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We study the parallel machine scheduling problem to minimize the sum of the weighted completion times

of the jobs to be scheduled (problem Pm||
∑

wjCj in the standard three-field notation). We use the set

covering formulation that was introduced by van den Akker et al. (1999) for this problem, and we improve the

computational performance of their branch-and-price (B&P) algorithm by a number of techniques, including

a different generic branching scheme, zero-suppressed binary decision diagrams (ZDDs) to solve the pricing

problem, dual-price smoothing as a stabilization method, and Farkas pricing to handle infeasibilities. We

report computational results that show the effectiveness of the algorithmic enhancements, which depends on

the characteristics of the instances. To the best of our knowledge, we are also the first to use ZDDs to solve

the pricing problem in a B&P algorithm for a scheduling problem.
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1. Introduction

In this paper we report on our improvements to the branch-and-price (B&P) algorithm

of van den Akker et al. (1999) for the parallel machine scheduling problem with weighted

completion-time objective on identical machines, which is written as Pm||
∑
wjCj in the

standard three-field notation. For brevity we refer to the problem as WCT. A B&P algo-

rithm is a branch-and-bound (B&B) algorithm in which at every node of the B&B tree a

lower bound is computed via a linear-programming (LP) relaxation with an exponential

number of variables. The LP relaxation, called the master problem, is solved using column

generation (CG). B&P algorithms are used in many areas of operations research, such as

vehicle routing, vertex coloring, bin packing, etc. In a given node of the search tree, the

master problem only contains a restricted number of promising variables and is called the

restricted master problem (RMP). The RMP is solved with standard LP techniques. It

can, but need not, yield an optimal solution to the full master problem with all columns

included. The search for a new column with negative reduced cost to be included in RMP is

called the pricing problem, which is an optimization problem that depends on the definition

1



2 Kowalczyk and Leus: ZDDs and generic branching

of the variables, and which has a non-linear objective function in our case. In van den Akker

et al. (1999) the authors solve the pricing problem using a general dynamic-programming

(DP) recursion. In our work, we use a zero-suppressed binary decision diagram (ZDD) to

do this, which is a data structure that represents a family of sets. Concretely, a ZDD is con-

structed as a directed acyclic graph (DAG) such that each machine schedule corresponds

with a path from the root node of the DAG to one particular leaf node, which will allow to

find a schedule with minimum (negative) reduced cost. Solving pricing problems with the

help of ZDDs was first done in Morrison et al. (2016b), who show how to adjust the ZDD

when a standard integer branching scheme is applied for vertex coloring (when fractional

variable λ equals α, then two children are created with additional constraints λ≤ bαc and

λ≥ dαe). With standard integer branching, the structure of the pricing problem is typically

destroyed, and so van den Akker et al. (1999) devise a specialized branching scheme that

allows to re-use the same pricing algorithm in every node of the B&B tree. In this paper

we explain how to adapt the ZDD when the generic branching scheme of Ryan and Foster

(1981) is used, which will have a clear impact on the convergence of the B&P algorithm,

meaning that the algorithm will explore less nodes in the search tree.

Another improvement that we include in the B&P algorithm is the use of stabilization

techniques for CG. It is well known that CG methods for machine scheduling suffer from

poor convergence because of extreme primal degeneracy and alternative dual solutions.

These phenomena have a large impact especially when the number of jobs per machine is

high. One of these techniques is dual-price smoothing, which was introduced in Wentges

(1997). This technique corrects the optimal solution of the dual problem of the restricted

LP relaxation based on past information before it is plugged into the pricing algorithm.

This stabilization is very important for calculating the lower bound, but identifying upper

bounds is obviously also of vital importance. In our computational experiments we will see

that the branching scheme of van den Akker et al. (1999) performs rather poorly on some

instance classes, even when stabilization is applied, and then the choice of the branching

scheme matters. As pointed out by Morrison et al. (2016b), using ZDDs for pricing gives

the possibility to implement a generic B&P algorithm.

The remainder of this paper is structured as follows. In Section 2 we first provide a formal

problem statement and a number of pointers to the existing literature. Subsequently, in

Section 3 we describe some characteristics of optimal solutions and give an integer linear
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formulation. The formulation is solved by means of B&P, the main aspects of which are

explained in Section 4. Section 5 then provides more information on ZDDs in general, and

on the way in which we use ZDDs to solve the pricing problem. More details on Farkas

pricing as a way to handle infeasibilities, on stabilization and on the branching strategy

are given in Sections 6, 7 and 8, respectively. The main findings of our computational

experiments are discussed in Section 9, and we conclude the paper in Section 10.

2. Problem definition and literature overview

We consider a set J = {1, . . . , n} of n independent jobs with associated processing times

pj ∈N0 for j ∈ J , which need to be processed on a set M = {1, . . . ,m} of m identical

machines. Each machine can process at most one job at a time and preemption is not

allowed. The objective of problem WCT is to find an assignment of the jobs to the machines

and to decide the sequencing of the jobs on the machines such that the objective function∑n
j=1wjCj is minimized, where wj ∈N0 is the weight of job j ∈ J and Cj the completion

time. This problem is NP-hard for m≥ 2, see for instance Bruno et al. (1974) or Lenstra

et al. (1977). We assume that n >m in order to avoid trivialities. Case m= 1 (only one

machine) is known to be solvable in polynomial time, because one can show that there

exists an optimal schedule with the following two properties:

Property 1. The jobs are sequenced following Smith’s shortest weighted processing-time

(SWPT) rule (Smith, 1956), which orders the jobs j in non-increasing order of the ratio
wj

pj
.

Property 2. The jobs are processed contiguously from time zero onward.

Since the machines can be considered independently of each other after the assignment of

the jobs to machines, an optimal solution exists for WCT that has the same properties;

the difficulty of the problem therefore resides in the job-machine assignment. Several DP

approaches have been proposed for WCT that exploit this idea. These algorithms run in

O(n(
∑

j∈J pj)
m−1) time (Rothkopf, 1966; Lawler and Moore, 1969), or inO(n(

∑
j∈J wj)

m−1)

time (Lee and Uzsoy, 1992). Consequently, these algorithms become unmanageable when

the number of machines, the processing times or the weights increase.

In the literature, B&P methods have been proposed that exploit Properties 1 and 2. Chen

and Powell (1999) and van den Akker et al. (1999) devise an algorithm with CG-based

lower bound resulting from a partition formulation of WCT, where a variable corresponds
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to a single machine schedule with a specific structure (see Section 3). The algorithms

differ in their branching scheme, as well as in the pricing algorithm (although both are

DP-based). It should be noted that the lower bounds are very tight.

B&P approaches for parallel machine scheduling do not always exploit Property 1, or

another optimal ordering rule. Dyer and Wolsey (1990) introduce a time-indexed formu-

lation for a problem with a general time-dependent objective function. The number of

variables is O(nT ), where T depends on the processing times. This type of formulation has

very good bounds but cannot be applied directly because of the pseudo-polynomial number

of variables and constraints. This problem is partially mitigated in van den Akker et al.

(2000) by applying Dantzig-Wolfe decomposition, and then CG is used for computing the

lower bound. The pricing problem is a shortest path problem on a network of size O(nT ).

Branching can be applied on the original variables of the time-indexed formulation without

much effort, i.e., the pricing algorithm stays the same, only the network in which a shortest

path is calculated changes.

Another model is the arc-time-indexed formulation proposed by Pessoa et al. (2010),

where a binary variable zijt is defined for every pair of jobs (i, j) and every period t such

that zijt = 1 if job i finishes and job j starts at t. The resulting formulation is huge,

but also has some advantages over the time-indexed model. Dantzig-Wolfe decomposition

is then applied to obtain a reformulation with an exponential number of variables, each

corresponding to a path in a suitable network. The running time of the pricing algorithm

is O(n2T ). Pessoa et al. (2010) recognize that stabilization techniques are important to

quickly compute the lower bound and overcome the convergence issue for this type of

formulation.

Other techniques to resolve the slow convergence of B&P for time-indexed formula-

tions have been proposed by Bigras et al. (2008), who use temporal decomposition, and

by Sadykov and Vanderbeck (2013), who put forward the technique of column-and-row

generation together with stabilization. Note that, depending on the instance, the duality

gap for these formulations may be difficult to close, and so the B&B tree can still be very

large.

3. Structure of optimal solutions and linear formulation

We assume that the jobs are indexed in non-increasing order of the ratio
wj

pj
, i.e.,

w1

p1
≥ · · · ≥ wn

pn
, so that Property 1 is easily invoked for each machine separately. Denote
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by p[i] the [i]-th smallest processing time among the jobs in J , and let pmax = p[n] be the

largest value among all pj. We can now state some further properties of optimal solutions

to WCT, with Sj the starting time of job j:

Property 3 (Belouadah and Potts, 1994). There exists an optimal solution for

which the latest completion time on any machine is not greater than Hmax =
∑

j∈J pj

m
+

m−1
m
pmax.

Property 4 (Azizoglu and Kirca, 1999). There exists an optimal solution for

which the latest completion time on any machine is not less than Hmin =

1
m

(∑
j∈J pj −

∑m−1
h=1 p[n−h+1]

)
.

Property 5 (Elmaghraby and Park, 1974). Sj1 ≤ Sj2 in an optimal solution if one

of the following conditions holds:

• pj1 < pj2 and wj1 ≥wj2, or

• pj1 ≤ pj2 and wj1 >wj2.

Property 6 (Azizoglu and Kirca, 1999). Sj1 ≤ Sj2 in an optimal solution if

j1−1∑
h=1

ph ≤
1

m

(∑
j∈J

pj −
m−1∑
h=1

p[n−h+1]

)
−

n∑
h=j2

ph.

These properties have consequences for the execution intervals of the jobs. The execution

interval of job j is described by a release date rj, before which the job cannot be started, and

a deadline dj, by which the job has to be completed. By Property 3 we can set rj = 0 and

dj =Hmax for every j ∈ J . In van den Akker et al. (1999) the authors use only Property 5

to deduce tighter release dates and deadlines for every job. In this text we will also use

Property 6; this can have a great influence on the tightness of the time windows.

Define the following subsets of jobs for each j ∈ J :

P1
j = {k ∈ J | (wk >wj ∧ pk ≤ pj)∨ (wk ≥wj ∧ pk < pj)} (1)

and

P2
j =

{
k ∈ J

∣∣∣∣ k < j and
k−1∑
h=1

ph ≤
1

m

(
n∑
h=1

ph +
m−1∑
h=1

p[n−h+1]

)
−

n∑
h=j

ph

}
. (2)

Let Pj be the union of P1
j and P2

j . Because of Properties 5 and 6 we know that there exists

an optimal solution in which all jobs of Pj start no later than job j. Hence if |Pj|>m− 1,
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then we know that there are at least |Pj| −m+ 1 jobs that should be completed before

job j is started. Denote by ρj the sum of the durations of the |Pj| −m+ 1 jobs in Pj with

smallest processing time, then we can set rj =
⌈ρj
m

⌉
. The derivation of tighter deadlines can

proceed similarly: define

Q1
j = {k ∈ J | k > j, wk ≤wj and pk ≥ pj} (3)

and

Q2
j =

{
k ∈ J

∣∣∣∣ k > j and

j−1∑
h=1

ph ≤
1

m

(
n∑
h=1

ph +
m−1∑
h=1

p[n−h+1]

)
−

n∑
h=k

ph

}
. (4)

Let Qj be the union of Q1
j and Q2

j . Similarly as before, there exists an optimal solution

for which Sj ≤ Sj′ for every j′ ∈Qj, so the amount of work that has to be done between

Sj and Hmax is equal to
∑

j′∈Qj
pj′ + pj. Consequently, job j cannot start later than δj =

Hmax−
⌈(∑

j′∈Qj
pj′ + pj

)
/m
⌉
, and if δj + pj <dj then we update dj to value δj + pj.

Below we describe an integer linear formulation for WCT. Every binary variable λs

corresponds to an assignment of a subset s ⊂ J of jobs to one machine, with which we

can associate a unique schedule via Cj(s) =
∑

i∈s:i≤j pi for each j ∈ s. We only consider job

sets s that respect the execution intervals corresponding to the ready times and deadlines

that where established above. Concretely, let S be the set of all sets s⊂ J that lead to a

feasible schedule, meaning that rj + pj ≤Cj(s)≤ dj for all j ∈ s, and that the completion

time of the last job included in s is between Hmin and Hmax. We should note that van den

Akker et al. (1999) use a weaker form of Property 4 for computing Hmin. In the formulation

below we represent such schedules by binary vectors of dimension n. Every schedule s has

an associated cost

cs =
∑
j∈s

wj

( ∑
k∈s:k≤j

pk

)
. (5)

We now need to find m schedules of S such that every job j ∈ J is chosen and the total

weighted completion time is minimized. This can be cast into the following set covering

formulation:

minimize
∑
s∈S

csλs (6a)

subject to
∑

s∈S:j∈s

λs ≥ 1 for each j ∈ J (6b)
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s∈S

λs ≤m (6c)

λs ∈ {0,1} for each s∈ S (6d)

This formulation has n covering (assignment) constraints and one capacity constraint.

Condition (6b) ensures that every job j is assigned to one machine, constraints (6c) impose

that we use only m machines, and constraints (6d) state that the variables are all binary.

Although it might be more intuitive to write equality in (6b) and (6c), resulting in

a partition formulation, our experimental results indicate that the covering formulation

performs better than the partition formulation in the LP relaxation phase. The reason is

that the dual variables corresponding to the equality sign in the constraints (6b) and (6c)

of the LP relaxation of the partition formulation are less constrained. The LP relaxation of

the set covering formulation has faster convergence and is more stable than the relaxation

of the partition formulation. Similar observations are reported in Lopes and de Carvalho

(2007).

4. A B&P algorithm for WCT

Formulation (6) has an exponential number of variables. Listing all the schedules of S

would be impractical and we will therefore devise a B&P algorithm. The main differences

between the algorithm of van den Akker et al. (1999) and our implementation are the

following:

1. We use a generic branching scheme that was introduced by Ryan and Foster (1981)

for partitioning formulations. In van den Akker et al. (1999) the authors develop a

problem-specific branching scheme that does not destroy the structure of the pricing

problem.

2. Since our branching scheme does affect the structure of the pricing problem in the

root node, we develop a different pricing algorithm that is based on ZDDs. The details

of this pricing routine are described in Section 5. To the best of our knowledge, we are

the first to use ZDDs to solve the pricing problem in a B&P algorithm for a scheduling

problem.

3. When a new branching decision is made in the search tree, it is possible that the

RMPs in the newly created child nodes are infeasible. We handle such infeasibility by

applying Farkas pricing; we refer to Section 6 for more details.



8 Kowalczyk and Leus: ZDDs and generic branching

4. We also use a stabilization technique in order to manage several drawbacks inherent

in the use of CG; see Section 7. This will be very important for calculating the lower

bound in the root node, in particular for instances with many jobs per machine.

We first seek to solve the LP relaxation of (6), which corresponds with the objective

function (6a), the constraints (6b) and (6c), and

λs ≥ 0 for each s∈ S (7)

The dual of this LP relaxation is given by:

maximize
∑
j∈J

πj −mσ (8a)

subject to
∑
j∈s

πj −σ≤ cs for each s∈ S (8b)

πj ≥ 0 for each j ∈ J (8c)

σ≥ 0 (8d)

where values πj for j ∈ J are the dual variables associated to constraints (6b) and σ is the

dual variable associated to constraint (6c). The constraints (8b) derive from the primal

variables λ. The LP relaxation is solved by CG, so we iteratively solve a RMP instead of the

full relaxation and check whether there exists a column that can be added to improve the

current optimal solution, which is done in the pricing problem. The columns are schedules

from a restricted set Sr ⊂S. At each iteration we check whether constraint (8b) is violated,

and if so then we add the corresponding primal variable. The termination conditions for this

CG procedure depend on the stabilization technique, and will be explained in Section 7.

The pricing problem is the following: if π∗j for j ∈ J and σ∗ represent the current optimal

solution of the dual of the RMP, then does there exist a schedule s∈ S for which
∑

j∈s π
∗
j −

σ∗ > cs? The LP relaxation is typically solved faster if we first add constraints that are

strongly violated, and we will search for schedules with most negative reduced cost. This

can be modeled as follows:

minimize cs−
∑
j∈s

π∗j (9a)

subject to s∈ S, (9b)
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because σ∗ is independent of S. Note that cs in the objective function (9a) is quadratic (see

Equation (5)). This pricing problem is solved by DP in van den Akker et al. (1999). Their

forward recursion uses the insight from Property 1 that each machine schedule can follow

the SWPT rule. The DP-based algorithm runs in O(nHmax) time. In the next section, we

will show how ZDDs can be used in a pricing algorithm.

5. Zero-suppressed binary decision diagrams for the pricing problem
5.1. General introduction to ZDDs

Zero-suppressed binary decision diagrams (ZDDs) are data structures that allow to repre-

sent and manipulate families of sets that can be linearly ordered in a useful manner. They

were proposed by Minato (1993) as extensions of binary decision diagrams (BDDs). BDDs

were introduced by Lee (1959) and Akers (1978) as DAGs that can be obtained by reducing

binary decision trees that represent the decision process through a set of binary variables of

a Boolean function. A ZDD Z is a DAG that has two terminal nodes, which are called the

1-node and 0-node. Every nonterminal node i is associated to an element v(i) (the “label”

of node i) of a set and has two outgoing edges. One edge is called the high edge and points

to a node hi(i), which is called the high child of the node. The other edge is called the low

edge and points to the low child node lo(i). The label associated to any nonterminal node

is strictly smaller than the labels of its children, i.e. for every node i of Z we have that

v(i)< v(hi(i)) and v(i)< v(lo(i)). There is also exactly one node that is not a child of any

other node in the DAG; this node is the “highest” node in the topological ordering of the

DAG and is called the root node. For both types of decision diagrams (DDs) the size can

be reduced by merging nodes with the same label (so associated to the same element of

the set) and the same low and high child, but ZDDs entail an extra reduction process. In

a ZDD, every node with a high edge pointing to the terminal node 0 is deleted.

Let us describe how a subset A of a ground set N induces a path PA from the root node

to 1 and 0 in a ZDD Z. We start at the root node of Z and iteratively choose the next

node in the path as follows: if a is the current node on the path, then the next node on the

path is hi(a) if v(a)∈A and lo(a) otherwise. We call the last node along the path PA the

output of A on Z, which is denoted by Z(A); clearly Z(A) is equal to 1 or 0. We say that

Z accepts A if Z(A) = 1, otherwise we say that Z rejects A. We say that Z characterizes

a family F ⊂ 2N if Z accepts all the sets in the family F and rejects all the sets not in F .

This ZDD is denoted by ZF .
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Constructing a ZDD ZF associated to a family F of subsets of ground set N can be

done in different ways. One way is to construct a BDD for the indicator function of the

family F , and delete all the nodes with a high edge pointing to 0. There also exist recursive

algorithms; see for example Knuth (2009) for a recursive procedure that constructs a ZDD

associated to a set of paths between two nodes of an undirected graph fulfilling specific

properties. Iwashita and Minato (2013) propose an efficient framework for constructing

a ZDD with recursive specification for the family of sets, and in this paper we use their

framework to construct the solution space of the pricing problem; the generic method of

building a ZDD with a recursive specification proceeds as follows.

Let N = {1, . . . , n}. A configuration is a pair (j, t) that serves as a node label, where

j is an element of N that is associated with the node and t describes the state of the

node. Configurations (n+ 1,0) and (n+ 1,1) represent the 0- and 1-node of ZF , respec-

tively. A recursive specification S of ZF is defined as pair of functions ROOTS() and

CHILDS((j, t), b) that return configurations: ROOTS() is a function without arguments

that returns the configuration of the root node of ZF , and CHILDS((j, t), b) takes as input

a configuration (j, t) of a node and b ∈ {0,1} and outputs the configuration of the b-child

of (j, t), where 0 and 1 refer to the low and high edge, respectively.

A generic approach to constructing the ZDD then follows Algorithm 1. This algorithm

finds all the reachable configurations of recursive specification S from the root node to the

terminal nodes. Using hash tables, one can establish a one-to-one correspondence between

the nodes of the DD before the reduction and the configurations. If we assume the hash

table operations and the recursive operations to run in constant time, then the runtime of

Algorithm 1 is linear in the number of reachable configurations.

Bergman et al. (2016) describe a general B&B algorithm for discrete optimization where

computations in BDDs replace the traditional LP relaxation. They construct relaxed BDDs

that provide bounds and guidance for branching, and restricted BDDs that lead to a primal

heuristic. The construction of the BDDs of the different problems studied in Bergman et al.

(2016) is based on a DP model for the given problem. The construction of an exact BDD

for a given problem as defined in Bergman et al. (2016) is equivalent to the construction of

BDDs as described in Iwashita and Minato (2013). The authors of these two papers have

different goals, however. Bergman et al. (2016) aim to solve a discrete optimization problem,

while Iwashita and Minato (2013) wish to develop a convenient framework for manipulating
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Algorithm 1: Generic top-down/breadth-first ZDD construction

Data: Recursive specification S for F

Result: ZDD ZF

(j0, s0) =ROOTS();

Create a new node with configuration (j0, s0);

for j = j0 to n

for all nodes r with configuration (j, s) for some s

for b∈ {0,1}

(j′, s′) =CHILDS((j, s), b);

if (j′, s′) corresponds to one of the terminal nodes then

Set the terminal node to be the b-child of r;

else

Find or create a node r′ with configuration (j′, s′);

Set r′ to be the b-child of r;

Apply the reduction algorithms for ZDDs to the constructed DD;

a family of sets. Moreover, the BDDs in Bergman et al. (2016) are built in such a way that

the optimization problem is solved as a shortest or longest path problem. This restriction

has an influence on the size of the DDs. In this paper we apply the reduction rules for

ZDDs on the constructed DD and solve the pricing problem with a DP algorithm. The

reason for this is that we manipulate the family of sets that form a solution to the pricing

problem upon branching, and ZDDs are more suitable for such manipulation, see Minato

(1993).

5.2. Solving the pricing problem with ZDDs

The pricing problem will be solved using a ZDD that represents the set of all feasible

schedules S, for which we will define a recursive specification (see the building phase below).

Subsequently, we will explain how to find a schedule with most negative reduced cost given

values for the dual variables (the solving phase).

Building phase Remember that the jobs of J are indexed following Property 1. The time

windows of the jobs (ready time rj and deadline dj for every j ∈ J) were also calculated
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Table 1 Example
instance with four jobs on

two machines

job j pj wj rj dj

1 5 89 0 8
2 2 31 0 8
3 6 74 0 11
4 2 12 3 11

under this ordering. The ZDD will follow the same ordering. Define sumj =
∑n

i=j pj and

mj = min{pi | j ≤ i≤ n}. A configuration (j, t) of a nonterminal node is a pair consisting

of a job index j and the total processing time t of all the processed jobs i with i < j, in

other words t is the starting time of job j. The 1- and 0-node are represented respectively

by (n+ 1,1) and (n+ 1,0). Function ROOTS() returns configuration (1,0), and procedure

CHILDS((j, t), b) is described in Algorithm 2. Each node (j, t) in the DD apart from the

terminal nodes has two child nodes. The high edge representing inclusion of job j leads to

(j′, t+ pj), where j′ is the job with the smallest index greater than j for which rj′ ≤ t+ pj

and t+ pj + pj′ ≤ dj′ . The low edge (exclusion of job j) leads to configuration (j′, t), where

j′ is a job with similar properties. If no such job j′ exists, the high edge points to the

1-node if t+ pj ∈ [Hmin;Hmax] and to the 0-node otherwise. For the low edge, the same

holds but based on the value of t instead of t+ pj.

In Section 5.1 we mentioned that nodes in the DD associated with the same job can

be merged if they have the same low and high child. We also implement this reduction

process, but we note that different configurations (j, t) and (j, t′) might be merged in this

way, pointing to different possible starting times t and t′ for the job j. These starting

times are important for the determination of the cost of the schedules (and also constitute

sufficient information). Therefore, with every node p of ZS we associate the set Tp as the

set of all possible starting times of job v(p). These sets can be easily calculated with a

top-down/breadth-first method starting at the root node of ZS .

We illustrate the foregoing by means of a small example with n= 4 and m= 2, for which

Hmin = 7 and Hmax = 11; further data are shown in Table 1. Figure 1 visualizes the different

steps of Algorithm 1 for the recursive specification in Algorithm 2. The number of nodes in

the ZDD in Figure 1(e) is clearly lower than the DD in Figure 1(d), before the reduction.

Solving phase In each iteration of the CG procedure we will be searching for a variable

with negative reduced cost. Hence we must associate to each 1-path of ZS , i.e. to each
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Figure 1 Visualisation of the steps in Algorithm 1 with the specification given by Algorithm 2

v1

v2 v3

v10

1

(1,0)

(2,0) (2,5)

(a) Initialize the root

node v1 and calculate the

child nodes v2 and v3 of

the root node.

v1

v2 v3

v4 v5 v6

v10

1

(1,0)

(2,0) (2,5)

(3,0) (3,2) (3,5)

(4,7)

(b) Generate the child nodes of v2

and v3. The next high child of v3

has label 4 because job 3 can only

start between times 0 and 5.

v1

v2 v3

v4 v5 v6

v7 v8 v9 v10

1

(1,0)

(2,0) (2,5)

(3,0) (3,2) (3,5)

(4,6) (4,8) (4,5) (4,7)

(c) Generate the children of v4, v5

and v6. The low edge of the nodes

v4 and v5 points to the terminal

node 0 because r4 = 3. The high

child of v6 is the terminal node 1

because Hmax = 11.

v1

v2 v3

v4 v5 v6

v7 v8 v9 v10

1

(1,0)

(2,0) (2,5)

(3,0) (3,2) (3,5)

(4,6) (4,8) (4,5) (4,7)

(d) The only child of v7, v8, v9 and v10 is the

terminal node 1.

z1

z6

1

z4 z5

z2 z3

(1,{0})

(2,{0}) (2,{5})

(3,{0,2}) (3,{5})

(4,{5,6,7,8})

(e) The result of the reduction algo-

rithms for ZDDs, where the sec-

ond component in each node label

is set Tp (for node p).
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Algorithm 2: Calculation of all reachable configurations of S

Function CHILDS((j, t), b)

if b= 1 then

t′← t+ pj;

else

t′← t;

j′←MINJOB(j, t′);

if j′ ≤ n then

if t′+ sumj′ <Hmin then

return (n+ 1,0);

if t′ ∈ [Hmin,Hmax] and t′+mj′ >Hmax then

return (n+ 1,1);

else

if t′ ∈ [Hmin,Hmax] then

return (n+ 1,1);

return (n+ 1,0)

return (j′, t′);

Function MINJOB(j, t)

if min{i > j|t∈ [ri, di− pi]} exists then

return min{i > j|t∈ [ri, di− pi]};

return n+ 1;

path from the root node to the 1-node, a value that is equal to the reduced cost of the

associated schedule. We implicitly find a path with lowest reduced cost by means of a DP

algorithm, which is different from the one presented in Morrison et al. (2016b) because

the cost associated to each column (schedule) is nonlinear in function of the job selection.

The pricing problem in Morrison et al. (2016b) was a binary combinatorial optimization

problem with a linear function, because the cost associated to every variable of the RMP

was equal to 1, and then the pricing problem was equivalent to finding a shortest path. In
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our case, the nonlinearity is removed by explicitly considering each possible starting time

for each job in the definition of a configuration.

Let (π,σ) be an optimal dual vector of the RMP at some iteration of the CG, and let ZS

be a ZDD that represents the family of sets S. Let |ZS | be the size of ZS (the number of

nodes) and z1, . . . , z|ZS | its nodes, where z1 is the root node, and z|ZS |−1 and z|ZS | correspond

to the 1- and 0-node, respectively. We also assume that each parent node zi has a lower

index i than its child nodes. In the DP algorithm we fill (only the relevant entries of)

two tables O and B of size |ZS |×Hmax. Value O[k][t] represents the minimal reduced cost

of a partial schedule that starts with job v(k) (the job associated to node k) at time t,

minimized over all partial schedules that can execute jobs in {v(k), v(k) + 1, . . . , n}, where

a partial schedule contiguously executes a set of jobs from a time instant greater than or

equal to zero onwards. The reduced cost of a partial schedule is its contribution to the

reduced cost of a schedule s∈ S that contains the partial schedule. This value is associated

with a path from configuration (v(k), t) to the 1-node before the reduction of the DD.

Thus, we seek to determine O[z1][0].

Stepwise, we fill the tables by traversing ZS from the terminal nodes to the root node;

Algorithm 3 illustrates this process. For each node k and starting time t, we store the best

choice (selection or not of job v(k), corresponding to values 1 and 0) in B[k][t]. We do

not examine all values for t ranging from rv(k) to dv(k)− pv(k), but we only consider values

in set Tk. We compare O[hi(zi)][t+ pv(zi)]− πv(zi) +wv(zi)(t+ pv(zi)) and O[lo(zi)][t] for all

t∈ Tzi , and we set O[zi][t] to be the minimum of the two.

6. Farkas pricing

The Farkas lemma is an important result of LP that implies, with the column set S ′ ⊂ S

in the RMP, that exactly one of the following two statements is true:

1. ∃λ∈R|S′| such that Equations (6b) and (6c) hold, or

2. ∃π ∈Rn
+ and σ ∈R+ such that ∀s∈ S ′:

∑
j∈s πj −σ≤ 0 and

∑
j∈J πj −mσ > 0.

Therefore, if our RMP is infeasible then there exists a vector (π,σ), which can be inter-

preted as a ray in the dual, proving the infeasibility of the RMP. With CG we can now

try to render the formulation feasible by adding a variable λs such that
∑

j∈s πj − σ > 0,

i.e., we destroy the proof of infeasibility by the inclusion of this λs. Such a variable can

be found by solving an optimization problem maxs∈S
∑

j∈s πj −σ, which is similar to the
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Algorithm 3: DP algorithm based on ZS for the pricing problem

Data: ZDD ZS , optimal solution (π,σ) of the dual

Result: Schedule s of S with most negative reduced cost

O[z|ZS |−1][t]← σ for all t∈ Tz|ZS|−1
;

O[z|ZS |][t]←+∞ for all t∈ Tz|ZS|;

for i= |ZS | − 2 to 1 do

for t∈ Tzi do

if O[hi(zi)][t+ pv(zi)]−πv(zi) +wv(zi)(t+ pv(zi))≥O[lo(zi)][t] then

O[zi][t]←O[lo(zi)][t];

B[zi][t]← 0;

else

O[zi][t]←O[hi(zi)][t+ pv(zi)]−πv(zi) +wv(zi)(t+ pv(zi));

B[zi][t]← 1;

z← z1, t← 0 and s←∅;

while z 6= z|ZS |−1 do

if B[z][t] = 0 then

s← s∪{v(z)}, t← t+ pv(z), z← hi(z);

else

z← lo(z);

pricing problem (9) but without the cost function cs. If the optimal objective value of this

pricing problem is positive, then we iteratively add the new variable to the restricted LP

and solve it again, until we have shown that the LP relaxation is either feasible or infeasi-

ble. Otherwise, if the optimal objective value of this new pricing problem is negative then

we conclude that we cannot remove the infeasibility. This so-called Farkas pricing problem

can again be solved using ZDDs. Since the schedule cost is not part of the objective, the

problem equates to finding a longest path from the root node to the 1-node of ZS .

Our foregoing approach for resolving infeasibilities is different from the one in van den

Akker et al. (1999). The latter authors add infeasible variables with a “big-M”-type penalty

cost to the restricted LP relaxation, and thus at least one feasible solution always exists.
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Selecting the value of these big-M penalties is difficult, however. Lower M leads to tighter

upper bounds on the respective dual variables and may reduce the so-called “heading-in”

effect of initially produced irrelevant columns (due to the lack of compatibility of the initial

column pool with the newly added columns). Additionally, van den Akker et al. (1999) also

use a number of heuristics in order to test whether or not there exists a feasible solution.

7. Stabilization techniques

It is well known that the convergence of a CG algorithm for scheduling problems can be slow

due to primal degeneracy; this situation can be improved by using stabilization techniques.

One of these techniques is dual-price smoothing, which was introduced in Wentges (1997).

This technique corrects the optimal solution of the dual problem of the restricted LP

relaxation based on past information before it is plugged into the pricing algorithm. We first

introduce a number of concepts before the stabilization technique itself can be explained.

We first describe a dual bound for the LP relaxation of (6), in which we relax the covering

constraints (6b). This leads to the following Lagrangian subproblem for any Lagrangian

penalty vector π ∈Rn
+:

minimize
∑
s∈S

(cs−
∑
j∈s

πj)λs +
∑
j∈J

πj (10a)

subject to
∑
s∈S

λs ≤m (10b)

λs ≥ 0 for each s∈ S (10c)

Using equations (10b) and (10c) we obtain that the Lagrangian dual function L : Rn→R

of the Lagrangian relaxation is given by:

L(π) = min

{
0,min

s∈S
{cs−

∑
j∈s

πj}m

}
+
∑
j∈J

πj (11)

for every Lagrangian penalty vector π ∈Rn
+. From (11) we deduce that each time the pricing

problem (9) is solved for a dual vector π, we immediately also obtain the dual bound L(π)

associated to that dual vector. Maximizing the Lagrangian dual function over π ∈Rn
+ gives

the best possible dual bound that can be derived from the Lagrangian relaxation; this is

called the Lagrangian dual bound. We define the Lagrangian dual problem as:

max
π∈Rn

+

L(π), (12)
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which is a max-min problem. Formulating this max-min problem as a linear program will

give us a relation between the Lagrangian dual bound and the lower bound obtained from

the LP relaxation of (6):

max
π∈Rn

+

L(π) = max
π∈Rn

+

{∑
j∈J

πj + min

{
0,mmin

s∈S
{cs−

∑
j∈s

πj}

}}

= max

{∑
j∈J

πj −mσ

∣∣∣∣∣ π ∈Rn
+,−σ≤ 0 and −σ≤ cs−

∑
j∈s

πj,∀s∈ S

}

= min

{∑
s∈S

csλs

∣∣∣∣∣ ∑
s∈S:j∈s

λs ≥ 1,∀j ∈ J,
∑
s∈S

λs ≤m and λs ≥ 0,∀s∈ S

}
.

In this way we see that the Lagrangian dual bound is equal to the bound obtained by the

LP relaxation of (6).

Wentges (1997) proposes not to simply use the last-obtained vector π̄ ∈Rn
+ of dual prices

associated to the covering constraints (6b) of the restricted master in every iteration of

the CG, but rather to smoothen these dual prices into the direction of the stability center,

which is the dual solution π̂ that has generated the best dual bound L̂=L(π̂) so far (over

the different iterations of the CG). Wentges (1997) uses the following dual-price smoothing

rule:

π̃ := απ̂+ (1−α)π̄= π̂+ (1−α)(π̄− π̂). (13)

This vector is plugged into the pricing problem, with α ∈ [0,1). Define by s̃ an optimal

solution of problem (9) with respect to π̃ and let σ̄ be the last-obtained dual price associated

to constraint (6c) in the restricted master. If s̃ has negative reduced cost with respect

to π̄ (i.e., cs̃ −
∑

j∈s̃ π̄j + σ̄ < 0), then the corresponding column λs̃ can be added to the

RMP. Moreover, the stability center π̂ is updated each time the Lagrangian bound L(π̃) =

min{0,m(cs̃−
∑

j∈s̃ π̃j)}+
∑

j∈J π̃j is improved: if L(π̃)> L̂ then we update π̂ := π̃. This is

repeated until
∑

j∈J π̄j−mσ̄− L̂ < ε with ε > 0 and sufficiently small. We call this stabilized

column generation.

Remark that the pricing problem with smoothed dual vector π̃ might not yield a new

variable with negative reduced cost, i.e., cs̃−
∑

j∈s̃ π̄+ σ̄≥ 0 even if such a variable can be

found with the optimal dual vector (π̄, σ̄). We call such a situation misspricing. With the

following lemma one can show that the number of missprices is polynomially bounded:
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Lemma 1 (Pessoa et al., 2010). If misspricing occurs for π̃, then
∑

j∈J π̄−mσ̄−L(π̃)≤

α(
∑

j∈J π̄−mσ̄− L̂).

Hence we have that each missprice guarantees that the gap between the primal bound∑
j∈J π̄j −mσ̄ and the dual bound L̂ is reduced by at least a factor 1

α
. Using Lemma 1

one can show now that stabilized CG is correct, meaning that the number of iterations in

stabilized GCG is finite and that the procedure finishes with an optimal solution of the LP

relaxation of (6) if ε is sufficiently small. This establishes that stabilized CG using Wentges

(1997) smoothing is asymptotically convergent. For a complete proof we refer to Pessoa

et al. (2015), where a link is made between dual-price smoothing and in-out separation (see

also Ben-Ameur and Neto, 2007), and where it is shown that other dual-price smoothing

schemes in the literature also lead to asymptotically convergent stabilized CG algorithms.

8. Branching rules

At each node of the B&P tree we solve the LP relaxation of formulation (6) and obtain an

optimal solution λ∗. One of the following two cases will occur at every node: either the LP

relaxation has an integral solution and the new solution can be stored, or the LP solution

is fractional. In the second case, we apply a branching strategy to close the integrality gap

and find an integer solution.

8.1. General

In van den Akker et al. (1999) it is shown that some fractional solutions can be transformed

into an integral solution without much effort, using the following result:

Theorem 1. If for every job j ∈ J it holds that Cj(s) := Cj is the same for every s ∈ S

with λ∗s > 0, then the schedule obtained by processing j in the execution interval [Cj−pj,Cj]

is feasible and has minimum cost.

The branching strategy of van den Akker et al. (1999) is also based on Theorem 1, and is

applied if the LP solution λ∗ does not satisfy the conditions of the theorem. In that case, one

can deduce from Theorem 1 that there exists at least one job j for which
∑

s∈S Cj(s)λ
∗
s >

min{Cj(s) |λ∗s > 0}; this job is called the fractional job. Using the previous property, the

authors design a binary B&B tree for which in every node the fractional job j is first

identified and, if any, then two child nodes are created. The first child has the condition

that the deadline dj = min{Cj(s) |λ∗s > 0}, in the second child the release date of this
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job becomes rj = min{Cj(s) |λ∗s > 0} +1− pj. A convenient consequence of this partition

strategy is that the pricing algorithm proposed in van den Akker et al. (1999) can stay the

same also in the child nodes. It may occur, however, that the newly constructed instance

does not have feasible solutions, i.e., that there exists no solution for which rj+pj ≤Cj ≤ dj
for every job j ∈ J .

For set covering formulations such as (6), however, a more generic branching scheme

can also be applied, which is based on the following observation: if the solution λ∗ of (6)

is fractional, then there exists a job pair (j, j′) for which 0<
∑

s∈S:j,j′∈s λ
∗
s < 1 (see Ryan

and Foster, 1981). One can now separate the fractional solution λ∗ using the disjunction∑
s∈S:j,j′∈s λ

∗
s ≤ 0 or

∑
s∈S:j,j′∈s λ

∗
s ≥ 1. We call the first branch the DIFF child, in which

the jobs j and j′ cannot be scheduled on the same machine. The second branch is referred

to as the SAME child, where the jobs j and j′ have to be scheduled on the same machine.

Obviously, these constraints have implications for the pricing problem in the child nodes.

8.2. Constructing ZDDs for the child nodes

We showed in Section 5.2 how the pricing problem in the root node of the search tree

can be solved with ZDDs that hold all the feasible schedules. Below we explain how to

manipulate a ZDD after imposing branching constraints. First define for each s ∈ S an

n-dimensional binary vector as with asj = 1 if j ∈ s, otherwise asj = 0.

A ZDD for a child node in the B&B tree can be conceived as an intersection of two ZDDs,

and so we can construct this ZDD by using the generic binary intersection operation ∩ on

ZDDs (see Minato, 1993). Suppose for example that we have ZS in the root node of the

search tree, and we wish to constrain this family of sets by considering only schedules s

with asj = asj′ . We first define the family FSAME
j,j′ = {s⊂ J | asj = asj′}, represented by the

ZDD ZFSAME
j,j′

. The ZDD ZS ∩ZFSAME
j,j′

is then the ZDD of the SAME child of the root node.

A similar construction can be set up for the ZDD of the DIFF child, where the family

FDIFFj,j′ = {s⊂ J | asj + asj′ ≤ 1} can be used. In Figure 2 we depict the ZDDs ZFSAME
1,4

and

ZFDIFF
1,4

when |J |= 4. Figure 3 visualizes the ZDDs ZS ∩ZFSAME
1,4

and ZS ∩ZFDIFF
1,4

for the

instance of Table 1 (with ZS in Figure 1(e)).

In our implementation we deviate slightly from the foregoing description, in that we first

compute the intersection of the recursive specifications and then construct the ZDD with

Algorithm 1 given this specification; with this approach we follow Iwashita and Minato

(2013). We first note that in a given node of the B&B tree we only know the ZDD Z and
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Figure 2 The ZDDs ZFSAME
1,4

and ZFDIFF
1,4
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Figure 3 ZDDs in the child nodes after branching with jobs 1 and 4
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not its recursive specification, but Iwashita and Minato (2013) describe how to re-construct

a recursive specification S for Z. The configuration in this case is a pair (i, p), where p

is a node of ZDD Z and i is the label of p. Clearly, the ROOTS function of S returns

configuration (i, r), where r is the root node of Z and i the label of the root node. The
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function CHILDS of recursive specification S with arguments (i, p) and b∈ {0,1} returns

(i′, p′), where p′ is the b-child of p and i′ is the label of p′. These two functions are such that

when one applies Algorithm 1 with recursive specification S, then this algorithm returns

a ZDD that is equivalent to the original ZDD Z.

We now need to construct ZDDs for the child nodes of the B&B tree. For this we present

a rather general recursive specification. Let (J,ESAME) be an undirected graph that joins

two nodes j and j′ if they have to be scheduled on the same machine, and (J,EDIFF ) is an

undirected graph that joins two nodes j and j′ if they have to be scheduled on different

machines. Let

FSAME = {s⊂ J | asj = asj′ , ∀{j, j′} ∈ESAME}

and

FDIFF = {s⊂ J | asj + asj′ ≤ 1, ∀{j, j′} ∈EDIFF}.

We derive a recursive specification SFSAME∩FDIFF
for FSAME ∩ FDIFF . For every j ∈ J ,

define Aj as the set {j′ ∈ J | {j, j′} ∈ESAME} and Bj as the set {j′ ∈ J | {j, j′} ∈EDIFF}.

The configurations for recursive specification SFSAME∩FDIFF
are pairs (j, (SADD, SREMOV E))

where j ∈ J , SADD ⊂ J is a job set that contains all the jobs have that to be added based on

the choices made higher in the ZDD, and SREMOV E ⊂ J contains all the jobs that cannot

be added based on the previous choices. The configurations of the 1-node and the 0-node

are defined as before. The function ROOTSFSAME∩FDIFF
returns a pair for which the first

component is 1 and the second component is (∅,∅). The function CHILDSFSAME∩FDIFF
is

summarized as Algorithm 4.

The ZDD of the child nodes in the B&B algorithm can now be set up as follows. Suppose

that we apply the generic branching scheme on the jobs j and j′. Let Z be the ZDD at

the parent node and S its recursive configuration. The ZDD of the SAME child is the out-

put of Algorithm 1 with recursive specification S ∩SSAME, where SSAME = SFSAME∩FDIFF

with FSAME = {s ⊂ J | asj = asj′} and FDIFF = 2J . The ZDD of the DIFF child can be

obtained similarly with recursive specification S ∩ SSAME, where SSAME = SFSAME∩FDIFF

with FDIFF = {s⊂ J | asj + asj′ ≤ 1} and FSAME = 2J .

8.3. Branching choice

It is very important to make a good choice for the branching jobs j and j′. This choice has

a great influence on the computation time of the algorithm, partly because it decides how
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Algorithm 4: Calculation of all reachable configurations of FSAME ∩FDIFF
Function CHILDS((j, (SADD, SREMOV E)), b)

if Aj ∩Bj 6= ∅ then

return (n+ 1,0)

if b= 1 then

if j ∈ SREMOV E then

return (n+ 1,0);

S′ADD← SADD ∪Aj;

S′REMOV E← SREMOV E ∪Bj;

else

if j ∈ SADD then

return (n+ 1,0);

S′REMOV E← SREMOV E ∪Aj;

j′←min({i > j | i∈ S′REMOV E}∪ {n+ 1});

if j′ = n+ 1 and b then

if j /∈ SREMOV E then

return (n+ 1,1);

return (n+ 1,0)

else

if j /∈ SADD then

return (n+ 1,1);

return (n+ 1,0)

return (j′, (S′ADD, S
′
REMOV E))

the B&B algorithm traverses the search tree, but also because it has an impact on the size

of the ZDD in the pricing problem.

In our first experiments we used a selection criterion that was introduced by Held et al.

(2012) for the vertex coloring problem, but which can be applied to every set covering

formulation. For each job pair {j, j′} define

p(j, j′) =

∑
s∈S:j,j′∈s λs

1
2
(
∑

s∈S:j∈s λs +
∑

s∈S:j′∈s λs)
. (14)
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For all pairs j, j′ we have that p(j, j′) ∈ [0,1] and the value is well defined. When p(j, j′)

is close to 0 then jobs j and j′ tend to be assigned to different machines in the fractional

solution, whereas if p(j, j′) is close to 1, then j and j′ are mostly assigned to the same

machines. Therefore, it is preferable to choose a pair j, j′ for which the value p(j, j′) is

(the) close(st) to 0.5, because otherwise the lower bound of child nodes will probably not

radically change.

We noticed that the size of the ZDDs of the child nodes typically grows quite fast

when this selection criterion is applied. This is not very surprising because the imposed

constraints severely change the structure of the pricing problem in the child nodes. This

growth in size can be controlled, however, by choosing a branching pair j, j′ such that the

difference between j and j′ is small, and this is an extra aspect that we would like to take

along in the branching choice. Assume that j < j′. Based on some preliminary experiments,

we have come up with the following heuristic priority value:

s(j, j′) = |p(j, j′)− q(j, j′) + (j′− j)r(j, j′)| , (15)

and we choose a job pair {j, j′} such that s(j, j′) is minimal. In this expression,

q(j, j′) =
∑

s∈S:j,j′∈s

0.5− |λs−bλsc− 0.5|
|{s∈ S|j, j′ ∈ s}|

(16)

and

r(j, j′) =
|p(j, j′)− q(j, j′)|+ ε

n× r(j, j′)
. (17)

The underlying reasoning is that we wish to give priority to job pairs for which (1) the

difference between j and j′ is small, which is achieved by adding the term (j′− j)r(j, j′) to

p(j, j′); and (2) the distance between p(j, j′) and q(j, j′) is small, which means that the jobs

j and j′ do not frequently appear on the same machine in the pool of generated columns

that have a non-zero λ–value.

9. Computational experiments
9.1. Experimental setup

We have implemented two B&P algorithms, referred to as VHV and RF below, which

mainly differ in their branching strategy. VHV uses the branching strategy of van den

Akker et al. (1999), but contrary to the original reference our implementation applies

Farkas pricing to solve infeasibilities (see Section 6). The pricing problem is solved either
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with the DP algorithm presented in van den Akker et al. (1999) or with a ZDD, leading

to the variants VHV-DP and VHV-ZDD, respectively. In VHV-ZDD we build a new ZDD

that represents the set of feasible schedules with the new time windows at every node of

the B&B tree. RF applies the generic branching scheme of Ryan and Foster (1981); the

pricing problem is solved with ZDDs as explained in Sections 5.2 and 8.2.

The algorithms have been implemented in the C++ programming language and compiled

with gcc version 5.4.0 with full optimization pack -O5. We have used and adjusted the

implementation of Iwashita and Minato (2013) that can be found on Github1 to construct

the ZDDs. The computational experiments have been performed on one core of a system

with Intel Core i7–3770 processor at 3.4 GHz and 8 GB of RAM under a Linux OS. All

LPs are solved with Gurobi 6.5.2 using default settings and only one core.

We test the algorithms on six classes of randomly generated instances, as follows:

class 1: pj ∼U [1,10] and wj ∼U [10,100];

class 2: pj ∼U [1,100] and wj ∼U [1,100];

class 3: pj ∼U [10,20] and wj ∼U [10,20];

class 4: pj ∼U [90,100] and wj ∼U [90,100];

class 5: pj ∼U [90,100] and wj ∼U [pj − 5, pj + 5];

class 6: pj ∼U [10,100] and wj ∼U [pj − 5, pj + 5].

With these settings we follow van den Akker et al. (1999, 2002). We generate instances

with n= 20,50,100 and 150 jobs and m= 3,5,8,10 and 12 machines. For each combination

of n, m and instance class we construct 20 instances.

9.2. Comparison of pricing algorithms and effect of stabilization

We first compare the different pricing algorithms only in the root node of the B&B tree.

Each run is interrupted after 200 seconds. Note that the pricing algorithms in RF and

VHV-ZDD are identical in the root node. Table 2 contains a summary of our findings. In

this table, #sol is the number of instances out of 120 for which an optimal solution for the

LP relaxation is found within 200 seconds, col is the average number of generated columns

over these solved instances and cpu is the average CPU time (in seconds) over the solved

instances.

From Table 2 we conclude that both for the case with and the case without stabilization,

the runtimes for the DP solver and for the ZDD solver are more less comparable in the

1 https://github.com/kunisura/TdZdd
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Table 2 Computation of lower bound in the root node

No stabilization With stabilization
ZDD DP ZDD DP

n m #sol cpu col #sol cpu col #sol cpu col #sol cpu col

20 3 120 0.02 105.3 120 0.01 107.0 120 0.02 154.7 120 0.04 154.8
20 5 120 0.01 73.5 120 0.01 74.0 120 0.01 112.9 120 0.02 109.7
20 8 120 0.00 46.7 120 0.00 47.3 120 0.01 70.1 120 0.01 72.6
20 10 120 0.00 30.0 120 0.00 30.2 120 0.00 42.0 120 0.00 43.4
20 12 120 0.00 23.2 120 0.00 23.0 120 0.00 33.3 120 0.00 33.7
50 3 120 0.67 665.7 120 0.69 661.8 120 0.48 473.3 120 0.56 468.2
50 5 120 0.26 256.0 120 0.26 256.3 120 0.18 233.6 120 0.25 234.5
50 8 120 0.13 103.0 120 0.13 103.1 120 0.08 124.8 120 0.13 128.1
50 10 120 0.08 61.9 120 0.09 62.1 120 0.06 100.5 120 0.09 106.4
50 12 120 0.08 42.4 120 0.06 42.0 120 0.06 86.9 120 0.09 87.0

100 3 101 51.14 24,437.4 105 52.77 27,137.0 120 4.73 1,209.5 120 4.44 1,210.6
100 5 120 4.51 2,130.1 120 4.41 2,146.0 120 2.30 798.9 120 2.32 796.9
100 8 120 1.50 702.8 120 1.51 697.6 120 1.16 511.6 120 1.24 509.3
100 10 120 0.85 409.2 120 0.86 407.5 120 0.64 322.1 120 0.72 319.6
100 12 120 0.68 288.5 120 0.68 288.3 120 0.52 237.8 120 0.59 238.0
150 3 63 73.07 10,640.3 65 67.31 11,755.2 120 22.81 1,927.9 120 20.14 1,925.7
150 5 99 34.84 6,126.4 97 26.87 5,436.8 120 12.59 1,389.2 120 11.39 1,382.7
150 8 120 10.63 1,780.7 120 10.03 1,791.9 120 7.32 1,047.8 120 6.93 1,047.0
150 10 120 6.28 1,212.3 120 6.07 1,213.1 120 4.75 822.8 120 4.58 820.2
150 12 120 4.63 954.3 120 4.52 954.4 120 3.52 663.8 120 3.52 667.4

root node. In the next section we will see that the ZDD solver will nevertheless usually be

preferable, by the fact that the RF branching strategy requires less nodes for finding an

optimal solution.

The stabilization itself has a beneficial effect especially when the number of jobs per

machine is high, so for high ratio n/m. The number of generated columns is also much

lower for instances with high n/m. This will also have an important effect for identifying

integral solutions at lower levels of the B&B tree.

9.3. Computational results

We will compare the three algorithms VHV-ZDD, VHV-DP and RF. Each run of the

algorithm (for one instance) is interrupted after 3600 seconds. We first report the results

aggregated over the six instances classes, and subsequently we discuss the detailed perfor-

mance per class.

Overall computational results Table 3 shows the overall performance of the three algo-

rithms. The columns labeled #opt contain the number of solved instances out of 120 within

one hour, node is the average number of explored nodes of the B&B tree over the solved

instances, cpu is the average CPU time over the solved instances (in seconds), and gap is

the maximum absolute gap over the unsolved instances.



Kowalczyk and Leus: ZDDs and generic branching 27

Table 3 Comparison of the B&P algorithms aggregated over the six instance classes

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 120 0.8 0 0.03 120 0.8 0 0.02 120 0.8 0 0.03
20 5 120 0.9 0 0.02 120 0.9 0 0.01 120 1.0 0 0.02
20 8 120 0.6 0 0.01 120 0.6 0 0.01 120 0.6 0 0.01
20 10 120 0.3 0 0.00 120 0.3 0 0.00 120 0.3 0 0.00
20 12 120 0.4 0 0.00 120 0.4 0 0.00 120 0.4 0 0.01
50 3 120 4.3 0 1.51 120 5.5 0 1.97 120 5.1 0 1.92
50 5 120 8.8 0 1.09 119 11.6 1 1.55 120 12.2 0 1.76
50 8 120 7.9 0 0.52 119 7.6 1 0.48 119 8.2 1 0.56
50 10 120 9.2 0 0.48 120 9.2 0 0.39 120 9.3 0 0.46
50 12 120 6.1 0 0.30 120 6.7 0 0.27 120 5.9 0 0.26

100 3 119 18.8 1 68.84 120 41.8 0 174.15 120 39.8 0 153.40
100 5 119 32.0 3 39.47 119 69.1 1 118.04 118 68.5 1 112.55
100 8 118 37.9 1 23.06 118 80.1 1 71.39 118 59.6 1 48.82
100 10 119 43.6 1 17.33 120 56.3 0 23.60 120 57.0 0 24.69
100 12 117 48.2 1 16.79 118 70.3 5 25.04 119 75.0 1 26.57
150 3 118 41.1 1 782.67 103 113.8 34 1,911.84 117 116.2 3 1,799.61
150 5 116 58.4 6 443.92 116 196.0 6 1,218.23 114 192.7 6 1,157.16
150 8 114 71.9 13 249.78 114 162.8 6 649.01 114 161.9 9 636.42
150 10 116 87.5 11 199.62 116 161.9 2 372.75 117 171.5 2 427.24
150 12 117 74.3 3 116.73 119 125.3 1 252.07 120 127.1 0 268.51

We first notice that the branching scheme RF needs to explore less nodes on average to

find an optimal solution. This has a great impact on the total runtime, and leads to better

results especially when the number of jobs per machine is high. Consequently, not only

stabilization contributes to the efficiency of the algorithm, but also the branching scheme

is of vital importance. We also see that algorithm VHV-DP solves slightly more instances

to optimality. The reason why algorithm RF sometimes fails to find optimal solutions is

probably a bad exploration of the B&B tree: we use a hybrid depth-first approach and

one of the problems associated with depth-first exploration is trashing, which occurs when

different regions of the search fail for the same or similar reason, see for instance Morrison

et al. (2016a). For example a single constraint can lead to infeasibility, but this infeasibility

is only detected after exploration of subproblems deeper in the B&B tree.

Computational results for class 1 Table 4 pertains to 20 instances instead of 120. The

table shows that the algorithms perform well on the first class of instances. Algorithms

VHV-ZDD and VHV-DP solve all the instances to optimality and the average CPU time

tends to be smaller than for RF, unless the ratio n
m

is at least 18. For instances with the

latter property, it becomes more difficult for algorithms VHV-ZDD and VHD-DP to find

an optimal solution, the search requires more nodes for these instances and algorithm RF
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Table 4 Comparison of the B&P algorithms: Class 1

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 1.0 0 0.03 20 0.8 0 0.02 20 0.8 0 0.02
20 5 20 0.7 0 0.02 20 0.6 0 0.02 20 0.7 0 0.01
20 8 20 0.9 0 0.01 20 0.8 0 0.01 20 0.8 0 0.01
20 10 20 0.4 0 0.01 20 0.4 0 0.00 20 0.4 0 0.00
20 12 20 0.5 0 0.00 20 0.5 0 0.01 20 0.5 0 0.01
50 3 20 5.3 0 1.87 20 3.0 0 1.18 20 2.7 0 1.05
50 5 20 7.7 0 0.89 20 3.8 0 0.50 20 4.4 0 0.56
50 8 20 8.7 0 0.44 20 2.9 0 0.18 20 3.0 0 0.17
50 10 20 8.1 0 0.32 20 2.7 0 0.11 20 2.6 0 0.13
50 12 20 4.7 0 0.14 20 2.3 0 0.07 20 2.0 0 0.09

100 3 20 19.8 0 62.66 20 15.4 0 59.79 20 16.6 0 64.54
100 5 19 27.3 3 31.94 20 18.2 0 31.50 20 19.5 0 32.45
100 8 19 34.4 1 15.18 20 12.1 0 7.01 20 12.4 0 7.10
100 10 19 35.9 1 9.79 20 10.8 0 3.66 20 10.8 0 3.78
100 12 20 37.6 0 7.33 20 8.9 0 2.21 20 8.6 0 2.14
150 3 18 31.8 1 570.85 20 67.5 0 1,162.02 20 61.1 0 1,123.36
150 5 20 43.7 0 323.75 20 104.0 0 813.94 20 107.1 0 813.59
150 8 18 59.6 1 128.41 20 67.2 0 275.92 20 65.2 0 261.47
150 10 20 69.4 0 85.50 20 45.7 0 117.39 20 49.1 0 132.09
150 12 20 69.2 0 52.80 20 32.9 0 52.99 20 34.0 0 54.76

finds optimal solutions more quickly. When the ratio n
m

becomes bigger we have to set

tighter time windows for more jobs.

Computational results for class 2 The first major difference with class 1 is that the

lower bound at the root node for class 2 is not tight when the number of machines and

jobs increases, because we obtain more fractional solutions. The number of explored nodes

also grows, and thus the average runtime also goes up. Clearly, the values of
wj

pj
for every

j ∈ J are often different from each other and the final position of every job on its assigned

machine is very clear. Consequently, the assignment of the jobs becomes very important

for these instances. We have chosen the weights and the processing times from the uniform

distribution U [1,100]. Because of this the number of fractional solutions grows and hence

the set covering formulation is less tight. Moreover, the average size of the ZDDs for this

class of instances is significantly larger than for class 1 (see Section 9.4). Overall, all three

the algorithms solve the problem very well and the average CPU time is small. Algorithm

RF performs best especially on instances with 150 jobs.

Computational results for class 3 For instances in this class the processing time pj and

weight wj for every j ∈ J are close to each other, and so the ratio between the weight and

processing time is close to 1. Consequently, all the jobs have similar priority, and there
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Table 5 Comparison of the B&P algorithms: Class 2

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 0.9 0 0.03 20 0.9 0 0.02 20 1.0 0 0.02
20 5 20 1.0 0 0.01 20 1.0 0 0.01 20 1.1 0 0.02
20 8 20 0.7 0 0.01 20 0.7 0 0.01 20 0.7 0 0.01
20 10 20 0.5 0 0.00 20 0.5 0 0.01 20 0.5 0 0.01
20 12 20 0.4 0 0.01 20 0.4 0 0.01 20 0.4 0 0.01
50 3 20 1.1 0 0.69 20 1.1 0 0.64 20 1.1 0 0.67
50 5 20 2.8 0 0.60 19 2.8 1 0.59 20 3.0 0 0.64
50 8 20 3.3 0 0.39 19 3.4 1 0.29 19 4.2 1 0.36
50 10 20 3.8 0 0.29 20 2.4 0 0.16 20 2.4 0 0.20
50 12 20 1.6 0 0.10 20 1.4 0 0.09 20 1.4 0 0.11

100 3 20 3.9 0 23.02 20 5.9 0 37.58 20 5.7 0 33.97
100 5 20 23.7 0 56.00 19 44.6 1 112.03 18 24.4 1 61.24
100 8 20 56.4 0 53.16 20 113.5 0 133.55 20 90.3 0 101.02
100 10 20 67.2 0 41.40 20 25.1 0 18.10 20 25.0 0 17.85
100 12 20 100.0 0 50.75 20 163.9 0 74.76 20 169.6 0 75.03
150 3 20 8.3 0 362.30 15 21.1 3 921.16 17 16.9 3 714.94
150 5 16 66.8 6 897.72 16 53.0 6 956.54 15 57.1 6 1,009.13
150 8 17 101.4 13 582.98 16 143.3 6 1,151.20 16 141.4 9 1,130.34
150 10 16 177.4 11 691.58 16 118.6 2 579.59 17 154.0 2 739.64
150 12 18 96.1 3 266.01 20 96.7 0 348.92 20 99.6 0 356.42

will be many relevant feasible schedules. The algorithms VHV-DP and VHV-ZDD perform

quite weakly on these instances; this was already observed in van den Akker et al. (1999).

It is nevertheless surprising that the algorithms require a long time for finding a feasible

solution, because the formulation is very tight. This can be explained by the fact that the

set covering formulation often returns a fractional solution. The branching strategy of RF

clearly needs less nodes to find an optimal solution and hence the average runtime over

the solved instances is lower. We conjecture that in general, the positions of the jobs in the

final solution are more predetermined by assigning two jobs to the same machine, rather

than by tightening the time window of one job.

Computational results for class 4 These instances have the same properties as the

previous class, only the processing times and the weights are larger. Table 7 shows that

this class requires higher average runtime than class 3 for algorithms RF and VHV-ZDD.

The same number of nodes is explored to find an integer solution, so the higher average

computation time can only be explained by the size of the ZDDs, which determines the

running time of the pricing problem; see our discussion in Section 9.4.

Computational results for class 5 These instances have the same properties as the

previous class, but the different values
wj

pj
for every j ∈ J are now closer to each other than
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Table 6 Comparison of the B&P algorithms: Class 3

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 0.8 0 0.03 20 0.7 0 0.02 20 0.6 0 0.02
20 5 20 0.8 0 0.02 20 0.9 0 0.01 20 1.0 0 0.02
20 8 20 0.3 0 0.01 20 0.3 0 0.01 20 0.3 0 0.01
20 10 20 0.2 0 0.00 20 0.2 0 0.00 20 0.2 0 0.00
20 12 20 0.3 0 0.00 20 0.3 0 0.00 20 0.3 0 0.00
50 3 20 9.7 0 2.11 20 14.8 0 4.02 20 14.9 0 4.17
50 5 20 12.0 0 1.05 20 18.5 0 1.91 20 18.5 0 2.01
50 8 20 13.4 0 0.58 20 13.8 0 0.60 20 13.6 0 0.62
50 10 20 10.5 0 0.37 20 13.4 0 0.44 20 14.8 0 0.51
50 12 20 6.0 0 0.18 20 6.3 0 0.18 20 6.1 0 0.21

100 3 20 27.6 0 41.52 20 58.4 0 158.79 20 59.3 0 162.29
100 5 20 37.9 0 22.37 20 83.3 0 109.53 20 83.4 0 103.74
100 8 20 42.8 0 10.66 20 79.1 0 40.79 20 79.0 0 39.34
100 10 20 39.5 0 7.10 20 69.3 0 20.47 20 68.2 0 20.01
100 12 20 42.5 0 6.06 20 68.2 0 12.23 20 67.1 0 12.39
150 3 20 59.5 0 430.16 20 151.4 0 1,508.28 20 152.1 0 1,517.54
150 5 20 69.4 0 166.64 20 232.4 0 965.47 20 230.7 0 1,063.91
150 8 20 72.7 0 71.93 20 210.3 0 504.77 20 206.4 0 517.08
150 10 20 78.5 0 51.05 20 183.9 0 360.87 20 185.7 0 361.57
150 12 20 76.7 0 36.81 20 176.7 0 224.36 20 181.2 0 245.16

Table 7 Comparison of the B&P algorithms: Class 4

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 0.6 0 0.03 20 0.6 0 0.02 20 0.7 0 0.03
20 5 20 0.7 0 0.01 20 0.7 0 0.01 20 0.7 0 0.01
20 8 20 0.5 0 0.01 20 0.5 0 0.01 20 0.5 0 0.01
20 10 20 0.2 0 0.00 20 0.2 0 0.00 20 0.2 0 0.00
20 12 20 0.5 0 0.00 20 0.5 0 0.00 20 0.5 0 0.00
50 3 20 0.9 0 0.70 20 1.0 0 0.69 20 1.5 0 1.01
50 5 20 10.7 0 1.17 20 16.6 0 2.13 20 17.3 0 2.59
50 8 20 6.5 0 0.42 20 8.1 0 0.49 20 7.8 0 0.62
50 10 20 10.3 0 0.39 20 12.9 0 0.45 20 12.6 0 0.62
50 12 20 3.1 0 0.13 20 3.6 0 0.13 20 3.5 0 0.17

100 3 20 17.1 0 69.73 20 48.8 0 186.70 20 40.3 0 169.07
100 5 20 39.1 0 33.34 20 100.3 0 147.82 20 99.8 0 159.27
100 8 20 29.0 0 14.84 20 57.2 0 44.29 20 54.9 0 47.10
100 10 20 40.6 0 9.70 20 85.0 0 31.49 20 80.9 0 34.77
100 12 19 35.5 1 7.29 20 60.6 0 18.41 20 57.4 0 20.36
150 3 20 54.0 0 973.53 16 153.8 8 2,261.55 20 154.8 0 2,108.39
150 5 20 65.0 0 383.71 20 266.8 0 1,281.31 20 267.2 0 1,239.42
150 8 20 63.3 0 164.27 20 200.6 0 612.88 20 193.1 0 648.76
150 10 20 75.1 0 93.25 20 220.7 0 358.59 20 218.2 0 429.64
150 12 20 69.3 0 68.99 19 152.6 1 292.79 20 161.4 0 287.08

in the previous two instance classes. From Table 8 we see that the average CPU time of

algorithm RF is lower than for algorithms VHV-ZDD and VHV-DP, but the average CPU

time is higher than in the previous class. This can be explained by the fact that we need
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Table 8 Comparison of the B&P algorithms: Class 5

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 0.6 0 0.03 20 0.6 0 0.02 20 0.6 0 0.03
20 5 20 1.0 0 0.02 20 1.0 0 0.02 20 1.0 0 0.02
20 8 20 0.5 0 0.01 20 0.5 0 0.01 20 0.5 0 0.01
20 10 20 0.1 0 0.00 20 0.1 0 0.00 20 0.1 0 0.00
20 12 20 0.4 0 0.00 20 0.4 0 0.00 20 0.4 0 0.01
50 3 20 3.3 0 1.46 20 4.3 0 1.82 20 4.0 0 1.94
50 5 20 11.7 0 1.49 20 16.8 0 2.34 20 18.5 0 3.02
50 8 20 4.4 0 0.34 20 8.2 0 0.58 20 8.4 0 0.72
50 10 20 7.9 0 0.37 20 10.8 0 0.44 20 10.4 0 0.57
50 12 20 4.1 0 0.18 20 4.6 0 0.17 20 3.6 0 0.19

100 3 19 25.4 1 141.01 20 73.5 0 359.54 20 69.3 0 290.36
100 5 20 39.3 0 54.97 20 108.3 0 180.43 20 120.7 0 200.69
100 8 19 30.4 1 18.72 18 156.1 1 152.82 18 59.6 1 54.35
100 10 20 40.1 0 12.94 20 84.4 0 35.22 20 85.8 0 39.51
100 12 18 33.0 1 9.05 18 60.6 5 21.49 19 88.3 1 30.91
150 3 20 60.0 0 1,538.03 14 165.6 13 2,866.70 20 166.1 0 2,508.50
150 5 20 67.9 0 584.08 20 305.4 0 1,488.36 19 290.7 4 1,355.12
150 8 19 77.2 2 335.50 18 200.0 3 770.27 18 199.8 1 736.50
150 10 20 75.9 0 164.37 20 238.1 0 422.13 20 260.3 0 541.05
150 12 19 66.3 1 97.01 20 149.1 0 291.82 20 150.1 0 402.01

more nodes in order to find an optimal solution. Remark also that the ratio of the average

CPU time of algorithm VHV-ZDD or VHV-DP over the average CPU time of algorithm

RF is also smaller than in the previous class of instances. This can be explained by the

fact that the size of ZDDs is much larger than in the previous class.

Computational results for class 6 Here the ratios
wj

pj
are close to each other just as in

class 5, but the initial time windows of the different jobs are much tighter (see Section 3).

In both cases Algorithm RF has to explore less nodes than algorithms VHV-ZDD and

VHV-DP in order to find an optimal solution. The instances become more difficult with

higher ratio of n over m. The ratio of cpu of VHV over cpu of RF is clearly lower for

instances with smaller n
m

. Table 9 indicates that algorithm RF performs better overall than

algorithms VHV-ZDD and VHV-DP for this class.

Conclusion In general we can conclude from the Tables 4–9 that algorithm RF performs

better than algorithms VHV-ZDD and VHV-DP with respect to the number of nodes

explored in the B&B tree. This will have consequences for the overall running time. Only

for instances of class 1 and 2 the algorithm performs weakly for instances where the ratio

n
m

is low. One reason for this is that the bound of the child nodes is often not much better

than the lower bound of the parent node when we apply the branching strategy of Ryan
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Table 9 Comparison of the B&P algorithms: Class 6

RF VHV-ZDD VHV-DP

n m #opt node gap cpu #opt node gap cpu #opt node gap cpu

20 3 20 1.1 0 0.03 20 1.1 0 0.03 20 1.1 0 0.04
20 5 20 1.2 0 0.03 20 1.4 0 0.02 20 1.4 0 0.03
20 8 20 1.1 0 0.02 20 1.0 0 0.01 20 1.1 0 0.01
20 10 20 0.6 0 0.01 20 0.6 0 0.00 20 0.6 0 0.01
20 12 20 0.7 0 0.00 20 0.7 0 0.01 20 0.7 0 0.00
50 3 20 5.8 0 2.25 20 8.6 0 3.44 20 6.8 0 2.66
50 5 20 7.8 0 1.37 20 10.7 0 1.80 20 11.4 0 1.75
50 8 20 11.1 0 0.96 20 9.1 0 0.70 20 11.9 0 0.85
50 10 20 14.5 0 1.13 20 13.0 0 0.74 20 13.3 0 0.73
50 12 20 17.1 0 1.05 20 21.9 0 0.96 20 18.7 0 0.80

100 3 20 19.4 0 78.70 20 49.3 0 242.48 20 47.6 0 200.14
100 5 20 24.5 0 37.83 20 58.9 0 126.66 20 58.7 0 112.79
100 8 20 34.3 0 25.21 20 70.2 0 58.02 20 61.7 0 44.59
100 10 20 37.8 0 22.65 20 63.5 0 32.67 20 71.1 0 32.22
100 12 20 38.4 0 18.98 20 58.7 0 20.81 20 60.1 0 18.81
150 3 20 32.4 0 799.97 18 125.0 34 2,965.41 20 131.4 0 2,662.24
150 5 20 39.7 0 398.39 20 186.2 0 1,751.43 20 174.3 0 1,434.67
150 8 20 60.7 0 257.70 20 155.4 0 691.60 20 165.3 0 633.14
150 10 20 66.8 0 210.39 20 155.9 0 439.32 20 159.2 0 406.29
150 12 20 70.2 0 192.70 20 145.2 0 303.59 20 136.4 0 265.66

and Foster (1981). The branching strategy of van den Akker et al. (1999) performs better

on instances where the number of jobs per machine is low. This is not surprising because

a tighter time window for a job has a larger influence on the space of feasible solutions if

there are not many jobs per machine. Moreover, trashing occurs when we apply a depth-

first exploration strategy of the B&B tree, and this has an important effect for this type of

instances because the lower bound at the root node is not as tight as for the other cases.

9.4. Evolution of the size of the ZDDs

In Table 10 we report the average (avg) and maximum (max ) size of the ZDD at the

root node for every n, m and instance class. We conclude that the pricing problem is the

hardest to solve for the instances with ratio
wj

pj
close to 1 for every job j. The range of

possible processing times and the number of jobs per machine also have a major influence

on the size of the ZDDs. For constant n, the size of the ZDDs decreases with increasing m.

Overall, the size of the ZDDs is considerable, hence it is important to prevent an additional

fast growth upon applying the branching constraints. We also remark that the CPU time

for building the ZDD at the root node is very low; on average this is less than 0.06 seconds.

This is much lower than the construction times for the maximum independent set problem

that are reported in Morrison et al. (2016b).
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Table 10 Average and maximum size of the ZDD at the root node

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

n m avg max avg max avg max avg max avg max avg max

20 3 240.8 310 1,018.8 1,208 466.6 535 345.2 454 464.0 566 1,271.0 1,400
20 5 197.0 262 601.3 800 258.8 308 90.8 152 119.7 202 707.6 870
20 8 146.2 172 306.1 422 129.2 166 77.1 95 67.0 93 375.1 513
20 10 130.6 170 224.6 385 95.7 122 68.1 95 85.4 107 266.7 437
20 12 114.7 146 178.0 244 75.6 103 51.2 72 39.9 51 209.5 322
50 3 1,513.4 1,907 11,808.1 15,303 3,653.7 4,344 7,408.6 9,394 12,463.7 15,137 18,153.5 19,947
50 5 1,144.2 1,336 8,765.8 10,611 2,570.4 2,876 4,030.3 5,712 7,429.3 8,103 13,550.6 15,456
50 8 906.3 1,052 6,532.7 8,074 1,741.4 2,033 1,542.8 2,040 2,106.6 2,556 9,618.4 10,508
50 10 777.7 895 5,484.6 7,130 1,373.6 1,773 1,432.0 1,722 2,317.9 2,559 7,690.8 8,645
50 12 700.9 796 4,673.9 5,453 1,119.1 1,384 845.1 977 1,113.0 1,314 6,292.5 6,840

100 3 5,235.6 6,267 45,232.2 53,007 15,539.2 17,702 59,735.1 73,532 103,731.4 109,710 77,922.9 87,083
100 5 3,943.7 4,595 36,614.3 43,186 10,741.1 12,274 34,212.3 38,944 60,533.0 65,571 57,572.1 63,864
100 8 3,098.6 3,573 25,808.9 28,909 7,462.0 8,345 14,485.3 18,378 23,451.2 26,527 40,907.6 43,930
100 10 2,706.6 3,066 22,379.5 27,536 5,817.8 6,499 11,457.5 12,716 18,747.6 20,367 34,953.8 39,827
100 12 2,440.3 2,950 19,577.8 22,914 5,231.6 6,096 6,573.9 8,540 9,252.4 10,766 30,160.2 32,381
150 3 11,520.6 12,592 101,307.5 113,608 33,584.1 38,954 161,673.2 185,651 267,742.3 280,935 172,325.7 186,026
150 5 8,415.1 9,271 75,276.2 84,689 23,528.7 26,732 98,735.7 113,617 172,946.1 185,661 128,118.4 146,306
150 8 6,073.3 6,807 56,595.0 62,024 15,869.0 17,634 53,812.8 62,751 93,094.4 98,813 93,031.9 104,062
150 10 5,340.5 5,969 48,426.1 54,678 13,041.3 14,093 38,050.7 43,006 63,917.9 66,859 78,653.1 84,328
150 12 4,749.1 5,213 41,274.8 46,559 11,453.7 13,007 25,859.8 30,273 41,082.4 45,856 69,401.9 77,230

Table 11 Evolution of the size of the ZDDs for instances with 50 jobs

m = 3 m = 5 m = 8 m = 10 m = 12

depth H C H C H C H C H C

5 1.34 −0.04 1.14 −0.02 0.53 0.02 0.20 0.04 0.15 0.07
10 4.20 −0.08 1.83 −0.05 0.93 0.03 0.22 0.07 0.12 0.15
15 7.67 — 1.99 −0.14 1.62 0.08 0.39 0.22 0.51 0.33
20 — — — — 3.17 −0.04 0.76 — — 0.45

Table 11 displays the average grow rate of the size of the ZDDs at various depths of the

search tree compared to the size at the root node of the tree, for instances with 50 jobs.

For each value of m there are two columns, with H containing the average size using the

decision heuristic of Held et al. (2012), and C the average size with the rule introduced in

Section 8. A tabel entry of 1.34, for instance, means that for this setting the average size

of the ZDD is around 134% of the size at the root. We report only the values for depths

of the B&B tree that are a multiple of 5. For every number of machines we calculate over

all six instance classes. We observe that our branching choice allows to control the size of

the ZDDs; in some cases the size of the ZDDs is even reduced compared to the root node.

10. Summary and conclusion

In this paper we have augmented the B&P algorithm of van den Akker et al. (1999)

by adding several new features such as dual stabilization and Farkas pricing, which are

important for calculating the LP lower bound at every node of the search tree. Additionally,
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we have also examined the use of ZDDs for solving the pricing problem. This creates the

opportunity to use a generic branching scheme (Ryan and Foster, 1981) for this problem.

We have observed that this branching scheme performs very well on instances that could not

be solved using the branching scheme of van den Akker et al. (1999). More generally, this

generic branching scheme can be used to solve scheduling problems on parallel machines

for which the single-machine problem is optimally solved using a priority rule. For future

research it would be interesting to evaluate whether it is possible to use ZDDs in the pricing

problem for machine scheduling problems that do not have this property.
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