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ABSTRACT
The natural representation of solutions of finite constraint
satisfaction problems is as a (set of) function(s) or rela-
tion(s). In (constraint) logic programming, answers are in
the form of substitutions to the variables in the query. This
results in a not very declarative programming style where
a table has to be presented as a complex term. Recently,
stable logic programming, also called answer set program-
ming and abductive logic programming have been proposed
as approaches supporting a more declarative style for solving
such problems.

The approach developed in this paper is to extend the con-
straint domain of a constraint logic programming language
with open functions, functions for which the interpretation
is not fixed in advance. Their interpretation contains the
solution of the problem. This enrichment of the constraint
domain yields a language which is almost as expressive as
abductive logic programming and is very well suited for ex-
pressing finite domain constraint satisfaction problems. Im-
plementation requires only to extend the constraint solver
of the underlying CLP language.

1. INTRODUCTION
For many problems, the most natural representation of their
solution is as a (set of) table(s) or relation(s) (e.g. [23]).
Consider for example the n-queens problem. A natural rep-
resentation of its solution is as a table of facts position(i, j)
where a pair (i, j) defines the coordinates of a queen or as
a function position(i) where the function value for i defines
the column position of the queen on row i. In the framework
of (constraint) logic programming, solutions are substitu-
tions for the variables in some goal. Hence a programmer
using this paradigm is forced to choose a term representation
for the solution table. This leads to a procedural program-
ming style of generating a list of domain variables holding
the positions of the different queens, of setting up the con-
straints between the different queens and finally of searching
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for a solution satisfying the constraints. The level of indirec-
tion in the representation results in a much less declarative
program (e.g. [8]). It is harder to write, to understand and
to maintain than in the case where a solution can be repres-
ented as a relation or a function. A typical CLP-program
for solving the n-queens problem (note the double recursion)
is as follows:

queens(Q,N) :- generate(Q,N,N), safe(Q), instantiate(Q).

generate([],0,_).
generate([X|T],M,N) :-

M > 0, X in 1..N, M1 is M-1, generate(T,M1,N).

safe([]).
safe([X|T]) :- noAttack(X,1,T), safe(T).

noAttack(_,_,[]).
noAttack(X,D,[Y|Z]) :-

X \= Y, abs(X-Y) \= D,
D1 is D1 + 1, noAttack(X,D1,Z).

instantiate([]).
instantiate([X|T]) :- enum(X), instantiate(T).

A number of recent papers argue in favor of a new logic
programming paradigm based on stable model semantics
[14]. In [27], Marek and Truszczyński introduce Stable Lo-
gic Programming as a novel programming paradigm. The
language is basically DATALOG extended with negation.
Stable models of programs form a finite family of finite sets,
hence the solutions to search problems can be represented as
stable models of Stable Logic Programs. The programming
style is to introduce constraints which restrict the stable
models to the solutions. Lifschitz [25, 26] introduces the
closely related notion of Answer Set Programming and ex-
plores its use in satisfiability planning [24]. Also Niemelä
[28] makes a similar point, proposing stable models as a
paradigm for constraint programming. The smodels sys-
tem [29] is one of the most advanced implementations sup-
porting this programming paradigm.

A more smooth extension of the basic logic programming
paradigm is abductive logic programming [19]. Besides the
program P , it distinguishes a set of abducibles A (names
of predicates not defined in the program) and a set of in-
tegrity constraints IC. An abductive solver then searches
for a set of atoms ∆ for the abductive predicates such that
all integrity constraints are satisfied. However abductive lo-
gic programming systems have complex inference rules (e.g.



the inference rules in [9, 13, 21, 22]). As a consequence, it
is rather hard to understand and control their procedural
behavior. Moreover a direct implementation as an exten-
sion of a logic programming system is far from obvious.
Current implementations are meta-interpreters on top of
a (constraint) logic programming system [9, 21, 22]. The
meta-interpreter overhead is detrimental to their perform-
ance and their memory consumption.

This paper develops another approach. Integrity constraints
are retained –their evaluation can be reduced to query eval-
uation by SLDNF– but abducibles are dropped. Instead, we
introduce functions which are allowed to have an arbitrary
interpretation, called open functions1. This retains most
of the expressiveness of abductive logic programming while
it results in a substantially simpler inference system, close
to SLDNF. Indeed, the required modification is to enrich
the constraint domain of a CLP language with open func-
tions and to extend the constraint solver with inference rules
to cope with the open functions. Modifying the constraint
solver of an existing CLP language is perhaps easier than
building an abductive system from scratch. It is part of our
future research to find out.

The paper starts with recalling some of the preliminaries
on which constraint logic programming is based. Section
3 describes how to extend constraint domains with open
functions; it introduces an open function solved form and
describes which rewrite rules to add to an existing solver to
derive the open function solved form. Section 4 introduces
the programming paradigm. How to adapt a CLP semantics
to the extended language is also described in this section.
Section 5 presents a proof procedure which is based on the
SLDNF proof procedure of Apt and Doets and also shows
an extension incorporating tabulation. Section 6 shows ad-
vanced examples illustrating the need for tabulation and
negation. The paper ends with a discussion of related work
and a conclusion.

2. PRELIMINARIES
A sequence of terms s1, . . . , sn is denoted as s̃ and we use
s̃ = t̃ as a shorthand for s1 = t1, . . . , sn = tn.

To facilitate the introduction of open functions, we recall
some basic notions about many-sorted signatures and struc-
tures (e.g. [35]). A signature Σ is a pair 〈S ,F〉 where S is
a set of sorts (types), F is a set of function and predicate
symbols together with an arity function τ which maps func-
tion symbols to S+ and predicate symbols to S∗. We write
f : w̃ → s when τ (f) = w̃, s. A constant has a type → s. A
signature Σ = 〈S ,F〉 is embedded in Σ′ = 〈S ′,F ′〉 if S ⊆ S ′,
F ⊆ F ′ and τ = τ ′|F . Later on we use embeddings where
S = S ′.

A Σ-structure D defines an interpretation for a signature
Σ. For each sort s it defines a domain Ds (the universe or
carrier of sort s), for each function symbol f : s1, . . . , sn → s
a function fD : Ds1

, . . . , Dsn
→ Ds and for each predicate

symbol p : s1, . . . , sn a relation pD ⊆ Ds1
× . . . × Dsn

. A

1We use the term open function in analogy with Open Logic
Programming [6] where a logic program may contain predic-
ates which are not defined by program rules and are called
open predicates.

structure D is a Σ-reduct of a structure D′, denoted with
D = D′|Σ if Σ is an embedding of Σ′ and D and D′ have
the same interpretation for the symbols in Σ, the common
part of their signatures. The algebra D′ is also called an
enlargement of D. For a set of typed variables X , a valuation
v is a mapping v : X → D. It can be extended in a unique
way to a mapping from terms to D.

A first-order Σ-formula is built from the logical connectives
∧,∨,¬,←,→, leftrightarrow and quantifiers over variables
∀,∃ in the usual way. The existential and universal closures
of a formula φ are denoted with ∃̃φ and ∀̃φ. A Σ-theory is
a set of closed Σ-formulae. A model of a Σ-theory T is a
Σ-structure D such that all formulae of T evaluate to true
under the interpretation provided by D. A D-model of a
theory T is a model of T which is an enlargement of D. We
write T ,D |= φ to denote that the formula φ is valid in all
D-models of T .

3. CONSTRAINT DOMAINS WITH OPEN
FUNCTIONS

The CLP (C) framework [18] is parameterized by a particular
constraint domain C which is a quadruple 〈Σ,D,L, T 〉 where
Σ is a signature, D is a Σ-structure, L is a class of Σ formulae
and T is a first-order Σ-theory. The signature is assumed to
contain the equality predicate = and the disequality predic-
ate 6= for each sort s. The former is interpreted as identity
in D, the latter is its negation.

We consider an extension of a constraint domain C with a set
of open functions Φ which will be denoted as C(Φ). The first
step is to extend the constraint signature Σ in the following
way:

Definition 1. Let Σ = 〈S ,F〉 be a signature and Φ a set
of function symbols. Then Σ(Φ) = 〈S ,F ∪Φ〉 is a signature
with open functions Φ based on Σ.

It follows from this definition that Σ is embedded in Σ(Φ).
Note that the arity of the open functions is defined over the
set of sorts S from the base signature Σ. In the following,
open functions will be denoted with the Greek letter φ.

Also, the structure D which gives the intended interpret-
ation of the constraints needs to be extended in the pres-
ence of the open functions. In fact, such an extension will
be a solution to a problem represented in our framework.
More formally, we consider a Σ(Φ) structure DΦ which is
an enlargement of D. It gives an interpretation of the open
functions for the set of carriers defined by D.

We require the language L of the constraint domain C to
be closed at least under variable renaming, conjunction and
disjunction. Allowing a full first-order language requires to
impose a restriction: universally quantified variables should
not appear as arguments of open functions. The reason is
that in this case we will be able to express arbitrary equa-
tional problems, hence the satisfiability test becomes unde-
cidable. Decidability for arbitrary first-order formulae can
only be ensured in special cases, e.g. when the constraint
structure D has finite carriers for the domains of all open
functions.



The first-order Σ-theory T is an axiomatization of some of
the properties of D. As any constraint includes the equality
predicate =, every theory T contains the standard equality
axioms for reflexivity, symmetry, transitivity and function
and predicate substitution for the symbols in Σ. When the
signature is extended with open functions we only need to
add the function substitution axioms for the open functions:

∀x̃, ỹ. x̃ = ỹ → φ(x̃) = φ(ỹ)

Let T Φ denote the theory T extended with the above ax-
ioms.

An important requirement of the theory T is satisfaction
completeness [17] with respect to L - that is D is a model of

T and for every constraint c ∈ L, either T |= ∃̃c or T |= ¬∃̃c.
When working with open functions the first condition can
be reformulated as: any enlargement DΦ of D is a model of
T Φ. The second condition does not hold in general (even if
we use the theory T Φ) because only some of the models of

T Φ will be models of ∃̃c.

3.1 Constraint solving
Any constraint domain should support a test for satisfiab-
ility D |= ∃̃c which we call constraint solving. In practice,
it is necessary not only to detect satisfiability of a given
constraint but also to compute a D-valuation v such that
D |= v(c). We call such valuation a D-solution to a con-
straint c and denote with solD(c) the set of all solutions:
solD(c) = {v|D |= v(c)}. We say that two constraints c1

and c2 are equivalent if solD(c1) = solD(c2) which can be

expressed logically as D |= ∀̃(c1leftrightarrowc2). Note
that equivalence with respect to a structure D is implied
by logical equivalence which holds for any structure. When
working with open functions, equivalence of two constraints
means that they have the same set of solutions for all en-
largements DΦ of D.

A standard approach for constraint solving is to transform
a constraint c to a set of constraints in a solved form which
satisfy the following properties:

• Solvability - a solved form has at least one solution.

• Simplicity - every solution can be easily obtained from
a solved form.

• Completeness - every problem is equivalent to a finite
disjunction of solved forms.

A well-known solved form in the domain of equality of finite
trees is the unification solved form which has the form ⊥ or
x1 = t1 ∧ . . .∧xn = tn where the xi are variables that occur
only once.

A constraint solver can be implemented as a set of rewrite
rules R. Rewriting a constraint c to a constraint c′ is de-
noted with c 7→ c′. A rule can be applied at any occurrence
of a term matching the left hand side of a rewrite rule and
we assume that the rewriting is done modulo the boolean
properties (such as commutativity and associativity of con-
junction and disjunction). A rule c 7→ c′ is correct if c is

equivalent to c′. A rewrite system is terminating when al-
ways a form is reached that cannot be further rewritten after
a finite number of steps.

When extending a constraint domain with open functions,
the interest is not only in the valuations under which a con-
straint is true, but, more importantly, in the enlargements
DΦ of the structure D of the constraint domain used to
obtain the valuations. A compact way to represent enlarge-
ments is by a conjunction of equations of the form φ(s̃) = t
where s̃ and t are terms without open functions. We call
such equations open function equations. Consequently, a
constraint will have a form c, F where F contains only open
function equations and c may contain arbitrary constraints.
It is also natural to restrict the application of the rules of the
rewrite system R to constraints not containing open func-
tions. Now we define a solved form for constraints with open
functions:

Definition 2. A constraint of the form c, F is in open func-
tion solved form if c is a constraint without open functions
that is in solved form with respect to the original constraint
domain, F is a conjunction of open function equations, and,
for any D-valuation v that is a solution of c there exists a
structure DΦ that is a model of F .

This definition is partly syntactical (open functions must be
isolated in the F part) and partly semantical (existence of
an enlargement). In what follows we will develop rewrite
rules which transform a constraint in a form that satisfies
the conditions stated in the definition.

This definition meets the simplicity criterion because it im-
plies that a solution for c (which is easily obtained be-
cause c is in solved form) is also a solution for c, F under
any enlargement DΦ that interprets the open functions as
DΦ(φ(v(s̃i))) = v(ti) for all open function equations φ(s̃i) =
ti ∈ F . The solved form of c gives a compact representation
for the (possibly infinite) set of valuations which satisfy c
and the set of open function equations F gives a compact
representation for the (possibly infinite) set of enlargements.

To obtain an open function solved form, a first step is to
separate the open functions from the rest of the constraints
by using the following normalization rule:

c[φ(s̃)], F 7→ c[x], F ∧ φ(s̃) = x (N)

where x is a new variable. Then the following proposition is
easy to prove.

Lemma 1. The rule (N) is correct.

After applying this rule a finite number of times, a problem
can be put in a form c, F where c is a constraint without open
functions and F is a conjunction of open function equations.
We use this convention for c and F in the rest of this section.

Using the rule (N) is not enough for reaching a solved form.
Indeed there can be a D-valuation v such that D |= v(c) and
that D cannot be extended in a model of F . This is the case



when F contains a pair of open function equations φ(s̃i) = ti

and φ(s̃j) = tj such that v(s̃i) = v(s̃j) but v(ti) 6= v(tj). To
solve this problem, we introduce another rule:

c, F 7→ c ∧ (s1 6= t1 ∨ . . . ∨ sn 6= tn ∨ r1 = r2), F (FS)

where φ(s1, . . . , sn) = r1, φ(t1, . . . , tn) = r2 ∈ F . The rule is
applied exactly once for each distinct pair of open function
equations in F . Note that the disjunction in the right-hand
side is equivalent to the implication

s1 = t1 ∧ . . . ∧ sn = tn → r1 = r2

If true,F 7→∗
F S c, F where 7→∗

F S is the closure of the rule
FS then we denote with FS(F ) the formula c. Note that it
does not contain open functions.

Lemma 2. The rule (FS) is correct.

Proof. We prove that the rule preserves the logical equi-
valence. First, we add to F the function substitution axiom
for the equality predicate x̃ = ỹ → φ(x̃) = φ(ỹ) which is
valid in any structure and apply the substitution {x̃/s̃, ỹ/t̃}.
We obtain the formula s̃ = t̃ → φ(s̃) = φ(t̃) which is equi-
valent to s̃ = t̃ → r1 = r2 by using the symmetry and
transitivity rule and the equations φ(s̃) = r1 ∧ φ(t̃) = r2.
The other direction is trivial.

Lemma 3. If v is D-valuation which is a solution of FS(F )
then there exists an enlargement DΦ of D such that DΦ |=
v(F ).

Proof. Let v be a D-valuation such that D |= v(FS(F )).
Then, we can construct a structure DΦ which satisfies F
by induction on the number of equations in F . Suppose
that DΦ

i−1 is a partial interpretation which is a model of the
first i − 1 equations from F and consider the ith equation
φ(s̃i) = ti. If DΦ

i−1 already defines the value of φ for v(s̃i)
then there exists some equation φ(s̃j) = tj with j < i such
that v(s̃j) = v(s̃i). But then since v is a solution to FS(F )
we have that v(tj) = v(ti). Otherwise we extend DΦ

i−1 to
DΦ

i by defining DΦ
i (φ(v(s̃i))) = v(ti).

To illustrate the application of the two rules we consider a
simple example adapted from [15].

Example 1. Let the constraint domain be the algebra of
finite trees and consider the following conjunction of open
function equations:

φ(a, 1) = X ∧ φ(X, 1) = b(Y )

We will use some simple rules for rewriting equations between
terms which can be found in e.g. [5]:

true, φ(a, 1) = X ∧ φ(X, 1) = b(Y ) 7→F S

(X 6= a ∨ 1 6= 1 ∨ X = b(Y )), φ(a, 1) = X ∧ φ(X, 1) = b(Y ) 7→

(X 6= a ∨ X = b(Y )), φ(a, 1) = X ∧ φ(X, 1) = b(Y ) 7→Replace

(X 6= a ∨ a = b(Y )), φ(a, 1) = X ∧ φ(X, 1) = b(Y ) 7→Clash

X 6= a, φ(a, 1) = X ∧ φ(X, 1) = b(Y )

Theorem 1. Let R be a correct and terminating set of
rules which transform any constraint without open functions
to an equivalent finite disjunction of constraints in solved
form. Then R ∪ {N, FS} is a correct and terminating set
of rules for constraints with open functions which transform
any constraint c to an equivalent finite disjunction of con-
straints that are in open function solved form.

Proof. The correctness follows from lemmas 1 and 2 and
the correctness of R. For what concerns termination it fol-
lows from the definitions of the rules N and FS that they
derive in a finite number of steps a system of the form c, F
such that c does not contain open function symbols and F
cannot be further reduced by N and FS. As R is terminat-
ing and can only select constraints without open functions
it reduces in a finite number of steps to c′, F ′ with c′ the
solved form of c which cannot be further reduced by N and
FS. Hence, by lemma 3, it is in open function solved form.
This shows the existence of a terminating derivation. In-
tertwining the application of R with the application of N
and FS cannot endanger termination as R cannot select the
equations that N and FS can select.

This result shows that we can reduce the problem of finding
a solution to a constraint with open functions to solving a
constraint without open functions. A set of rules for the
domains of finite, rational and infinite trees which satisfy
the conditions of the above theorem can be found in [5].

3.2 Finite Domain Constraints
Given a constraint c with n occurrences of open function
symbols then the rule N can be applied at most n times
and consequently the rule FS can be applied n! times. In
many practical CLP applications it is preferable to have a
constraint solver with smaller complexity even if it is not a
complete solver. A typical example is finite domain con-
straint solving where the search is divided in two parts.
First, a proof procedures constructs a set of constraints using
an incomplete but efficient test for satisfiability. Typically
this is some algorithm for guaranteeing local consistency of
the set of constraints by reducing the domains of the vari-
ables. Then follows an enumeration phase where the CLP
variables are assigned values and tested for consistency. By
taking into account these properties of finite constraint do-
mains, an incomplete algorithm for solving open functions
with smaller complexity can be devised. First, as the domain
of the open functions is finite, we can construct a conjunc-
tion of open function equations which represents the whole
interpretation for a given open function φ. Let TD(φ) denote
such conjunction:

TD(φ) ≡ φ(d̃1) = x1 ∧ . . . ∧ φ(d̃n) = xn

for a given open function φ where d̃i are all possible tuples
of ground terms respecting the sort of φ and xi are new vari-
ables. Then, all occurrences of open functions in a constraint
c will be normalized in a similar way as before, however the
resulting open function equations will be treated as normal
constraints.

More formally, we represent the current state of the compu-
tation as a pair c, T where c is a conjunction of constraints
and T is a conjunction of open function equations which



will describe the whole interpretation of each open function
φ ∈ Φ. The rule for normalizing open functions has the
following form:

c[φ(s̃)], T 7→ c[x] ∧ φ(s̃) = x, T (N1)

if TD(φ) ∈ T and

c[φ(s̃)], T 7→ c[x] ∧ φ(s̃) = x, T ∧ TD(φ) (N1)

if TD(φ) 6∈ T . We also assume that the rule is not applied for
an open function φ which appears at the principal position
of an open function equation φ(s̃) = t. The idea of the rule
N1 is that for each open function φ which is normalized,
a conjunction of equations describing its interpretation is
added to T .

Because of the properties of finite domain constraints, dis-
cussed before, the arguments of the open functions will al-
ways become ground at some time (at least during an enu-
meration step). Hence, the following rule can be used to
replace a ground instance of an open function φ with the
variable representing its interpretation:

c[φ(d̃i)], T ∧ φ(d̃i) = zi 7→ c[zi], T ∧ φ(d̃i) = zi (S)

Theorem 2. Let C(Φ) be a constraint domain with open
functions such that the carriers of all open functions φ ∈ Φ
are finite and let R be a correct and terminating set of rules
which transform any constraint without open functions to an
equivalent finite disjunction of constraints in solved form.
Then R∪{N1, S} is correct and terminating set of rules for
constraints with open functions which transform any con-
straint c to an equivalent finite disjunction of constraints
that are in open function solved form.

Finite domains constraint solving is implemented by associ-
ating with each variable x, a domain of possible values Dx

and then reducing these domains until the set of constraints
becomes locally consistent [33]. For open function equations
φ(x̃) = y it is also possible to give rules for reducing the do-
mains of x̃ and y. Suppose the current state is

c ∧ φ(x̃) = y, T ∧ φ(d̃1) = z1 ∧ . . . ∧ φ(d̃n) = zn

with selected constraint φ(x̃) = y. The following rule can
be used to reduce the domain of y:

Dy = Dy ∩
[

d̃i∈Dx̃

Dzi
(P1)

Here with d̃i ∈ Dx̃ we have denoted all tuples 〈di1, . . . , dim〉
of domain elements such that di1 ∈ Dx1

, . . . , dim ∈ Dxm
.

The second propagation rule is used to reduce the domains
of the arguments x̃ of the open function. It will be computed
in two steps. First we compute a relation R with the possible
tuples d̃ for x̃:

R = {d̃i | Dzi
∩Dy 6= ∅}

Then the domain of each individual variable xi is reduced
to the projection of R on the ith argument:

Dxi
= Dxi

∩ Ri (P2)

Most of the current finite domain CLP systems include a
constraint element(x, [z1, . . . , zn], y) [10] which is true if y

is equal to the xth element of the list, zx. If φ is an open
function of one argument with domain 1, . . . , n then a con-
straint

c ∧ φ(x) = y, T ∧ φ(1) = z1 ∧ . . . ∧ φ(n) = zn

can be directly mapped to

c ∧ element(x, [z1, . . . , zn], y),

T ∧ φ(1) = z1 ∧ . . . ∧ φ(n) = zn

In fact the above two rules for solving open function equa-
tions are generalizations of rules for solving the element/3
constraint.

4. LANGUAGE AND SEMANTICS
Using open functions is not enough to achieve a good de-
clarative representation for most of the problems. There-
fore, we also introduce the concept of integrity constraints
which express properties of the intended solutions. Form-
ally, we define a problem with open functions to be a triple
〈C(Φ),P , IC〉 where C(Φ) is a constraint domain C extended
with open functions Φ, P is a constraint logic program and
IC is a set of integrity constraints. The program P is a set
of clauses of the form

A :− c , L1, . . . , Ln

with A an atom, c a constraint (with open functions), and
Lj literals. As in Prolog, program clauses use the symbol :-
to separate head from body. In general, the integrity con-
straints can be arbitrary first-order Σ(Φ)-formulae. How-
ever, we assume that that they are in a clausal form

A1 ∨ . . . ∨Am ← c , L1, . . . , Ln

with the head a disjunction of atoms Ai and the body a
conjunction of a constraint c and of literals Lj

2. Unlike the
situation in standard logic programming, where a complex
transformation, like Lloyd-Topor, should be used to put a
set of first-order formulae in clausal form, here we can just
put a formula in prenex normal form, skolemize it and add
all skolem functions as new open functions. Also, if one is
interested in a query ← q(X̃) it can be put as an integrity
constraint q(ã)← true where ã are new open constants. An
interpretation of these constants in a solution DΦ will cor-
respond to an answer substitution for the original variables
from the query.

As an example, we give the specification of the n-queens
problem for the constraint domain of finite domain integer
arithmetic.

Example 2. N-queens

% Declarations

constant size == 8.

domain row == 1..size.

domain column == 1..size.

open_function pos(row):column.

2To stress that the formula is an integrity constraint, the
propositional constant false is used as left hand side when
m = 0 and true is used as right hand side when n = 0.



% Program

attack(R1,R2) :- R1 < R2, pos(R1) = pos(R2).

attack(R1,R2) :- R1 < R2, R2-R1 = abs(pos(R2)-pos(R1)).

% Integrity Constraints

false <- attack(R1,R2).

The program consists of three parts. The first part contains
declarations and starts with defining a constant which is the
parameter of the problem. Next, the sorts row and column
are introduced together with the size of the domains. Fi-
nally, the open function pos : row → column is declared.
The program part defines a single relation attack/2 which is
true when the queen on row R1 attacks a queen on a higher
row R2 (this avoids the overhead of performing symmetric
tests). The constraint part defines the single constraint that
the attack/2 relation must be empty.

To give a semantics to a problem 〈C(Φ),P ,IC〉 we revert
to the different semantics developed for standard logic pro-
gramming.

Definition 3. Let DΦ be a Σ(Φ)-structure which is an
enlargement of the constraint structure D. We define the
grounding of the program P with respect to DΦ as

PG(DΦ) = {v(A :− B) | (A :− c , B) ∈ P and

DΦ |= v(c) for a D-valuation v}

Then DΦ is a solution to a problem 〈C(Φ),P , IC〉 if the
integrity constraints IC evaluate to true in all canonical DΦ-
model(s) of PG(DΦ).

Depending on the knowledge representation and computa-
tional requirements of the particular problem, different se-
mantics can be considered for the canonical model(s). In
the rest of the paper we will consider three valued semantics
of the Clark’s completion of the program [3] and the well-
founded semantics [34].

5. PROOF PROCEDURE
The Definition 3 of a solution to a problem is not very
useful in practice as it only gives a method for testing if
an interpretation of the open functions DΦ is a solution.
By using three-valued models of the Clark’s completion of
the program [12] as a semantics for our framework, a dir-
ect representation of DΦ in terms of a constraint c can be
obtained. For a given program P let P∗ be the completion
of the program [3] (without the Clark’s equality theory).
First we put the integrity constraints IC as part of the pro-
gram. Let ic be a new propositional constant, then a rule
ic :− c, L1, . . . , Ln, not(A1), . . . , not(Am) is created for each
integrity constraint A1 ∨ . . . ∨ Am ← c , L1, . . . , Ln ∈ IC.
Let PIC denotes the resulting program. Then it is easy to
see that

P∗
IC |=3 not(ic)leftrightarrowIC (1)

The proof procedure is presented as a variant of the Apt-
Doets SLDNF proof procedure [1] generalized for CLP and

further enhanced with elements from constructive negation
[32]. The SLDNF procedure builds a set of trees (a forest),
one being the main tree. Nodes in the tree are goals of the
form ← c | L1, . . . , Lm where c is a constraint and Li are
literals. With m = 0 and c a satisfiable constraint, the node
is a success node and is labeled as such. A leaf node which
cannot be extended with any descendant and is not a suc-
cess node is labeled as failure node. A tree is complete when
no node can be extended with new descendants and all leaf
nodes are labeled with success or failure. When processing
a leaf node, the computation rule selects a literal. For sim-
plicity of presentation, we assume always the leftmost literal
is selected.

• Initialization. Given a conjunction of literals L1, . . . , Ln,
the main tree is initialized with root node
← true | L1, . . . , Ln.

• Extension of leaf node with positive literal selected.
Let the node be← c |p(X̃), L2, . . . , Lm. For every rule

(renamed apart) p(Ỹ ) :− c0 , B1, . . . , Bk such that c∧

c0∧X̃ = Ỹ is satisfiable, add an immediate descendant
with node ← c ∧ c0 ∧ X̃ = Ỹ |B1, . . . , Bk, L2, . . . , Lm.
If the constraint is not satisfiable for any of the rules
defining p/n then label the node with failure.

• Extension of leaf node with negative literal selected.
Let the node be
← c |not(p(X̃)), L2, . . . , Lm. Let c′ be some constraint

which is implied by the projection of c on X̃.

– There is no tree with root node (a renaming of)←

c′ |p(X̃): create such a tree (this tree is subsidiary
to the leaf node).

– The subsidiary tree is complete and has success
nodes labeled ← c′ ∧ c1 |✷, . . .← c′ ∧ cn | ✷. Let

C = c∧¬∃Ỹ1c1∧. . .∧¬∃Ỹncn where Ỹi are all the
variables from ci and X̃ which do not appear in
c, L2, . . . , Lm. If C is satisfiable then add an im-
mediate descendant with node ← C | L2, . . . , Lm,
else label the node with failure3.

Note that a derivation is nonterminating when a negative
literal is selected and the subsidiary tree cannot be com-
pleted. The construction ¬∃Ỹ in the rule for negation intro-
duces universally quantified variables. As we do not allow in
our language universally quantified variables as arguments
of open functions, the computation flounders in such a situ-
ation. This limitation can be removed when the domains of
the open functions are finite (all examples from the paper
fall in this category).

The procedure delegates the handling of the open terms to
the constraint solver which is discussed in section 3.1. The
ability to weaken the constraint when creating the root of
a subsidiary tree (e.g. by dropping some of the constraints
involving open functions) is a way to replace a global sat-
isfiability check by a less expensive local one. Consistency

3Note that failure can sometimes be detected without com-
puting the complete subsidiary tree, i.e. as soon as c ∧
¬∃Ỹ1 c1 ∧ . . . ∧ ¬∃Ỹi ci is false for some i (e.g., this is the
case when ci = true for some i).



with the parent is not checked until the subsidiary tree is
complete. However, this may cause nontermination of the
subsidiary tree and may compromise the completeness of
the proof procedure. While this can increase the size of the
forest, it will typically be compensated by the reduced cost
of the satisfiability checks.

Note that this proof procedure can be seen as an instance
of the constructive negation framework for CLP programs
[32]:

Theorem 3 (Soundness). Let P be a logic program
over a constraint domain C(Φ). If the goal ← true |G has a

success node ← c | ✷ of the main tree then P∗,D |=3 ∀̃(c→
G).

Theorem 4. Let 〈C(Φ),P , IC〉 be a problem. If← c |✷ is
a success node of the main tree for the goal ← true | not(ic)
and DΦ an enlargement of the structure D such that DΦ |=

∃̃c then P∗,DΦ |=3 IC.

Proof. If ← c | ✷ is a success node of the main tree for
the goal ← true | not(ic) for the program PIC then from

Theorem 3 follows that P∗
IC,D |=3 (∃̃c)→ not(ic). Now for

any Σ(Φ) enlargement DΦ of D such that DΦ |= ∃̃c follows
that

P∗

IC,DΦ |=3 not(ic) (2)

and from (1) we have that P∗
IC,DΦ |=3 IC. Now we will

show that P∗,DΦ |=3 IC. Suppose that there exist a three
valuedD-model M such that M,DΦ |= P∗ and M,DΦ 6|= IC.
This means that there is an integrity constraint A1 ∨ . . . ∨
Am ← c , L1, . . . , Ln ∈ IC and D-valuation v such that
DΦ |= v(c), M |= v(L1), . . . , v(Ln) and M 6|= v(A1) ∨ . . . ∨
v(Am) or equivalently M |= not(v(A1)), . . . , not(v(Am)).
With M ′ = M ∪ {ic} one obtains a model of P∗

IC because

icleftrightarrow . . .∨∃̃XL1, . . . , Ln, not(B1), . . . , not(Bm)∨
. . .. Hence M ′,DΦ |= P∗

IC which contradicts with (2).

Soundness also holds for stronger semantics such as the well-
founded semantics. Completeness does not hold; however a
weaker result can be stated:

Theorem 5 (Weak completeness). If there exists an
enlargement DΦ of D such that DΦ,P∗ |=3 IC, then the de-
rivation starting in ← true | not(ic) does not fail.

5.1 Tabulation
When adhering to the well-founded semantics [34] or the
principle of inductive definitions [7] for the semantics of
PG(DΦ), tabulation [2, 31] is sound, can improve the termin-
ation properties and reduces the number of redundant eval-
uations of subgoals. While weaker than SLG-resolution [2],
adding the rule below for tabled predicates to the proced-
ure is sound and weakly complete under the well-founded
semantics.

• Extension of leaf node with positive literal selected.
Let the node be

← c0 | p(X̃), L2, . . . , Lm. Let c′ be the projection of c0

on X̃.

– If there is no tree with root node (a renaming of)

← c′ | p(X̃) then create such a tree (this tree is
subsidiary to the leaf node).

– If the subsidiary tree has a success node← c′∧c|✷
then use
p(X̃) :− c′ ∧ c , true as a rule to compute a new

descendant for the node ← c0 | p(X̃), L2, . . . , Lm.

– If the subsidiary tree is complete4 and has no suc-
cess nodes then label the node← c0|p(X̃), L2, . . . , Lm

with failure.

6. ADVANCED EXAMPLES ILLUSTRATING
TABLING AND NEGATION

In this section we present a declarative specification of some
problems which are frequently used to illustrate the declar-
ative merits of stable logic programming.

Example 3. Hamiltonian path.

An example requiring tabulation is the problem of finding a
closed path in a graph which visits each node exactly once.

domain node == 1..n.

open_function ham(node):node.

% PROGRAM

edge(1,2).

...

% connects/2: nodes connected by the hamiltonian path

connects(X,Y) :- ham(X)=Y.

connects(X,Y) :- ham(X)=Z, connects(Z,Y).

% CONSTRAINTS

% path must be following the given edges

edge(X,Y) <- ham(X)=Y.

% each node has at most one incoming path

X=Y <- ham(X)=Z, ham(Y)=Z.

% all nodes must be connected with node 1

connects(1,X) <- node(X).

The hamiltonian path is given by an open function ham/1

which maps each node to the next one in the path. The defin-
ition of connects/2 is recursive and the evaluation of the
integrity constraint containing connects/2 literals is non-
terminating under SLDNF. Tabling the connects/2 predic-
ate ensures termination. We have a prototype implementa-
tion with tabling incorporated. It is able to solve this prob-
lem. Other abductive systems such as SLDNFA [9] are trapped
in a loop by the recursive definition of connects. Note that
the answers for the connects/2 predicates will be constrained
facts, hence constraint normalization and subsumption test-
ing is essential to ensure that only a finite number of distinct
answers is obtained.

4The completeness check becomes more involved as new
branches can sprout from non-leaf nodes. Hence one needs
to be sure this cannot happen before a tree can be considered
as complete.



Example 4. Planning.

The following program skeleton shows a solution for plan-
ning in a simple blocks world with one robot arm. Defining
clear/2 (whether a block is clear at time t) in terms of on/3
(which expresses that a block is on a location (another block
or the table) at a time t), we need only one basic property
(on/3) and we can avoid the meta-level of a holds/2 predic-
ate as e.g. in [11].

constant maxstep == ....

% final state reached at time maxstep

domain step == 0..maxstep-1.

domain block == b1 | b2 ...

domain table == table.

domain location == block + table. %union

domain action == move(block,location,location) | skip.

open_function plan(step):action.

% PROGRAM

on(B,L,0) :- initially_on(B,L)).

on(B,L,T0+1) :- plan(T0)=A, initiates(A,on(B,L)).

on(B,L,T0+1) :-

on(B,L,T0), plan(T0)=A, not(terminates(A,on(B,L)).

initiates(move(B,S,D),on(B,D)).

terminates(move(B,S,D),on(B,S)).

clear(B,T) :- block(B),not(covered(B,T)).

clear(table,T).

covered(B,T) :- on(B1,B,T).

% facts describing initial configuration

initially_on(...).

% CONSTRAINTS

on(B,S,T) <- plan(T)=move(B,S,D).

clear(B,T) <- plan(T)=move(B,S,D).

clear(D,T) <- plan(T)=move(B,S,D).

% description of final configuration

on(..,..,maxstep) <- true.

The open function plan/1 describes the plan as actions being
performed in successive steps (time points). Its argument,
the domain step, describes the time points at which actions
are allowed. Its range, the domain action, describes the set
of possible actions. Beside the skip action, it includes also a
set of move actions which are compound terms. The domains
block, table and location are auxiliary domains used to
define the action domain. The on/3 predicate is defined by
three clauses. The first one gives the initial location of the
blocks (at time 0) which are given by a set of problem spe-
cific initially on/2 facts (in a more general problem,there
could be another open function mapping blocks to their ini-
tial position). The next two clauses give the frame axioms:
a block is at a location in the time point following an action
if either that action initiates the property or if it was there
before and the action does not terminate the property. The
first three constraints express the conditions a valid move
has to satisfy: the moved block has to be at the origin of
the move, it has to be clear and the destination has to be
clear. The problem specific constraints describe the target
configuration to be reached at time maxstep.

7. RELATED WORK

The idea to extend the semantics of constraint logic pro-
gramming to a set of possible models goes back to [16].
More recent, Hickey [15] studied the extension of CLP with
open functions. He considers a constraint domain Fun(C)
which is obtained by extending a constraint domain C with
a new binary open function φ. He also gives an algorithm
for solving constraints with open function in the domain of
equations and disequations of finite trees. His procedure is
based on the work of Colmerauer [4] on solving disequations
in Prolog II. Although in [15] are considered only signatures
with infinite many function symbols, the results are also ap-
plicable to the case with finite number of function symbols
and infinite number of terms. In our view, one disadvantage
of his approach is that the solved form defined there does not
satisfy the simplicity requirement. To solve constraints with
open functions, he uses the following merging rule which is
an instance of the rule FS:

φ(s̃) = t1, φ(s̃) = t2 7→ φ(s̃) = t1, t1 = t2 (3)

With this rule, it is possible to have a valuation v which is a
solution for a constraint c but for which no enlargement DΦ

exists such that DΦ |= v(c, F ). Consider the problem from
Example 1 of solving the constraint

true, φ(a, 1) = X ∧ φ(X, 1) = b(Y )

It is in a solved form by the definition of [15], however any
valuation v such that v(X) = a cannot be a solution.

Also, the programming language in which Hickey embeds
open functions retains the typical procedural programming
style of CLP that follows from the concept of computing an
answer for the variables in a query. The main originality
of our work is that we embed open functions in a language
supporting a much more declarative programming style.

Although we have presented open functions as an extension
to a CLP-language, one could also consider it as a restricted
form of abduction. In fact, there is a fairly simple translation
to an abductive program: for each open function φ with sort
w̃ → s introduce an abductive predicate pφ with sort w̃, s.
Then replace every occurrence φ(t̃) of an open function by a
fresh variable X and add the abductive call pφ(t̃, X) to the
body of the clause or integrity constraint. Finally, add the
following rule and integrity constraints which restrict the
interpretation of the predicate pφ to encode a function [30]:

exists pφ(X̃) :− pφ(X̃, Y ).

exists pφ(X̃)← true.

Ỹ = Z̃ ← pφ(X̃, Y ), pφ(X̃, Z).

This shows that one could use abductive systems as an im-
plementation of a language enriched with open functions.
In fact, one could go further, using the known relationship
between abduction an stable models [20], it looks feasible
to further translate programs (at least if all other functors
are constants) into input for the smodels system [29, 28].
However we believe a more promising path towards a high
performance implementation is by a direct implementation
which extends the solver of a CLP language with the ma-
chinery to handle open functions.

8. CONCLUSION



Constraint logic programming is a very powerful paradigm
but has several drawbacks from point of view of knowledge
representation. Solutions to problems have to be encoded
in a data structure; this leads to a procedural programming
style and a representation of the problem specific know-
ledge which is less direct and hence less declarative than
one would wish. Recently some new paradigms have been
proposed, notably a logic programming style where solutions
are stable models of logic programs [27, 25, 26, 28] and ab-
ductive logic programming [19, 21, 22] where solutions are
models of certain predicates. In both cases, solutions are re-
lations which can be represented as tables. It turns out that
these paradigms allow much more declarative representa-
tions of various problems within the scope of finite domain
constraint logic programming. However smodels, one of the
most advanced implementations supporting the stable logic
programming paradigm is far from achieving a performance
comparable to finite domain CLP systems; the same holds
for abductive systems which have quite complex inference
rules and are implemented as meta-interpreters on top of a
CLP-system [30].

In this paper we have explored an alternative approach which
consists of enriching the constraint domain of a constraint
logic language with open functions. Also Hickey did this
[15], however in addition we introduced a paradigm shift.
We dropped the notion of query and computing answers for
it. Instead, answers are provided by the interpretation of
the open functions. To constrain them to solutions of the
problem at hand, the program is augmented with integrity
constraints. There is a lot of similarity between the func-
tions which are the answers in our approach and the rela-
tions which are the answers in stable logic programming and
abductive logic programming. The examples throughout the
paper illustrate that our approach leads to elegant declar-
ative problem specifications. It is fair to say that they are
comparable to their counterparts in abductive and stable
logic programming. We have analysed constraint solving
with open functions and did substantially extend the work of
Hickey [15]. We believe that our results are a sound basis for
extending constraint solvers with the capability for handling
functions with open interpretation. This offers interesting
perspectives towards the realisation of systems which com-
bine declarativity of representation with good performance.
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