.2)

One can only define the transition model by means of a 2TBN in case the first-
order Markov assumption holds. In general, a DBN modeling a pk ´ 1qth-order
Markov process can be defined by means of a kTBN.

Example 3.3 The unrolled network depicted in Figure 3.2 clearly satisfies
the first-order Markov assumption as variables in time slice t only depend on
variables from within the same time slice or from time slice t´ 1.

While the first-order Markov property is typically assumed, most inference
algorithms can be easily generalized towards higher-order Markov processes
by operating on the kTBN instead of the 2TBN. Another way to deal with
higher-order Markov processes is to decouple cross-slice edges by means of
additional variables with the identity function (Murphy 2002).

3.2.4 Inference Tasks

The goal of (marginal) inference in temporal models is to compute Prpxit|E1:τ q,
that is, the probability of a hidden variable xi at time t, given a sequence of
observations E1:τ up until time τ . In general, one considers the following three
cases:

1. With t “ τ we have filtering or monitoring : Computing the probability
of some present events given evidence about the past and present, for
example Prpxi3|E1,E2,E3q. This task is typically performed by an agent
as it allows him to keep track of the current state and to make decisions
in a more informed way.

2. With t ą τ we have prediction or forecasting : Computing the probability
of some future events given evidence about the past, for example
Prpxi4|E1,E2q. This task is useful to estimate how a certain state will
evolve over time.

3. With t ă τ we have smoothing or diagnosis: Computing the probability
of some past events given evidence about the future, for example
Prpxi2|E1,E2,E3,E4q. This task provides a better estimate of the state
than was available at the time as it incorporates more evidence.
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From an inference point of view, filtering and prediction only need to incorporate
information from the past and the present and only requires a forward pass
trough the network. Smoothing also deals with observations from the future
and additionally requires a backward pass.

Example 3.4 For our example on finding failing components in digital
circuits (see Example 3.1), one is typically interested in the health states
of the components at time t, given a sequence of observed electrical inputs
and outputs up to and including t, i.e. the task of filtering. This
corresponds to computing Prphat|W11:t,W21:t,W41:tq for the AND-gate and
Prphnt|W11:t,W21:t,W41:tq for the NOT-gate.

3.3 Inference in Dynamic Bayesian Networks

We now shortly discuss some different approaches to perform inference in
dynamic Bayesian networks, for a more elaborate overview we refer to the
literature (e.g. Koller and Friedman (2009) and Murphy (2002)).

3.3.1 Unrolled Network

Unrolling the transition model of a DBN for a finite number of time slices T
results in a network that is equivalent to a static Bayesian network. This allows
one to perform inference with any standard exact or approximate algorithm for
BNs (e.g. Darwiche (2009) and Koller and Friedman (2009)). Despite the wide
range of existing algorithms, naively unrolling the network for T time slices has
multiple drawbacks:

• The time complexity of inference depends on heuristics used by the
algorithms and is not guaranteed to scale linearly with T .

• The space complexity is OpT q, i.e. the required memory depends on the
time span T .

• The time span T is often unknown upfront and adding an extra time slice,
to cope with new observations, requires to redo inference in the complete
network.

The overcome one or more of these drawbacks, one has proposed a range of
more specific approaches which we will discuss next.
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3.3.2 Constant Space Algorithms

Inference algorithms for static Bayesian networks typically rely on general
purpose heuristics, e.g. min-fill, to find a good variable ordering. By unrolling
the network, however, these heuristics are not guaranteed to find a good ordering,
leading to a non-linear time complexity when T increases. One way to overcome
this behavior is by using a constrained or so called “slice-by-slice” variable
ordering. This ordering forces all variables from slice t to appear before variables
from slice t` 1 and guarantees inference to scale linearly for increasing T .

Example 3.5 For a general DBN, the constrained or “slice-by-slice” ordering
will be z0 ă z1 ă ¨ ¨ ¨ ă zT . For our running example, in any possible constrained
ordering, variable w3t will, for examples, appear before variable w1t`1.

Besides a linear time complexity when T increases, constrained variable orderings
also allow one to perform inference in DBNs with constant space, i.e. memory
resources do not depend on T . This is obtained by a forward and backward pass
trough the network where the conditional probability tables are dynamically
generated and removed (Darwiche 2001a).

3.3.3 Conversion to Hidden Markov Models

It is known that one can represent any discrete-variable DBN by means of
an hidden Markov model (HMM) (Russell and Norvig 2009). This is done by
combining all state variables in the DBN into one single state variable whose
values are all the possible tuples of values of the individual variables. After
this conversion, one can rely on the well-known forward-backward algorithm
for inference in HMMs (Rabiner 1989). This algorithm makes use of dynamic
programming principles to efficiently compute the marginal probabilities by
means of a forward and backward pass trough the network.

The conversion of a DBN into an HMM comes with a cost, however. A DBN
allows one to decompose the state of the underlying process into a set of
variables that can take advantage of sparseness in the transition model. This is
not possible with an HMM and the number of values of the single state variable,
as well as the corresponding transition matrix, typically explodes. Hence, the
conversion into an HMM quickly becomes intractable for all but the smallest
DBNs.
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Figure 3.3: The “cascade” DBN.

Example 3.6 Consider the “cascade” DBN depicted in Figure 3.3 and adopted
from Darwiche (2001a). If we assume all state variables are Boolean, the
transition model has 4 ` 8 ` 8 ` 8 “ 28 parameters. The corresponding
HMM, however, would have 24 states and therefore 28 “ 256 parameters in the
transition matrix.

3.3.4 Interface Algorithm

A key property of DBNs is that the hidden variables xt d-separate the past from
the future, that is, the belief state of the present makes the future independent
of the past. Often, a subset it of xt also suffices to d-separate the past from the
future. This set it, referred to as the interface, consists of the nodes from time
slice t´ 1 that have an outgoing arc to nodes in time slice t (Murphy 2002).

Example 3.7 For the transition model depicted in Figure 3.1c, the interface
is denoted with the dashed oval. It is easy to verify that knowing the values for
these two variables suffices to d-separate the past from the future as they block
all possible paths between variables from time slice t and t´ 1.

The forward-backward algorithm for HMMs is generalized towards DBNs to
exploit the Markov property and d-separation in the network. The resulting
approach, to which one refers as the interface algorithm (ibid.), additionally
exploits the notion of the interface by first reducing the transition model from
a 2TBN to an 1.5TBN. The latter is obtained by removing all non-interface
variables and all arcs in the first time slice of the 2TBN. Then, the 1.5TBN is
used to perform a forward and backward pass trough the network without the
need to explicitly unroll the network.
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w1 t´1

w2 t´1

w4 t´1

hnt´1

hat´1

w3 t´1

w1 t

w2 t

w4 t

hnt

hat

w3 t

Figure 3.4: Reducing the transition model to an 1.5TBN.

Example 3.8 The transition model from our running example is reduced to a
1.5TBN by removing all dashed nodes and arrows as shown in Figure 3.4.

The forward pass involves computing the joint probability distributions
Prpit|E1:tq for every time step t. These distributions, referred to as the forward
messages, can be computed recursively as follows:

Prpit|E1:tq “
ÿ

it´1

Prpit|it´1,EtqPrpit´1|E1:t´1q (3.3)

and
Prpit|it´1,Etq “

ÿ

ztzit

Prpzt|it´1,Etq (3.4)

The factor Prpit|it´1,Etq can be computed on the 1.5TBN without the need
to unroll the network. Then, for the task of filtering or prediction, marginal
probabilities can be computed based on the forward messages as follows:

PrpziT |E1:τ q “
ÿ

iT´1

PrpziT |iT´1,Eτ qPrpiT´1|E1:τ´1q

It is important to note that the forward pass requires to compute the joint
probability distribution over all variables in the interface. Computing a joint
distribution is not a standard inference task in BNs, however, and typically
requires some additional steps. Furthermore, computing the forward message
for a certain time slice requires to incorporate the forward message from the
previous time slice. The standard implementation of the interface algorithm1

makes use of the junction tree algorithm to compute the messages (Murphy

1Available in the Bayes Net Toolbox for Matlab (https://github.com/bayesnet/bnt)

https://github.com/bayesnet/bnt


THE STRUCTURAL INTERFACE ALGORITHM 49

2002). With this approach, it is enforced that all variables in it´1 each form
a clique allowing one to condition the variables of the incoming interface on
the incoming message Prpit´1q. Also the variables in it need to from a clique,
allowing one to compute the outgoing message Prpitq.

Example 3.9 The advantage of computing the forward and backward pass on
the DBN, rather than on the corresponding HMM, can be easily seen for the
“cascade” DBN depicted in Figure 3.3. This network only contains one interface
variable and it suffices to recursively compute the probability distribution for
this single (binary) variable. Remember that the single state variable in the
corresponding HMM would have 24 values.

While performing a forward pass suffices for filtering and prediction, the task of
smoothing also requires a backward pass. Computing the backward message
Prpit|E1:T q can be done on the 1.5TBN in an analogues way as computing
the forward message, as shown by Murphy (ibid.). While the literature often
distinguishes a forward and backward interface, to perform the forward and
backward pass, the interface algorithm does not require to make this difference.

3.4 The Structural Interface Algorithm

We now introduce the structural interface algorithm for exact probabilistic
inference in dynamic Bayesian networks. It unifies state-of-the-art techniques for
inference in static and dynamic networks, by combining principles of knowledge
compilation and weighted model counting with the interface algorithm. The
resulting algorithm not only exploits the repeated structure, but also the local
structure in the distribution induced by the network.

We will first show how the encode the transition model into a propositional
knowledge base for weighted model counting. Next, we explore several
approaches to encode the interface and to actually perform inference. To
demonstrate our approach, we will focus on the transition model as this is the
one that repeats over time. Computing messages for the first time slice, i.e. the
prior distribution, can be done in a similar way.
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3.4.1 Encoding the Transition Model

Following the interface algorithm, we start by reducing the 2TBN transition
model to an 1.5TBN. As noted earlier, the 2TBN and 1.5TBN are not regular
Bayesian networks as nodes from the first time slice do not have an associated
conditional probability distribution. For the 1.5TBN, nodes without a CPT
belong, by definition, to the incoming interface it´1.

To represent the 1.5TBN by means of a propositional knowledge base Σ1.5, we
use the encoding as proposed in Section 2.2.4. Each of the CPTs is encoded into
a formula and Σ1.5 consists of the conjunction of these formulas. Variables from
the incoming interface it´1 are not explicitly encoded into a formula as they
do not have a corresponding CPT. These variables will have a corresponding
indicator variable in Σ1.5, however, as they appear as a parent for at least one
of the nodes of the second time slice of the 1.5TBN.

Example 3.10 Let us consider the 1.5TBN for our running example as depicted
in Figure 3.5. The encoding of the transition model as a propositional formula
gives us the following knowledge base (where we exploit local structure):

w1 t ô p w1 t

w2 t ô p w2 t

w3 t ô p w1 t ^ hntq

_ p hnt ^ p faulty not tq

w4 t ô pw2 t ^ w3 t ^ hatq

_ p hat ^ p faulty and tq

hnt ô phnt´1 ^ p hn row1tq

_ p hnt´1 ^ p hn row2tq

hat ô phat´1 ^ p ha row1tq

_ p hat´1 ^ p ha row2tq

The first two equivalences define the distribution of the input wires of the
circuit, the third and fourth equivalence define the behavior of the NOT-gate

and AND-gate, respectively, and the final two equivalences define the dynamics
of the components’ health state.
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hnt´1

hat´1

w1 t

w2 t

w4 t

hnt

hat

w3 t

hnt´1 Prphnt|hnt´1q

T 0.98
F 0.05

hat´1 Prphat|hat´1q

T 0.98
F 0.05

Prpw1 tq

0.9

Prpw2 tq

0.9
w1 t hnt Prpw3 t|w1 t, hntq

T T 0
T F 0.5
F T 1
F F 0.5

w2 t w3 t hat Prpw4 t|w2 t,w3 t, hatq

T T T 1
T T F 0.5
T F T 0
T F F 0.5
F T T 0
F T F 0.5
F F T 0
F F F 0.5

Figure 3.5: The 1.5TBN for our running example and corresponding CPTs.

3.4.2 Computing the Forward Message

Our approach performs inference in a DBN by recursively computing the forward
message Prpit|it´1,Etq on the 1.5TBN by means of weighted model counting
on the propositional knowledge base Σ1.5. This does not only involve encoding,
then compiling, the 1.5TBN, but also requires to represent the joint distributions
Prpit´1q, to condition the transition model on the incoming message, and Prpitq,
to compute the outgoing message.

We explore several approaches to represent the required distributions, i.e. to
integrate the interface algorithm with knowledge compilation and weighted
model counting. They have different memory requirements and trade-offs
between putting the burden on the compiler, a post-compilation (conditioning)
step or the inference step. Table 3.2 summarizes the complexity of the different
steps for each of the different interface encodings we present below.

For notational convenience, and because of analogy between the forward and
backward pass, we focus on computing the forward message. Furthermore, we
omit the observations E1:t in the remainder of this chapter and refer to the
forward message as Prpitq. Its different entries (possible variable instantiations)
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ENC1 ENC2 ENC3 ENC4

Compilation Op2ω1.5TBN`2¨|i|q Op2ω1.5TBNq Op2ω1.5TBNq Op2ω1.5TBNq

Conditioning n\a 2 ¨ 2|i| ¨Op|∆|q n\a 2|i| ¨Op|∆|q
Evaluation 2 ¨Op|∆|q 2 ¨Op|∆|q 22¨|i|

¨Op|∆|q 2|i| ¨Op|∆|q

Table 3.2: Complexity of each step for the different interface encodings.
Parameter ωN represents the treewidth of network N . Circuit ∆ refers to
the one constructed in the previous step. For Conditioning and Evaluation,
we report the asymptotic complexity of one call (Op|∆|q), multiplied by the
number of required calls (e.g. 2).

are denoted by (I1
t , I2

t , . . . , IMt ). In case all variables are binary, we have
M “ 2|i|. We assume the target language for compilation is d-DNNF, but the
methods also apply to any of its sub-languages.

Compiling the Interface into the Circuit (ENC1)

A joint distribution Prpiq can be naturally encoded into a knowledge base Σi

in a similar ways as discussed in Section 2.2.4. This requires 2|i| formulas and
indicator variables to be added, all in one-to-one correspondence to the rows
of Prpiq. Following this method, we end-up with three knowledge bases being
Σit´1

to encode Prpit´1q, Σit to encode Prpitq and Σ1.5 to encode the 1.5TBN.

Example 3.11 For our running example, with variables hnt´1 and hat´1 in
the incoming interface, Σit´1

is given by the following 4 formulas (and similar
for the outgoing interface):

state1
t´1 ô hnt´1 ^ hat´1 pfor I1

t´1q

state2
t´1 ô hnt´1 ^ hat´1 pfor I2

t´1q

state3
t´1 ô  hnt´1 ^ hat´1 pfor I3

t´1q

state4
t´1 ô  hnt´1 ^ hat´1 pfor I4

t´1q
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Once we have obtained the three knowledge bases, we can conjoin them and
compute the forward message as follows:

pPrpI1
t q, . . . ,PrpInt qq “ EvalÖpCompilepΣit´1

^ Σ1.5 ^ Σitq, wq

where the weight function w is updated to incorporate the incoming message.
For our example, this would be with wpstatej

t´1 q “ pPrpijt´1 q, 1q.

The advantage of this encoding is that, for each time step, only two passes
trough the circuit are needed to compute the forward message (i.e., one call to
EvalÖ). The disadvantage is that the number of required formulas to encode
Prpiq scales exponentially in |i| (i.e. the number of interface variables).

Conditioning the Interface into the Circuit (ENC2)

The exponential aspect of Σi and Σit´1 has an adverse effect on the heuristics
used by general-purpose compilation tools as it not only dwarfs Σ1.5 in size, but
also represents a joint distribution without any local structure. A d-DNNF that
is logically equivalent with the one obtained by CompilepΣ1.5 ^ Σi ^ Σit´1

q

can be obtained by only compiling Σ1.5 with a general-purpose tool and adding
Prpiq and Prpit´1q to the resulting circuit by means of conditioning (cf. Section
2.2.2). Concretely, a joint distribution over all variables in i can be added to a
compiled circuit ∆ in the following way:

Addip∆, iq “
ł

IjPi

p∆|Ijq ^ statej ^ Ij (3.5)

Example 3.12 For our running example, with variables hnt´1 and hat´1 in
the incoming interface, calling Addip∆, it´1q results in the following formula
(and similar for the outgoing interface):

p∆| hnt´1 ^ hat´1q ^ state
1 ^ hnt´1 ^ hat´1

_p∆| hnt´1 ^ hat´1q ^ state
2 ^ hnt´1 ^ hat´1

_p∆| hnt´1 ^ hat´1q ^ state
3 ^ hnt´1 ^ hat´1

_p∆| hnt´1 ^ hat´1q ^ state
4 ^ hnt´1 ^ hat´1
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The result of Addip∆, iq is a d-DNNF which allows us to compute the forward
message as follows:

pPrpI1
t q, . . .PrpInt qq “ EvalÖpAddipAddipCompilepΣ1.5q, it´1q, itq, wq

where the weight function w is updated with wpstatej
t´1 q “ pPrpIjt´1 q, 1q.

The advantage of incorporating Prpiq directly into the d-DNNF is that the
heuristic of the compiler does not have to deal with Σi and can focus on better
compiling the much smaller and more structured sentence Σ1.5. Furthermore,
this approach allows one to share identical subcircuits, leading to an efficient
computation of the forward message with only two passes trough the obtained
circuit. The disadvantage is that the number of conditioning operations scales
exponentially with |i|.

Introducing the Interface as Evidence (ENC3)

We can compute the forward message using only ∆1.5, i.e. the circuit obtained
by CompilepΣ1.5q, without the need to explicitly encode Prpit´1q and Prpitq.
This is done by repeatedly updating the weight function to incorporate each of
the combinations of instantiations of Prpit´1q and Prpitq as evidence (see Step
(2), section 2.2.4). Concretely, the probability of the j-th instantiation in the
forward message can be computed in the following way:

PrpIjt q “
M
ÿ

k“0

EvalÒpCompilepΣ1.5q, wk�jq ¨ PrpIkt´1q

where wk�j incorporates the instantiations Ikt´1 and Ijt and M = 2|i| in case all
interface variables are binary.

Example 3.13 For our running example, assume we have Ijt “ hnt ^  hat
and Ikt´1 “  hnt´1 ^ hat´1, the weight function wk�j would set the weight to
the variables in the interface as follows:

wphntq “ p1, 0q

wphatq “ p0, 1q

wphnt´1q “ p0, 1q

wphat´1q “ p1, 0q

The advantage of bypassing an explicit encoding of the interfaces is that it
lowers the memory requirements as the forward message is directly computed
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on the circuit ∆1.5. The disadvantage is that computing the forward message
requires 22¨|i| passes trough the circuit. Moreover, 22¨|i| ¨ |∆1.5| will be larger
than 2 ¨ |∆| (the evaluation step of the previous two encodings) because identical
subcircuits are note shared.

Encoding for the Structural Interface Algorithm (ENC4)

The approach of compiling Σit´1
^Σ1.5 ^Σit (ENC1) is similar to the interface

algorithm where one adds edges to the moral graph between all nodes in it´1

and it (Murphy 2002). Since the compilation step is the most complex step in
the weighted model counting pipeline, and this approach potentially has to deal
with a more complex knowledge base, we do not prefer this encoding.

For the structural interface algorithm, we propose a hybrid encoding that
employs ENC2 as well as ENC3. Concretely, we explicitly introduce Prpit´1q

by conditioning while Prpitq is implicitly introduced as evidence. This allows
us to compute the probability of the j-th instantiation in the forward message
as follows:

PrpIjt q “ EvalÒpAddipCompilepΣ1.5q, it´1q, w�jq (3.6)

where w�j is updated with wpstatek
t´1 q “ pPrpIkt´1 q, 1q and incorporates the

instantiation Ijt . For each time slice, 2|i| passes trough the circuit are required
to compute the forward message.

The advantage of this encoding is that it combines the advantages of ENC2
and ENC3. More precisely, the benefit of evaluating the circuit multiple times
(ENC3) is that the cost of compilation is amortized over all queries. The benefit
of conditioning (ENC2) is that subcircuits and computations are shared. By
using the hybrid approach, we get some of both advantages, which we will
empirically show to be a good trade-off.

3.5 Optimizations

The use of knowledge compilation to compute the forward message does not
only allow us to exploit local structure, but with some additional optimization
we also fully exploit the repeated structure in the network.
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3.5.1 Static Structure

By definition, the structure of the transition model is time-invariant and there
is no need to repeat the process of encoding and compiling the 1.5TBN and to
introduce Prpit´1q. This allows us to split Equation 3.6 in two parts:

∆R “ AddipCompilepΣ1.5q, it´1q, (3.7)

which is performed only once, and

PrpIjt q “ EvalÒp∆R, w�jq (3.8)

which is performed for each Ijt P it and for each t ă T . Hence, the one-time cost
of Equation 3.7 is amortized over 2|i| ¨ T queries.

In general, one assumes that not only the structure of the transition model but
also the parameters are time-invariant. This is not a strict requirement for our
approach, however. In case the parameters would change over time, we only
have to update the weight function without the need to recompile the model.

3.5.2 Repeated Counting

Computing the forward message by means of Equation 3.8 requires an update
of the weight-function w before any new evaluation pass trough ∆R. Some
variables in the d-DNNF, however, are mapped to time-invariant weights that
never change. We have variables with time-invariant weights in case the following
two conditions are met: (1) the variable is not observed and, (2) not queried.
In general, all of the parameter variables and a subset of the indicator variables
meet these two conditions.

In case a subformula only contains variables with time-invariant weights, its
weighted model count will remain the same for each evaluation pass trough the
compiled circuit. Hence, it suffices to compute the WMC of this subformula
only once and cache the value for subsequent computations. Another way to
deal with this is to combine variables with time-invariant weights and replace
them by a smaller set of variables.

Example 3.14 For our running example (see Figure 3.1), variable w3 t models
the state of wire 3 and is a purely internal variable that is never queried or
observed. Assume we have a d-DNNF which contains the following subformula
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and weight function:

w4t ^ pw3t ^ p faulty andtq with

"

wpw3tq “ a

wpp faulty andtq “ b

This can be replaced by:

w4t ^ p new t with wpp new tq “ a ¨ b

The effect of this transformation is that it reduces the number of unnecessary
computations in each pass trough the circuit. If we would not employ this
transformation, the multiplication a ¨ b will be performed T ¨ 2|i| times although
the result will always be the same. This transformation can be performed in a
deterministic manner by means of one bottom-up pass trough the d-DNNF. As
it only needs to be computed once, i.e. before the evaluation step, the cost is
amortized over 2|i| ¨ T queries

3.6 Experiments

Our experiments address the following four questions:

Q1 How do different algorithms scale with an increasing number of time steps?

Q2 How do both of the interface algorithms scale in the presence of local
structure in the transition model?

Q3 How does the structural interface algorithm scale in case local structure is
not fully exploited?

Q4 How do the different interface encodings compare?

We implemented our algorithm in ProbLog2. For compilation, we use both the
c2d3 and dsharp4 compilers, and retain the smallest circuit. Experiments are
run with a working memory of 8 GB and a timeout of 1 hour.

2Available at http://dtai.cs.kuleuven.be/problog/
3Available at http://reasoning.cs.ucla.edu/c2d/
4Available at https://bitbucket.org/haz/dsharp

http://dtai.cs.kuleuven.be/problog/
http://reasoning.cs.ucla.edu/c2d/
https://bitbucket.org/haz/dsharp
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3.6.1 Models

We generate networks for the following three domains:

Digital Circuit 1 These networks model electronic digital circuits similar to the
one used as running example in this text (and adopted from Darwiche (2009)).
A circuit contains logical AND-gates and OR-gates which all are randomly
connected to each other (without forming loops). For a subset of logical gates,
the input or output is observed and not connected to another gate. The interface
contains all variables that model the health state of the component. Gates can
share a health variable when, for example, they share a power line. We refer
to the networks as DC1-G-H, with G the number of gates and H the number of
health (interface) variables. The number of gates for which the input or output
is observed is 2 ¨ GH . Observations are generated randomly. For each domain
size, we randomly generate 3 networks and report average results.

Digital Circuit 2 These networks are a variant of the networks in DC1 but now
we have a separate health variable for each of the gates and the interface consists
of one multi-valued variable. This variable aggregates all health variables and
encodes, in an ordered way, which gate is most likely to be part of the failing
gates. The introduction of the multi-valued variable facilitates the encoding
of the interface, as compared to DC1, but offers an additional challenge for
inference as it directly depends on each of the health variables. We refer to
the networks as DC2-G with G the number of gates. For each domain size, we
randomly generate 3 networks and report average results.

Mastermind We model the mastermind game, similar to the BNs used in
Chavira, Darwiche, and Jaeger (2006). Instead of modeling the game for a fixed
number of rounds, however, we represent the game as a DBN with one time
slice per round. The interface contains a variable for each of the pegs the game
is played with. The interface thus models the belief of the colors set by the
opponent for each of the pegs. We refer to the networks as MM-C-P, with C the
number colors and P the number of pegs (interface variables).
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3.6.2 Algorithms

We make use of the following four algorithms:

• unrolled JT : The junction tree algorithm on the unrolled network for
which we used SMILE5.

• unrolled COMP : Compiling the unrolled network, using the encoding
introduced in Section 2.2.4.

• standard IA : The standard interface algorithm6 where we experimented
with the jtree dbn inf engine as well as with the smoother engine but
did not observe any significant difference.

• structural IA : The structural interface algorithm where the interface is
encoded using ENC4.

3.6.3 Results

We compare the four algorithms introduced above for an increasing number
of time slices. The results are depicted in Figure 3.6 and allow us to answer
(Q1). On each of the three domains, both of the interface algorithms scale
linear with the number of time steps while this is not the case for inference in
the unrolled network. This shows that, especially for a large number of time
slices, the general-purpose heuristics fail to find a good variable ordering. We do
observe, however, that unrolled JT is more efficient, compared to standard IA,
when the number of time slices is rather small. The reason for this is that
standard IA has to deal with an extra constraint, being that all variables
in the interface have to be in the same clique, which initially causes some
overhead. Furthermore, unrolled JT outperforms unrolled COMP on each of
the three domains despite the local structure present in the networks. Hence,
no guarantees can be provided when a general-purpose implementation is used
to perform inference in the unrolled network.

We compare standard IA and structural IA for the task of computing
the forward message for 10 time slices (note that for both of the interface
algorithms, the complexity of inference is not influenced by the number of
time slices). The results are depicted in Table 3.3 and serve as an answer
to Q2. The structural interface algorithm, which exploits local structure,
successfully performs inference on all of the networks while this is not the case

5Available at http://genie.sis.pitt.edu/
6Available at https://github.com/bayesnet/bnt

http://genie.sis.pitt.edu/
https://github.com/bayesnet/bnt
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Figure 3.6: Total inference time for an increasing number of time slices.
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for the standard interface algorithm. Furthermore, this table indicates that
structural IA works well in case the transition model is complex while the
number of variables in the interface is rather limited. For example, DC1-90-9
requires more compilation and evaluation time than DC1-112-7, although the
latter contains more variables. This is explained by the exponential behavior of
the interface.

We explore the effect of exploiting local structure by the CNF encoding when
compiling the network. The results are depicted in Table 3.5 and serve as an
answer to Q3. Concretely, we consider a CNF encoding that does not exploit
any local structure, a CNF encoding that only exploits determinism and a CNF
encoding that exploits determinism as well as equal parameters. We observe
that, in case no local structure is exploited, the transition model is much harder
to compile and results in very large circuits. Moreover, standard IA clearly
outperforms structural IA in case the latter does not exploit local structure.
Only exploiting determinism significantly simplifies the compilation process but,
for most networks, we can still benefit from also exploiting equal parameters.
For each of the three problem domains, only the results for the two smallest
networks is depicted as inference in the more complex networks requires to
exploit all local structure.

We compare the four different interface encodings proposed in Section 3.4.2.
The results are shown in Table 3.4 and let us answer Q4. We first observe that
ENC4, i.e. the encoding we propose for the structural interface algorithm, is
the only encoding that successfully performs inference in each of the networks.
Second, the mastermind experiment illustrates that compiling the knowledge
base is harder when using ENC1, as was suggested by the complexity indicated
in Table 3.2. Third, the compilation step for ENC3 is the most efficient one, as
it does not compile the interface. Computing the forward message, however,
is in general much slower compared to the other encodings, as also indicated
in Table 3.2. Fourth, although the d-DNNF for ENC3 does not encode the
interface, its size is in general not smaller compared to the other encodings. The
reason for this is that by explicitly encoding the interface we actually do not
increase the number of models in the d-DNNF but rather add extra constraints
on the models already present. Hence, explicitly encoding the interface might
increase the total compilation time but significantly reduces the evaluation time.

As a final remark, we would like to note that each of the experiments finishes
rather fast compared to the given timeout (1 hour). Hence, the choice of the
timeout has only a minimal impact on our conclusions.
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No Local Structure Only Det Det & Equal Par standard IA

Model ∆R comp ∆R comp ∆R comp Tinf
#edges (s) #edges (s) #edges (s) (s)

DC1-G - H ˆ1000 ˆ1000 ˆ1000
20 - 5 4,262 10.4 906 2.6 17 0.1 1
30 - 5 193,594 588.6 19,789 48.6 36 0.2 4

DC2-G
12 - - 1,289 2.5 26 0.1 1
16 - - 2,039 4.1 95 0.4 9

MM-C-P
3 - 3 1,096 3.2 15 0.3 38 0.1 1
6 - 3 - - - - 441 4.5 2

Table 3.5: A comparison of different levels of exploiting local structure in the
transition model. We use interface encoding ENC1 and do not simplify the
circuit. Hence, comp only includes compilation time. Tinf denotes the total
inference needed by standard IA to compute the forward message for 10 time
slices.

3.7 Related Work

Standard algorithms for exact inference on Bayesian networks (Darwiche 2001c;
Dechter 1996; Jensen, Lauritzen, et al. 1990; Lauritzen and Spiegelhalter
1988; Zhang and Poole 1996) only exploit topological structure in the form of
conditional independencies and their complexity is known to be exponential
in the treewidth of the network. Networks exhibiting high treewidth are not
necessarily difficult for exact inference, however, in case they also exhibit a
certain amount of local structure in the form of determinism (Jensen and
Anderson 1990) and context-specific independence (Boutilier et al. 1996).
Exponential speed gains can be obtained by exploiting this local structure and
the complexity of inference is only in worst-case exponential in the treewidth,
i.e. when no local structure exists.

The literature proposes a wide range of approaches for exploiting local structure,
e.g. Chavira and Darwiche (2007), Darwiche (2002), Larkin and Dechter (2003),
Poole and Zhang (2011), and Sang et al. (2005b). In this chapter, we used a
subset of these algorithms which reduce the problem of inference into one of
weighted model counting. We can distinguish two approaches, performing WMC
on the knowledge base by means of search (Sang, Bacchus, et al. 2004; Sang
et al. 2005a,b) or by means of knowledge compilation (Chavira and Darwiche
2005; Darwiche 2001b). The latter can be done by compiling the knowledge
base into a OBDD representation (Brace et al. 1990), d-DNNF representation
(Darwiche 2004; Muise et al. 2010) or SDD representation (Darwiche 2011;
Oztok and Darwiche 2015).

Exact inference for hidden Markov models is based on principles of dynamic
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programming and exploits the fact that the belief state of the present makes
the past independent of the future (Rabiner 1989). This approach was first
generalized towards dynamic Bayesian networks by Zweig (1996) and is referred
to as the frontier algorithm. The notion of a frontier was also used by Kjaerulff
(1995) and later specified to the interface by Murphy (2002) and Darwiche
(2001a).

Exact inference in DBNs requires one to fully compute and represent the belief
state over all variables in the interface. This quickly becomes intractable when
dealing with real-life applications and one often has to resort to approximate
inference methods. A popular approach is to use a factored representation of the
belief state which can be computed in a more efficient way (Boyen and Koller
1998; Murphy and Weiss 2001). Another approach is to rely on sampling such as
sequential Monte Carlo methods (Doucet and Freitas 2001) or Rao-Blackwellized
particle filters (Doucet, Freitas, et al. 2000).

3.8 Discussion

In this chapter, we proposed the structural interface algorithm for exact
probabilistic inference in dynamic Bayesian networks. It relies on knowledge
compilation and weighted model counting to exploit the Markov property in the
network as well as local structure in the transition model. We have shown that
our approach can tackle dynamic models that are considerably more complex
than what can currently be dealt with by exact inference techniques. We have
experimentally shown this on two classes of problems, namely finding failures
in an electronic circuit and performing filtering in the mastermind game.

The use of weighted model counting allows us to encode and exploit local
structure in dynamic networks in a similar way as for static networks. As
demonstrated by our experiments, significant speed gains can be obtained in
case the transition model exhibits a certain amount of local structure. On the
other hand, our approach requires a full representation of the belief state, i.e.
the distribution over the variables in the interface, and this is, similar as for
other specific-purpose algorithms, exponential in the number of variables in the
interface.

Example 3.15 Assume, for our running example depicted in Figure 3.1, we
would have tw1 t, w2 t,w4 tu as observations. In this case, we certainly know
the AND-gate is faulty as its output is high while at least one of its inputs is
low. This implies that Prphat, hntq “ 0 and Prphat, hntq “ 0, allowing us to
more compactly write Prphatq “ 0.
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Local structure in the belief state, in the form of determinism or equal
probabilities, potentially allows us to encode and represent the belief state
in a more compact way. This requires a more flexible approach, however, as it is
not guaranteed this local structure will persist over time and new observations
might introduce additional local structure. In Chapter 5 we will discuss how
the structural interface algorithm can be extended to additionally exploit local
structure in the belief state.



Chapter 4

Probabilistic Logic Programs

4.1 Introduction

Many real world reasoning tasks, such as gene interaction networks, social
networks and web-page classification, involve both relational structure and
uncertainty. This caused a significant interest in statistical relational learning
(Getoor and Taskar 2007) and probabilistic logic programming (De Raedt,
Frasconi, et al. 2008). Probabilistic logic programming (PLP) languages, e.g.
ProbLog (De Raedt, Kimmig, and Toivonen 2007), extend the logic programming
language Prolog with probabilistic choices on which facts are true or false.
The use of a logic programming language allows one to declaratively express
relational structure and, at the same time, the use of probabilistic choices allows
one to deal with uncertainty.

Probabilistic logic programming languages offer an expressive framework to
compactly describe (structural) knowledge. Logical variables are used to
represent abstract objects, rather than specific entities, and range over a
(potentially) infinite domain. As a result, probabilistic reasoning is extremely
challenging as the underlying model might be very complex. Especially programs
with cyclic dependencies which, for example, arise when modeling probabilistic
graphs, are known to be hard to deal with.

Inference in probabilistic logic programs, similar to graphical models, can be
reduced to the task of weighted model counting (WMC) (Fierens et al. 2015).
This reduction involves the conversion of the grounded logic program into an
equivalent (weighted) propositional formula in a CNF representations, after
which any state-of-the-art WMC solver can be called. The conversion step

67
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does not come without a cost, however, as capturing the semantics of the logic
program might lead to an explosion of the corresponding knowledge base. This
puts a burden on the WMC solver and quickly renders inference intractable.

Recent developments in knowledge representation and knowledge compilation
have created new opportunities for inference in probabilistic models. The
Sentential Decision Diagram (SDD) (Darwiche 2011) is a newly introduced
target representation that combines the advantages of Ordered Binary Decision
Diagrams (OBDD) and deterministic-Decomposable Negation Normal Form
(d-DNNF). On the one hand, SDD allows for incremental formula construction
in the same way as OBDD and, on the other hand, they come with the same size
upper bounds as for d-DNNF compilation. Incremental formula construction is
especially useful as it allows for a more flexible compilation strategy, i.e. it is
not strictly required to represent to knowledge base as a formula in CNF.

In this chapter, we first show how probabilistic logic programs can be compiled
into a Sentential Decision Diagram in a bottom-up manner. Next, and our main
contribution, is TP -compilation for inference in probabilistic logic programs.
TP -compilation is different from any of the existing methods in that it interleaves
knowledge compilation with forward reasoning on the logic program and, as such,
does not require to encode the logic program into an intermediate knowledge
base representation. Furthermore, TP -compilation is an anytime algorithm
that, in case the available resources do not allow to compute the exact solution,
provides hard bounds on the inferred probabilities.

Bottom-up compilation of probabilistic logic programs into Sentential Decision
Diagrams was previously published in

J. Vlasselaer, J. Renkens, G. Van den Broeck, and L. De Raedt (2014).
“Compiling probabilistic logic programs into sentential decision diagrams”. In:
Proceedings of the Workshop on Probabilistic Logic Programming (PLP)

Incremental formula construction with TP -compilation and experimental results
were previously published in

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt
(2015). “Anytime inference in probabilistic logic programs with Tp-compilation”.
In: Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI)

Structure of this Chapter

In section 4.2 we review logical inference in logic programs and probabilistic
inference by weighted model counting for probabilistic logic programs. Section
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4.3 shows how we can represent a ground logic program as a Boolean circuit
which then can be compiled into an SDD representation. Section 4.4 introduces
TP -Compilation, a novel anytime inference algorithm for probabilistic logic
programs. Section 4.5 shows the experimental results. Related work is discussed
in Section 4.6 and we conclude this chapter with a discussion in Section 4.7.

4.2 Preliminaries

We will first review the necessary background on logical inference for definite
clause programs and logic programs. For a more detailed overview regarding
this topic, we refer to (Nilsson and Maluszynski 1995). Next, we review exact
inference for probabilistic logic programs by means of weighted model counting
and various techniques for approximate inference.

4.2.1 Logical Inference for Definite Clause Programs

A definite clause program is a finite set of definite clauses, also called rules. Let
A be the set of all ground atoms that can be constructed from the constants,
functors and predicates in a definite clause program P. The model-theoretic
semantics of a definite clause program is given by its unique least Herbrand
model, that is, the set of all ground atoms a P A that are entailed by the logic
program, written P |ù a. The task of logical inference is to determine whether
a program P entails a given atom, called query. This allows one to compute,
for example, whether two nodes in a graph are connected, i.e. whether there is
a path between two nodes.

Example 4.1 Consider the definite clause program depicted in Figure 4.1. The
least Herbrand model is given by tedgepb, aq, edgepb, cq, edgepa, cq, edgepc, aq,
pathpb, aq, pathpb, cq, pathpa, cq, pathpc, aq, pathpa, aq, pathpc, cqu. For a query
pathpb, cq, logical inference will return yes as there indeed is a path going from
node b to node c and pathpb, cq is in the least Herbrand model. For a query
pathpb, aq, logical inference will return no as there is no path going from node
b to node a and pathpb, aq is not in the least Herbrand model.

One of the most common techniques to inference is known as backward reasoning
or SLD-resolution. This approach starts from the query and reasons back
towards the facts. Intuitively, backward reasoning starts by trying to unify the
query atom with the heads of the rules in the program. If it succeeds, each
of the atoms in the body of this rule is treated as a query and the procedure
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a b

c

edgepb, aq. edgepb, cq.

edgepa, cq. edgepc, aq.

pathpX,Yq : - edgepX,Yq.

pathpX,Yq : - edgepX,Zq, pathpZ,Yq.

Figure 4.1: A logic program modeling a cyclic graph.

repeats. It is common to represent this process by means of an SLD-tree (see
Figure 4.2). The process continues till all branches in the tree either succeed or
fail. All facts that appear in a branch that succeeds is often referred to as a
proof or an explanation of the query. An advantage of backward reasoning is
that it starts from the query and, as such, it is goal oriented. A disadvantage is
that special care is needed to avoid unnecessary computations, especially in the
presence of cyclic dependencies (Rocha et al. 2000).

?- path(b,c). 

?- edge(b,c). ?- edge(b,Z’),path(Z’,c). 

?- path(a,c). ?- path(c,c). 

?- edge(a,c). 

success 

?- edge(c,c). 

fail 

?- edge(a,Z’’),path(Z’’,c). … 

success 
Z’ = a 

… 

Figure 4.2: (Part of) SLD-tree for the program shown in Figure 4.1 and the
query pathpb, cq.

Example 4.2 For the program depicted in Figure 4.1 and the query pathpb, cq,
part of the SLD-tree is shown in Figure 4.2. One of the explanations for
the query is tedgepb, aq, edgepa, cqu as these two edges suffice to form a path
between node b and c.
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A second technique to inference is known as forward reasoning. This approach
starts from the facts and reasons forward to derive new knowledge. The
advantage of this technique is that it naturally deals with cyclic dependencies
and avoids unnecessary computations. The drawback is that it blindly generates
new knowledge without taking into account the query, i.e. it is not goal-oriented.
Forward reasoning is done by means of the immediate consequence operator
TP (Van Emden and Kowalski 1976).

Definition 1 (TP operator) Let P be a ground definite clause program. For
a Herbrand interpretation I , the TP operator returns

TPpI q “ th | h : - b1, . . . , bn P P and tb1, . . . , bnu Ď I u

The least fixpoint of this operator is the least Herbrand model of P and is the
least set of atoms I such that TPpI q ” I . Let T kPpHq denote the result of k
consecutive calls of the TP operator, ∆I i be the difference between T i´1

P pHq

and T iPpHq. Then T8P pHq is the least fixpoint interpretation of TP .

Example 4.3 The least fixpoint can be computed efficiently using a semi-naive
evaluation algorithm where only new knowledge is added to an interpretation.
For the program given in Example 4.1, this results in:

I 0
“ H

∆I 1
“ tepb, aq, epb, cq, epa, cq, epc, aqu

∆I 2
“ tppb, aq, ppb, cq, ppa, cq, ppc, aqu

∆I 3
“ tppa, aq, ppc, cqu

∆I 4
“ H

and T8P pHq “
Ť

i ∆I i is the least Herbrand model as given above.

Property 1 Employing the TP operator on a subset of the least fixpoint leads
again to the same least fixpoint:

@I Ď T8P pHq : T8P pI q “ T8P pHq

Property 2 Adding a set of definite clauses P 1 to program P leads to a superset
of the least fixpoint for P:

T8P pHq Ď T8PYP 1pHq
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4.2.2 Logical Inference for Normal Logic Programs

A normal logic program extends a definite clause program and allows for negation,
i.e., it is a finite set of normal clauses. The TP operator for definite clause
programs can be generalized towards stratified normal logic programs, where
the rules in the program are partitioned according to their strata. Let Ph be
the subset of clauses in P where h is the head, then a stratified program is
defined as follows:

Definition 2 (Stratified Program) A normal logic program P is said to be
stratified if there exists a partitioning P1 Y ¨ ¨ ¨ Y Pm of P such that:

if h : - . . . , b, . . . P Pi then Pb Ď P1 Y ¨ ¨ ¨ Y Pi

if h : - . . . , b, . . . P Pi then Pb Ď P1 Y ¨ ¨ ¨ Y Pi´1

The TP operator for normal logic programs is defined as:

TPpI q “ th | h : - b1, . . . , bn P P and I |ù b1, . . . , bnu

where I |ù bi if bi P I and I |ù  bi if bi R I . Then, the canonical model can
be obtained by iteratively computing the fixpoint for each stratum. Let Ii be
the Herbrand interpretation for stratum i, the canonical model for a stratified
program with m strata is computed as:

I1 “ T8P1
pHq

I2 “ T8P2
pI1q Y I1

...

Im “ T8Pm
pIm´1q Y Im´1

and T8P pHq “ Im .
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Example 4.4 Consider the following normal logic program with two strata:

P1

$

&

%

sprinklerOn.

rain : - cloudy.

wetGrass : - rain.

P2

"

sprinkler : -  cloudy, sprinklerOn.

wetGrass : - sprinkler.

for which computing the canonical model results in:

I1 “ tsprinklerOnu

I2 “ tsprinkler, wetGrassu Y I1

and T8P pHq “ tsprinklerOn, sprinkler, wetGrassu.

4.2.3 Probabilistic Inference by Weighted Model Counting

Many of the existing inference techniques for probabilistic logic programs rely
on weighted model counting and knowledge compilation. Historically, a logic
program is encoded by means of an hand-tailored intermediate representation
which then is compiled into an (ordered) binary decision diagram (Mantadelis
and Janssens 2010). Most recent techniques follow a more general approach
where the program is first encoded into a CNF representation which then can
be fed to any off-the-shelf WMC solver. We briefly discuss the key steps of this
approach and refer to Fierens et al. (2015) for full details.

Grounding

The first step is to ground the program with respect to the queries and evidence.
Concretely, one tries to find the part of the grounding that is relevant to the
queries q and evidence e=E. Intuitively, this is done by applying SLD-resolution
on all atoms in q Y e, that is all query and evidence atoms. The set of ground
rules encountered during this process is referred to as the relevant ground
program with respect to q and E = e. It is safe to restrict the grounding to
these rules only and the relevant ground program contains all the necessary
information to compute Prpq|e “ Eq.
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a b

c
0.8

0.9

0.4

0.3

0.4 : : edgepb, aq. 0.3 : : edgepb, cq.

0.8 : : edgepa, cq. 0.9 : : edgepc, aq.

pathpX,Yq : - edgepX,Yq.

pathpX,Yq : - edgepX,Zq, pathpZ,Yq.

Figure 4.3: A probabilistic logic program modeling a cyclic probabilistic graph.

Example 4.5 For the probabilistic logic program shown in Figure 4.3 and a
query pathpa, cq, we would obtain the following relevant ground program:

pathpa, cq : - edgepa, cq.

pathpa, cq : - edgepa, cq, pathpc, cq.

pathpc, cq : - edgepc, aq, pathpa, cq.

Note that the probabilistic facts edgepb, aq and edgepb, cq do not appear in the
relevant ground program as they are not required to answer the query.

Conversion

The second step is to convert the rules in the relevant ground program into an
equivalent propositional formula, typically in CNF. This step includes taking
into account the difference in semantics between logic programming (with closed
world assumption) and first-order logic (without closed world assumption).
Hence, conversion into a propositional knowledge base is, at least for cyclic
programs, not simply a matter of rewriting.

The conversion of a ground logic program P into an equivalent propositional
knowledge base ΣP requires that MODpPq “ SAT pΣPq, where MODpPq
denotes the set of models of P and SAT pΣPq denotes the set of models
of ΣP . For acyclic rules, the conversion step is straightforward and
only requires to take Clark’s completion (Clark 1978). That is, for
each head atom h with k corresponding rules, h : - b1,1, . . . , b1,m, . . . ,
h : - bk,1, . . . , bk,n we add to the knowledge base the following formula:
h ô pb1,1 ^ ¨ ¨ ¨ ^ b1,mq _ ¨ ¨ ¨ _ pbk,1 ^ ¨ ¨ ¨ ^ bk,nq.
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For programs with cyclic rules, the conversion step is more complicated and
requires additional variables and clauses to correctly capture the semantics of
every cycle. One way to do this, is by rewriting the ground program in order
to “break” the cycles (Janhunen 2004). Intuitively, rewriting can be seen as
duplicating ground atoms where different copies are used in different contexts.
Once a cycle free ground program is obtained, Clark’s completion can be used
to obtain the knowledge base as described above.

Example 4.6 Assume we have the following ground logic program:

pathpb, cq : - edgepb, cq.

pathpb, cq : - edgepb, aq, pathpa, cq.

pathpa, cq : - edgepa, cq.

pathpa, cq : - edgepa, bq, pathpb, cq.

The completion of this set of rules can be satisfied by setting pathpa, cq,
pathpb, cq, edgepb, aq, edgepa, bq to true and everything else to false. This
is not a valid possible world under logic programming semantics, however, as
there is no base-case to make either pathpa, cq or pathpb, cq true. One way to
correctly deal with this program is to rewrite it as follows:

pathpb, cq : - edgepb, cq.

pathpb, cq : - edgepb, aq, aux pathpa, cq.

pathpa, cq : - edgepa, cq.

pathpa, cq : - edgepa, bq, aux pathpb, cq.

aux pathpb, cq : - edgepb, cq.

aux pathpa, cq : - edgepa, cq.

Where the original ground program contains cyclic dependencies, such as
pathpb, cq´pathpa, cq´pathpb, cq, these do not appear in the rewritten program.
The new program is obtained by keeping a trace for each of the atoms and
duplicate the rules which do not form a loop, i.e. the rules for which none of
the atoms in the body is already in the trace.
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Then, Clark’s completion would result in the following knowledge base (and
obtaining a CNF out of this knowledge base is simply a matter of rewriting):

pathpb, cq ô edgepb, cq _ pedgepb, aq ^ aux pathpa, cqq

pathpa, cq ô edgepa, cq _ pedgepa, bq ^ aux pathpb, cqq

aux pathpb, cq ô edgepb, cq.

aux pathpa, cq ô edgepa, cq.

Weighted Model Counting

The third step is to define a weight function such that the weight of a model in
the probabilistic logic program is the same as the weight of the corresponding
model in the propositional knowledge base. To do so, we distinguish two types
of literals:
(1) for each of the literals f and  f in the knowledge base that correspond to a
probabilistic fact p : : f we set wpfq “ p and wp fq “ 1´ p

(2) for all other literals l and  l we set wplq “ 1 and wp lq “ 1

Once a weighted propositional knowledge base is obtained, we can perform
probabilistic inference by means of weighted model counting. For probabilistic
logic programs, it is common to rely on knowledge compilation.

4.2.4 Approximate Inference

Despite a lot of progress in weighted model counting and knowledge compilation,
exact inference is often infeasible when dealing with real-life problems and one
quickly has to resort to approximate methods. We can distinguish different
methodologies and shortly discuss some of the relevant techniques.

Simplified Problem

A straightforward, yet effective, way to deal with problems where exact inference
is infeasible is to simplify the problem. A first approach is to only consider
a subset of the probabilistic facts as this will typically reduce the size of the
relevant ground program. A second approach is to rephrase the query of interest.
A typical example for the latter are the probabilistic graphs, as used in our
examples, where one rewrites the query to only allow paths up to a certain
length rather than “infinite” length. While this is certainly effective for most
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graphs, as longer paths typically come with smaller probabilities, it is not always
easy to generalize towards other programs.

The advantage of simplifying the problem is that it allows us to reuse any of
the existing (exact) inference techniques. One only has to sufficiently reduce
the size of the relevant ground program in order to make inference tractable
for the available recourses, i.e. available time and memory. The disadvantage
is that the computed probabilities are rather meaningless as it is impossible
to verify whether they are an underestimate or an overestimate of the actual
probability. Hence, simplifying the problem is only useful for a small subset of
problems and should be avoided in general.

Example 4.7 Consider the following probabilistic logic program:

0.9 : : a. 0.9 : : b.

c : -  a.

c : - b.

for which we have Pr pcq “ 0.91. Simplifying the program by removing
probabilistic fact a gives Pr pcq “ 1 and the computed probability is an
overestimate of the actual probability. Simplifying the program by removing
probabilistic fact b gives Pr pcq “ 0.1 and the computed probability is an
underestimate of the actual probability.

Sampling

Many approximate inference techniques for probabilistic models rely on some
sort of sampling and avoid the need to simplify the problem. Forward sampling
acts directly on the probabilistic logic program and generates different samples
of the program in order to estimate the probability of the query. Intuitively,
forward sampling picks a truth-value for each of the probabilistic facts, according
to their probability, and uses logical inference to infer whether the program
entails the query. By doing this multiple times, one can get an estimate of
the true probability of the query. An alternative sampling approach is to first
convert the relevant ground program into a weighted propositional knowledge
base, in the same way as done for exact inference. Next, one can use a sampling
approach that acts on propositional knowledge bases, e.g. MC-SAT (Poon and
Domingos 2006).

The advantage of sampling is that it is quite straightforward and easy to
implement. A disadvantage is that it does not give strong guarantees (in the
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form of bounds) on the computed probabilities. Especially for highly skewed
distributions, i.e. in the presence of probabilistic facts with extremely high or
low probabilities, it is known that sampling techniques often perform poorly.

Selected Explanations

All of the approximate techniques discussed above only provide an estimate and
it is unknown whether this is an underestimate or overestimate of the actual
probability. More informative results are obtained in case the approximate
algorithms return hard bounds with respect to the actual probability.

A hard lower bound can be obtained by only performing inference on a subset
of the explanations or proofs obtained after (or during) the grounding step.
Possible selection criteria include all explanations up to a certain length, all
explanations for which the probability is above a certain threshold, or the k-best
explanations (for a given number of k) for which this probability is the highest.

Example 4.8 Consider the following probabilistic logic program:

0.4 :: edgepb, aq. 0.3 :: edgepb, cq.

0.8 :: edgepa, cq.

pathpX,Yq : - edgepX,Yq.

pathpX,Yq : - edgepX,Zq, pathpZ,Yq.

For the query pathpb, cq we obtain the following two explanations; edgepb, cq
or edgepb, aq ^ edgepa, cq. The probabilities of the explanations are 0.3 (for
edgepb, cq) and 0.8 · 0.4 = 0.32 (for edgepb, aq ^ edgepa, cq), and with k = 1 we
would thus select the longer explanation.

A hard upper bound for the actual probability can be obtained by only performing
inference on partial explanations, i.e. by only considering a subset of the
probabilistic facts in an explanation. Partial explanations can be obtained by
stopping SLD-resolution before it is known whether the branch succeeds or
fails, or by cutting the SLD-tree at a certain depth (Poole 1993). In practice,
this approach is only valid for definite clause programs and often computes
probabilities close to 1, i.e. the trivial upper bound.

Recently, Renkens, Kimmig, et al. (2014) proposed to first encode the ground
relevant program into a propositional knowledge, in the same way as for exact
inference, and formulates the explanations search as weighted PMAX-SAT
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problem on this knowledge base. This approach is encoded such that solutions
can iteratively be obtained from a standard (weighted) PMAX-SAT solver.
These explanations then provide a lower bound for the probability of the query.
An upper bound can be obtained based on explanations for the negation of the
query.

4.3 Bottom-Up Compilation for Probabilistic Logic
Programs

Exact inference for probabilistic logic programs first encodes the relevant ground
program into a propositional knowledge base which then is fed to an off-the-shelf
solver for weighted model counting. Many of these solvers, for example d-DNNF
knowledge compilers, require the knowledge base to be in a CNF representation,
i.e. a conjunction of clauses. For probabilistic logic programs, however, the
conversion into CNF requires the introduction of auxiliary variables. This
increases the search space the solver has to deal with, e.g. to find a good
variable ordering, and significantly decreases its performance.

Target representations and knowledge compilers that efficiently support
incremental formula construction do not require to encode the knowledge base
into a CNF representation as they can compile a formula in a bottom-up manner.
Recently, bottom-up compilation of graphical models into sentential decision
diagrams has shown to outperform other compilation approaches (Choi et al.
2013). As we will show in the remainder of this section, bottom-up compilation
is even more relevant for probabilistic logic programs as it allows us to omit the
auxiliary variables.

4.3.1 Auxiliary Variables by Conversion to CNF

Applying Clark’s completing on a ground logic program results in a set of
equivalences where a variable is equivalent with a disjunction of conjunctions.
One way to convert this knowledge base into a CNF representation is to
decompose this disjunction by introducing an auxiliary variable for each of the
conjunctions. While this avoids an exponential blow-up of the CNF, it obviously
requires a significant amount of additional variables.
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Example 4.9 Assume we have the following simple relevant ground program:

a : - b, c.

a : - d, e.

Clark’s completion will result in the following formula:

aô pb^ cq _ pd^ eq

Conversion into CNF will first introduce two auxiliary variables and rewrites
the formula as follow:

aux1ô b^ c

aux2ô d^ e

aô aux1_ aux2

After which the CNF can be obtained by simply rewriting.

4.3.2 Auxiliary Variables by Cycle Breaking

As illustrated in Section 4.2.3, auxiliary variables are required to correctly
capture the semantics of cyclic rules in a logic program. We now show a more
elaborate example to illustrate how cycling breaking might lead to a blow-up of
the relevant ground program.

Example 4.10 Consider a social network with a domain of three persons which
all possibly smoke. The goal of the program is to compute the probability for
each person that they actually smoke, based on their stress-level and friends.

0.4 :: friendspa, bq. 0.8 :: friendspa, cq. 0.2 :: friendspc, bq.

0.5 :: friendspb, aq. 0.9 :: friendspc, aq. 0.1 :: friendspb, cq.

0.1 :: stresspaq. 0.5 :: stresspbq. 0.9 :: stresspcq.

smokespXq : - stresspXq.

smokespXq : - friendspX,Y q, smokespY q.
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The relevant ground program is shown below (we dropped the probabilistic
facts as they are the same as in the non-grounded program)

smokespaq : - stresspaq. smokespbq : - stresspbq. smokespcq : - stresspcq.

smokespaq : - friendspa, bq, smokespbq. smokespaq : - friendspa, cq, smokespcq.

smokespbq : - friendspb, aq, smokespaq. smokespbq : - friendspb, cq, smokespcq.

smokespcq : - friendspc, aq, smokespaq. smokespcq : - friendspc, bq, smokespbq.

The cycle-free ground program looks as follow, all smokes-* atoms are auxiliary
variables necessary to break the loops.

smokespaq : - stresspaq. smokespaq : - friendspa, bq, smokes-apbq.

smokespbq : - stresspbq. smokespaq : - friendspa, cq, smokes-apcq.

smokespcq : - stresspcq. smokespbq : - friendspb, aq, smokes-bpaq.

smokespbq : - friendspb, cq, smokes-bpcq.

smokes-apbq : - stresspbq. smokespcq : - friendspc, aq, smokes-cpaq.

smokes-apcq : - stresspcq. smokespcq : - friendspc, bq, smokes-cpbq.

smokes-bpaq : - stresspaq. smokes-apbq : - friendspb, cq, smokes-abpcq.

smokes-bpcq : - stresspcq. smokes-apcq : - friendspc, bq, smokes-acpbq.

smokes-cpaq : - stresspcq. smokes-bpaq : - friendspa, cq, smokes-abpcq.

smokes-cpbq : - stresspbq. smokes-bpcq : - friendspc, aq, smokes-bcpaq.

smokes-bcpaq : - stresspaq. smokes-cpaq : - friendspa, bq, smokes-acpbq.

smokes-acpbq : - stresspbq. smokes-cpbq : - friendspb, aq, smokes-bcpaq.

smokes-abpcq : - stresspcq.
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4.3.3 Compilation Without Auxiliary Variables

We can avoid the need to explicitly introduce the auxiliary variables by
representing the loop-free ground program as a Boolean circuit. Figure 4.4
depicts the Boolean circuit for the ground program of Example 4.10. Each
of the leafs is a variable that corresponds to a probabilistic fact, and each
of the root nodes corresponds to a ground atom we want to compute the
probability of. Intuitively, each of the other variables is directly replaced
by its corresponding formula. For example, the left-most child of smokespaq
(the node annotated with (ii)) encodes the Boolean function for the clause
smokespaq : - friendspa, bq, smokes-apbq. and its subgoals where, smokes-apbq
is encoded by the node annotated with (i). Once this Boolean circuit is obtained,
it can be compiled into an SDD representation by means of a single bottom-up
pass by repeated application of the apply-function

Example 4.11 Figure 4.5 depicts how we can compile the left-most child of
smokespaq, that is, the clause smokespaq : - friendspa, bq, smokes-apbq. and it
subgoals, into an SDD representation. Important to note is that none of the
auxiliary variables explicitly appears in the compiled representation. Instead,
each of these variables correspond to a formula and, in each of the steps, we
build further upon the formulas compiled in the previous steps. For example,
we first compile an SDD for smokes-apbq (the second step) which then is used
to compile and SDD for smokespaq (the third step).

Some more intuition on how to “read” the obtained SDD representation depicted
in Figure 4.5c. The decision in node 4 is whether friendspb, cq ^ stresspcq is
true (represented by node 3) or false (represented by node 1). In the first case,
one proceeds with checking whether friendspa, bq is true. In the second case,
one proceeds with checking node 2, which is itself an SDD.
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friendspa, bq friendspa, cq friendspb, aq friendspb, cq friendspc, aq friendspc, bq

stresspaq stresspbq stresspcq

^ ^ ^ ^ ^ ^

_ _ _ _ _ _(i)

^
^

^ ^
^

^(ii)

_ _ _

smokespaq smokespbq smokespcq

Figure 4.4: Boolean circuit for the program from Example 4.10.

friends(a,b) stress(b) stress(c) friends(b,c)

(a) Step 1; Instantiate the required variables into an SDD representation.

friends(a,b)

3

 stress(b)  ⊤

1

friends(b,c) ¬stress(c) ¬friends(b,c) ⊤

1

friends(b,c) stress(c) ¬friends(b,c) ⊥

(b) Step 2; Compiling smokes-apbq ô pfriendspb, cq ^ stresspcqq _ stresspbq.

2

stress(b) friends(a,b) ¬stress(b) ⊥

4

  friends(a,b)

1

friends(b,c) ¬stress(c) ¬friends(b,c) ⊤

3

friends(b,c) stress(c) ¬friends(b,c) ⊥

(c) Step 3; Compiling smokespaq ô friendspa, bq, smokes-apbq.

Figure 4.5: The three required steps to compile, in a bottom-up manner, the
clause smokespaq : - friendspa, bq, smokes-apbq. into an SDD representation.
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4.4 Tp-Compilation

Exact inference techniques for probabilistic logic programs, perform a sequence
of isolated steps; (1) grounding of the program, (2) conversion of the ground
program into an equivalent propositional knowledge base, and (3) perform
inference by means of knowledge compilation and weighted model counting.
Even the bottom-up compilation approach, as presented in the previous section,
requires to completely unfold the underlying model. This includes breaking the
cycles, by rewriting the program, and encoding of the ground program as an
intermediate Boolean circuit representation.

We now propose TP-compilation for anytime inference in probabilistic logic
programs. The incentive of our inference algorithm is to interleave formula
construction and compilation by means of forward reasoning. The two
advantages are that (a) the conversion to propositional logic happens during
rather than after reasoning within the logic programming semantics, avoiding
the expensive introduction of additional variables and propositions to deal with
cycles, and (b) at any time in the process, the current formulas provide hard
bounds on the probabilities.

4.4.1 TcP Operator

The formal basics of our approach is the TcP operator which generalizes the
TP operator for logic program towards the probabilistic setting. Although
the TP operator, and forward reasoning in general, naturally considers all
consequences of a program, using the relevant ground program allows us to
restrict the approach to the queries of interest. As common in probabilistic logic
programming, we assume the finite support condition, i.e., the queries depend
on a finite number of ground probabilistic facts. For ease of notation, we first
only consider definite clause programs and treat normal logic programs towards
the end of this section.

Definite Clause Programs

We use forward reasoning to build a formula λa for every atom a P A such that
λa exactly describes the total choices C Ď F for which C YR |ù a. Such λa
can be used to compute the probability of a via WMC.
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Definition 3 (Parameterized interpretation) A parameterized interpreta-
tion I of a ground probabilistic logic program P with probabilistic facts F and
atoms A is a set of tuples pa, λaq with a P A and λa a propositional formula
over F expressing in which interpretations a is true.

Example 4.12 For the program shown in Figure 4.3, abbreviating predicate
names by initials, the parameterized interpretation is:

t
`

epb, aq, λepb,aq
˘

,pepb, cq, λepb,cq
˘

, pepa, cq, λepa,cq
˘

, pepc, aq, λepc,aq
˘

,

pppb, aq, λppb,aq
˘

,pppb, cq, λppb,cq
˘

, pppa, cq, λppa,cq
˘

, pppc, aq, λppc,aq
˘

,

pppa, aq, λppa,aq
˘

,pppc, cq, λppc,cq
˘

u.

and, for instance, λepb,aq “ epb, aq since epb, aq is true in exactly those worlds
where the total choice includes this edge, and λppb,cq “ epb, cq_repb, aq^epa, cqs
since ppb, cq is true in exactly those worlds where the total choice includes the
direct edge or the two-edge path over a.

A naive approach to construct the λa would be to compute Ii “ T8RYCi
pHq

for every total choice Ci Ď F and to set λa “
Ž

i:aPIi

Ź

fPCi
f , that is, the

disjunction explicitly listing all total choices contributing to the probability of
a. Clearly, this requires a number of fixpoint computations exponential in |F |,
and furthermore, doing these computations independently does not exploit the
potentially large structural overlap between them.

Therefore, we introduce the TcP operator. It generalizes the TP operator to
work on the parameterized interpretation and builds, for all atoms in parallel on
demand, formulas that are logically equivalent to the λa introduced above. For
ease of notation, we assume that every parameterized interpretation implicitly
contains a tuple ptrue,Jq, and, just as in regular interpretations, we do not list
atoms with λa ” K. Thus, the empty set implicitly represents the parameterized
interpretation tptrue,Jqu Y tpa,Kq|a P Au for a set of atoms A.

Definition 4 (TcP operator) Let P be a ground probabilistic logic program
with probabilistic facts F and atoms A. Let I be a parameterized interpretation
with pairs pa, λaq. Then, the TcP operator is TcPpIq “ tpa, λ1aq | a P Au where

λ1a “

#

a if a P F
Ž

pa :- b1,...,bnqPPpλb1 ^ ¨ ¨ ¨ ^ λbnq if a P AzF .

Intuitively, where the TP operator (repeatedly) adds an atom a to the
interpretation whenever the body of a rule defining a is true, the TcP operator
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adds to the formula for a the description of the total choices for which the rule
body is true. In contrast to the TP operator, where a syntactic check suffices
to detect that the fixpoint is reached, the TcP operator requires a semantic
fixpoint check for each formula λa, which we write as Ii ” TcPpIi´1q.

Definition 5 (Fixpoint of TcP) A parameterized interpretation I is a fix-
point of the TcP operator if and only if for all a P A, λa ” λ1a, where λa and
λ1a are the formulas for a in I and TcPpIq, respectively.

It is easy to verify that for F “ H, i.e., a ground logic program P, the
iterative execution of the TcP operator directly mirrors that of the TP operator,
representing atoms as pa,Jq. We use λia to denote the formula associated with
atom a after i iterations of TcP starting from H. We use SDDs to efficiently
represent the formulas λa as will be discussed in Section 4.4.2.

Example 4.13 Applying TcP to the program given in Figure 4.3 results in
the following sequence:

The first application of TcP sets:

λ1
epb,aq “ epb, aq, λ1

epa,cq “ epa, cq, λ1
epb,cq “ epb, cq, λ1

epc,aq “ epc, aq

These remain the same in all subsequent iterations.

The second application of TcP starts adding formulas for path atoms, which
we illustrate for just two atoms:

λ2
ppb,cq “ λ1

epb,cq _ pλ
1
epb,aq ^ λ

1
ppa,cqq _ pλ

1
epb,cq ^ λ

1
ppc,cqq

“ epb, cq _ pepb, aq ^ Kq _ pepa, cq ^ Kq ” epb, cq

λ2
ppc,cq “ pλ

1
epc,aq ^ λ

1
ppa,cqq “ pepc, aq ^ Kq ” K

That is, the second step considers paths of length at most 1 and adds
pppb, cq, epb, cqq to the parameterized interpretation, but does not add a formula
for ppc, cq, as no total choices making this atom true have been found yet.

The third iteration, adds information on paths of length at most 2:

λ3
ppb,cq “ λ2

epb,cq _ pλ
2
epb,aq ^ λ

2
ppa,cqq _ pλ

2
epb,cq ^ λ

2
ppc,cqq

” epb, cq _ pepb, aq ^ epa, cqq

λ3
ppc,cq “ pλ

2
epc,aq ^ λ

2
ppa,cqq ” pepc, aq ^ epa, cqq
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Intuitively, TcP keeps adding longer sequences of edges connecting the
corresponding nodes to the path formulas, reaching a fixpoint once all acyclic
sequences have been added.

Correctness We show that for increasing i, TciPpHq reaches a least fixpoint
Tc8P pHq where the λa are exactly the formulas needed to compute the probability
for each atom by WMC.

Theorem 1 For a ground probabilistic definite clause program P with
probabilistic facts F , rules R and atoms A, let λia be the formula associated
with atom a in TciPpHq. For every atom a, total choice C Ď F and iteration i,
we have:

C |ù λia Ñ C YR |ù a

Proof by induction: i “ 1: easily verified. iÑ i`1: easily verified for a P F ; for
a P AzF , let C |ù λi`1

a , that is, C |ù
Ž

pa :- b1,...,bnqPPpλ
i
b1
^ ¨ ¨ ¨ ^ λibnq. Thus,

there is a a : - b1, . . . , bn P P with C |ù λibj for all 1 ď j ď n. By assumption,

C YR |ù bj for all such j and thus C YR |ù a. ˝

Corollary 1 After each iteration i, we have WMCpλiaq ď Prpaq.

Theorem 2 For a ground probabilistic definite clause program P with
probabilistic facts F , rules R and atoms A, let λia be the formula associated
with atom a in TciPpHq. For every atom a and total choice C Ď F , there is an
i0 such that for every iteration i ě i0, we have

C YR |ù a ô C |ù λia

Proof: Ð: Theorem 1. Ñ: C YR |ù a implies Di0@i ě i0 : a P T iCYRpHq. We

further show @j : a P T jCYRpHq Ñ C |ù λja by induction. j “ 1: easily verified.

j Ñ j` 1: easily verified for a P F ; for other atoms, a P T j`1
CYRpHq implies there

is a rule a : - b1, . . . , bn P R such that @k : bk P T
j
CYRpHq. By assumption,

@k : C |ù λjbk , and by definition, C |ù λj`1
a . ˝

Thus, for every atom a, the λia reach a fixpoint λ8a exactly describing the
possible worlds entailing a, and the TcP operator therefore reaches a fixpoint
where for all atoms Prpaq “ WMCpλ8a q.

1

1The finite support condition ensures this happens in finite time.
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Normal Logic Programs

The correspondence with the TP operator allows us to extend the TcP operator
towards stratified normal logic programs (Sec. 4.2.2). To do so, we apply the
TcP operator stratum by stratum, that is, we first have to reach a fixpoint for Pi
before considering the rules in Pi`1. Let Ii be the parametrized interpretation
for stratum i, the set of formulas for a stratified program with m strata is
obtained by:

I1 “ Tc8P1
pHq

I2 “ Tc8P2
pI1q

...

Im “ Tc8Pm
pIm´1q

Following the definition of stratified programs, the formula for a negative literal
 a is only required once a fixpoint for the positive literal a has been reached.
Hence, λ a can be obtained as  λa.

4.4.2 Exact Inference

Probabilistic inference iteratively calls the TcP operator until the fixpoint is
reached. This involves incremental formula construction (cf. Definition 4) and
equivalence checking (cf. Definition 5). Then, for each query q, the probability is
computed as WMCpλqq. An arbitrary propositional sentence does not efficiently
support these operations and we need to represent our sentences λa by means
of a tractable target language.

An efficient realization of our evaluation algorithm is obtained by representing
the formulas in the interpretation I by means of a Sentential Decision
Diagram (SDD), which can handle the required operations efficiently (Darwiche
2011). Hence, we can replace each λa in Definition 4 by its equivalent SDD
representation Λa and each of the Boolean operations by the apply-operator
for SDDs which, given ˝ P t_,^u and two SDDs Λa and Λb, returns an SDD
equivalent with pΛa ˝ Λbq.

The TcP operator is, by definition, called on I. To allow for different evaluation
strategies, however, we propose a more fine-grained algorithm where, in each
iteration, the operator is only called on one specific atom a, i.e., only the rules
for which a is the head are evaluated, denoted by TcPpa, Ii´1q. Note that, in
case of normal logic programs, we only consider the rules within one stratum.
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Each iteration i of TP -compilation consists of two steps;

1. Select an atom a P A.

2. Compute Ii “ TcPpa, Ii´1q

The result of Step 2 is that only the formula for atom a is updated and, for
each of the other atoms, the formula in Ii is the same as in Ii´1. It is easy to
verify that TP -compilation reaches the fixpoint Tc8P pHq in case the selection
procedure frequently returns each of the atoms in P.

Conditional Probabilities Once a fixpoint is reached, conditional probabilities
can be computed using Bayes’ rule. The probability of a query q, given a set e
of observed (or evidence) atoms, and a vector E of observed truth values, is
computed as:

Prpq|e “ Eq “
WMCpλ8q ^ λ

8
E q

WMCpλ8E q
with λ8E “

ľ

ePE

λ8e

Hence, computing conditional probabilities additionally requires the construction
of a formula λ8E that represents the evidence E.

4.4.3 Anytime Inference

Computing the exact probability of a query involves iteratively calling the
TcP operator until the fixpoint is reached. Our algorithm can be stopped at
any time, however, and provides a hard lower bound on the actual probability.
Simultaneously, we can compile a second SDD representation for each of the
query atoms to also provide a hard upper bound. As computation of the lower
and upper bound operates on different formulas, an anytime algorithm should
alternate between compiling these formulas.

Lower Bound

Following Theorem 1, we know that, after each iteration i, WMCpλiaq is a lower
bound on the probability of atom a, i.e., WMCpλiaq ď Prpaq “ WMCpλ8a q,
which holds for definite clause programs as well as for stratified normal logic
programs. To quickly increase WMCpλiaq and, at the same time, avoid a blow-up
of the formulas in I, the selection procedure we employ picks the atom which
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maximizes the following heuristic value:

WMCpΛiaq ´WMCpΛi´1
a q

φa ¨ pSizepΛiaq ´ SizepΛi´1
a qq{SizepΛi´1

a q

where SizepΛq denotes the number of edges in SDD Λ and φa adjusts for the
importance of a in proving queries.

Concretely, Step 1 of TP -compilation calls TcPpa, Ii´1q for each a P A, computes
the heuristic value and returns the atom a1 for which this value is the highest.
Then, Step 2 performs Ii “ TcPpa

1, Ii´1q. Although there is overhead involved
in computing the heuristic value, as many formulas are compiled without storing
them, this strategy works well in practice. We take as value for φa the minimal
depth of the atom a in the SLD-tree for each of the queries of interest. This
value is a measure for the influence of the atom on the probability of the queries.

Example 4.14 For our example program depicted in Figure 4.3, and the query
ppb, cq, the use of φa would give priority to compile ppb, cq as it is on top of
the SLD-tree (see Figure 4.2). Without φa, the heuristic would give priority to
compile ppa, cq as it has the highest probability.

Upper bound

To compute an upper bound for definite clause programs, we select F 1 Ă F
and treat each f P F 1 as a logical fact rather than a probabilistic fact, that is,
we conjoin each λa with

Ź

fPF 1 λf . In doing so, we simplify the compilation
step of our algorithm, because the number of possible total choices decreases.
Furthermore, at a fixpoint, we have an upper bound on the probability of the
atoms, i.e., WMCpλ8a |λF 1q ě Prpaq, because we overestimate the probability of
each fact in F 1.

Randomly selecting F 1 Ă F does not yield informative upper bounds (they
are close to 1). As a heuristic, we compute for each of the facts the minimal
depth in the SLD-trees of the queries of interest and select for F 1 all facts
whose depth is smaller than some constant d. Hence, we avoid the query to be
deterministically true as for each of the proofs, i.e., traces in the SLD-tree, we
consider at least one probabilistic fact. This yields tighter upper bounds.

Example 4.15 For our example program depicted in Figure 4.3, and the query
ppb, cq, both of the edges starting in node b are at a depth of 1 in the SLD-tree
(see Figure 4.2). Hence, it suffices to compile only them, and treat both other
edges as logical facts, to obtain an upper bound smaller than 1.
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4.5 Experiments

Our experiments address the following questions:

Q1 How does TP -compilation compare to exact sequential WMC approaches?

Q2 How does TP -compilation compare to anytime sequential approaches?

Q3 What is the impact of approximating the model?

We compute relevant ground programs as well as CNFs (where applicable)
following Fierens et al. (2015) and use the SDD package developed at UCLA2.
Experiments are run on machines with 16 GB of memory.

4.5.1 Exact Inference

We use datasets of increasing size from two domains:

Smokers. Following Fierens et al. (ibid.), we generate random power law graphs
for the standard ‘Smokers’ social network domain. Cycles in the program are
introduced by the following rule:

smokespXq : - friendspX,Yq, smokespYq.

Alzheimer. We use series of connected subgraphs of the Alzheimer network of
De Raedt, Kimmig, and Toivonen (2007), starting from a subsample connecting
the two genes of interest ‘HGNC 582’ and ‘HGNC 983’, and adding nodes that
are connected with at least two other nodes in the graph. The logic program
(i.e., the set of rules) is similar to the one we used in our example (see Figure
4.3) and cycles are introduced by the second rule for path.

The relevant ground program is computed for one specific query as well as for
multiple queries. For the Smokers domain, this is cancerppq for a specific person
p versus for each person. For the Alzheimer domain, this is the connection
between the two genes of interest versus all genes.

For the sequential approach, we perform WMC using either SDDs, or d-DNNFs
compiled with c2d3 (Darwiche 2004). For each domain size (#persons or
#nodes) we consider nine instances with a timeout of one hour per setting. We
report median running times and target representation sizes, using the standard
measure of #edges for the d-DNNFs and 3 ¨#edges for the SDDs. The results
are depicted in Figure 4.6 and 4.7 and provide an answer for Q1.
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Figure 4.6: Exact inference on Alzheimer.
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Figure 4.7: Exact inference on Smokers.
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In all cases, the TP -compilation (Tp-comp) scales to larger domains than the
sequential approach with both SDD (cnf SDD) and d-DNNF (cnf d-DNNF)
and produces smaller compiled structures, which makes subsequent WMC
computations more efficient. The smaller structures are mainly obtained because
our approach does not require auxiliary variables to correctly handle the cycles
in the program. For Smokers, all queries depend on almost the full network
structure, and the relevant ground programs – and thus the performance of
TP -compilation – for one or all queries are almost identical. The difference
between the settings for the sequential approaches is due to CNF conversion
introducing more variables in case of multiple queries.

4.5.2 Anytime Inference

We consider an approximated (Papr ) as well as the original (Porg) model of two
domains:

Genes. Following Renkens, Kimmig, et al. (2014) and Renkens, Van den Broeck,
et al. (2012), we use the biological network of Ourfali et al. (2007) and its 500
connection queries on gene pairs. The logic program is similar to the one we
used in our example (see Figure 4.3). The original Porg considers connections
of arbitrary length, whereas Papr restricts connections to a maximum of five
edges.

WebKB. We use the WebKB4 dataset restricted to the 100 most frequent
words (Davis and Domingos 2009) and with random probabilities from

“

0.01,
0.1

‰

. Cycles in the program are introduced by the following rule:

hasClasspP,Cq : - linksTopP,P2q, hasClasspP2,C2q.

Following Renkens, Kimmig, et al. (2014), Papr is a random subsample of 150
pages. Porg uses all pages from the Cornell database. This results in a dataset
with 63 queries for the class of a page.

We employ the anytime algorithm as discussed in Sections 4.4.3 and 4.4.3 and
alternate between computations for lower and upper bound at fixed intervals.
We compare against two sequential approaches. The first compiles subformulas
of the CNF selected by weighted PMAX-SAT (WPMS) (ibid.), the second
approximates the WMC of the formula by sampling using the MC-SAT algorithm
implemented in the Alchemy package5.

2http://reasoning.cs.ucla.edu/sdd/
3http://reasoning.cs.ucla.edu/c2d/
4http://www.cs.cmu.edu/webkb/
5http://alchemy.cs.washington.edu/
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Papr Porg

WPMS TP -comp WPMS TP -comp

G
en

es
Almost Exact 308 419 0 30

Tight Bound 135 81 0 207

Loose Bound 54 0 0 263

No Answer 3 0 500 0

W
eb

K
B Almost Exact 1 7 0 0

Tight Bound 2 34 0 19

Loose Bound 2 22 0 44

No Answer 58 0 63 0

Table 4.1: Anytime inference: Number of queries with difference between
bounds ă 0.01 (Almost Exact), in r0.01, 0.25q (Tight Bound), in r0.25, 1.0q
(Loose Bound), and 1.0 (No Answer).

Papr Porg

MCsat5000 MCsat10000 MCsat

G
en

es In Bounds 150 151 0

Out Bounds 350 349 0

N/A 0 0 500

Table 4.2: Anytime inference with MC-SAT: numbers of results within and
outside the bounds obtained by TP -compilation on Papr , using 5000 or 10000
samples per CNF variable.

Following Renkens, Kimmig, et al. (2014), we run inference for each query
separately. The time budget is 5 minutes for Papr and 15 minutes for Porg

(excluding the time to construct the relevant ground program). For MC-SAT,
we sample either 5,000 or 10,000 times per variable in the CNF, which yields
approximately the same runtime as our approach. Results are depicted in Tables
4.1, 4.2 and Figure 4.8 and allow us to answer Q2 and Q3.

Table 4.1 shows that TP -compilation returns bounds for all queries in all
settings, whereas WPMS did not produce any answer for Porg . The latter is
due to reaching the time limit before conversion to CNF was completed. For
the approximate model Papr on the Genes domain, both approaches solve a
majority of queries (almost) exactly. Figure 4.8 plots the number of queries that
reached a bound difference below different thresholds against the running time,
showing that TP -compilation converges faster than WPMS. Furthermore, this
figure shows that the choice of our timeout has only a limited impact on the
results. Finally, for the Genes domain, Table 4.2 shows the number of queries
where the result of MC-SAT (using different numbers of samples per variable
in the CNF) lies within or outside the bounds computed by TP -compilation.
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Figure 4.8: Anytime inference on Genes with Papr : number of queries with
bound difference below threshold at any time.

For the original model, no complete CNF is available within the time budget;
for the approximate model, more than two thirds of the results are outside the
guaranteed bounds obtained by our approach.

We further observed that for 53 queries on the Genes domain, the lower bound
returned by our approach using the original model is higher than the upper
bound returned by WPMS with the approximated model. This illustrates
that computing upper bounds on an approximate model does not provide any
guarantees with respect to the full model. On the other hand, for 423 queries
in the Genes domain, TP -compilation obtained higher lower bounds with Papr

than with Porg , and lower bounds are guaranteed in both cases.

In summary, we conclude that approximating the model can result in misleading
upper bounds, but reaches better lower bounds (Q3), and that TP -compilation
outperforms the sequential approaches for time, space and quality of result in
all experiments (Q2).

4.6 Related Work

During the last few years there has been a significant interest in combining
relational structure with uncertainty. This has resulted in the fields of statistical
relational learning (De Raedt, Frasconi, et al. 2008; Getoor and Taskar 2007),
probabilistic programming (Pfeffer 2014) and probabilistic databases (Suciu et al.
2011), which all address this combination. Probabilistic logic programming
(PLP) languages such as PRISM (Sato 1995), ICL (Poole 1993), ProbLog
(De Raedt, Kimmig, and Toivonen 2007), LPADs (Vennekens, Verbaeten, et al.
2004) and CP-logic (Vennekens, Denecker, et al. 2009) form one stream of
work in these fields where logic programming languages are extended with
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probabilities. Statistical relational learning (SRL) techniques such as Markov
Logic (Poon and Domingos 2006) and relational Bayesian networks (Jaeger 1997)
form a different stream where graphical models are extended with relational
representations.

Knowledge compilation and weighted model counting has shown to be very
effective for inference in probabilistic logic programs (De Raedt, Kimmig, and
Toivonen 2007; Fierens et al. 2015; Riguzzi 2007; Riguzzi and Swift 2011)
as well as relational Bayesian networks (Chavira, Darwiche, and Jaeger 2006).
Furthermore, compiling a formula in a bottom-up manner has shown to compare
favorable against compiling in a top-down manner for probabilistic graphical
models (Choi et al. 2013).

Exact compilation of a propositional formula is computational expensive and
one often has to resort to approximate techniques. One way to do so is to first
convert the program into a propositional formula, as done for exact compilation,
but then only compile selected subformulas (Renkens, Kimmig, et al. 2014) or
feed the formula to a sampling algorithm, e.g. MC-SAT (Poon and Domingos
2006). In case also construction of the complete propositional formula becomes
infeasible, one can transform the original program to an approximate, simplified
program that represents, ideally, a similar probability distribution (Renkens,
Van den Broeck, et al. 2012). Other approaches employ forward reasoning to
directly sample on the logic program, e.g., Goodman et al. (2008), Gutmann
et al. (2011), Milch et al. (2005), and Nitti et al. (2014), but these do not provide
guaranteed lower or upper bounds on the probability of the queries. Anytime
PLP algorithms based on backward reasoning have been proposed in the past
but they do not allow to answer multiple queries in parallel (De Raedt, Kimmig,
and Toivonen 2007; Poole 1993). The problem of highly cyclic domains has
recently also been addressed using lazy clause generation (Aziz et al. 2015), but
only for exact inference.

Probabilistic logic programs under the distribution semantics define a
distribution over possible worlds, which randomly fixes the truth values of
probabilistic facts and then permits any type of logical reasoning within a
possible world. While our approach focusses on stratified programs with finite
support, the fixpoint operator is more recently also extended towards general
normal programs with function symbols (Bogaerts and Van den Broeck 2015;
Riguzzi 2016). A second class of probabilistic Prologs, including Stochastic
Logic Programs (SLPs) (Muggleton 1996), uses a different approach, where a
distribution over the groundings of a query is defined based on a distribution
over the derivations in the query’s SLD tree, making an independent decision
on which branch to take at every node. The semantics is thus closely tied to
backward reasoning, and our forward reasoning based approach does not easily
apply in this setting.
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4.7 Conclusions

We have introduced TP -compilation, a novel anytime inference approach for
probabilistic logic programs that combines the advantages of forward reasoning
with state-of-the-art techniques for weighted model counting and knowledge
compilation. Concretely, TP -compilation acts directly on the probabilistic logic
program and does not require to completely unfold and encode the model as
an intermediate propositional knowledge base. Our extensive experimental
evaluation demonstrates that the new technique outperforms existing exact and
approximate techniques on real-world applications such as biological and social
networks and web-page classification.

The advantage of forward reasoning, as used by TP -compilation, is that it
naturally deals with cyclic dependencies and avoids the expensive introduction
of additional variables and propositions. A drawback of forward reasoning,
compared to backward reasoning, is that it blindly generates new knowledge
without taking into account the queries of interest. To accommodate for this,
we proposed to first use backward reasoning to compute the relevant ground
program and defined TP -compilation on this ground program. This is not a
strict requirement, however. We can perform TP -compilation directly on the
non-ground probabilistic logic program and use a magic set transformation
(Bancilhon et al. 1986; Gutmann et al. 2011), forcing forward reasoning to only
generate relevant knowledge for the queries of interest.

The overhead on first unfolding and encoding the complete model becomes
especially clear in the context of anytime inference. Where TP -compilation
could compute informative bounds for any of the problem instances considered
in our experimental evaluation, techniques relying on a successful construction
of a formula in CNF could not return an answer for any of the original
problems. On the other hand, our anytime algorithm also comes with some
limitations. Computation of the upper bounds only holds for definite clause
programs as threating a subset of probabilistic facts as logical facts in only an
overestimate for programs without negation. Computation of the lower bounds
is valid for programs with negation but rules need to be compiled according
to their stratification. Furthermore, better lower bounds are obtained when
approximating the model, implying that our heuristic does not yet optimally
deals with the large search space. Hence, especially in the context of anytime
inference, there is still room for improvement.





Chapter 5

Probabilistic Logic Programs
with Time

5.1 Introduction

Probabilistic logic programs are generally assumed to represent a static model
where the domain for each of the objects is fixed and fully known. When
modeling real-world problems and applications such as robot tracking, online
multi-player games and medical diagnosis, this assumption does not always
reflect the real situation. Firstly, the program might represent a dynamic
model where dependencies between objects range over different moments in
time. Secondly, frequent updates to the program might be needed to cope with
an ever changing environment. While most relational representations allow us
to deal with time-related information, the general-purpose inference techniques
developed for these representations are known to scale poorly in this context.
Significant speed-ups can be obtained by treating time as a first-class citizen.

We differentiate two types of probabilistic logic programs with time; programs
where time is present in an implicit way and programs that explicitly model
time. The probabilistic facts in a probabilistic logic program typically represent
the knowledge available in some sort of database. Changes to this database
require to update the facts in the program and implicitly introduce a dependency
over time. Explicitly modeling time in the program allows one to represent a
relational stochastic process where the current state depends on the past and
influences the future. These dynamic relational models are, for example, useful
in the context of robot tracking as it allows to take into account the maximal

99
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displacement a robot can make in between two consecutive time steps.

In this Chapter, we extend our TP -compilation inference algorithm towards
probabilistic logic programs with time. In the presence of program updates, we
avoid the need to completely recompile the model by reusing past compilation
results. This can cause significant savings compared to restarting inference
from scratch. For dynamic relational models, we unify TP -compilation with
the structural interface algorithm to combine the benefits of both approaches.
The resulting algorithm does not only exploit the repeated structure in the
underlying model, but additionally exploits local structure in the belief state
maintained during inference. This allows for a more compact representation of
the belief state and further speeds-up inference.

A extension of TP -compilation towards probabilistic logic programs with time
and experimental results were previously published in

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt
(2016b). “Tp-Compilation for inference in probabilistic logic programs”. In:
International Journal of Approximate Reasoning 78, pp. 15–32

Structure of this Chapter

This chapter is organized as follows. Section 5.2 introduces probabilistic logic
programs where time is present in an implicit or explicit way. Section 5.3
extends TP -compilation to efficiently deal with program updates. Dynamic TP -
compilation deals with dynamic relational models and is introduced in Section
5.4. Section 5.5 shows experimental results. We discuss related work in Section
5.6 and conclude this Chapter in Section 5.7.

5.2 Preliminaries

We now shortly introduce two types of probabilistic logic programs with time.

5.2.1 Programs with Implicit Time

A probabilistic logic program typically represents a stationary model where the
set of rules R as well as the set of facts F is fixed. As the world is constantly
evolving, a static program only reflects our knowledge at one specific moment
in time while the underlying process is subject to an ever changing environment.
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In a more general setting, one would pass on these changes to the program and
inference is required to update our beliefs in the presence of the new information.

In general, new knowledge is reflected by an update of the facts F while the
non-ground rules R in the program remains unchanged. In case the updates are
relevant to the queries of interest, the set of ground rules in the relevant ground
program will change. For definite clause programs, adding facts leads to new
clauses in the ground program while removing facts removes clauses from the
grounded program. For programs with negation, one cannot easily make this
distinction as adding facts might remove clauses from the grounded program
and removing facts might add clauses to the program.

Example 5.1 Consider the three probabilistic graphs as shown in Figure 5.1.
For the graph on the left, we have following probabilistic facts:

0.4 : : edgepb, aq. 0.3 : : edgepb, cq. 0.8 : : edgepa, cq.

For the graph in the middle, we have:

0.4 : : edgepb, aq. 0.3 : : edgepb, cq.

0.8 : : edgepa, cq. 0.9 : : edgepc, aq.

And, for the graph on the right, we have:

0.4 : : edgepb, aq. 0.8 : : edgepa, cq. 0.9 : : edgepc, aq.

0.3 : : edgepb, cq. 0.6 : : edgepb, dq.

Each of the corresponding programs will have the same set of non-ground rules:

pathpX,Yq : - edgepX,Yqq.

pathpX,Yqq : - edgepX,Zqq, pathpZq,Yqq.

The relevant ground program will be different for each of the graphs. For
example, the relevant ground program for the graphs in the middle and on the
right will contain the ground rule

pathpc, cq : - edgepc, aq, pathpa, cq.

which is not part of the relevant ground program for the graph on the left as
this graph does not contain an edge going from node c to node a.
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Figure 5.1: A sequence of probabilistic graphs.

5.2.2 Programs with Explicit Time

Probabilistic logic programs have the ability to compactly represent a stochastic
process allowing us to reason about the past, the present and the future.
This is done by means of a dynamic model (Nitti et al. 2013), where one
inserts time in an explicit manner. Each rule is of the form ht :´ b1,t1, ..., bn,tn,
where t, t1, . . . , tn denotes the time step to which the corresponding atom
belongs. As for dynamic Bayesian networks (cf. Chapter 3), we assume
that the first-order Markov property holds, and the rules can be rewritten
as ht :´ b1,t, . . . , bm,t, bm`1,t´1, . . . , bn,t´1, i.e., each atom can only depend on
atoms from the same or previous time step. This also implies that cycles cannot
range over different time steps.

Example 5.2 Consider the following probabilistic logic program which,
intuitively, models a a dynamic social network where people are more likely to
be sick in case they have friends who are sick, or if they were sick on a previous
time step:

0.2 : : coldOutsidepTq.

0.4 : : staySickpX,Tq.

sickpX,Tq : - coldOutsidepTq.

sickpX,Tq : - friendspX,Yq, sickpY,Tq.

sickpX,Tq : - Tprev is T´ 1, sickpX,Tprevq, staySickpX,Tq.

The variable T is used to denote a specific time step. We assume the friends

relation remains constant over time and therefore omit the time variable.
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To simplify notation, we will denote the time parameter by means of a subscript:

0.2 : : coldOutsidet.

0.4 : : staySickpXqt.

sickpXqt : - coldOutsidet.

sickpXqt : - friendspX,Yq, sickpYqt.

sickpXqt : - sickpXqt´1, staySickpXqt.

In the context of dynamic models, one distinguishes the initial model and the
transition model (cf. Section 3.2.1). The former expresses the prior distribution,
i.e., the distribution for the first time step, while the latter latter serves as a
template for all subsequent time steps. We will focus on the transition model
as this is the one that repeats over time.

5.3 Inference with Program Updates

Updates to a probabilistic logic program, by means of adding or removing
probabilistic facts, will be reflected in the relevant ground program. One way
to deal with these program changes is to restart inference from scratch after
each update of F . In the context of our TP -compilation inference algorithm, as
introduced in the previous Chapter, this involves recompiling the new program
without using any of the past compilation results. In case F changes only
marginally, however, a more efficient approach is to restart from the previously
compiled sentences. This can be achieved using the TcP operator (cf. Section
4.4.1), which allows for adding clauses to and removing clauses from the program.

In the remainder of this Section, we only consider program updates for
definite clause programs. For normal logic programs, we would need to restart
compilation from the lowest strata affected by the update and this is only
advantageous in a limited number of cases.

Adding Clauses

For definite clause programs, we know that employing the TP operator on a
subset of the fixpoint reaches the fixpoint (see Property 1, Chapter 4). Moreover,
adding definite clauses leads to a superset of the fixpoint (see Property 2,
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Chapter 4). Hence, it is safe to restart the TP operator from a previous fixpoint
after adding clauses. Assume the set of facts F is extended to F 1, then we have:

T8RYF 1pHq “ T8RYF 1pT
8
RYF pHqq

Due to the correspondence established in Theorem 2, this also applies to TcP .
Intuitively, the TcP operator aims to construct a parametrized interpretation
that reflects all the knowledge available in the relevant ground program. When
clauses are added to the program, we simply need some additional iterations
of the TcP operator in order to add this new information to the parametrized
interpretation.

Example 5.3 Consider the sequence of graphs depicted in Figure 5.1 where
we move from left to right. Adding 0.9 : : edgepc, aq to the program leads to new
paths, such as pathpa, aq, and increases the probability of existing paths, such
as pathpb, aq. Using past compilation results is especially advantageous when
adding 0.6 : : edgepb, dq to the program as it does not affect any of the existing
paths but only adds one new path, being pathpb, dq.

Removing Clauses

When removing clauses from a definite clause program, atoms in the fixpoint
may become invalid. We therefore reset the computed fixpoints for all total
choices where the removed clause could have been applied. This is done by
conjoining each of the formulas in the parametrized interpretation with the
negation of the formula for the head of the removed clause. Let I denote the
parametrized interpretation and H the set of atoms in the head of a removed
clause, the new parameterized interpretation I 1 is obtained as:

I 1 “ tpa, λ1aq | pa, λaq P I with λ1a “ λa ^
ľ

hPH
 λhu

Then, we restart the TcP operator from the adjusted parametrized interpretation
I 1, to recompute the fixpoint for the total choices that were removed. Intuitively,
removing clauses from the program requires to also remove this information
from the parametrized interpretation. Conjoining each of the formulas with the
negation of the removed information is a drastic, yet safe, option to do so.

Example 5.4 Consider the sequence of graphs depicted in Figure 5.1 where we
now move from right to left. Removing 0.6 : : edgepb, dq from the program only
removes pathpb, dq and none of the other compiled sentences will be affected
by this update. Removing 0.9 : : edgepc, aq from the program will completely
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remove some of the paths, such as pathpa, aq, and decreases the probability of
other paths, such as pathpb, aq. Hence, we have to adapt the compiled formula
for pathpb, aq to adopt for this new situation.

5.4 Inference in Dynamic Relational Models

A stochastic process can be compactly represented by means of a probabilistic
logic program where a variable is used to make abstraction of time. Inference
in these dynamic relational models can be done by first unrolling the complete
model for a finite number of time steps, after which any standard inference
algorithm applies. But, as in the propositional case, these general-purpose
techniques are known to scale poorly for an increasing number of time steps.

We now extend our TP -compilation approach to treat time as a first class citizen
and, in a similar way as done by the structural interface algorithm, this avoids
the need to explicitly unroll the model. Compared to the structural interface
algorithm, however, TP -compilation allows for a more flexible approach where
local structure in the forward message can be exploited to further speed-up
inference.

5.4.1 The Forward Message

Filtering in dynamic relational models, similar as for dynamic Bayesian networks,
boils down to performing a forward pass trough the underlying model. This
can be done by iteratively computing the forward message, that is, the joint
probability distribution over all atoms in the interface. For dynamic relational
models, the interface it for the grounded program P is given by:

it “ tbm`1,t´1, . . . , bn,t´1 | ht :´ b1,t, . . . , bm,t, bm`1,t´1, . . . , bn,t´1 P Pu

The forward message can be computed recursively as follows:

Prpit|E1:tq “
ÿ

it´1

Prpit|it´1,EtqPrpit´1|E1:t´1q (5.1)

with Et the truth values of the observed atoms at time. Then, Prpit´1|E1:t´1q

allows us to compute Prpqt|E1:tq for each of the query atoms qt.
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Example 5.5 For the dynamic model presented in Example 5.2 and a domain
of three persons, ann, bob and cin, the interface consists of three atoms:

it “ tsickpannqt, sickpbobqt, sickpcinqtu.

The forward pass involves computing the probability of each possible value
assignment to the variables in the interface, given the forward message from
the previous time step and evidence:

Pr
`

sickpannqt ^ sickpbobqt ^ sickpcinqt | it´1,Et

˘

,

Pr
`

sickpannqt ^ sickpbobqt ^ sickpcinqt | it´1,Et

˘

,

. . .

Pr
`

 sickpannqt ^ sickpbobqt ^ sickpcinqt | it´1,Et

˘

5.4.2 Dynamic TP-compilation

To efficiently compute the forward message, our TP -compilation approach is
extended to operate in two phases:

• Offline phase: Treat the transition model as a static model and run
TP -compilation on this model until a fixpoint is reached. The resulting
parametrized interpretation I contains a tuple pa,Λaq for each atom a
in the transition model. The compiled formulas Λa will then serve as a
template for each time step that inference is required. The offline phase
only has to be performed once.

• Online phase: Iterate over time steps t and compute the forward message.
This includes extending the template formulas Λa, by means of an
additional compilation step, to adjust for the situation at time t. The
online phase has to be done for each t ă T , with T the time span.

Computation of the forward message at time t requires extending the template
formulas Λa to take into account the evidence for time step t, denoted with Et,
as well as the forward message computed for t´ 1. We use Λta to denote the
adjusted formula of atom a for time step t. Let It be one truth-value assignment
to atoms in it, its conditional probability is computed as:

PrpIt|E1:tq “
WMC

`
Ź

iPIt
Λti
˘

WMCpΛtEt
q

(5.2)
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with
Λti “

ł

IjPi

`

pΛi ^ ΛEt
q|Ij

˘

^ statej
t´1 ^ Ij (5.3)

where ΛEt
is the formula representing the evidence (cf. Section 4.4.2) and Λ|I

denotes that the formula Λ is conditioned on the values in I. The auxiliary
variable statejt´1 is required to correctly include the distribution from t´ 1 (cf.

Equation 5.1) and the weight function sets wpstatejt´1q “ PrpIjt´1|E1:t´1q. The
forward message (the complete distribution) is obtained by repeating Equation
5.2 for each It P it.

To push more of the computational effort towards the offline phase, we could
rewrite Equation 5.3 as:

Λti “
ł

IjPi

`

Λi|I
j
˘

^
`

ΛEt |I
j
˘

^ statej
t´1 ^ Ij (5.4)

where, now, Λi|I
j is independent of the time step t and can be computed in the

offline phase, i.e. it needs to be computed only once.

5.4.3 Dealing with Evidence

The key difference of dynamic TP -compilation, as presented in the previous
section, compared to the structural interface algorithm, as presented in Section
3.4, is how evidence is treated.

The incentive of the structural interface algorithm is to push as much of the
computational overhead, i.e., all compilation steps, into the offline phase. This
requires the compilation of one large formula that contains a variable for each
of the atoms in the transition model, including the ones that are (potentially)
observed. Then, the forward message is computed by accordingly setting weights
to incorporate the observations and requires an exponential number of WMC
calls.

Dynamic TP -compilation, on the other hand, does not incorporate evidence by
setting weights but adjusts the template formulas Λa to explicitly represent
the evidence. This requires, for each time step t, to first compile the formula
representing the evidence, which we denote as ΛEt

. Then ΛEt
is conjoined with

each of the required template formulas (cf. Equation 5.3).

While TP -compilation requires an additional compilation step within the online
phase, which might be computationally expensive, an explicit representation of
the evidence allows us to exploit local structure in the forward message. Indeed,
if wpstatejt´1q “ 0 or if pΛi ^ ΛEt

q ” K, Equation 5.3 simplifies significantly.
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Hence, we avoid an exponential representation of the forward message in case
Prpit|E1:tq exhibits deterministic dependencies.

Example 5.6 Assume that, for our running example, we have evidence that ann
is sick at time t. In this case, each of the truth-value assignments It to atoms in it
that contains  sickpannqt (see Example 5.5) has a probability of zero as it does
not coincide with the evidence. Hence, we can use a more compact representation
for the forward message where we have Prp sickpannqt | it´1,Etq = 0.

Where Equation 5.4 allows to push more of the computational effort to the
offline phase, it cannot fully exploit deterministic dependencies in the forward
message. As Λi|I

j is only computed once, we have to iterate over each Ij P i
and need to maintain an exponential representation of the forward message.
Hence, Equation 5.4 is only beneficial in case there is not enough determinism to
compensate for the computational overhead in Equation 5.3. In our experimental
evaluation we will refer to Equation 5.3 as flexible and to Equation 5.4 as fixed
dynamic TP compilation.

5.5 Experiments

Our experiments address the following questions:

Q1 Can we efficiently deal with program updates?

Q2 Can we efficiently exploit evidence in dynamic domains?

Experiments are run on machines with 16 GB of memory and we use a timeout
of 1 hour.

5.5.1 Program Updates

We use datasets of increasing size from two domains:

Alzheimer. The Alzheimer domain as introduced in Section 4.5.1.

Smokers. A variant on the smokers domain as introduced in Section 4.5.1. Its
domain consists of 150 persons and is the union of ten different random power
law graphs with 15 nodes each.

We compare our standard TP -compilation algorithm (Tp-comp), which compiles
the networks for each of the domain sizes from scratch, with the online algorithm
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Figure 5.2: Program updates for Alzheimer (left) and Smokers (right).

(Tcp-inc) discussed in Section 5.3. We consider the multiple queries setting
only, as it is the one that considers a “complete” grounding of the program,
and report median results for nine runs. The results are depicted in Figure 5.2
and provide an answer to Q1.

For the Alzheimer domain, which is highly connected, incrementally adding the
nodes (Tcp-inc) has no real benefit compared to recompiling the network from
scratch (Tp-comp) and, consequently, the cumulative time of the incremental
approach (Tcp-inc-total) is higher. For the smokers domain, on the other
hand, the incremental approach is more efficient compared to recompiling the
network, as it only updates the subnetwork to which the most recent person
has been added.

5.5.2 Dynamic Inference

We evaluate dynamic TP -compilation on two different domains:

Mastermind. We represent the mastermind game (Chavira, Darwiche, and
Jaeger 2006) as a dynamic model as done in Section 3.6.

Sickness. We use the dynamic sickness domain as depicted in Example
5.2 with random power law graphs to represent the networks. For each time
step, evidence is randomly generated for x% of the sick atoms. The goal is to
compute the belief state of the persons being sick after 10 time steps.

We consider nine instances and report median results. For the mastermind
domain, we compare fixed as well as flexible dynamic TP compilation (cf.
Section 5.4.3) with the structural interface algorithm (SIA) where the target
representation for compilation is d-DNNF. For the sickness domain, we compare
flexible dynamic TP -compilation for three different levels of evidence, being on
0%, 33% and 66% of the sick atoms. The results are depicted in Table 5.1 and
5.2 and allow us to answer Q2.
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SIA fixed TP flexible TP

Model size Toffline Tinf size Toffline Tinf size Toffline Tinf

#edges (s) (s) #edges (s) (s) #edges (s) (s)

C-P ˆ1000 ˆ1000 ˆ1000

6 - 3 24 1.3 0.02 84 0.9 0.06 48 0.03 0.06

9 - 3 88 4.9 0.1 345 7.1 0.5 171 0.1 0.6

6 - 4 361 55.2 1.2 741 10.8 0.7 504 0.8 0.6

8 - 4 1,350 220.7 13.6 2,604 60.1 4.1 1,374 3.2 3.2

9 - 4 - - - 4,506 130.2 9.8 2,826 5.8 10.1

10 - 4 - - - 6,939 281.0 19.2 4,368 10.2 21.6

11 - 4 - - - - - - 6,459 17.7 33.5

4 - 5 519 128.6 1.7 657 6.6 0.4 525 1.1 0.2

5 - 5 - - - 2,289 30.6 2.0 1,833 4.6 1.5

6 - 5 - - - 6,414 111.4 9.6 5,016 15.3 6.8

7 - 5 - - - 14,811 376.8 55.04 11,643 41.8 51.8

Table 5.1: Results for the mastermind game. We use size to denote the
representation size (averaged over all time steps), Toffline for runtimes of the
offline phase and Tinf for the runtime to compute the forward message for one
time step.

0% evidence 33% evidence 66% evidence

Domain Toffline size Tinf size Tinf size Tinf

(s) #edges (s) #edges (s) #edges (s)

people ˆ1000 ˆ1000 ˆ1000

3 0.01 0.9 0.01 0.5 0.01 0.4 0.01

4 0.01 39 0.01 14 0.01 3 0.01

5 0.01 45 0.01 15 0.01 4 0.01

6 0.02 330 0.07 27 0.04 13 0.02

7 0.2 2,541 0.6 210 0.5 40 0.15

8 0.8 21,889 40.1 1,281 5.9 84 0.73

9 12.1 - - 4,170 75.6 423 16.4

10 11.0 - - - - 654 19.1

Table 5.2: Results for the sickness network.

For the mastermind game we observe that dynamic TP -compilation offers
significant speed-ups and scales to more complex domains compared to SIA.
Furthermore, the flexible approach compares favourable to the fixed approach
as compile times are lower and sizes of the obtained representations are smaller.
Results for the sickness network show that inference (done with our flexible
approach) benefits from exploiting evidence. With the fixed approach we would
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only get as far as 0% evidence and, although not defined for cyclic programs,
SIA would be comparable to 0% evidence for compilation. Hence, we conclude
that dynamic TP -compilation allows us to efficiently exploit evidence to further
push the boundaries of exact inference in dynamic relational domains.

5.6 Related Work

We can differentiate two streams of research that aim to efficiently cope with
dynamic relational models. A first approach is to start from propositional
dynamic models and extend them to the relational setting. This has, for
example, resulted in logical hidden Markov models (Kersting, De Raedt, et al.
2006) and relational dynamic Bayesian networks (Manfredotti 2009). A second
approach is to start from a logical or relational representation and extend
the existing inference algorithms to more efficiently deal with time-related
dependencies. Inference for dynamic relational domains in these representation
relies on approximate techniques (de Salvo Braz et al. 2008; Nitti et al. 2013,
2016), only allow for acyclic dependencies (Sato 1995) or requires that each
rule in the program considers a transition over time steps (Thon et al. 2011).
Throughout this chapter, we proposed an exact technique that does not come
with these requirements.

Online or dynamic inference has also been considered in the context of Markov
logic networks, but this only with approximate inference, e.g. Geier and Biundo
(2011) and Kersting, Ahmadi, et al. (2009). The advantage of exploiting evidence
in the general context of probabilistic inference and knowledge compilation was
previously investigated by Chavira, Allen, et al. (2005).

5.7 Conclusions

We have extended TP -compilation towards probabilistic logic programs with time.
Program updates are often required to adopt for an ever changing environment
and, as such, implicitly introduce a dependency between a sequence of programs.
TP -compilation allows to restart from past compilation results and avoids the
need to completely recompile the program from scratch in the presence of new
information. Time can be explicitly introduced in a probabilistic logic program
to compactly model a stochastic process. TP -compilation is unified with the
structural interface algorithm to not only exploit the repeated structure in
dynamic relational models but also deterministic dependencies introduced by
the observations.





Chapter 6

Conclusions

We conclude this dissertation by summarizing the presented work and discuss
some interesting directions for future research.

6.1 Thesis Summary

Expressive probabilistic models allow one to compactly represent and combine
different types of structural knowledge and uncertainty. Throughout this
dissertation, we have considered three, more specific, types of such models;
dynamic Bayesian networks use a template notation to compactly represent
a stochastic process, probabilistic logic programs make use of logical variables
and relations to compactly represent knowledge about objects in the world
and dynamic relational models combine a dynamic and logical representation
to represent relational stochastic processes. For each of the above models,
uncertainty can be precisely quantified by means of probabilities.

Our work mainly focuses on the task of probabilistic inference or reasoning, that
is computing the posterior belief for query propositions given our knowledge and
observed evidence. A typical example is to compute the probability of a patient
having a certain disease, given a set of observable symptoms and the results of
medical tests. While the compact representation might suggest otherwise, the
underlying model for many real-world applications is typically very complex as
it ranges over a large number of specific entities or exhibits cyclic dependencies.
Therefore, probabilistic inference still remains a challenge, despite the progress
we made with our techniques.
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Contributions

We now shortly review the three main contributions of the thesis.

The first contribution is the Structural Interface Algorithm, an exact
inference algorithm for dynamic Bayesian networks. It unifies state-of-the-art
techniques for inference in static and dynamic networks, by combining principles
of knowledge compilation with the interface algorithm. The resulting algorithm
not only exploits the repeated nature of the model, as it avoids the need to
unroll the network, but also the local structure, including determinism and
context-specific independence. Empirically, we showed that the structural
interface algorithm speeds up inference in the presence of local structure, and
scales to larger and more complex networks.
From a more technical perspective, the structural interface algorithm first
encodes, then compiles the template model (transition model) into an efficient
circuit representation. Then, the forward message is recursively computed for
each of the required time steps by means of weighted model counting on the
obtained circuit. We explored several approaches to efficiently encode and
compute the forward message. Each of these had different memory requirements
and trade-offs between putting the burden on the compiler, a post-compilation
step or the inference steps.

The second contribution is TP-compilation, an anytime inference algorithm
for probabilistic logic programs. TP -compilation proceeds incrementally in
that it interleaves the knowledge compilation step for weighted model counting
with forward reasoning on the logic program. It directly acts on the logic
program and avoids the need to completely unfold the model. This leads
to a novel algorithm that, at any time in the process, provides hard bounds
on the inferred probabilities. An empirical evaluation demonstrates that TP -
compilation outperforms existing exact and approximate techniques on several
real-world applications with respect to time, space and quality of results.
From a more technical perspective, most existing techniques for inference
in probabilistic logic programs require to encode the ground program into
an intermediate propositional formula representation. This step includes a
conversion from logic programming semantics to first-order logic semantics
and requires the introduction of additional propositions to correctly capture
cyclic dependencies. For TP -compilation, on the other hand, the use of forward
reasoning on the logic program allows for a natural way to handle cyclic
dependencies. In other words, the conversion happens during rather than
after reasoning within the logic programming semantics, avoiding the expensive
introduction of additional propositions.
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The third contribution is Dynamic TP-compilation, an exact inference
algorithm for relational dynamic models. Dynamic TP -compilation unifies
the structural interface algorithm for propositional dynamic models with TP -
compilation for static relational models and combines the advantages of both
approaches. In addition, it allows to exploit local structure introduced by the
given observations to further scale-up inference. An empirical evaluation shows
the promise of the technique.
From a more technical perspective, one of the main differences of TP -compilation,
compared to other techniques, is that it results in a set of compiled sentences
rather than one big formula. This offers a more flexible approach and allows
us to extend the structural interface algorithm to incrementally encode and
compute the forward message for each of the required time steps. In case of
deterministic dependencies in the forward message, we can employ a more
compact representation to further speed-up inference.

Each of the three contributions provides an affirmative answer to the general
research question raised in the introductory chapter:

Can we exploit the characteristics of an expressive probabilistic model
to further scale-up probabilistic inference by weighted model counting?

As a general conclusion, we state that the methods presented in this dissertation
push the boundaries for exact as well as approximate inference in expressive
probabilistic models.

6.2 Future Work

We now discuss some concrete topics of future work. They are not only
interesting from a research point of view but also for practical applications.

Applications

In the introductory chapter of this text, we mainly used medical diagnosis
to demonstrate the need and usefulness of expressive probabilistic models.
The applicability of the methods and models discussed throughout this text
goes far beyond medical diagnosis, however. Models that combine a relational
representation and dynamics have been successfully applied in many real-world
settings, including video recognition (Manfredotti 2009), robotics (Nitti 2016),
multi-player games (Thon 2011), etc. Also some of the most ambitious projects
such as the self-driving car, where techniques from video recognition and robotics
are combined, belong to the potential applications.
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In the next few sections, we will consider some useful extensions to the techniques
proposed throughout this dissertation. This should make them more generally
applicable for real-world domains and applications.

Dynamic Models and Local Structure

Probabilistic inference in static models, e.g. Bayesian networks, benefits
significantly from exploiting local structure in the form of determinism and
context-specific independencies. In Chapter 3, we showed how this generalizes
towards dynamic models where the same forms of local structure in the transition
model can be exploited to obtain exponential speed gains. Dynamic TP -
compilation, as introduced in Chapter 5, additionally exploits deterministic
dependencies in the forward message allowing for a more compact representation
and more efficient computations. An obvious next step is to investigate whether
the forward message exhibits local structure in the form of context-specific
independencies and whether this structure can be exploited to further scale-up
inference.

Approximate Inference for Dynamic Models

Despite a lot of progress in knowledge compilation and other general reasoning
techniques, exact inference is often infeasible for many real-world applications.
In the context of dynamic models, representing and computing the forward
message is exponential in the number of variables that d-separate the past from
the future. Despite the occurrence of local structure in the forward message,
it is unrealistic to believe that exact inference techniques would scale-up to
dynamic models representing social networks with thousands of people or digital
circuits with thousands of gates.

In Chapter 4, we proposed TP -compilation as an anytime inference algorithm
for static models. For dynamic models, however, we only considered exact
techniques and did not propose any approximate method. Interesting directions
of future research within this context is to use a factorized representation of
the forward message (Boyen and Koller 1998; Murphy and Weiss 2001) or to
combine our knowledge compilation techniques with Rao-Blackwellized particle
filters for dynamic domains (Doucet, Freitas, et al. 2000; Nitti et al. 2016).
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Dynamic Models with Dynamic Structure

The dynamic models we considered throughout this dissertation were all assumed
to have a static structure, i.e. the structure is exactly the same for each of
the time steps. While this is the common assumption for dynamic Bayesian
networks, more expressive representations are generally not limited to a fixed
structure. We did extend TP -compilation to efficiently cope with program
updates, however, but this only for probabilistic logic programs where time was
not explicitly part of the model.

Applications such as video tracking, for example in the context of robotics,
require dynamic relational models where the number of objects and relations
can change over time. Indeed, the environment captured by the video constantly
evolves as new objects can enter the scene while others disappear. To deal
with these models, we have to extend our dynamic TP -compilation algorithm
in a similar way as was done to deal with program updates. This will involve
recompiling the template formula’s for each of the time steps.

Continuous Variables

In the general context of probability theory, one distinguishes between two types
of random variables; discrete variables, where to domain is a finite and countable
set, and continuous variables, where the domain is given by an interval. The
techniques discussed throughout this dissertation are all based on weighted
model counting and only deal with discrete variables. Continuous variables offer
more expressiveness, however, and are often desired in practical applications.

Over the last couple of years, existing representations and techniques for discrete
variables have been generalized towards continuous variables. Probabilistic
logic programs were extended with distributional clauses (Gutmann et al.
2011; Nitti 2016), weighted model counting was generalized towards weighted
model integration (Belle et al. 2015) and target representations for knowledge
compilation were developed to deal with hybrid domains, e.g. extended algebraic
decision diagrams (Sanner and Abbasnejad 2012). An exciting direction of
future work is to investigate how these methods unify with the techniques
proposed in this dissertation as it would allow us to deal with many of the
typical models used within the field of robotics.
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Learning and Decisions

Probabilistic reasoning is, arguably, the most fundamental task within the area
of probabilistic modeling. While its main purpose is to reason over a model and
to compute the probability that a query holds in the presence of observations,
inference is also a crucial sub-routine in many other algorithms used to solve
different tasks. Two of such tasks are parameter learning and decision making.

The goal of parameter learning is to find a good estimate for the parameters in
a model, given the structure of the model and a (partial) data set. It is common
to rely on the well-known Expectation Maximization (EM) algorithm to achieve
this task (Fierens et al. 2015). Within the E-step of this algorithm, inference is
required to compute the probabilities of the parameters.

Decision making concerns the task of finding the best decision that one can make,
given a model and a cost/reward function. Inference is required to compute the
expected utility (reward) after making certain decisions. Decision making in
the context of relational representation has previously been investigated, and
offers a suitable formalism to deal with applications such as viral marketing
(Van den Broeck, Thon, et al. 2010).

The task of parameter learning is generally required for many real-world problems
in case the level of non-determinism is not known beforehand but has to be
learned from the available data. Support for decision making would allow
us consider application domains such as machine monitoring, where shutting
down machines and replacing components comes with a certain cost. Or also
for general game playing, where rewards can be obtained by performing a
successful action or by winning the game. Therefore, we certainly have to
investigate whether the techniques presented in this dissertation could provide
new insights to further scale-up the methods used for parameter learning and
decision making.
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