
 

 

 

By perseverance, the snail reached the ark. 

(Charles H. Spurgeon, 19th century) 

(immortalized by E.H. Gillis, In de Gloria) 

 

 

Wij hebben misschien wel een klein projectje voor u. 

(Tim Nawrot, 2008) 

 

 

Papa lust altijd maar werken. 

(Kasper Scheers, 2013) 
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VOORWOORD 

"Wij hebben misschien wel een klein projectje voor u."  

Het is mei 2008 en ik ben met de trein op weg naar Brussel, voor een van mijn laatste werkdagen aan 

het INBO. Heel toevallig kom ik Tim Nawrot tegen, per uitzondering ook naar Brussel sporend in plaats 

van naar Leuven. Tim is een jaar eerder mijn promotor geweest bij mijn statistiekthesis in Hasselt. Hij 

vraagt hoe het met mij gaat. Goed, zeg ik, maar wel op zoek naar werk. Waarop Tim dus antwoordt 

dat hij in het labo pneumologie misschien wel een klein projectje heeft voor mij, in de lijn van mijn 

thesis. Waarop ik daadwerkelijk in Leuven begin te werken, voor 4 maanden. En waarop die 4 maanden 

uiteindelijk 3 jaren worden als wetenschappelijk medewerker en daarna nog eens 5 jaar als doctoraats-

student. Niet slecht voor een klein projectje. 

De start van mijn doctoraat is er dus gekomen dankzij een onwaarschijnlijk toevallige ontmoeting in 

de trein. Dat dit doctoraat ook afgewerkt is geraakt, is allerminst te danken aan het toeval. Wel aan 

een heel aantal mensen, en tot hen richt ik nu het woord. 

Ben en Tim, allereerst wil ik jullie bedanken voor jullie promotorschap. Jullie hebben mij na een fase 

van job- en studiehopping de kans gegeven om opnieuw wat stabiliteit in mijn professionele leven aan 

te brengen. Ben vertrouwde mij de uitvoering toe van zijn lang gekoesterde 'Hiltonstudie' plannen en 

ik hoop dat ik dat vertrouwen niet beschaamd heb met de realisatie van wat uiteindelijk de GeFiSto 

studie is geworden. Tim liep vlak na mijn aankomst in Leuven wel over naar Hasselt, maar bleef mij 

heel actief volgen en wist tussen zijn honderden e-mails per dag toch steeds de belangrijke (namelijk 

die van mij) eruit te pikken. Ben en Tim, jullie bleven altijd geduldig en koelbloedig, ook wanneer ik 

een deadline weer iets te dicht had laten naderen en er nog een abstract of manuscript moest 

nagelezen worden. De gevraagde feedback kwam ondanks mezelf toch steeds op tijd, was bovendien 

altijd van hoog niveau en droeg in grote mate bij tot het welslagen van dit doctoraat. 
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Dear jury members, prof. Paul Cullinan (Imperial College, London), prof. Marc Claeys (UA), prof. Cathy 

Matheï (KU Leuven) and prof. Tatiana Kouznetsova (KU Leuven), thank you very much for your time to 

read the whole manuscript (nearly 200 pages after all) and for being here today for a gripping and 

instructive discussion of my work. I greatly appreciate the effort. 

Van de vele collega's en ex-collega’s die in de loop van de jaren in het labo Pneumologie gepasseerd 

zijn, wil ik er een aantal even apart vermelden. Peter en Jeroen, als co-bazen naast Ben verstaan jullie 

de kunst om, net als Ben zelf, niet boven maar tussen de 'juniors' te staan en op gemoedelijke maar 

zeer wetenschappelijke wijze iedereen bij te staan met raad en daad. Anita, jij was een betrouwbaar 

baken in de mij vreemde wereld van de administratie (hoe zat dat ook weer met bestelbonnen en 

facturen voor vervoer op droog ijs?). ‘Oude garde’ (waarvan de meesten wel jonger dan ikzelf), 

bedankt om vooral in de eerste jaren van mijn verblijf de boel op te vrolijken met paintball, lunchen in 

de Alma, spelletjesavonden, twee lichtjes legendarische cantussen, quizzen met Glourious Basterds en 

Köt van Asem, looptoertjes rond de kerk van Winksele, voetbal kijken in Duitsland en nog zo veel meer. 

Ik wil zeker ook alle collega’s bedanken die zo weinig van statistiek kennen dat ik wel een statistisch 

genie leek, en mij op die manier bestaansrecht gaven in het labo (en en passant mijn publicatielijst 

pimpten). Wie zich in bovenstaande beschrijvingen nog niet heeft kunnen terugvinden, weet dat jullie 

allemaal een groot of klein steentje hebben bijgedragen aan de – wat mij betreft – positieve sfeer in 

het labo, en zo aan mijn humeur en werkijver. Bedankt dus!  

Lidia and Yang, you both deserve special mention, not only because of the smooth atmosphere in our 

little office, but certainly because of your well-appreciated share in the GeFiSto study, which simply 

could not have existed without you. I can especially recommend Lidia for all patient-related research 

at home and abroad: 100% professional, always friendly, never nervous, with a natural flair for setting 

study volunteers at ease. En ze spreekt zelfs Nederlands!  

Beste GeFiSto-vrijwilligers, bedankt om jullie gedurende een heel jaar over te leveren aan de grillen 

van twee wetenschappers op zoek naar bewijsmateriaal voor de nefaste invloeden van fijn stof. Niet 
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alleen de 20 proefkonijnen, ook onze twee verpleegsters Mieke en Rita zorgden ervoor dat de 

buitenlandse GeFiSto-avonturen een sociaal en wetenschappelijk succes werden. Dankuwel allemaal, 

jullie waren geweldig. 

Mijn ouders verdienen een speciale vermelding. De financiële bijstand tijdens mijn studies, later de 

vaak welgekomen opvang van de kinderen en de permanente morele steun waren hen nog niet 

genoeg. Ze boden zichzelf namelijk zonder verpinken aan als onderzoeksobject voor de GeFiSto-studie 

en zorgden bovendien met een indrukwekkend staaltje netwerken voor bijna de helft van de 

kandidaat-vrijwilligers (en van de uiteindelijke studiegroep). Respect! En ook: bedankt!  

De laatste zes jaar zijn drie mini-mensjes een voor een mijn leven binnengewandeld en hebben het 

grondig overhoop gehaald. Kasper, Oskar en Leonie, een concrete bijdrage aan mijn doctoraat hebben 

jullie niet geleverd (of toch: bedankt voor de leuke citaten, jongens), maar dat geeft niet. Jullie impact 

is namelijk veel waardevoller dan dat. Een werkdag mag nog zo lang, vermoeiend, lastig, tegenvallend 

geweest zijn, gewoon het ’s avonds thuiskomen en het zien van jullie koddige gezichtjes en het 

luisteren naar jullie verhalen, doet mij al de rest snel vergeten en beseffen wat de essentie is.  

Marieke, jou vermeld ik als laatste, maar weet dat dat een compliment is (je weet hoe goed ik ben in 

het omfloerst geven van complimentjes). Vergelijk het met een wetenschappeljke publicatie: de eerste 

auteur is degene die het meeste werk heeft gedaan, dan volgen anderen die hun steentje hebben 

bijgedragen en de baas, de belangrijkste onderzoeker, de man/vrouw die het hele project heeft 

mogelijk gemaakt, sluit de rij. En die projecten-mogelijk-maker, Marieke, dat ben jij. Ik zal nooit kunnen 

snappen, maar ook nooit vergeten, hoe jij je uit de slag hebt getrokken tijdens de GeFiSto-trip naar 

Milaan. Twee kinderen van 3 en 1 jaar oud, papa 10 dagen weg (Kasper: “Mama, papa komt nooit meer 

terug he?”), opa en omi ook mee, zelf een nieuwe voltijdse job, en dat alles in een half huis zonder 

keuken. Moest ik nu een hoed ophebben, ik zette hem drie keer na elkaar af. Dus Marieke, bedankt 

voor je opofferingen, je kranigheid, je alles. En omdat ik het volgens jou veel te weinig zeg, doe ik het 

nu, voor al die honderden lezers: ik zie u graag!   
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AIR POLLUTION 

Air pollution is the introduction of any substance in the atmosphere that can harm living beings (plants, 

animals or humans), or the natural or even the built environment in general. Pollutants range in 

composition from simple gaseous molecules to particles with a very complex composition.  

Based on the environment of exposure, air pollution can be classified as household, 

occupational, or ambient air pollution. Household air pollution, caused by the use of solid biomass 

fuels for cooking and heating, is a serious health issue, especially in rural areas in low- and middle-

income countries.1 Indoor exposure to second-hand smoke and to chemical (e.g. cleaning products) 

and microbial agents (e.g. moulds) is also considered as household air pollution exposure. 

Occupational exposure can be similar to ambient exposure in terms of pollutant characteristics (e.g. in 

traffic-related jobs), but it also comprises indoor exposure in industrial environments, e.g. in mining, 

heavy metal industry, or the production of nanoparticles. Moreover, duration of exposure and/or 

concentration of pollutants is usually higher. Both household and occupational exposures are beyond 

the scope of this thesis. 

Although pollutants can easily penetrate into the indoor environment, ambient air pollution is 

generally considered, and measured, as pollution of the outdoor atmosphere, of the air that we 

breathe in daily life. Greenhouse gases in the atmosphere (e.g. CO2 and methane, CH4) absorb and emit 

thermal infrared radiation and are responsible for the greenhouse effect, eventually harming the 

environment. So, based on the definition in the first paragraph, they are ambient pollutants as well. 

However, because the influence of greenhouse gases on human health is indirect, by gradually 

changing the climate, these agents are not considered in this thesis (even though some gases are both 

a greenhouse gas and a ‘direct’ pollutant, e.g. ozone, O3). 

From this point on, when referring to ‘air pollution’, I mean ambient air pollution sensu stricto, 

or the pollutants in the atmosphere with direct – proven or supposed – adverse effects on human 

health. 
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Sources 

Air pollutants can end up in the atmosphere through natural causes (e.g. forest fires, volcanic 

eruptions, wind-blown soil dust) or human activities. The main anthropogenic emissions originate from 

motorized transport, industry, agriculture and building heating (Figure 1). Primary pollutants are 

emitted directly into the atmosphere, where they can undergo chemical or physical changes to become 

secondary pollutants. For example, nitrogen oxide (NO) and nitrogen dioxide (NO2) are both emitted 

by road transport engines. NO is highly unstable and will undergo photochemical reactions to form 

NO2, which has a longer lifetime. In turn, on days with high UV radiation, NO2 is responsible for the 

formation of another secondary pollutant, ozone. Similarly, particulate matter (PM) can be emitted 

directly into the atmosphere, but particles can also aggregate or react with other substances (gaseous, 

fluid, or solid), leading to the formation of highly complex secondary particles.2 

 

Figure 1. Sources and types of primary and secondary pollutants. Taken from Scotland’s Environment .3 
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Main pollutants 

Several substances that are found in the atmosphere have been identified as harmful for living beings, 

and for human health in particular. The main pollutants are PM and the gases NO2, ozone, volatile 

organic compounds (VOCs), carbon monoxide (CO), and sulphur dioxide (SO2).4  

Based on the current literature, there is now a consensus that PM is the fraction of air pollution 

most reliably associated with human disease.5,6 In Flanders, Belgium, PM accounts for about 75% of 

those disability adjusted life years (DALYs) that are due to environmental factors.2,7 Secondary particles 

in particular are potentially hazardous. Formed by condensation of gases and liquids and by further 

deposit of other substances on their surface, they are a complex mixture of harmful molecules such as 

heavy metals, polycyclic aromatic hydrocarbons (PAH), dioxins, and so on.2  

The behavior and health effects of PM do not only depend on chemical composition, but also 

on the aerodynamic diameter, i.e. the size, of the particles. PM is usually classified in three size classes: 

thus, PM10, PM2.5, and PM0.1 include particles with aerodynamic diameters smaller than 10, 2.5, and 

0.1 µm, respectively (Figure 2). In an atmospheric PM mixture, usually about 50 to 80% is PM2.5;8 the 

remainder is called the coarse fraction (PM2.5-10). Ultrafine particles (UFP, PM0.1) make up only a small 

portion of the total PM mass, but they are considered the most hazardous fraction, because the 

surface/volume ratio (and hence, reactivity) increases with decreasing volume, and they can penetrate 

deeper into the airways and possibly cross the alveolar-capillary barrier.5,9 Although UFP can be 

measured in experimental circumstances, monitoring stations established to quantify environmental 

air pollution, historically have measured only PM10 (since 1997 in Belgium) and, more recently, PM2.5 

(since 2005 in Belgium). Therefore, epidemiological studies usually rely on data on PM10 or PM2.5 to 

estimate the health effects of exposure to the smallest PM fractions. 

In my PhD work, presented in this thesis, the emphasis was on health effects of exposure to 

PM. However, in the GEFISTO study (see Chapter 4), we also considered NO2 and black carbon (BC) as 

exposure variables. Mainly emitted by vehicle exhausts, NO2 is a good marker of traffic exposure, and 

it is recognized as an important contributor to the onset or development of human disease (either 
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directly or through its role in the formation of ozone).10 BC is a component of PM2.5 and has received 

special attention in epidemiological research of air pollution, as it is a good indicator of the 

combustion-derived and potentially very harmful parts of PM.11 

 

Figure 2. Size of PM10 and PM2.5, relative to human hair and fine beach sand. Taken from U.S. EPA12 

HEALTH EFFECTS OF AIR POLLUTION 

Brief history  

The first indications for an increased morbidity and mortality in relation to exposure to air pollution 

were found during short-lived episodes of extreme pollution, such as the 1930 Meuse Valley Fog13 and 

the Great Smog of 1952 in London.14 Health effects at low to moderate ambient PM concentrations 

and long-term effects have thoroughly been investigated only from the 1990s. Large-scaled 

prospective cohort studies, such as the Harvard Six Cities Study15 and the American Cancer Society 

Study16 found that long-term PM exposure was associated with respiratory and cardiovascular disease 
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and mortality. Meanwhile, a rapidly increasing number of time-series studies demonstrated that short-

term (daily) variation in mortality,17,18 respiratory symptoms,19 and cardiovascular events20 could, at 

least partly, be explained by concurrent short-term variation in air pollution levels. These cohort and 

time-series studies15-20 are only a few examples; the early literature on ambient air pollution and 

human health has repeatedly been reviewed.9,21,22 A more complete overview of the history of air 

pollution research is provided by H.R. Anderson.23 

Current state 

In the past 25 years, an enormous amount of epidemiological evidence for the detrimental health 

effects of exposure to ambient air pollution has been collected. To illustrate the diversity of health 

endpoints and target populations that have been investigated, I created a non-exhaustive summary of 

recent meta-analyses of studies regarding air pollution and human health (Table 1). This overview 

clearly demonstrates significant effects of both daily variation and long-term exposure on respiratory24-

29 and cardiovascular diseases,28-34 but also on less obvious disorders, such as adverse pregnancy 

outcomes,35,36 impaired neurological development and accelerated cognitive decline,37 and type 2 

diabetes.38 For an even longer list of meta-analyses on environmental health, I refer to a systematic 

review that was published in 2015.39 

Based on this still growing evidence, air pollution has now been recognized as a major threat 

to human health worldwide. According to the Global Burden of Disease (GBD) 2010 study,40 worldwide, 

3.7 million deaths and 3.1% of global DALYs were attributed to ambient PM pollution, placing it in the 

top 10 of risk factors (Figure 3). Similarly, a recent study conducted in Europe41 concluded that 3 to 7% 

of the annual burden of disease in six participating countries was associated with nine environmental 

risk factors, among which ambient PM2.5 was by far the leading risk factor. 

 



 

 

 

 

Table 1. Overview of recent meta-analyses on human health effects of short-term and long-term exposure to air pollution. 

Study reference Health outcome Population Study types 
Pollutant and 

increment 

Unit and pooled estimate 

per increment 

No. of 

studies 

Short-term exposure      

33 Pieters 2012 Heart rate variability (SDNN) General (excluding 

occupational exposure) 

panel 10 µg/m³ PM2.5 %  -1.25 (-1.81; -0.68) 17 

34 Mustafic 2012 Myocardial infarction General population TS + CCO 10 µg/m³ PM2.5 

10 µg/m³ PM10 

RR 1.025 (1.015; 1.036) 

RR 1.006 (1.002; 1.009) 

13 

13 

28 Atkinson 2014 CV hospital admissions 

Resp. hospital admissions 

All-cause mortality 

CV mortality 

Respiratory mortality 

General population TS 10 µg/m³ PM2.5 %   0.90 (0.26; 1.53) 

%   0.96 (-0.63; 2.58) 

%   1.04 (0.52; 1.56) 

%   0.84 (0.41; 1.28) 

%   1.51 (1.01; 2.01) 

7 

6 

23 

18 

16 

30 Shah 2015 Stroke (hospital admissions 

and mortality) 

General population TS + CCO 10 µg/m³ PM2.5 

10 µg/m³ PM10 

RR 1.011 (1.011; 1.012) 

RR 1.003 (1.002; 1.004) 

41 

78 

24 Zhang 2016 COPD hospital admissions 

Asthma hosp. admissions 

General (East Asia)  

Children (East Asia) 

TS + CCO 10 µg/m³ PM2.5 RR 1.022 (1.013; 1.032) 

RR 1.022 (1.019; 1.026) 

5 

4 

Long-term exposure      

29 Faustini 2014 All-cause mortality 

CV mortality 

Resp. mortality 

General population Cohort 10 µg/m³ PM2.5
* RR 1.045 (1.007; 1.088) 

RR 1.196 (1.091; 1.310) 

RR 1.050 (1.009; 1.094) 

11 

17 

8 

35 Hu 2014 Hypertension disorder of 

pregnancy 

Pregnant women Retrospective 

cohort 

5 µg/m³ PM2.5 

10 µg/m³ PM10 

OR 1.15 (0.94; 1.40) 

OR 1.10 (0.96; 1.26) 

5 

6 



 

 

 

 

Study reference Health outcome Population Study types 
Pollutant and 

increment 

Unit and pooled estimate 

per increment 

No. of 

studies 

38 Balti 2015 Type 2 diabetes General population Cohort 10 µg/m³ PM2.5 OR 1.11 (1.03; 1.20) 5 

25 Barone-Adesi 

2015 

Lung function (FEV1) Children (4-16y) Cohort 10 µg/m³ NO2 

 

%  -0.7 (-1.1; -0.3) 9 

26 Chen 2015 Lung cancer incidence 

Lung cancer incidence 

General population 

Professional drivers 

Cohort and CC 10 µg/m³ PM2.5 

Vs. NP drivers 

OR 1.11 (1.00; 1.22) 

OR 1.27 (1.19; 1.36) 

6 

14 

27 Hamra 2015 Lung cancer incidence and 

mortality 

General population Cohort 10 µg/m³ NO2 

 

RR 1.04 (1.01; 1.08) 15 

36 Lamichhane 2015 Low birth weight 

Preterm birth (adjusted for 

smoking) 

Neonates, worldwide Retrospective 

cohort  

10 µg/m³ PM10 

10 µg/m³ PM10 

g -10.31 (-13.57; -7.05) 

OR 1.23 (1.04; 1.41) 

 

5 

3 

32 Provost 2015 CIMT (subclinical 

atherosclerosis) 

General population Cohort, CS 

Cohort, long. 

5 µg/m³ PM2.5 

5 µg/m³ PM2.5 

%   1.66 (0.86; 2.46) 

µm/y 1.04 (0.01; 2.07) 

6 

3 

31 Scheers 2015 Stroke incidence (including 

mortality) 

General (Europe and 

North America) 

Pro- and retro-

spective cohort 

5 µg/m³ PM2.5 

10 µg/m³ PM10 

HR 1.06 (1.02-1.11) 

HR 1.02 (0.98-1.07) 

10 

9 

37 Clifford 2016 Cognitive function Children, elderly Cohort and cross-

sectional 

No formal meta-analysis, but: 

• decreased brain development in children 

• cognitive decline in elderly 

31 

Significant results are highlighted in bold. 

CV = cardiovascular; NP = non-professional; CIMT = carotid intima media thickness 

Study types: CC = case-control; CCO = case-crossover; CS = cross-sectional; TS = time-series 

* Similar results were found with NO2 as the exposure variable 
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Figure 3. Burden of disease attributable to 15 leading risk factors in 2010. Adapted from GBD Study 201040 

Biological pathways 

In addition to the epidemiological approach, numerous in vitro experiments, studies with animal 

models, and well-controlled experiments using human volunteers have been conducted to better 

understand and underpin the causal link between air pollution and human health, and to unravel the 

pathophysiological mechanisms involved in the process. Based on four comprehensive reviews,4-6,42 

published in the last seven years, and mainly focusing on cardiovascular disease, I will briefly discuss 

these biological pathways.  

Three important pathways, starting from the inhalation of particles into the alveoli, are 

distinguished (Figure 4). First, pulmonary oxidative stress and inflammation can cause systemic 

oxidative stress and inflammation by the release and subsequent lung-blood transport of inflammatory 

mediators (cytokines, activated WBC, platelets), eventually leading to several chronic disorders. This 

hypothesis has been corroborated by epidemiological and experimental studies, showing significant 
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associations between PM and markers of systemic inflammation, such as C-reactive protein (CRP), IL-

6, and platelets,43-47 although in other studies no overt changes were observed.48,49 Furthermore, 

chronic ailments such as progression of atherosclerosis, endothelial cell dysfunction, and thrombosis 

have also been related to exposure to air pollution.4,46,50-52  

A second pathway consists of an imbalance of the autonomous nervous system, caused by 

interactions between inhaled particles and lung receptors, and potentially leading to acute detrimental 

events such as arrhythmia, decreased heart rate variability, hypertension, and (again) endothelial 

dysfunction.33,49,52-55 

In a third physiological pathway, intermediate and ultimate effects are similar to the first 

pathway, but the first step is different. In the classical pathway, inflammatory mediators cross the lung-

blood barrier, whereas in this proposed alternative pathway, the pollutants themselves (ultrafine 

particles, soluble metals, VOCs) penetrate into the circulatory system through diffusion from the 

alveoli to the lung capillaries. Direct translocation of inhaled nanoparticles has been shown in animal 

studies56-58 and experiments with human volunteers.59 

Through each of the pathways mentioned above, inhaled pollutants can also affect the nervous 

system. Indeed, neuroinflammation and oxidative stress, generated by either direct translocation of 

ultrafine particles through the blood-brain barrier or by translocation of inflammatory mediators, are 

potentially responsible for acute events such as ischemic stroke and chronic diseases such as 

Parkinson’s disease, Alzheimer’s disease, and neurodevelopmental disorders.60,61  

Note that these pathways mainly describe the propagation of cardiovascular and cerebro-

vascular diseases. For a similar overview on respiratory disease, I refer to a recent review by Xing et 

al.,62 and more information on (epi)genetic effects and carcinogenicity of long-term exposure to air 

pollution is provided by Loomis et al.63 and references therein. 

  



 

28 

 

 

 

Figure 4. Biological pathways linking PM exposure with cardiovascular disease. Taken from Brook et al. 

2010.42 

Susceptible and vulnerable populations  

Air pollution has been linked with many adverse health outcomes, but often these associations are 

stronger in certain susceptible or vulnerable subpopulations than in the general population.22 Before 

discussing which subpopulations are more at risk for adverse effects of air pollution, it is necessary to 

clarify the exact meaning of, and the difference between, the concepts “susceptibility” and 

“vulnerability”.  

In a recent review, Sacks et al.64 provide a list of definitions used in previous reports and 

reviews, concluding that susceptibility usually refers to biological or intrinsic factors (e.g. genetics, sex, 

age) and vulnerability to extrinsic factors (e.g. socioeconomic status (SES), lifestyle). However, they 

blend both concepts in an own definition for the term “susceptible” (in the context of PM exposure): 

”Individual and population-level characteristics that increase the risk of PM-related health effects in a 
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population including, but not limited to: genetic background, birth outcomes (e.g. low birth weight, 

birth defects), race, sex, life stage, lifestyle (e.g. smoking status, nutrition), pre-existing disease, SES 

(e.g. educational attainment, reduced access to health care) and characteristics that may modify 

exposure to PM (e.g. time spent outdoors).” Similarly, in a comprehensive meta-analysis on short-term 

exposure and health effects in specific subpopulations, Bell et al.65 also merge the concepts of 

vulnerability and susceptibility into a common term: “effect modifiers”. 

Bell et al.65 found strong and significant increased risk in elderly (> 65y or other age cut-offs), 

and suggestive evidence of higher risk with lower SES, measured as either education or income. The 

increased susceptibility of elderly can be explained by two factors: a gradual decline in physiological 

processes over time, and a higher prevalence of pre-existing cardiovascular and other diseases (see 

below). In their narrative review, Sacks et al.64 pointed out that not only elderly, but also children are 

more susceptible because chronic exposure to air pollution can impair the growth of their respiratory 

system, leading to adverse effects, such as wheeze, cough, and asthma exacerbations. Increased 

susceptibility of infants and children already starts during pregnancy, resulting in preterm birth, low 

birth weight, increased risk of infant mortality, and adverse cardiovascular and respiratory outcomes 

during their later life.66 

Bell et al.65 also found non-significant higher risks of PM-related death and hospitalization in 

women, but Sacks et al.64 concluded that evidence for effect-modification by sex was not consistent, 

and the large-scale ESCAPE study in Europe even found an opposite result, with higher hazard ratios 

(HR) for all-cause mortality related to air pollution in men than in women.67 Genetic factors, such as 

polymorphisms in genes whose protein products are important in inflammatory or antioxidant 

processes, and obesity can also modify the relationship between exposure to air pollution and health 

outcomes. People with pre-existing diseases are another large group with elevated susceptibility for 

adverse effects of air pollution. Among these are cardiovascular diseases (e.g. hypertension, ischemic 

heart disease, history of myocardial infarction or ischemic stroke), respiratory diseases (asthma, 

COPD), and type 2 diabetes.64 
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METHODS IN AIR POLLUTION RESEARCH 

Timeframe 

In air pollution research, duration of the time window of exposure is an important factor, having 

obvious consequences for study design, statistical methodology, and interpretation of the results. 

Usually, exposure to air pollution is either defined as “short-term / acute” or “long-term / chronic”. 

Studies on short-term exposure try to link measurements of daily, or even hourly, variation in exposure 

to pollutants, to the subsequent onset of a particular acute health effect (including mortality). In long-

term or chronic exposure studies, researchers aim to capture the average level of exposure during 

several years (usually in the place of residence) and to find associations with the incidence of certain 

diseases, which can be of acute or chronic nature. 

By analogy with toxicological animal studies, we can also distinguish subacute (up to 28 days) 

and subchronic (up to 90 days) exposure in-between acute and chronic exposure.68,69 In epidemiology, 

relatively little attention has been paid to subacute and subchronic effects, compared to the concepts 

of acute and chronic exposure. 

Experimental studies 

As mentioned before, experimental studies are important tools in air pollution research to unravel the 

biological mechanisms that explain the health effects found in epidemiological studies. The major 

benefits of in vitro experiments or studies using animal models or human volunteers, are a controlled 

and precise administration of the desired concentrations of the pollutant, and the possibility of 

measuring their effects directly in the target tissue. Moreover, in experimental settings, effect 

modifiers and confounders can easily be controlled for, thus facilitating statistical analysis and 

interpretation of results.  

On the other hand, results from in vitro and animal experiments have to be translated to the 

human situation with care, also because experimental pollutant concentrations are usually much 

higher than those inhaled in real life. Obviously, for ethical and practical reasons, studies with human 
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study subjects are limited in exposure time (minutes to hours), and hence, they can only be used for 

short-term acute effects and are not suitable for the investigation of effects of air pollution that 

emerge only after a longer period of exposure. 

Epidemiological studies 

Numerous epidemiological studies have identified exposure to ambient air pollution as an important 

cause of respiratory and cardiovascular morbidity and mortality. Beyond any doubt, these 

epidemiological studies have contributed most to an increased understanding of the detrimental 

impact of air pollution on human health in real-world settings at ambient levels. Studies on health 

effects of short-term and long-term exposure differ fundamentally in terms of study design, analytical 

methodology and public health implications.  

Short-term exposure to air pollution. Short-term studies investigate whether daily variation 

in ambient air pollution concentrations can be associated with a similar and concurrent variation in 

acute adverse health effects in the target population, such as mortality (general and cause-specific) or 

hospital admissions for cardiovascular (e.g. MI), cerebrovascular (e.g. ischemic stroke) or respiratory 

disease (e.g. asthma exacerbations). Results emerging from this type of studies have to be interpreted 

as a warning for potential excess mortality and morbidity during (or shortly after) brief periods of 

elevated air pollution. The announcement of smog alerts can help minimize the impact of such a 

pollution peak on public health by imposing temporary speed and traffic limits on the one hand, and 

warning the population to refrain from certain activities (e.g. physical exercise) on the other hand. An 

example of an elaborate real-life smog alert protocol can be found on the website of the city of 

Brussels.70 

Most early publications on short-term effects of air pollution have used a time-series (TS) 

approach, whereas the case-crossover (CCO) design represents a relatively newer approach to study 

acute health effects. Both methods link large register-based datasets on the target outcome with daily 

measures of air pollution, but they use clearly different statistical modelling techniques. The TS design 

uses Poisson regression models to link daily counts of the outcome (e.g. mortality) with daily air 
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pollution data. Increasingly sophisticated models have been used to control for secular, seasonal and 

weekly time trends and to avoid confounding by other factors such as temperature and varying 

individual characteristics. Many of these covariates are non-linear, which complicates modelling even 

more, and different results can be obtained with different modelling assumptions and covariates 

included.71 

In contrast, the CCO approach does not require complicated model building and is less 

dependent on model assumptions. It was developed in the early 1990s to study effects of brief and 

transient exposures on the change in risk of acute and discrete events.72 Thus, the CCO approach is 

suitable, and has been increasingly used, for short-term air pollution research.73 Its major power, 

compared to the classical TS design, is the ability to avoid confounding by individual characteristics. All 

the study subjects have experienced the event. The hazard period is defined as the average time period 

that is relevant for the acute event, and this period is compared with control times. Thus, subjects serve 

as their own controls at an individual level. The choice of the control period is crucial to avoid or limit 

selection bias and to safely assume the absence of time trends. The time-stratified design for the 

selection of control days has been shown to be the best selection method to avoid statistical bias (see 

Figure 1 in Chapter 1 for a representation of the bidirectional time-stratified design).74,75 

Long-term exposure to air pollution. For short-term variation in ambient PM levels, the 

research question is when acute adverse events are most likely to occur (temporal variation in 

exposure), whereas for long-term exposure, the question is rather where people are most at risk 

(spatial variation in exposure). Additionally, studies on short-term effects of air pollution are 

inadequate to explain the prevalence and development of chronic air pollution-related diseases, such 

as lung cancer. These can only be interpreted in association with elevated pollutant concentrations 

over a much longer time span. Long-term exposure studies are able to detect an effect of even small 

differences in exposure on the development of physiological processes underlying acute events and 

chronic diseases alike. Translated to public health policy, this means that hot spots of air pollution (e.g. 
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industrial areas, busy roads, densely built city centers) deserve special attention and that the long-

term concentrations of ambient air pollutants need to be kept as low as possible.  

Long-term air pollution studies are usually cohort studies. The retrospective cohort approach, 

linking register-based health outcomes (mortality or hospital admissions) to estimated long-term air 

pollution exposure, is certainly the quickest and cheapest method. However, because of their 

essentially ecological nature, these studies lack information on important confounding risk factors at 

the individual level, such as smoking status or SES. Since the 1980s, large-scale prospective cohort 

studies have been set up to assess the health effects of long-term exposure air pollution. By design, 

results are only obtained after several years of intensive, time-consuming, and expensive collection of 

data through repeated interviews with participants and sometimes own measurements of air 

pollution. However, because of the incorporation of detailed data on individual covariates, the 

prospective cohort design is superior to the retrospective approach. Two famous examples are the 

Harvard Six Cities study in the United States76 and the ESCAPE project in Europe.77 Both cohort studies 

have found effects of long-term exposure to air pollution on multiple health endpoints, including 

overall and cause-specific mortality, respiratory and cardiovascular diseases.  

PUBLIC HEALTH ASPECTS 

As mentioned before, both indoor and ambient air pollution are now recognized as serious threats for 

public health worldwide,40,41 an observation that is reflected in statements and measures made by 

official instances, such as the World Health Organization (WHO). 

Air quality standards and guidelines 

As the first scientific evidence of detrimental effects of ambient air pollution on public health was 

published, international health organizations started formulating guidelines to tackle the problem of 

air pollution. The 1979 Geneva Convention on Long-range Transboundary Air Pollution, drafted by the 

United Nations Economic Commission for Europe (UNECE), was the first international legally binding 

instrument to take on the issue of air pollution on a broad regional basis.78 This convention formulated 
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rather vague agreements for the “contracting parties” (European countries) on air quality 

management, research and development and exchange of information.  

In contrast, the WHO formulated more concrete, although not binding, air quality guidelines 

in 1987 (last updated in 2005).79 The WHO proposes maximum values for both daily and averaged 

yearly ambient concentrations of four pollutants, PM, NO2, ozone, and SO2, based on scientific health 

based research.  

The European Union (EU) and the United States both imposed binding air quality limit values 

for their member countries and states of the federation, respectively.80,81 However, these limit values 

are substantially more relaxed than the evidence-based guidelines by the WHO. EU and US air quality 

standards and WHO guidelines for PM are summarized in Table 2. As mentioned above, apart from 

these air quality standards, local authorities have implemented ad hoc regulations to cope with brief 

periods of increased air pollution, such as the smog alert protocol in Brussels. 

Recent trends in ambient PM concentrations 

Belgium. According to the most recent annual report (2014)82 by the Belgian Interregional 

Environment Agency (IRCEL), air quality has improved in the last 17 years. Figure 5 shows the time 

trends for ambient PM10 and PM2.5 concentrations. Annual PM10 means (panel A) slowly decreased 

from 1997 to 2008, when the worldwide economic crisis and concurrent decline in industrial activity 

(including heavy road traffic) marked an additional drop in ambient concentrations. This was followed 

by a further decrease and a remarkably good last year for which data are available (2014). Similar drops 

in 2008 and 2014 are present for the number of days above the daily limit for PM10 (panel B) and for 

annual PM2.5 means (panel C).  

In 2014, no area in Belgium had annual mean PM10 or PM2.5 concentrations above the 

European limit values or more than 35 daily means above 50 µg/m³ PM10. However, when taking the 

more stringent WHO guidelines as the benchmark, still 21% of the population was exposed to annual 

mean PM10 levels above the target value. For annual mean PM2.5 levels and number of days above the 

daily limit for PM10, these figures are even 78% and 97%, respectively. 
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Table 2. Air quality references values for PM, as stated by the WHO, EU and USA environmental 

agencies. 

Pollutant 
Time 

window 

 WHO guideline (2005)  EU limit (2008)  USA standard (2012) 

 Conc. 

(µg/m³) 

Excee-

dances* 

 Conc. 

(µg/m³) 

Excee-

dances* 

 Conc. 

(µg/m³) 

Excee-

dances*   

PM10 24 hours  50 3  50 35  150 1 

 1 year  20 n/a  40 n/a  Not implemented 

PM2.5 24 hours  25 3  Not implemented  35 7 

 1 year  10 n/a  25 n/a  15 n/a 

* Maximal number of exceedances permitted per year. 

Europe. For current ambient concentrations of PM and other pollutants in the EU, I refer to 

the most recent report by the European Environment Agency (EEA).83 Even though overall air quality 

has slightly improved over the past few years in a similar way as in Belgium, the situation is still 

problematic in many densely populated areas within the EU. No data are presented for the annual 

mean levels, but from Maps 3.1 and 3.2 in the report, we learn that in, e.g., the Po valley in Italy, the 

southern (industrial) half of Poland, the whole of Bulgaria, and also for some measurement stations in 

Belgium, the Netherlands and the Ruhr area, PM10 and PM2.5 daily limits were exceeded on more than 

35 days in 2013. The majority of measurement stations in the EU would not comply with the much 

more stringent WHO guidelines for daily PM values.  

World. Mainly thanks to emission reductions in industry, energy supply, and road traffic, air 

pollution levels in most high-income countries (e.g. Belgium, Western Europe, the United States) have 

been slowly decreasing over the past decade, although they are still too high in particular areas with a 

high industrial activity or traffic density. This positive evolution is in sharp contrast to the sometimes 

enormously high and still increasing levels of air pollution to which people are exposed in other parts 

of the world.84  

In low-income countries, mainly in Asia and sub-Saharan Africa, indoor air pollution by cooking 

and heating with biomass fuels is a major health threat. In 2012, 4.3 million deaths were attributable 

to household air pollution worldwide.1  
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Figure 5 (previous page). Panels A-C: Time trends in air quality, as measured by PM monitoring stations 

in Belgium. Panel D: Exposure to PM2.5 related to population density in Belgium. Taken from the IRCEL 

annual report on air quality in Belgium.82 

Additionally, in fast-growing and populous economies such as China, India, and Brazil, ambient 

air quality in many urban areas is alarmingly poor. This is due to a rapid increase in industrial activity 

(usually powered by coal), heavy road traffic, personal car and motorbike traffic, combined with a lack 

or complete absence of regulations controlling the quality and quantity of emissions. For example, in 

the mega-cities (> 14 million inhabitants) Delhi, Kolkata (both in India), Dhaka (Bangladesh), and Beijing 

(China), annual PM10 levels in 2015 were about 230, 140, 160, and 110 µg/m³, respectively.84 

As a result, when weighed by population, an increasing trend in global ambient PM levels is 

detected, despite the decrease in high-income countries mentioned above. Consequently, the vast 

majority of the 3.7 million deaths attributable to ambient air pollution worldwide, namely 88%, occur 

in low- and middle-income countries.1  

Current state and future perspectives 

In spite of the favorable evolution in ambient PM concentrations in Belgium and several other high-

income countries, there is no reason to relax or even maintain current limit values for exposure. In 

contrast, sustained efforts and new measures are needed to reduce the burden of disease from air 

pollution worldwide. In 2012, Brunekreef et al.85 published “Ten principles for clean air” to provide 

guidance for future public health policy. I will briefly discuss some of the principles stated in the paper. 

Principle 3: There is an urgent need to reduce concentrations [of PM] significantly. Indeed, 

studies that modeled the shape of the exposure-response relationship, indicate that the association 

between PM concentration and health endpoints such as mortality, is linear, with no evidence for a 

threshold or a ‘safe level’86-88. Moreover, the exposure-response curve can even be steepest at the 

lowest concentrations.89 Extended follow-up of the Harvard Six Cities cohort study showed that a 

reduction in ambient PM concentration has already led to a reduction in mortality risk and that a 

further reduction in exposure is likely to have continuing beneficial public health effects.90,91 
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Principle 4: UFP and BC need to be considered in future research. As mentioned before, UFP 

and BC are currently not routinely measured by most official monitoring stations. Adverse health 

effects of living near busy roads cannot be explained by PM10 or PM2.5, because of their relatively 

homogenous distribution on a small scale. In contrast, UFP and BC are not only the most hazardous 

fractions of PM (see above), they also show much steeper gradients close to roadways. Hence, they 

are more likely to be the real cause of the observed effects, and it is recommended to monitor these 

fractions more regularly and to strengthen policies to reduce their emissions from motor vehicles. 

Principle 6: Real-world emissions of NO2 from modern diesel engines are much higher than 

anticipated. Climate change caused by increasing emissions of greenhouse gases such as CO2, is a 

serious problem and initiatives to reduces these emissions should be encouraged. However, the “Eco 

Premium” that the Belgian federal government implemented in 2010 (and wisely abandoned in 2012) 

was a failure and bears a lot of irony in its name. A price reduction of 15% was awarded to the purchase 

of cars that emitted less than 105 g/km CO2. Sales of small diesel cars peaked, because these were the 

only ones with such a low theoretical CO2 emission. However, real-life emissions of CO2 are much 

higher than in lab tests under optimal circumstances, and moreover, NOx and PM emissions by diesel 

vehicles exceed those by cars driven by other fuels.92 This received public attention and indignation 

when the Volkswagen emissions scandal (“dieselgate”) erupted in September 2015.93 These examples 

plainly show that adverse health effects caused by emissions of diesel vehicles have long been (and 

are still being) underestimated or even neglected by constructors and policy makers alike. 

Principle 8: Combustion of biomass fuel produces toxic pollutants. Similar to the financial 

promotion of diesel cars in Belgium from 2010 to 2012, the use of biomass burning (e.g. wood) is 

currently being promoted in Europe to reduce greenhouse gas emissions. However, combustion 

products from ordinary wood stoves and hearths are as toxic as those from fossil fuels.85 So again, 

policy makers, producers and consumers bear a shared responsibility in the pursuit of a cleaner 

atmosphere. 
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Principle 9: Compliance with current limit values for major air pollutants in Europe confers 

no protection for public health. An increasing number of countries (including Belgium) comply with 

the EU limit values, but this is certainly no reason to weaken or relax air pollution control policies. The 

EU air quality standards can be seen as a compromise between economic interests and health 

concerns, and are far above recommendations by the WHO. Studies of the ESCAPE project have shown 

adverse health effects well below the EU limit values WHO standards.67,94 Combined with the linear 

dose-response relationship mentioned above, these observations should encourage European and 

national policy makers to further decrease ambient air pollution down to levels below the WHO 

guidelines values. 

Principle 10: The benefits of EU policies to reduce air pollution outweigh the costs by a large 

amount. Economic arguments against more stringent measures to further reduce emission of 

pollutants (e.g. filters are expensive, production and consumption will decrease) are counteracted by 

the medical and economic costs of pollution-related morbidity.95,96 In fact, monetized benefits from air 

pollution regulation (stemming from reduced loss of productivity and reduced illness burdens) 

outweigh the costs by far, as shown by cost-benefit analyses .97,98  

These state-of-the-art principles were written for the situation in Europe. As mentioned above, 

in developing countries, tackling the problem of indoor air pollution by cooking and heating with 

biomass fuels is an additional challenge. In mega-cities in countries with a fast growing economy, such 

as China and India, the environmental situation is precarious, and urgent and vigorous measures are 

needed to decrease air pollution exposure to levels now found in European and North American cities, 

as a first step.  
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AIMS 

The general objective of this PhD project was to gain more insight in the relationship between ambient 

air pollution and human health, with a special interest in the exposure range below or around the EU 

air quality standards, but above the WHO guidelines, as we currently have in Belgium. We selected 

three subpopulations, which are assumed to be more susceptible to PM air pollution: infants, elderly, 

and patients who underwent a lung transplantation (LTx), to evaluate health effects of low to medium-

high levels of ambient air pollution. 

• In a CCO analysis of a time-series database, I investigated whether short-term (daily) variation 

in environmental PM10 concentrations was associated with risk of infant mortality (<1y of age) 

in Flanders. I explicitly put forward the question whether the EU air quality standard for short-

term exposure is sufficiently stringent, in the light of our study results. 

• In a collaboration with the people of the Lung Transplantation Unit, we hypothesized that graft 

rejection after LTx can be linked to PM air pollution. We also investigated which underlying 

physiological mechanisms are involved, and we evaluated the potentially beneficial role of the 

antibiotic azithromycin. 

• In a panel study of 20 healthy elderly volunteers, we aimed to quantify subacute effects of air 

pollution. We explored whether a decrease or increase of PM exposure (compared to Flanders) 

during several days was associated with biomarkers of respiratory, cardiovascular and general 

health, and whether there was any evidence for a threshold value at the lower end of the 

exposure-response curve. We aimed to measure exposure to PM at an individual level. 

• By performing a systematic review and meta-analysis on stroke incidence in relation to long-

term PM exposure, I contributed to the growing database of valuable reviews and meta-

analyses on health effects of air pollution. 
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ABSTRACT 

Background: Numerous studies show associations between fine particulate air pollutants [particulate 

matter with an aerodynamic diameter ≤ 10µm (PM10)] and mortality in adults.  

Objectives: We investigated short-term effects of elevated PM10 levels on infant mortality in Flanders, 

Belgium, and studied whether the European Union (EU) limit value protects infants from the air 

pollution trigger. 

Methods: In a case-crossover analysis, we estimated the risk of dying from non-traumatic causes 

before 1 year of age in relation to outdoor PM10 concentrations on the day of death. We matched 

control days on temperature to exclude confounding by variations in daily temperature. 

Results: During the study period (1998-2006), PM10 concentration averaged 31.9 ± 13.8 µg/m³. In the 

entire study population (n=2,382), the risk of death increased by 4% [95% confidence interval (CI), 0–

8%; p=0.045] for a 10 µg/m³ increase in daily mean PM10. However, this association was significant 

only for late neonates (2–4 weeks of age; n=372), in whom the risk of death increased by 11% (95% CI, 

1–22%; p=0.028) per 10 µg/m³ increase in PM10. In this age class, infants were 1.74 (95% CI, 1.18–2.58; 

p=0.006) times more likely to die on days with a mean PM10 above the EU limit value of 50 µg/m³ than 

on days below this cut-off.  

Conclusions:  Even in an affluent region in Western Europe, where infant mortality is low, days with 

higher PM air pollution are associated with an increased risk of infant mortality. Assuming causality, 

the current EU limit value for PM10, which may be exceeded on 35 days/year, does not prevent PM10 

from triggering mortality in late neonates. 
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INTRODUCTION 

In the past few decades, numerous studies have demonstrated that short-term exposure to elevated 

levels of air pollution has detrimental effects on human health. Most of these studies detected positive 

associations between particulate air pollution [particulate matter with an aerodynamic diameter ≤ 10 

or ≤ 2.5 µm (PM10 or PM2.5)] and general mortality, or the triggering of acute cardiovascular events, 

especially in the elderly and people with pre-existing cardiovascular and respiratory conditions (Alfaro-

Moreno et al. 2007; Pope 2000; Zanobetti and Schwartz 2005). 

In 1952, infant mortality doubled during the London smog (De Angelo and Black 2008; 

U.K.Ministry of Health 1954), but only recently has there been renewed concern about a possible link 

between exposure to air pollution and children’s health. Children are considered particularly 

susceptible to air pollution, because their lungs and immune system are immature during the first few 

years of life. Prenatal exposure to elevated levels of air pollution has been associated with early fetal 

loss, preterm delivery, and lower birth weight (Bell et al. 2007; Schwartz 2004). Several studies have 

investigated the association in infants (< 1 year of age) between PM air pollution and all-cause 

mortality, respiratory diseases or Sudden Infant Death Syndrome (SIDS), yielding mixed results (Hajat 

et al. 2007; Kaiser et al. 2004; Lin et al. 2004; Romieu et al. 2004; Tsai et al. 2006; Woodruff et al. 2008; 

for review, see Glinianaia et al. 2004). Most of these studies focused on urban areas in the United 

States or countries in transition, such as Brazil, Mexico and Taiwan, whereas the number of studies 

conducted in Western Europe is very limited.  

The European Union (EU) set two limit values for PM10 concentrations: annual mean levels of 

PM10 must not exceed 40 µg/m³, and daily averages must not exceed 50 µg/m³ on more than 35 

days/year. In contrast, the World Health Organization (WHO) argues that annual averages of PM10 

levels should not exceed 20 µg/m³ and that daily averages should not exceed 50 µg/m³ on more than 

3 days/year (WHO 2006).  

Using a case-crossover analysis, we investigated whether there is an association between 

short-term elevations of PM10 levels and infant mortality over a recent 9-year period (1998-2006) in 
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the region of Flanders, Belgium, and we evaluated the effectiveness of the current EU limit values by 

exploring the possibility of a threshold value in the exposure-response curve. The densely populated 

Flemish region (> 6 million inhabitants in an area of 13500 km², i.e. a population density of about 450 

inhabitants/km²) has very low rates of infant mortality by international standards (United Nations 

2007), but also among the highest concentrations of PM10 in Europe, as well as frequent exceedings of 

the prevailing EU limit values for PM10 (Beelen et al. 2009; Nawrot et al. 2007). Main sources of PM10 

emission are traffic, industry and agriculture.  

In our analyses, we took into account the effect of socioeconomic status (SES), because SES 

has been shown to be a possible modifier of the association between air pollution and health (Carbajal-

Arroyo et al. 2010).  

MATERIALS AND METHODS 

Collection of data 

Mortality data. We obtained data of daily infant mortality in Flanders during the period 1998-2006 

from the Flemish Agency for Care and Health (Brussels, Belgium). These data were anonymous, but 

the following information was provided: date of death; postal code of municipality of residence; official 

cause of death, according to the International Classification of Diseases, 10th revision (ICD-10;WHO 

1993); maturity at birth (a binary variable: mature or premature, i.e. < 37 weeks of gestation); and age 

at death, categorized (according to the WHO classification) as early neonatal (≤ 7 days of age), late 

neonatal (8 - 28 days of age), or postneonatal (29 - 365 days of age). 

Air pollution data. In Belgium, PM10 and several other indicators of ambient air quality are continuously 

measured by a dense network of automatic monitoring sites (http:// www.irceline.be). Nineteen of 

these measurement stations have been in use in the region of Flanders from 1998 on, and they are 

situated 25 km apart from each other on average. Using a land use regression model (Janssen et al. 

2008), we calculated the daily exposure level of PM10 at the municipality level for each mortality case. 

This model provides interpolated PM10 values from the Belgian telemetric air quality network in 4 x 4 



 

54 

 

 

km grids. The interpolation is based on a detrended kriging interpolation model that uses land cover 

data obtained from satellite images (Corine land cover data set) (Janssen et al. 2008). 

Temperature data. Temperature is a known confounder of the association between air pollution and 

mortality (Hajat et al. 2002; Huynen et al. 2001; Katsouyanni et al. 1997; Nawrot et al. 2007). We 

obtained daily average temperatures from the Belgian Royal Meteorological Institute (Uccle, Belgium). 

The Region of Flanders is very uniform for temperature, because both altitudinal and latitudinal 

gradients are extremely small: elevations range from 0 to 200 m above sea level, and the distance 

between the northernmost and southernmost part is only 100 km. The region is not larger than the 

State of Connecticut (USA). Therefore, we used temperature data from the central and representative 

station in Uccle (Brussels, Belgium). 

Socioeconomic status. We created three classes of SES at the municipality level, based on salary level, 

economic activity, degree of unemployment, and housing grade equipment (Dexia Bank NV 2007).  

Analytical strategy 

Case-crossover design. We investigated the association between air pollution and infant mortality 

using a case-crossover design, a technique developed by Maclure (1991) that combines features of the 

crossover design and the matched case-control design. Similar to a crossover study, each subject serves 

as his or her own control and, as in matched case-control studies, the inference is based on a 

comparison of exposure distribution rather than the risk of disease (Jaakkola 2003). The case-crossover 

design is now widely used for analyzing short-term health effects of air pollution (Carracedo-Martinez 

et al. 2010). 

Selection of hazard period and control days. We defined the hazard period, which is the brief time 

period when a subject is at risk, as the day of death (event day). We selected control days based on 

three criteria (Figure 1). First, we took control days from the same calendar month and year as the 

event days, both before and after the event. We chose this bidirectional time-stratified design above 

other selection strategies to avoid issues of bias, as explained by Janes et al. (2005) and Mittleman 

(2005). Second, control days and event days had to be at least 3 days apart from each other to avoid 
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short-term autocorrelation (Levy et al. 2001). This implies a 5-day exclusion period around the event 

day. Third, because temperature is a known confounder of the association between air pollution and 

health (Hajat et al. 2002; Huynen et al. 2001; Katsouyanni et al. 1997; Nawrot et al. 2007), we selected 

only control days having a daily average temperature within 2°C of that on the event day. Based on 

this strategy, the number of control days per event ranged from zero to a maximum of 25, depending 

on the temperature criterion. On average, each case had 8.6 control days. Seventy-six cases (3.2%) had 

no control days and were, by consequence, not included in the analyses. 

Shape of the association. To investigate whether there might be a threshold level in the exposure - 

response relationship or a plateau at higher concentrations, we studied the shape of the association 

between PM10 and risk of death by using fractional polynomials. Although linear and quadratic 

polynomials are commonly used, they are often inadequate to describe the shape of the association. 

Fractional polynomials are an alternative to classical polynomials but still fall within the realm of 

(generalized) linear methods. They extend the classical linear and quadratic models by allowing any 

power from a predefined set of values typically chosen from the set (-2, -1, -1/5, 0, 1/5, 1, 2, 3) (Royston 

and Altman 1994). From this family of models, the best functional form is chosen using Akaike’s 

Information Criterion (AIC). A particular feature of the fractional polynomials is that they provide a 

wide class of functional forms, with only a small number of terms. Moreover, the conventional linear 

and quadratic polynomials are included as a subset of this extended family. Based on the best fitting 

model, we calculated odds ratios (ORs) for mortality in association with a 10 µg/m³ increase in PM10. 

Additional analyses. To detect a possible short-term delay in the effects of exposure to PM10, we 

performed five additional case-crossover analyses with different lag structures. In these analyses, we 

defined the hazard period as 1, 2 or 3 days before the day of death (lag days 1, 2, and 3, respectively) 

or as the moving-average exposure on 2 (event day and lag day 1) or 3 (event day and lag days 1 and 

2) consecutive days. We also performed a sensitivity analysis using an alternative selection strategy, 

with control days being matched on day of the week instead of daily temperature, thus also including 

the 76 cases that had no temperature-matched control day. 
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We conducted stratified analyses by age class, by maturity, by SES, and by cause of death, 

categorized as cardiorespiratory diseases (ICD-10 codes I00-J99), SIDS (ICD-10 code R95), perinatal 

circumstances (ICD-10 codes P00-P96), congenital and chromosomal abnormalities (ICD-10 codes Q00 

– Q99) or other. Infants who died from external causes (e.g. accidents, ICD-10 V00-Y98, n=73) were 

excluded from all analyses. 

Finally, we transformed the exposure value into a binary variable (i.e. below or above the EU 

limit value of 50 µg/m³) and calculated the ORs for dying on days > 50 µg/m³ compared with days with 

PM10 levels below that value.  

Statistical analyses. Database management and statistical analyses were performed with SAS software 

(version 9.1; (SAS Institute Inc., Cary, NC, USA). We used conditional logistic regression to evaluate the 

case-crossover data and to estimate the odds of all-cause and cause-specific infant mortality by 

exposure to PM10. Results are presented as ORs with 95% confidence intervals (CIs) per 10 µg/m³ 

increment in PM10 concentration or as the OR for days above the EU limit value of 50 µg/m³ against 

days below that value. We calculated the population attributable fraction (PAF) as in Steenland and 

Armstrong (2006). All tests were two-sided with α = 0.05. 

 

Figure 1. Bidirectional time-stratified case-crossover design. The timeline represents one calendar 

month. Only control days that were temperature-matched within 2°C with the day of event, were 

selected. 
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RESULTS 

Descriptive Data 

Of the 2,455 infants who died in Flanders during the study period (1998-2006; yielding a mortality of 

4.67/1,000 live births), 2,382 died from nontraumatic causes, and 1,284 infants (54%) had been born 

before 37 weeks of gestation. Table 1 lists ages at death and causes of death. During the study period, 

PM10 concentration averaged 31.9 ± 13.8 µg/m³ (Figure 2) and 321 days (an average of 35.7 days/year) 

had a mean daily concentration > 50 µg/m³ (population-weighted daily average for the whole region). 

For cases (n=2,382), the average exposure was 32.6 µg/m³ (95% CI, 15.1-59.9) and on the selected 

control days (n=20448) PM10 averaged 30.7 µg/m³ (95% CI, 14.8-56.5). Interpolated daily average PM10 

concentrations were strongly correlated among the 308 municipalities in the study area. Correlations 

ranged from 0.87 to 1.00 and the strongest correlations were among neighbouring municipalities. 

Case-crossover analysis 

For the whole group, we found a 4% increase (95% CI, 0-8 %, p = 0.045) in the risk of death for each 10 

µg/m³ increase in the concentration of PM10 on the event day (lag day 0) (Table 2). In the sensitivity 

analyses with up to 3 lag days or moving-average concentrations, mortality tended to be positively 

associated with PM10 as well, but these associations were not significant (data not shown). Estimates 

from analyses with control days matched on day of the week were comparable to those with control 

days matched on temperature (data not shown). Therefore, here we report only results for exposure 

to PM10 on the event day compared with temperature-matched control days. 
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Table 1. Non-traumatic causes of death in neonates in Flanders 1998-2006, by age class. 

Cause of death  

(ICD-10 code) 

Early neonatal 

(≤ 7 days of age) 

Late neonatal 

(8 to 28 days  

of age) 

Postneonatal  

(29 to 365 days 

of age) 

Total 

Cardiorespiratory diseases (I00 – 

J99) 

3 3 44 50 

Perinatal circumstances  

(P00 – P96) 

771 197 126 1094 

Congenital and chromosomal 

abnormalities (Q00 – Q99) 

398 140 205 743 

SIDS (R95) 0 0 285 285 

Others 24 22 164 210 

Total 1196 372 814 2382 

 

Stratification by age class revealed stronger associations with deaths between 2 and 4 weeks 

of age (late neonates) than with deaths during other time periods. Specifically, a 10 µg/m³ increase in 

mean daily PM10 on the event day was associated with an 11% increase (95% CI, 1- 22%; p = 0.028) in 

the risk of late neonatal death. In contrast we found no evidence of effects of PM10 on early neonatal 

or postneonatal mortality. Stratified analyses revealed no significant differences in associations 

between PM10 and daily mortality among preterm versus term births (p-values for interaction ≥ 0.09, 

Table 2), although ORs were always higher for the latter group.  

We further analyzed the relation between air pollution and mortality according to cause of 

death (Table 3). In the total group, we found no significant associations between PM10 and mortality 

from cardiorespiratory diseases or SIDS but significant associations in cases where the cause of death 

was perinatal circumstances. For late neonatal deaths, the associations were driven mainly by the 

group with congenital and chromosomal abnormalities (Table 3).  
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Analyses that took the EU limit value of 50 µg/m³ as a cutoff point revealed a non-significant 

OR for the whole group but a highly significant result for late neonatal mortality, with an OR for dying 

on days with PM10 > 50 µg/m³ of 1.74 (95% CI, 1.18-2.58; p = 0.006), compared with days below the 

cutoff value (Table 2). The corresponding AF was 43% (15-61%).  When we stratified the analysis with 

the EU limit value by cause of death, the highest OR (for congenital and chromosomal abnormalities) 

just missed significance. For other causes of death, results were also not significant. For late neonatal 

deaths, however, stratification by cause of death revealed a highly significant result for congenital and 

chromosomal abnormalities (p=0.009) (Table 3). 

In all settings, subanalyses of congenital malformations of the circulatory or respiratory system 

(ICD-10 codes Q20-Q28 and Q30-Q34, respectively) revealed similar ORs as in the whole group of 

congenital and chromosomal abnormalities (Q00-Q99), but because of a smaller sample size, these 

results did not reach statistical significance. 

 

Figure 2. A) Frequency distribution of population-weighted daily mean PM10-concentrations in 

Flanders (Belgium) during the study period (1998-2006). The arrow indicates the EU limit that may be 

exceeded up to 35 days per year. B) Spatial distribution of population-weighted daily mean PM10-

concentration, expressed as number of days with concentration > 50 µg/m³ (map of Belgium; the 

Flemish Region comprises the area north of the black line excluding the capital region of Brussels in 

the centre of the country).



 

 

Table 2. Risk of infant death associated with a 10 µg/m³ increase in PM10 on the event day and with ambient PM10 concentrations above 50 µg/m³, stratified 

by age category. 

Age category 
All 

(N = 2382) 

Preterm 

(N = 1284) 

Term 

(N = 1086) 
P interactiona 

 OR for 10 µg/m³ increase in PM10 on event day  

All 1.04 (1.00 to 1.08)* 1.03 (0.98 to 1.08) 1.05 (0.99 to 1.11) 0.62 

Early neonatal 1.04 (0.99 to 1.10) 1.03 (0.96 to 1.10) 1.07 (0.97 to 1.19) 0.49 

Late neonatal 1.11 (1.01 to 1.22)* 1.10 (0.97 to 1.24) 1.13 (0.98 to 1.31) 0.77 

Post neonatal 1.01 (0.95 to 1.07) 0.99 (0.88 to 1.10) 1.02 (0.94 to 1.10) 0.67 

 OR for days above 50 µg/m³ vs. days below 50 µg/m³ b  

All 1.10 (0.94 to 1.29) 0.96 (0.76 to 1.20) 1.27 (1.01 to 1.61)* 0.09 

Early neonatal 0.99 (0.78 to 1.24) 0.92 (0.69 to 1.22) 1.14 (0.75 to 1.74) 0.40 

Late neonatal 1.74 (1.18 to 2.58)** 1.47 (0.87 to 2.48) 2.09 (1.15 to 3.79)* 0.38 

Post neonatal 1.04 (0.79 to 1.37) 0.74 (0.43 to 1.27) 1.18 (0.86 to 1.63) 0.14 

 

Data are ORs with 95% CI. * P≤0.05 and **P≤0.01. 

a Interaction between exposure and maturity at birth, with preterm birth defined as born before 37 weeks of gestation 

b Based on EU limit value. 

  



 

 

 

 

Table 3. Risk of infant death associated with a 10 µg/m³ increase in PM10 on the event day and with ambient PM10 concentrations above 50 µg/m³, stratified 

by cause of death. 

Cause of death (ICD-10) 
All 

(N=2382) 

Early neonatal 

(N=1196) 

Late neonatal 

(N=372) 

Post-neonatal 

(N=814) 

 OR for 10 µg/m³ increase in PM10 on event day 

Total 1.04 (1.00 to 1.08)* 1.04 (0.99 to 1.10) 1.11 (1.01 to 1.22)* 1.01 (0.95 to 1.07) 

Cardiorespiratory diseases  0.98 (0.78 to 1.25) na na 0.98 (0.76 to 1.26) 

Perinatal circumstances  1.06 (1.00 to 1.12)* 1.06 (1.00 to 1.14)* 1.09 (0.95 to 1.25) 1.01 (0.86 to 1.19) 

Congenital and chromosomal 

abnormalities  
1.04 (0.97 to 1.12) 1.00 (0.91 to 1.11) 1.16 (1.00 to 1.35)* 1.04 (0.90 to 1.20) 

SIDS  0.99 (0.89 to 1.09) na na 0.99 (0.89 to 1.09) 

 OR for days above 50 µg/m³ vs. days below 50 µg/m³ a 

Total 1.10 (0.94 to 1.29) 0.99 (0.78 to 1.24) 1.74 (1.18 to 2.58)** 1.04 (0.79 to 1.37) 

Cardiorespiratory diseases  0.80 (0.28 to 2.25) na na 0.93 (0.32 to 2.71) 

Perinatal circumstances  1.00 (0.78 to 1.28) 0.96 (0.72 to 1.29) 1.36 (0.77 to 2.38) 0.77 (0.34 to 1.72) 

Congenital and chromosomal 

abnormalities  
1.30 (0.98 to 1.74) 1.03 (0.69 to 1.54) 2.32 (1.24 to 4.34) ** 1.38 (0.78 to 2.43) 

SIDS  0.94 (0.60 to 1.48) na na 0.88 (0.55 to 1.41) 

Data are ORs with 95% CI. * P≤0.05 and **P≤0.01. 

na: not applicable due to low numbers in the specified age class.  

a Based on EU limit value.   
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Analyses stratified by SES (low-, medium-, or high-SES municipality) were consistent with those 

estimated for the population as a whole, although ORs within SES categories were nonsignificant. ORs did 

not differ substantially among SES categories, as indicated by the nonsignificant interaction terms in all 

analyses (data not shown). 

In the group of late neonates, fractional polynomial analysis revealed that a linear model 

adequately describes the association between infant mortality and air pollution, with no evidence for a 

threshold or plateau (Likelihood Ratio test for a linear model vs. a null model, p = 0.030) (Figure 3). More 

complex fractional polynomials did not significantly improve the fit of the model, according to AIC. 

 

Figure 3. Shape of the association between exposure 

to PM10 and risk of mortality in late neonates, 

expressed as estimated OR (with 95% CI, the grey 

area), using fractional polynomials and 10 µg/m³ as 

reference; 77 µg/m³ is the 99th percentile of 

exposures during the study period.  
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DISCUSSION 

The key finding of our study was that PM air pollution, expressed as PM10, is associated with late neonatal 

mortality, thus suggesting that airborne particles act as a rapid trigger of infant death. On days with 

average PM10 levels exceeding the EU limit value of 50 µg/m³ – which is allowed to be exceeded on 35 

days per year – the odds for late neonatal mortality was 1.74 times higher than on days below that value. 

Assuming causality, these results imply that on days above the EU limit value of 50 µg/m³, 43% (the AF) of 

late neonatal mortality could be triggered by an acute increase in fine PM air pollution levels on the same 

day. The shape of the association between the risk of late neonatal mortality and PM10 (Figure 3) gives no 

evidence for a threshold, thus suggesting the risk exists even at < 50 µg/m³. Analyses of lagged exposures 

suggested that exposure on the event day was more important than exposure during the 3 days preceding 

the event. 

Most publications on infant mortality and PM air pollution have used a time-series approach. The 

case-crossover design represents a relatively novel approach to study acute health effects. It was 

developed in the early 1990s by Maclure (1991) to study effects of brief exposures on the change in risk of 

acute and discrete events, such as myocardial infarction. Recently, the case-crossover design has been 

applied to assess effects of short-term changes in exposure to air pollution (e.g. Romieu et al. 2004; Son et 

al. 2008; Tsai et al. 2006; Yang et al. 2006; Zanobetti and Schwartz 2005; for review, see Carracedo-

Martinez et al. 2010).  

The major power of the case-crossover approach is the ability to control for confounding. All the 

study subjects have experienced the event. The hazard period is defined as the average time period that 

is relevant for the acute event, and this period is compared with control times. Thus, subjects serve as their 

own controls at an individual level. In contrast, the traditional time-series studies cannot control for varying 

individual characteristics because the unit of observation consists of daily counts of the event rather than 

of individuals. By matching for outdoor temperature, we excluded temperature as a potential confounder 
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in our models, and because control days were close to event days, we controlled for seasonal effects as 

well (Bateson and Schwartz 1999, 2001; Maclure and Mittleman 2000). The time-stratified design for the 

selection of control days, as applied in our study, has been shown to be the best selection method to avoid 

statistical bias (Janes et al. 2005; Mittleman 2005). 

So far, only five case-crossover studies on infant mortality and air pollution have been published, 

conducted in the cities of Seoul (South Korea) (Son et al. 2008), Kaohsiung (Taiwan) (Tsai et al. 2006), Taipei 

(Taiwan) (Yang et al. 2006), Ciudad Juárez (Mexico) (Romieu et al. 2004), and Mexico City (Mexico) 

(Carbajal-Arroyo et al. 2010). Apart from the latter, they found no short-term association between 

postneonatal mortality and air pollution (ORs were 1.00 or 1.01 for an increase of 10 µg/m³). In contrast 

to these studies, which exclusively dealt with postneonatal mortality (> 1 month of age), we also included 

neonates in our analysis. We observed no evidence of an association between PM10 and postneonatal 

mortality either, but we estimated a significant positive association between a 10 µg/m³ increase in PM10 

and mortality on the same day for all age classes combined, that was almost entirely attributable to an 

association between PM10 and mortality during the late neonatal period (2-4 weeks after birth).  

In both studies performed in Mexico (Carbajal-Arroyo et al. 2010; Romieu et al. 2004), the risk of 

death was significantly higher in infants from low - and/or medium - SES areas than in those from high SES 

areas. We found no difference in ORs among municipalities classified according to SES. Because of privacy 

restrictions, we were not able to classify SES on an individual level, but for the present, we conclude that 

SES does not modify the association between PM exposure and infant death in the study region.  

We found no indications for a role of PM10 in infants who died from cardiorespiratory 

complications or SIDS. Earlier studies on the association between exposure to PM and SIDS yielded mixed 

results (Glinianaia et al. 2004; Tong and Colditz 2004), although our results for cardiorespiratory deaths 

may be unreliable because of the very small sample size. In the present study, we estimated the highest 

ORs for deaths attributed to congenital malformations and perinatal circumstances, but only the latter 
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proved to be significant for the whole study population and only the former for deaths among late 

neonates.  

We did not find clear evidence of differences between term and preterm births, and we did not 

detect a significant association between air pollution and early neonatal mortality during the first week of 

life. Reasons for this might be that the most susceptible children die during the first week of life because 

of conditions that do not need to be triggered by air pollution, or that the measured outdoor air pollution 

does not reflect actual exposure during the first week of life (or during the first month for premature 

infants), because most of these newborns probably would have remained in the hospital during this time. 

However, we had no access to data on the duration of hospitalization after birth to verify this hypothesis.  

In this context, a limitation of our study is the use of outdoor measurements of air pollution with 

interpolations at the municipality level in order to estimate partly indoor personal exposures. However, 

recent studies (Janssen et al. 2005; Williams et al. 2000) comparing personal and ambient exposure have 

reported good correlations among day-to-day changes in central measurement stations of PM and 

personal exposure. In addition, we found very high correlations (ranging from 0.87 to 1) among 

municipalities for the interpolated PM10 levels. In other words, spatial variability in PM10 (which is rather 

low in our small study area) appeared to be less important than temporal variability, which is driven largely 

by weather conditions. During stable meteorological conditions with low wind speeds, and in the presence 

of a temperature inversion, locally produced pollution accumulates in the lower parts of the atmosphere, 

which results in a cloud of dust inhaled by humans. 

In their comprehensive review, Pope and Dockery (2006) discuss several plausible biological 

pathways for the relationship between exposure to PM and health. They derived evidence for these 

pathways mainly from observations on adults or experiments on animals, but at least some of the 

proposed mechanisms, such as pulmonary or systemic inflammation and modulated immunity, are likely 

to explain adverse health effects in infants as well, because their lungs, heart and immune system are 
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immature and fragile. In particular, there is growing evidence that ambient air pollution is associated with 

decreased heart rate variability (HRV) in adults (Pope and Dockery 2006) and reduction in HRV is a plausible 

biological mechanism in infant deaths as well (Patzak 1999).  

We did not find significant associations between PM10 and cardiorespiratory diseases as the official 

cause of death, but the number of children in this group was very low, which in turn might be the 

consequence of misclassification on death certificates [subtle mechanisms as systemic inflammation or 

HRV are presumably more easily overlooked than perinatal or congenital abnormalities, see Nembhard et 

al. (2008) and references therein for examples of misclassification of cardiovascular diseases]. Hence, 

there is clearly a need for further research in order to understand the underlying mechanisms of the 

observed associations between air pollution and mortality in infants, as well as a better differentiation 

between acute and chronic effects of air pollution in this segment of the population. 

CONCLUSIONS 

Our study shows that air pollution standards have to be taken more seriously. We estimated that 43% of 

mortality during the late neonatal period may be triggered by peaks of PM10 > 50 µg/m³. We do not claim 

that air pollution was the major, let alone the only cause of death in these infants, but our data suggest 

that air pollution may precipitate death in infants with pre-existing conditions. A trigger is not necessarily 

the primary cause of death, but it may increase the risk of death in susceptible infants, such as infants with 

perinatal complications or other pre-existing conditions.   

European regulation, which currently uses standards that are considerably higher than those of 

the WHO (2006), stipulates that we may have a maximum of 35 days/year with a mean PM10 > 50 µg/m³ 

[comparable to the U.S. Environmental Protection Agency (2011) standard for PM2.5 of 35 µg/m³ (~46 

µg/m³ PM10)]. In Belgium, this standard is barely met at present, and although minor improvements due 

to emission reduction measures are expected, the limit value of 50 µg/m³ will continue to be exceeded 

frequently in the coming decade. The same is largely true for other European regions, including northern 
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France, the southern part of the Netherlands, the German Ruhr area and the Po valley in Italy. The 

argument that it is difficult to meet standards in densely populated areas ignores the fact that the 

importance of a factor with respect to public health increases in proportion to the number of people who 

are exposed to it. 
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ABSTRACT 

Acute rejection represents a major problem after organ transplantation, being a recognized risk for 

chronic rejection and mortality. Recently, it became clear that lymphocytic bronchiolitis (LB, B-grade 

acute rejection) is more important than previously thought, as it predisposes to chronic rejection. We 

aimed to verify whether daily fluctuations of air pollution, measured as particulate matter (PM) are 

related to histologically proven A-grade rejection and/or LB and bronchoalveolar lavage (BAL) fluid 

cellularity after lung transplantation.  

We fitted a mixed model to examine the association between daily variations in PM10 and A-

grade rejection/LB on 1,276 bronchoscopic biopsies (397 patients, 416 transplantations) taken 

between 2001 and 2011.  A difference of 10 µg/m3 in PM10 3 days before diagnosis of LB was associated 

with an OR of 1.15 (95%CI 1.04-1.27; p=0.0044) but not with A-grade rejection (OR=1.05; 95%CI 0.95-

1.15; p=0.32). Variations in PM10 at lag day 3 correlated with neutrophils (p=0.013), lymphocytes 

(p=0.0031) and total cell count (p=0.024) in BAL. Importantly, we only found an effect of PM10 on LB in 

patients not taking azithromycin. LB predisposed to chronic rejection (p<0.0001). 

The risk for LB after lung transplantation increased with temporal changes in particulate air 

pollution, and this was associated with BAL neutrophilia and lymphocytosis. Azithromycin was 

protective against this PM effect.  
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INTRODUCTION 

Survival after lung transplantation (LTx), a last resort for selected patients with end-stage lung disease, 

has tremendously improved since 1963 (1). Survival, however, is still hampered by the development 

of chronic rejection or its clinical correlate bronchiolitis obliterans syndrome (BOS), as the lung 

experiences one of the highest rejection rates among solid organ transplantations (2). The higher 

susceptibility of lungs to be rejected could conceivably follow from its direct contact with the 

environment. Recently, we demonstrated that chronic exposure to (traffic-related) air pollution, 

indirectly measured by proximity of the address of residence of each patient to a major road, increases 

the risk of chronic rejection and mortality in LTx patients (3).  

As a consequence, we hypothesized that daily variations in air pollution (‘acute exposures’) 

may also affect the outcome of LTx. Various studies demonstrated that exposure to ambient 

particulate matter (PM) can contribute to pulmonary and systemic inflammation, causing the release 

of inflammatory mediators, and resulting in oxidative stress and accumulation of inflammatory cells 

like neutrophils (4), comparable to what happens during lymphocytic bronchiolitis (LB), the 

pathological correlate of acute graft rejection. In the early years, not much attention was given to LB 

until 2008 when Glanville reported a significant association between the occurrence of LB and the 

prevalence of chronic rejection (5).  

A-grade rejection, pathologically characterized by perivascular lymphocytic inflammation, is a 

common phenomenon, especially in the early phase after LTx: up to 40 % of the patients experience 

at least one episode within the first year (1). Some established risk factors for A-grade rejection include 

human leukocyte antigen mismatching, low immunosuppressive trough levels, recipient age and 

genetics (6). External parameters, such as gastroesophageal reflux (7) may also impact on A-grade 

rejection, but the exact trigger remains unknown. In LTx patients, both A-grade rejection and LB (B-

grade rejection) are associated with higher total cell count and an increased bronchoalveolar lavage 

(BAL) neutrophilia compared to transplanted controls (8).  
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We, therefore, evaluated all lung biopsies taken from patients in our LTx cohort since 2001 up 

to May 2011 and correlated histological features indicative of A-/B-grade rejection with the daily PM10 

values at the home address up to 7 days preceding the biopsy. In a further analysis, we included 

systemic and airway inflammation, the potential protective effect of azithromycin and, finally, we 

verified the effect of possible covariates such as socio-economic status (SES), age, gender, underlying 

disease, daily temperature, ischemic time, postoperative day (POD), date of transplantation and 

immunosuppressive regime. We speculated that daily changes in air pollution are associated with 

lymphocytic airway inflammation and BAL neutrophilia. 

MATERIALS AND METHODS 

Study design  

In a prospective, observational study, we analyzed all bronchoscopic procedures with 

transbronchial/endobronchial biopsies (TBB/EBB) and BAL, performed between October 2001 and 

May 2011, in 397 LTx recipients (416 transplantations). This led to a total final study cohort of 1,276 

biopsies. The study was approved by the Hospital Ethical Board (S51577). All patients gave written 

informed consent.  

Patient based data  

Scheduled bronchoscopy with TBB and BAL was performed 1 and 3 months post transplantation and 

diagnostic bronchoscopy was done whenever acute rejection, infection or chronic rejection was 

suspected. In addition, EBB has been introduced in the follow-up at day 180, 360, 540 and 720 since 

January 2011.  

The term lymphocytic airway disease (LAD) was introduced to describe LB diagnosed with TBB 

as well as LB identified on EBB. Diagnosis of A-grade rejection/LAD was based on evaluation of 

TBB/EBB. When airways were not adequately sampled on TBB, EBB was used to score airway 

inflammation. When both were available and there was a discrepancy in degree of airway 
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inflammation, the highest score was used. Upon diagnosis of both A-grade rejection and LAD on one 

TBB, both events were interpreted as separate events and hence separately analysed.  

TBB and BAL were performed according to ISHLT guidelines (9). EBB were taken at the level of 

the segmental carina of the lower lobe, middle lobe or lingula. For BAL, classical methodology was used 

for total and differential cell counting. IL-6/IL-8 were measured using ELISA (3). Plasma C-reactive 

protein (CRP) levels were routinely measured at the University Hospital laboratory (Tina-quant CRP 

latex assay, Roche, Vilvoorde, Belgium). 

BOS was defined as a decrease in forced expiratory volume in 1 second (FEV1) of at least 20% 

in absence of other identifiable causes, according to ISHLT guidelines (9,10). Spirometry was performed 

according to ATS criteria (11). Patients with < 6 months of follow-up were excluded from this analysis. 

Exposure measurements 

Air pollution was quantified by estimating the daily mean values for PM10 at each participant’s home 

address, using a validated model (12,13) that provides interpolated values for PM10 in 4x4 km grids 

based on the Belgian telemetric air quality network. The model has shown good agreement between 

daily model-derived values and measured air pollution.  

We used PM10 data up to 7 lag days before the biopsy procedure, together with averages of 

several days as peaks in air pollution lasting for more than one day might provoke more pronounced 

biological responses. In first instance, we aimed to look at immediate effects of exposure to PM10, that 

is, PM10 levels up to 3 days before the biopsy. We further analyzed PM10 levels up to 7 days before the 

biopsy to check the importance of earlier exposures. When patients were hospitalized during days 

preceding the biopsy, the PM10 levels at the hospitals residence were used for analysis. 

Statistical analysis 

Data management and statistical analyses were performed in SAS 9.2 (SAS Institute, Cary, NC,USA). 

For A-grade rejection and LAD, we created binary outcome variables, by contrasting grade 0 to 

presence of rejection.  
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Number of cells/concentrations (BAL cell counts; plasma CRP; IL-6 and IL-8) were log-

transformed and percentages (% neutrophils and % lymphocytes) were logit-transformed to attain 

normality. 

The relationship between A-grade rejection/LAD and short-term exposure to PM10, and 

between physiological parameters and PM10, was evaluated by statistical models accounting for 

repeated biopsies within a patient. For binary outcome variables (A-grade rejection and LAD), we used 

General Estimating Equations (GEE) in PROC GENMOD with a logit link function, and for continuous 

outcomes (physiological parameters), we applied a General Linear Mixed Model (GLMM) in PROC 

MIXED. Results are expressed as odds ratios (OR) with corresponding 95% confidence intervals (CI) per 

10 µg/m³ increment in PM10 concentration or as x-fold increases per doubling PM10 concentration. All 

tests were two-sided with α=0.05, except for the initial analyses for PM10 on lag days 0 to 3, where we 

applied the Holm-Bonferroni test to correct for possible type 1 errors. We additionally performed the 

analysis with A- grade rejection and LAD as ordinal variables using proc GLIMMIX with a cumulative 

logit link for an ordinal distribution of the response variable. 

We accounted for important covariates in the regression models: age, gender, SES, underlying 

disease, ischemic time, date of transplantation, type of transplantation, daily temperature, POD, type 

and trough blood levels of immunosuppressives, azithromycin treatment. We coded SES (1-3) on the 

basis of occupation and education (3). We defined three types of LTx (single, double and heart-lung), 

and we studied effect-modification by azithromycin therapy.  

A contingency table was used to identify an association between LAD and BOS. Cox regression was 

used to determine a time dependent effect of LAD on development of BOS. 

RESULTS 

Patients were excluded if their home address was not situated in Flanders (n=19). Four biopsies were 

excluded because they were not gradable (n=3) or PM values were not available (n=1). In 19 patients, 

the first and second (reLTx) transplantation were included as two separate events. In total, 1,276 
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biopsies were analyzed, of which 273 (21.4%) showed A-grade rejection and 193 (15.1%) displayed 

LAD; 65 biopsies displayed both A-grade rejection and LAD (5.1%). 

Association between A-grade rejection/LB and PM10 

Characteristics of biopsies are presented in Table 1: of 1,276 biopsies, 431 had been taken as part of 

routine assessment and 845 for diagnostic purposes. Diagnostic biopsies displayed significantly more 

A-grade rejection/LAD (p<0.0001). Of all biopsy procedures (1,276), 775 were TBB (60.7%), 293 were 

combined TBB and EBB (23.0%) and 208 biopsies were exclusively EBB (16.3%). TBB and EBB showed 

in general good agreement regarding the bronchial inflammation (R=0.70, p<0.0001), although 13 of 

293 biopsies (5.8%) showed disagreement in scoring (8 between grade 0 and 1, 4 between grade 0 and 

2 and 1 between 1 and 2; EBB scored higher in 8 of 13 cases). 

We analyzed daily PM10 fluctuations from the day of biopsy (lag0) up to 7 days before biopsy 

(lag7) separately for A-grade rejection and LAD (Figure 1). Of the 1,276 biopsies, 1,022 could be 

histologically evaluated for A-grade (of which 272 were positive, 26.6 %) and 1,179 for LAD (of which 

193 were positive, 16.3%). In univariate analysis, an increase of 10 µg/m3 PM10 three days before 

biopsy (lag3) was significantly associated with LAD (OR=1.15; 95%CI 1.04-1.26; p=0.0044), which 

means that an increase in PM10 concentration of 10 µg/m³ 3 days before a TBB/EBB increases the risk 

of LB with 15%. PM10 exposure on lag day 2 and the average of 2 and 3 was also significantly associated 

with LAD (OR= 1.14; 95%CI 1.02-1.26, p=0.015 and OR = 1.17; 95%CI 1.05-1.3; p=0.0049 for an increase 

of 10 µg/m3 PM10). After correction for potential type1 errors using a more stringent α-value, these 

associations remained significant.  

In contrast, the analysis of the association between PM10 and A-grade rejection demonstrated 

no significant ORs per 10 µg/m³ PM10 increment at lag2 (OR=1.02; 95%CI 0.92-1.12; p=0.76), lag3 

(OR=1.05; 95%CI 0.95-1.15; p=0.32), or lag23 (OR=1.04; 95%CI 0.94-1.15; p=0.47).  
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PM10 and BAL cellularity 

A doubling in PM10 lag3 was associated with a 1.29-fold increase in number of BAL neutrophils (95%CI 

1.06-1.59; p=0.013) and with a 1.20-fold increase in their percentage (95%CI 1.01-1.42; p=0.042). For 

number and percentage of lymphocytes, and BAL total cell count, these numbers were a 1.24-fold 

increase (95%CI 1.08-1.43; p=0.0031), a 1.10-fold increase (95%CI 0.99-1.22; p=0.063), and a 1.12-fold 

increase (95%CI 1.01-1.24; p=0.026), respectively (Figure 2). There was no association between PM10 

exposure and total number of macrophages, IL-6, IL-8 and CRP.  

Effect of azithromycin treatment 

Because neutrophils are important in both A-grade rejection and LAD and seem to be involved in the 

inflammatory reaction caused by PM10, and because azithromycin is known to reduce BAL neutrophils 

(14), we performed subgroup analysis with on the one hand patients on azithromycin therapy and on 

the other hand patients that were not taking azithromycin. In that respect, 300 biopsies were obtained 

from patients taking azithromycin (23.5%), of which 71 (23.6%) were positive for A-grade rejection and 

63 for LAD (21%). 

Subdividing the total population according to azithromycin treatment, we found no association 

between PM10lag3 and LAD (OR=1.04; 95%CI 0.86-1.24; p=0.71) in the cohort taking azithromycin. 

However, in patients without azithromycin, the association between PM10 and LAD was stronger than 

in the entire cohort (OR=1.19; 95%CI 1.06-1.34; p=0.0030) (Table 2). There was no effect of 

azithromycin on A-grade rejection.  
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Table 1. Characteristics of 416 transplantations in 397 transplanted patients (19 retransplantations). 

 Average (SD) N (%) 

Age at transplantation, years 48.4 (13.9)  

Date of first biopsy, dd/mm/yyyy,  (SD of year) 23/05/2006 (3.5)  

Female gender  208 (50%) 

Underlying disease   

     Emphysema (COPD)  201 (48%) 

     Pulmonary Fibrosis  76 (18%) 

     Cystic Fibrosis  64 (15%) 

     Eisenmenger  10 (2%) 

     Pulmonary Arterial Hypertension  21 (5%) 

     Obliterative Bronchiolitis  21 (5%) 

     Others  23 (6%) 

Double lung transplantation  334 (80%) 

Ischemic time, min  400 (80)  

Socioeconomic status   

     Low  194 (47%) 

     Middle  193 (46%) 

     High  28 (7%) 

Number of biopsies per patient 3.1 (1.6)  

A-grade rejection   

     Nr. of positive scores per patient 0.7 (0.9)  

     Patients with at least one A≥2  86 (21%) 

LAD   

     Nr. of positive scores per patient 0.5 (0.8)  

     Patients with at least one B≥2  61 (15%) 

 

Data are means (SD) or numbers (%). COPD, chronic obstructive pulmonary disease. In case of 

retransplantation, both transplantations were considered as separate events. 
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Figure 1. Association between A-grade rejection or lymphocytic airway disease (LAD) and PM10.  

A) Odds ratios (±CI) to develop A-grade rejection per difference of 10 µg/m³ PM10 as a function of 

days preceding the biopsy (n=1022).  

B) Odds ratios (±CI) to develop LAD per difference of 10 µg/m³ PM10 as a function of days 

preceding the biopsy (n=1179).  
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Figure 2. Association between PM10 and different BAL cellular characteristics. Multiplicative effect 

of doubling in PM10 concentration on the different studied variables (x-fold increase ± CI). The 

dotted line indicates no change in concentration or percentage. Red parameter estimates 

demonstrate a significant association, black a non-significant association. 
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Covariates 

In univariate analysis, type of transplantation (single, double, heart lung; p=0.90 and p=0.23), ischemic 

time (p=0.06 and p=0.19), SES (p=0.75 and p=0.17), and underlying disease (p=0.14 and p=0.16) were 

not associated with A-grade rejection and LAD, respectively.  

Earlier date of transplantation and longer interval between transplantation and biopsy (POD) 

were significantly associated with both a higher risk of A-grade rejection and LAD (all p<0.001) and 

higher levels of PM10 (both p<0.001). Moreover, in LAD but not in A-grade rejection, 

immunosuppressive trough levels of tacrolimus (p=0.016 and p=0.22) and cyclosporine (p=0.05 and 

p=0.67) proved to be important. More details about the covariate analysis can be found in Table 3. 

We entered gender, age and the significant covariates (immunosuppressive trough level, time 

of transplantation and POD) in a multivariate mixed model, in addition to PM10 and atmospheric 

temperature. The significant association between PM10 and LAD that we found in the univariate 

analysis, was borderline significant in the adjusted analysis. When stratified for azithromycin 

treatment, the association remained apparent in patients who did not take azithromycin (Table 2). For 

A-grade rejection, adjustment for covariates did not alter the results of the crude analyses: no 

association between PM10 and A-grade rejection was found, neither in the whole patient population, 

nor when stratified for azithromycin treatment.  

When analyzing LAD as an ordinal variable instead of a binary value, the association between 

LAD and PM10 remained significant in the patients not taking azithromycin after adjustment for all 

covariates (p=0.033, OR 1.16; 95%CI 1.01-1.32).  

TBB versus EBB 

We performed a subgroup analysis and compared the effect of PM10 on TBB (734 biopsies) and EBB 

(361 biopsies) separately.  The observed effect seems to be predominantly present when analyzing the 

B-grade on TBB, as in these biopsies from patients not taking azithromycin, we found a significant 

association after adjustment for covariates (p=0.032; OR 1.16; 95%CI 1.01-1.34), however, this was not 

significant when analyzing EBB seperately (p=0.54; OR 1.10; 95%CI 0.81-1.49).



 

 

Table 2. Relation between exposure to PM10 three days before biopsy (lag 3) and acute rejection. 

  A- grade rejection  LAD 

All observations N OR 95% CI p  N OR 95% CI p 

     Unadjusted 1022 (272) † 1.05 0.95-1.15 0.32  1179 (193) 1.15 1.04-1.27 0.004 

     Adjusted for covariates * 1003 (265) ‡ 0.99 0.89-1.11 0.91  1162 (189) 1.12 1.00-1.25 0.049 

Patients on azithromycin  N OR 95% CI P  N OR 95% CI P 

     Unadjusted 223 (71) 1.04 0.85-1.28 0.67  285 (63) 1.04 0.86-1.24 0.71 

     Adjusted for covariates * 221 (70) 1.02 0.81-1.29 0.87  282 (63) 1.01 0.80-1.27 0.96 

Patients without azithromycin N OR 95% CI P  N OR 95% CI P 

     Unadjusted 799 (201) 1.04 0.94-1.15 0.44  894 (130) 1.19 1.06-1.34 0.003 

     Adjusted for covariates * 782 (195) 0.98 0.87-1.10 0.68  880 (126) 1.16 1.02-1.32 0.028 

 

OR is the odds ratio for a change of 10 µg/m³ PM10 

* Adjusted for gender, age, temperature, transplantation date, post-operative day and trough levels of immunosuppressives. 

† Numbers are total numbers of biopsies (biopsies with posijve rejecjon score) 

‡ Numbers in adjusted analyses are slightly smaller due to some missing data in immunosuppressive trough level 

  



 

 

Table 3. Univariate analysis to determine covariates for multivariate analysis 

  A- grade rejection  LAD 

Patient-related covariates N OR 95% CI p  N OR 95% CI p 

     Age (per year increase) 1023 (273) 0.98 0.97-0.99 0.0004  1180 (193) 0.99 0.97-1.00 0.053 

     Gender (M vs. F) 1023 (273) 0.92 0.68-1.25 0.59  1180 (193) 1.06 0.75-1.50 0.73 

     SES (3 classes) 1023 (273) Several ORs * 0.96  1180 (193) Several ORs* 0.44 

Tx-related covariates N OR 95% CI P  N OR 95% CI P 

     Underlying disease (7 classes) 1023 (273) Several ORs* 0.14  1180 (193) Several ORs* 0.17 

     Type of Tx (double vs. single) 1023 (273) 1.03 0.70-1.50 0.90  1180 (193) 1.40 0.80-2.45 0.23 

     Date of Tx (per year increase) 1023 (273) 0.93 0.86-0.96 0.0003  - 0.86 0.83-0.93 <.0001 

     Ischemic time     737 (200)† 1.17 0.99-1.37 0.058  869 (148) 1.09 0.96-1.25 0.19 

Biopsy-related covariates N OR 95% CI P  N OR 95% CI P 

     Cyclosporin (per 10mg/l) 244 (65)‡ 0.99 0.96-1.03 0.67  269 (40) 0.97 0.93-1.00 0.047 

     Tacrolimus (per mg/l)   760 (201)‡ 0.98 0.94-1.01 0.22  894 (149) 0.93 0.88-0.99 0.016 

     POD (per month increase) 1023 (273) 1.00 0.99-1.01 0.65  1180 (193) 0.99 0.98-0.99 <.0001 

     Daily temperature (per °C) 1023 (273) 1.00 0.98-1.02 0.91  1180 (193) 1.00 0.97-1.02 0.74 

 

* Class variables had n!/2 pairwise comparisons (with n the number of classes). The p-value shown is that of the class variable as a whole. 

† N for ischemic jme is considerably lower due to missing values. 

‡ Pajents received either cyclosporine or tacrolimus as immunosuppressive medicajon.  
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LAD and infection 

Of the 1,276 biopsy procedures, 84 (6.5%) were performed during infectious episodes, characterized 

by growth of Aspergillus, Pseudomonas, cytomegalovirus (CMV) or less common pathogens in BAL, 

abnormalities on CT scan and clinical symptoms like fever, combined with an increase in blood CRP 

level.  All these episodes needed appropriate treatment. The mean blood CRP and BAL IL-8 level related 

to these procedures was significantly higher compared to noninfectious episodes (36.3 mg/L vs 10.6 

mg/L, p<0.0001 and 167 pg/mL vs 96 pg/mL, p<0.0001). Of these 84 biopsies, 25 demonstrated LAD 

(29.6%), indicating that infection might also have contributed to LAD. When we excluded these 84 

biopsies from the total analysis, the association between PM10 and LAD remained significant (p=0.015, 

OR 1.14, 95%CI 1.03-1.26). 

LAD and BOS 

BOS could be evaluated in 381 patients (>6 months of follow up). In total, 130 patients (34%) were 

diagnosed with BOS of which 50 (38.4%) had a biopsy-proven LAD before BOS diagnosis. In the patients 

without BOS, only 47 of 251 patients had a biopsy-proven LAD (18.7%). The prevalence of BOS was 

significantly higher in patients with more LAD compared to the group that experienced no LAD during 

their follow-up (p<0.0001).  

The median BOS-free time period after transplantation was significantly lower in the group 

with LAD compared to the control group (5.7 year vs. 8.1 year, p=0.0089) (Figure 3). The hazard ratio 

resulting from a cox regression method was 1.57 (95% CI 1.11-2.20; p=0.010), indicating that patients 

with at least one LAD event were 1.57 times more likely to develop BOS than patients with no LAD 

events. This association remains significant when looking at the 189 patients who only underwent EBB. 

Indeed, 24 of 138 (17%) patients without BOS had LAD on EBB, compared to 22 of 51 (43%) patients 

with later development of BOS (p=0.0005). 

Finally, patients with BOS underwent a mean of 3.5 biopsy procedures per transplantation, 

whereas patients without BOS only underwent a mean of 2.8 biopsy procedures (p=0.0008). 
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Figure 3. Patients experiencing at least one event of LAD during their follow-up after LTX had a worse 

BOS-free survival compared to patients that never experienced LAD. 

DISCUSSION 

In this paper, we found a significant association between LAD after LTx, and recent exposure to 

particulate air pollution (measured as PM10). We provided evidence that a 10 µg/m³ increase of PM10 

is associated with a higher chance of LAD (15%), diagnosed 2-3 days after this PM10 increase. We found 

no significant effect of PM10 on the development of A grade rejection.  

Moreover, PM10 was also associated with increased BAL neutrophils and lymphocytes. This 

demonstrates the potential role of anti-neutrophilic therapy, confirmed by the results for 

azithromycin, which appeared to block the effect of PM10 on LAD. Indeed, only in patients not taking 

azithromycin, the effect of PM10 was demonstrable as the risk for airway inflammation per 10 µg/m³ 

PM10 increased to 19%. Our results proved to be robust, as the findings remained significant when we 

took several covariates into account.  

The prevalence of LAD was much higher in patients who later on developed BOS compared to 

those who remained stable, hence confirming the association between LAD and BOS, which has been 

described previously (5). This might be explained by the high BAL neutrophilia found during LAD (8), 

which, as already demonstrated in other studies, is an important risk factor towards the development 

of BOS (15). Our study suggests that at least part of the LAD and BAL neutrophilia is explained by 

exposure to PM10. Hence, acute exposures to PM10 predisposes indirectly towards the development of 
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BOS. Consequently, these data further strengthen our previous study in which we demonstrated the 

effect of chronic exposure (=spatial effect) to traffic-related air pollution on the development of BOS 

and mortality in LTx patients (3). Patients with BOS underwent a higher number of biopsies compared 

to patients without BOS. It is well known that acute rejection and LAD (5,16) are major risk factors for 

the development of BOS (also corroborated by this study), hence patients probably had more clinical 

indications to undergo an extra biopsy. 

It is remarkable that only 14.5% of the biopsies displayed LAD, while other centers found a 

positive score in almost 50% of their biopsies (5, 17). This could be explained by our clinical routine 

follow up, as we only take routine biopsies on day 21 and day 90, otherwise only when clinically 

indicated. In this way, it is very much possible that we miss a lot of LAD as it might manifest 

subclinically. Moreover, many patients are already under routine azithromycin treatment at day 90, 

which might interfere with the development of LAD as it decreases (neutrophilic) airway inflammation. 

Time of transplantation proved to be important as patients transplanted more recently, 

experienced less rejection. This time trend may be due to the increased expertise gained over time, as 

well as the introduction of azithromycin. However, another possible explanation is the slightly 

declining PM10 level over the last years. Age was also an important predictor, especially for A-grade 

rejection, in agreement with previous data (18).  

Epidemiological research already demonstrated clear associations between acute and chronic 

exposure to particulate air pollution and respiratory symptoms like cough, wheezing, shortness of 

breath, exacerbations of asthma/chronic obstructive pulmonary disease, increased use of rescue 

medication, respiratory infections and reduction of peak flow rate (19). Biomarkers of airway and 

systemic inflammation and oxidative stress have already been linked with exposure to PM, but direct 

sampling in the lung (using BAL and biopsies) remains problematic as it is not always acceptable and 

much more invasive. Up to now, an association between PM10 exposure and histological diagnosis, as 

we did in this study, has never been demonstrated. Only animal studies and some human studies, 

including only low numbers of subjects, attempted to link PM with airway neutrophilia in healthy adults 
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(20,21). In most cases the investigators used very high, acute exposures to PM, whereas we 

investigated the effect of real life levels in Flanders, Belgium, over several years. 

Admittedly, our lung transplant population is a very specific one and a healthy individual can 

react differently from a vulnerable one (22). The LTx setting is unique to study the possible effects of 

PM10, as the routine follow-up in our center includes repeated bronchoscopies (with biopsies and BAL), 

thus providing an opportunity to study the PM10 exposure in relationship to histological signs of 

inflammation in a large cohort. Moreover, we also have the results of BAL data, which provides us with 

information about the cellular inflammation within the airway lumen.  

For many respiratory diseases, including chronic rejection after LTx, persistent airway 

neutrophilia is one of the most important risk factors (23,24). Therapies that inhibit/prevent this 

neutrophilic inflammation may have a very important role in these diseases. We and others recently 

demonstrated in observational and interventional trials that azithromycin is capable of preventing and 

treating chronic rejection and related mortality via its inhibitory effect on airway neutrophilia (23). In 

this study, we observed that PM10 was no longer associated with LAD if azithromycin was part of the 

maintenance therapy. Hence, the present results are in favor of a preventive strategy with 

azithromycin, from discharge from the hospital on. Our recent placebo-controlled study in LTx patients 

indeed demonstrated that azithromycin, compared to placebo, prevents the development of BAL 

neutrophilia and chronic rejection (23).  

The lag period of 2 to 3 days between exposure to PM10 and diagnosis of LAD seems 

immunologically plausible as a full innate inflammatory response with attraction of neutrophils and 

some types of lymphocytes, ultimately resulting in a histological diagnosis of LAD, needs time to 

develop. However, we could not detect a direct mechanistic link between PM10 and airway neutrophilia 

as IL-8 was not associated with PM10. This discrepancy may be explained by the introduction of 

azithromycin, as 300 biopsies (23.5%) are taken from patients on active azithromycin therapy. It has 

already been demonstrated that azithromycin decreases IL-8 and CRP levels, both in a therapeutic and 

preventive manner (14,23). An additional explanation could be that part of the lavages and biopsies, 
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as mentioned in the literature, are taken to diagnose infection, which is associated with high IL-8 and 

CRP levels as shown in the results. When we only looked at biopsy procedures during infectious 

episodes, we indeed found an increase of blood CRP and BAL IL-8.  

Our study has some limitations. This study spans a period of 10 years, and therapies and 

insights changed a lot during this period. We, however, tried to take this into account by correcting 

our analyses for time after transplantation and azithromycin treatment. It is a single center study 

including a cohort of patients restricted to a relatively small geographical area in Belgium (Flanders: 

13,521 km²). It would have been ideal to study a larger area, with larger spatial contrasts in pollution. 

Moreover, we did not look at acute effects of air pollution on FEV1, although some studies report an 

association between FEV1 and PM (25). Also, A-grade rejection/LAD is diagnosed via biopsies, which 

are very small and could give a skewed image. Various chemical compounds in ambient PM, including 

transition metals and aromatic organic compounds, may contribute to adverse effects through intrinsic 

generation of reactive oxygen species (13). We did not investigate these specific compounds. A further 

limitation of our study is the use of outdoor measurements of air pollution with interpolations at 

residential level in order to estimate partly indoor personal exposures. However, studies comparing 

personal and ambient exposure have reported good correlations among day-to-day changes in central 

measurement stations of PM and personal exposure (26,27).  

We used both EBB and TBB in our analysis, to exclude selection bias. Although generally there 

is good agreement, the effect of PM10 on LAD seems to be only present when analyzing TBB and not 

EBB. It is, however, important to remark here that there are twice as many events in the TBB group 

compared to the EBB group. Importantly, LAD diagnosed on EBB, remained a major risk factor towards 

the later development of BOS. We also have no clear idea whether the pathology of LAD in our study 

truly represents airway rejection (B-grade acute rejection). We can only argue in favor of this by the 

fact that patients who develop LAD are indeed more prone to later on develop BOS, which may suggest 

that LAD in our study represents acute airway rejection (9). Moreover, when excluding all patients 
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experiencing infection (both in the group with or without LAD), the association between LAD and PM10 

remained present, clearly proven that infection does not interfere with our results. 

In conclusion, daily exposure to PM smaller than 10µm independently increased the risk of 

LAD in LTx patients. An increase in PM10 by 10 µg/m³ was associated with a 19% higher risk for LAD 3 

days later. Mechanistically, airway inflammation was identified, and a protective effect of azithromycin 

was observed. The observed impact of acute exposure to air pollution adds up to the effect of chronic 

exposure to traffic-related air pollution which was previously reported by our group (3). This may have 

substantial health implications for LTx patients. A reduction of 10 µg/m³ is feasible in large parts of the 

world (28) and based on our estimates, this would be associated with a significant reduction in the risk 

of LAD and ultimately, in the prevalence of BOS. 
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ABSTRACT 

Background: Short-term and long-term exposure to air pollution is associated with cardiovascular 

disease, but intermediate timeframes have remained relatively unexplored. In a panel study, we 

evaluated effects of deliberate exposure for ten days to varying levels of ambient pollution on several 

indicators of cardiovascular health. 

Methods: Exposure to air pollution and cardiovascular endpoints were assessed in 20 healthy elderly 

volunteers in three locations during one year: in Leuven (Belgium – their country of residence; 

intermediate air pollution) and during 10-days stays in Milan (Italy, high pollution) and Vindeln 

(Sweden, low pollution). We measured blood pressure, carotid arterial stiffness, endothelial function, 

C-reactive protein (CRP), and blood cell counts. We used mixed-effects linear regression models 

adjusted for potential confounders to evaluate associations between these endpoints and exposure to 

particulate matter (PM), black carbon and NO2 during one week before each health assessment. 

Results: Exposure to pollutants was higher in Milan and lower in Vindeln than in Leuven, with the 

highest contrast found for NO2 (averages: Milan 64 µg/m³; Vindeln 4 µg/m³; Leuven 26 µg/m³). 7-days 

exposure to air pollution was associated with arterial stiffness, e.g. a -4.8% [95% confidence interval 

(CI): -7.1;-2.5%] decrease in compliance for a 10 µg/m³ increment in PM10 (adjusted for covariates). In 

contrast, endothelial function ‘improved’ with elevated air pollution: e.g. the reactive hyperemia index 

increased by 0.36 (CI: 0.19;0.54) points for a 10 µg/m³ increment in PM10. No inflammatory effects, 

measured as plasma CRP and white blood cell counts, were detected. 

Conclusions: In a real life intervention study, we demonstrated in a healthy elderly population that 

short to medium term exposure to higher or lower levels of air pollution is associated with an increase 

or decrease, respectively, in carotid arterial stiffness. 
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INTRODUCTION 

Numerous epidemiological studies have identified exposure to ambient air pollution as an important 

cause of respiratory and cardiovascular morbidity and mortality.1,2 Short-term (hours to a few days of 

exposure before the adverse health event) ‘triggering’ effects of air pollution on all-cause mortality3 

and acute events, such as myocardial infarctions,4 have been demonstrated by time-series and case-

crossover (CCO) studies, whereas long-term effects (several years of exposure) on both the onset of 

acute events and the development of chronic disease have typically been explored in ecological studies 

or large prospective cohorts.5,6  

Although these epidemiological studies have contributed to an increased understanding of the 

detrimental impact of air pollution on human health in real-world settings at ambient levels, they have 

limitations as well. By design, short-term studies are inappropriate to capture effects of persistent 

exposure or to explain the prevalence and development of chronic diseases. Moreover, time-series 

and CCO designs require rigorous modeling techniques in order to avoid confounding by time trends 

and weather variables,7 or bias by selection of control days, respectively.8 Long-term studies either lack 

information on important confounding risk factors, such as smoking status or socio-economic status 

(SES) (retrospective ecological approach), or are time-consuming and expensive (prospective cohort 

studies). Additionally, population or cohort-based studies cannot measure personal exposure to air 

pollution directly, because of the large number of subjects involved (needed to obtained sufficient 

statistical power), but they use data from central monitoring stations or from interpolation models as 

a proxy. Finally, intermediate effects and pathophysiological pathways usually remain undetected due 

to the ‘black box’ approach of epidemiological studies. 

In contrast, controlled-exposure studies in animals and humans are able to capture individual 

exposure with greater precision and have provided more insight in possible physiological pathways of 

the relationship between inhalation of pollutants and cardiovascular and respiratory disease. 

However, in the case of human volunteers, this is only possible for very brief periods of exposure 
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(minutes to hours) and hence, a response that emerges only after a longer exposure (e.g. one week) 

to a given pollutant, can remain undetected.  

In this study, bearing characteristics of an observational study and an intervention study at the 

same time, we aimed to combine the advantages of epidemiological and experimental studies, and to 

measure health effects of both reduced and elevated exposure to air pollution, compared to the usual 

level of exposure. We moved a panel of study volunteers to three locations with varying real-world 

ambient air pollution levels: Vindeln (Sweden, low pollution), Leuven (Belgium, intermediate pollution, 

home town), and Milan (Italy, high pollution). Exposure to different pollutants was measured at an 

individual level, and obtained from local monitoring stations. Possible physiological pathways of the 

relationship between exposure to air pollution and life-threatening cardiovascular disease have been 

reviewed recently.9-11 We quantified several health-related endpoints that have been identified as 

intermediate steps between exposure and disease: systemic oxidative stress and inflammation,12,13 

endothelial function,12,14 arterial stiffness,15 and coagulation.16  

We hypothesized that a decrease or increase in air pollution exposure, compared to the study 

persons’ place of residence, during one to two weeks would be associated with detectable changes in 

biomarkers of cardiovascular health. With an eye to future public health policy, the possible beneficial 

effects of lowering exposure are as important as the adverse effects of increased exposure. 

METHODS 

Study design 

We set up a panel study, in which we measured multiple health endpoints and personal exposure to 

air pollution at regular time points and in locations with widely differing ambient air pollution levels 

during one year in 20 healthy elderly volunteers. We selected 10 male-female couples with both 

partners fulfilling the inclusion (60-75 years of age; never-smoking or having quit smoking at least one 

year before the start of the study; willing and available to travel during the study period; good mental 

condition) and exclusion criteria (history of serious cardiovascular disease or cancer; presence of other 
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diseases that could interfere with the measurements). All participants were given detailed oral and 

written information on the study and gave written informed consent. The study was approved by the 

Ethical Committee of KU Leuven (S55482).  

From September 2013 to September 2014, we collected data over 11 measurement periods: 

approximately every two months in Leuven, Belgium (seven periods); twice during a 10-day stay in 

Milan, Italy (one halfway and one at the end of the stay); twice during a similar 10-day stay in Vindeln 

(a rural area near Umeå, northern Sweden) (see Figure 1). These locations are representative for the 

highest (Milan, >50 µg/m³) and lowest (Vindeln, <10 µg/m³) yearly averages in PM10 that can be found 

in Western Europe, with intermediate values for Leuven (30 µg/m³)17-19. During the trips, on days with 

no health assessments, participants had ample time for touristic activities, as long as these took place 

in the targeted exposure environment (urban or rural, respectively). To reduce differences in 

temperature between the two study trips, we stayed in Milan in autumn (October 2013) and in Vindeln 

in summer (June 2014).20 Clinical measurements were performed in appropriate study rooms at the 

UZ Leuven, the Ospedale Maggiore in Milan, and Umeå University.  

 

 

 

Figure 1. Timeline of the study. L1 to L7: health assessment periods in Leuven; M1-2: stay in Milan; S1-

2: stay in Sweden. All variables mentioned in the text were measured in 20 study volunteers in all 11 

periods, except for endothelial function (six periods, indicated with *) and plasma levels of cholesterol 

and glucose (only L1, baseline) 
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Collection of environmental data 

Exposure to air pollution was assessed during each of the 11 study periods, and we combined our own 

measurements with data obtained from central monitoring stations. 

In Belgium, we estimated daily residential exposure to PM10, PM2.5 and NO2 using a land use 

regression model21 that provides interpolated values in 4 by 4 km grids, based on the Belgian telemetric 

air quality network. In the absence of such a model for black carbon (BC), exposure to this pollutant 

was estimated by using daily averages of the station nearest to the participant’s home address 

(average distance: 13 km).22 In Milan, we used the online database of the Regional Agency for the 

Protection of the Environment in Lombardy (ARPA Lombardia) to estimate exposure to PM10, PM2.5, BC 

and NO2, by averaging values from the different monitoring stations in the city.23 In Vindeln, we 

averaged data from the nearest measurements stations in Umeå, Skellefteå and Strömsund to 

estimate regional levels of PM10, PM2.5, and NO2.24 

To validate the results obtained from the monitoring stations, we regularly sampled outdoor 

concentration of pollutants by using two portable laser-operated aerosol mass analysers: an Aerocet 

53 (Met One Instruments Inc, Grants Pass, OR, USA) for PM10 and PM2.5, and a microAeth Model AE51 

(AethLabs, San Francisco, CA, USA) to measure BC concentration.  

Finally, personal exposure to NO2 was estimated using Radiello diffusive samplers (Sigma-

Aldrich, Bellefonte, PA, USA). Six to 10 study volunteers wore the clip-on device during six days prior 

to each health assessment day in Leuven or prior to the second (and last) health assessment days in 

Milan and Vindeln. After the six-day sampling period, samplers were sent to the lab of the Fondazione 

Salvatore Maugeri (Padova, Italy) for quantification of average exposure to NO2 during the sampling 

period. 

Daily temperature and relative humidity during the study period were obtained from local 

meteorological websites for Belgium25 and Milan26 and an international website for Umeå.27 



 

100 

 

Cardiovascular measurements 

During each sampling period, we measured blood pressure and carotid arterial stiffness, and collected 

non-fasted blood samples from each study volunteer. Endothelial function was measured once during 

each trip (on day 9-10) and in Belgium only in control periods immediately before and after trips, 

resulting in six time points with endothelial function assessments. 

Blood pressure 

Systolic (SBP) and diastolic blood pressure (DBP) were measured according to guidelines of the 

European Society of Hypertension,28 with an automated device (Stabilograph, Stolberg, Germany). 

After the subject had rested for at least 5 min, blood pressure was measured five times consecutively 

in sitting position. We used the average of the last two measurements for analyses, and we calculated 

pulse pressure (ΔP) as average SBP - DBP, and mean arterial pressure as DBP + ΔP/3. 

Carotid arterial stiffness 

We measured carotid arterial stiffness by using an ultrasound device with automatic boundary 

detection software in RF-mode (MyLabOne, Esaote Benelux, Maastricht, The Netherlands) according 

to previously reported protocols.29 Participants were at rest for 10 min in a supine position before 

starting the measurements. All measurements were performed by the same trained investigator. 

We determined carotid intima-media thickness (CIMT) of the right common carotid artery at 2 

cm proximal of the carotid bulb under three different angles; i.e. 90, 135 and 180° with the participant’s 

head slightly turned to the left, according to the recommendations of the Mannheim Carotid Intima-

Media Thickness Consensus.30 Results obtained from measurements at the three angles were 

averaged. 

We quantified carotid arterial stiffness by averaging diastolic artery diameter (D) and systolic 

increase in diameter (ΔD) over three consecutive ultrasound measurements, each spanning eight 

cardiac cycles. We subsequently used D and ΔD to calculate four parameters related to arterial 

stiffness. Carotid distensibility (DC) and compliance (CC) coefficients are inversely related to arterial 
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stiffness, and pulse wave velocity (PWV) is a direct measure of arterial stiffness. Young's Elastic 

Modulus (YEM) combines measures of arterial wall elasticity with wall thickness (CIMT). These 

parameters were calculated as follows:31,32 

DC = (2*D*ΔD + ΔD²)/(D²*ΔP) (1/kPa) 

CC = (2*D*ΔD + ΔD²)/ΔP (mm²/kPa) 

PWV = (ρ*DC)-0.5 (m/s) 

YEM = D / (CIMT*DC) (kPa) 

with D = diastolic artery diameter (mm); ΔD = systolic increase in diameter (mm); ΔP = pulse pressure 

(kPa, converted from mm Hg by multiplication with conversion factor 0.133); ρ = density of blood 

(1.060 kg/dm³).  

Intra-observer coefficients of variation ranged from 5.2% to 10.1% for the different stiffness 

parameters, indicating good reproducibility of the measurements.15 

Endothelial function 

We measured endothelial function with a non-invasive device that uses pneumatic probes to record 

finger arterial pulse-wave amplitude in a beat-to-beat manner (EndoPAT, Itamar Medical Ltd, 

Caesarea, Israel), according to the study protocol described by Axtell et al. 2010.33 In brief, the EndoPAT 

finger probes were placed on the index fingers of the study subject sitting on a chair with the lower 

arms on an armrest. Baseline measurements were recorded during 5 minutes, followed by 5 minutes 

of occlusion of the left upper arm by inflating a cuff up to 50 mm Hg above systolic pressure, and 

another 5 minutes of measuring reactive hyperemia after deflating the cuff. The Reactive Hyperemia 

Index (RHI) was calculated by the device; values lower than 1.67 indicate impaired endothelial 

function. Participants were fasted for at least 4 hours prior to the measurements. 

Blood cell count 

We collected non-fasted blood in EDTA and heparin vacutainer tubes for blood cell counts and 

measurement of plasma C-reactive protein (CRP), respectively. At baseline, plasma levels of cholesterol 
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and glucose were also determined in fasted blood samples. Blood cell counts (including platelet counts) 

and differential leukocyte counts were determined within 4 hours after sampling, using automated cell 

counters with flow differential (in Leuven and Milan: Cell Dyn 3500, Abbott Diagnostics, Abott Park, IL 

USA; in Umeå: XE-5000, Sysmex Corporation, Kobe, Japan). Plasma samples from heparin tubes were 

kept frozen at -80°C for subsequent analysis of plasma CRP, cholesterol and glucose levels at the UZ 

Leuven laboratory (Tina-quant CRP latex assay, Roche, Vilvoorde, Belgium). 

To verify whether blood cell variables were quantified similarly by the three different devices, 

we divided ten fresh samples of whole blood among three new EDTA tubes each. Each batch of 10 

identical samples was analyzed in either Milan, Umeå or Leuven with the same devices as were 

previously used in the main experiment. Because in this validation experiment, values for mean volume 

of red blood cells (MCV, equal to Hct/RBC*10) were on average 7% higher when measured in Umeå 

than in Leuven or Milan, we decided to exclude MCV results obtained in Sweden from the analyses.  

Covariates 

Information on smoking status (never or former), having a cold and medication use for hypertension 

was obtained by face-to-face interviews. Since physical activity, diet, alcohol consumption, and 

perceived mental health were assumed to differ between the home situation and a 10-day trip abroad, 

these variables were assessed as well. 

During one complete week preceding each health assessment day, study subjects recorded 

their physical activity by wearing a SenseWear Pro Armband (BodyMedia, Inc., Pittsburgh, PA), a 

validated multisensory activity monitor combining a triaxial accelerometer with different sensors.34 

We used the number of steps walked per day and physical activity duration (PAD) [i.e. the number of 

minutes per day that the subject had an energy expenditure >3.0 metabolic equivalents of tasks 

(METs)], both averaged over one week, as covariates in the analyses. During one week preceding three 

selected health assessments periods (L1, M2, S2), participants kept a food diary, which allowed us to 

estimate weekly alcohol consumption (in g/week) at baseline and during trips abroad. At the start of 

each health assessment, participants filled in the Positive and Negative Affect Schedule (PANAS), which 
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comprises 20 items on instantaneous mental condition and results in a calculated positive affect (PA) 

and negative affect (NA) score. 35  

Because of too many missing values, physical activity, alcohol consumption, and instantaneous 

mental condition were omitted from the final models, but they were included in sensitivity analyses. 

More details on these variables will be reported separately.  

Data management and analysis 

Data management and statistical analyses were performed in SAS 9.4 (SAS Institute, Cary, NC, USA). 

We investigated associations between health parameters and exposure to air pollution by using linear 

mixed models with random intercept and random slope, accounting for the repeated-measures design 

of the study. We evaluated different lag structures for the exposure variables: ‘acute’ effects of air 

pollution were estimated by using lag day 0 and 1 (exposure on the day of measurement and the day 

before, respectively) and ‘subacute’ effects by calculating the average of lag days 0 to 6 (average 

exposure during the week preceding the measurement day, av06), corresponding to the duration of 

exposure with the Radiello NO2 sampler. We performed sensitivity analysis with different lag structures 

for the subacute exposure (av02 and av04).  

We included the following covariates in statistical models, as appropriate: age at baseline, sex, 

date of measurement, external temperature, relative humidity, heart rate, mean arterial pressure, 

having a cold (y/n), medication use for hypertension (y/n), smoking status (former/never), mental 

health (PA and NA), and physical activity (PAD). We tested the assumption of normal distribution of 

the error terms by visual inspection of the Q-Q plots of residuals. For DC, CC, YEM, white blood cells 

(WBC) and differential WBC counts, this assumption was only met after log10-transformation. For the 

sake of consistency, PWV outcomes were log-transformed as well. Results for these outcomes are 

presented as % change, whereas parameter estimates of other analyses are unit changes.  
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RESULTS 

Description of study population 

Twenty study volunteers, consisting of 10 male-female couples, started the study in September 2013, 

and all of them completed the study in September 2014, without any dropout or missed measurement 

period. 

Table 1 summarizes the main characteristics of the study population at baseline. No 

differences were observed between males and females, except body height and (borderline significant) 

DBP, which were both higher in males than in females. Five female volunteers took hypertension 

medication during the whole study period, one male started taking medication after period L2. 

Environmental data 

We obtained complete data from the local measurements stations in Belgium, Milan, and northern 

Sweden for PM10, PM2.5 and NO2. Daily values of BC were not measured by any of the monitoring 

stations near the study area in Vindeln (Sweden). However, we continuously sampled BC in Vindeln 

with our own device, and our BC results correlated well with data from central monitoring stations for 

those days when we had obtained both measures (in Leuven or Milan, N = 57 days, Pearson’s r = 0.76, 

p<0.001). Therefore, we used our own results for Vindeln to fill the gap in the BC dataset from the 

monitoring stations.  

Individual exposure levels to PM10, PM2.5, NO2 and BC are presented in Figure 2. Levels of 

ambient NO2 (own measurements) and BC were clearly highest in Milan and lowest in Vindeln with 

intermediate values for Leuven (Belgium), whereas concentrations of PM10, PM2.5 and NO2 (monitoring 

stations) did not differ between Leuven and Vindeln. In general, standard deviations (SD) were much 

smaller in Milan and Vindeln because the exposure windows were more uniform in time and space 

than in Leuven. 
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Table 1. Baseline characteristics of the study participants.*  

Characteristic 
All participants  

(N= 20) 

 Males  

(N=10) 

Females  

(N=10) 

P-

value† 

Age (y) 65 (58-76)  68 (58-76) 64 (59-70) 0.29 

Height (m) 1.71 (1.58-1.96)  1.76 (1.69-1.96) 1.66 (1.58-1.71) <0.001 

Body-mass index (kg/m²) 24.3 (18.9-29.4)  25.2 (18.9-29.4) 23.5 (19.2-29.1) 0.73 

Smoking status: N (%) 

     Former 

     Never  

 

10 (50%) 

10 (50%) 

  

6 (60%) 

4 (40%) 

 

4 (40%) 

6 (60%) 

 

 

0.66 

Blood pressure (mm Hg) 

     Systolic 

     Diastolic 

 

132 (109-165) 

80 (65-105) 

  

133 (113-165) 

85 (67-105) 

 

127 (109-155) 

76 (65-89) 

 

0.53 

0.06 

Plasma cholesterol (mg/dL)‡ 

     Total 

     LDL 

Plasma glucose (mg/dL)‡ 

 

206 (144-282) 

133 (57-212) 

99 (86-131) 

  

206 (160-238) 

133 (93-150) 

100 (88-131) 

 

207 (144-282) 

130 (57-212) 

99 (86-112) 

 

0.72 

0.91 

0.37 

Medication for 

hypertension: N (%)    

6 (30%)#  1 (10%)# 5 (50%) 0.14 

*All values are medians (range). 

†P-value for t-test comparing males to females (except smoking status and medication use: Fisher exact 

test). 

‡plasma cholesterol and glucose levels mere measured in fasted blood samples 

#Male study subject started taking medication during the course of the study (after period M2). 

 

 

 

 

Figure 2 (next page). Personal exposure to NO2, PM10, PM2.5, and BC during the study period. All 

symbols and error bars represent means with SD, obtained from values averaged over one week pre-

ceding the day of health assessment (‘av06’ lag structure). Circles indicate data from central 

monitoring stations, squares are our own measurements (NO2: Radiello device; BC: Aethlab device). 

N=20 for each data point, except Radiello NO2 (N=6 to 10, depending on the period).  
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Exposure to air pollution and arterial stiffening 

The associations of blood pressure and biomarkers of carotid arterial stiffness with ambient 

concentrations of PM10, PM2.5, NO2 and BC are presented in Table 2. Results shown are those obtained 

by models adjusted for age at baseline, sex, HR, smoking status, having a cold, medication use for blood 

pressure, date, temperature, relative humidity. Crude individual patterns of the association between 

arterial stiffness and exposure to PM10 are shown in Figure 3 and unadjusted coefficients can be found 

in supplemental Table S1. 

We found no changes in blood pressure variables related to changes in pollutant 

concentrations, regardless of the time window.  

We detected no short-term associations (lag0) between pollutant concentrations and 

indicators of arterial stiffness, except a 2.0% (0.4;3.5%) decrease in CC related to a 10 µg/m³ increase 

in PM10, and a similar association with PM2.5. In contrast, we found effects of subacute exposure (av06 

lag structure) to air pollution on all biomarkers of arterial stiffness: increases in pollutant 

concentrations were associated with increasing PWV and YEM, and decreasing DC and CC. These 

associations were strongest for PM10 and PM2.5 [e.g. a 4.8% (2.5;7.1%) decrease in CC for a 10 µg/m³ 

increment in PM10]. Analyses with different lag structures (av04 and av02) produced very similar results 

(supplemental Table S2). 

Exposure to air pollution and endothelial function 

Endothelial function was positively associated with both 24 hours and 7 days averages of exposure to 

different pollutants, e.g. RHI was 0.36 (95% CI 0.19;0.54) points higher for a 10 µg/m³ increment in 

PM10 (av06), indicating an improvement in endothelial function with increasing air pollution exposure 

(Table 2). Similarly, when using a binary RHI outcome variable with 1.67 as the cut-off value, the risk 

for having endothelial dysfunction decreased with increasing pollutant concentrations (results not 

shown). 
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Exposure to air pollution and markers of inflammation 

Adjusted results for plasma CRP and blood cell counts are summarized in Table 3. Results from crude 

analyses can be found in supplemental Table S2. CRP concentration was related with air pollution 

exposure in the crude models, but this association disappeared in the adjusted models, due to the 

influence of the covariate ‘having a cold’. Outcomes for WBC and neutrophil counts suggest a negative 

association with BC (lag0) and NO2 (lag0) exposure, but these results were not confirmed by using PM 

as the pollutant, nor by using a one-week timeframe. We found no associations between air pollution 

exposure and lymphocyte counts. 

We detected no effects of acute exposure (lag0) to air pollution on red blood cells (RBC) or 

hemoglobin (Hb) concentration, but all pollutant variables representing subacute exposure (av06) 

were negatively related to RBC levels. Hematocrit (Hct) and MCV were both negatively associated with 

all indicators of short-term (lag0) and medium-term (av06) exposure. Results for MCV shown in Table 

3 are those obtained from the analyses without the Sweden data. 

Mean cell hemoglobin (MCH, calculated as Hb/RBC*10), mean cell hemoglobin concentration 

(MCHC = Hb/Hct*100), and mean platelet volume (MPV) were higher with increasing pollutant 

concentration for most pollutants in both time windows (results not shown in Table 3). Number of 

platelets did not change with short-term exposure to air pollution, and it was negatively related to one 

measure of medium-term exposure (NO2). 

 



 

 

 

Table 2. Adjusted†‡ changes (with 95% CI) in blood pressure and indicators of carotid wall stiffness and endothelial function, associated with a 10 µg/m³ 

increase in PM10 or NO2, a 5 µg/m³ increase in PM2.5 or a 1 µg/m³ increase in BC.  

Acute exposure (lag0) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Systolic BP (mm Hg) * -0.16 (-1.47;1.14) 0.11 (-0.57;0.78) -0.02 (-0.99;0.94) -1.02 (-2.11;0.06) n/a 

Diastolic BP (mm Hg) * -0.47 (-1.34;0.40) -0.15 (-0.61;0.30) -0.02 (-0.72;0.69) -0.39 (-1.12;0.34) n/a 

Pulse pressure (mm Hg) * 0.26 (-0.67;1.19) 0.25 (-0.23;0.73) -0.04 (-0.73;0.65) -0.66 (-1.44;0.12) n/a 

PWV (%) † 0.7 (-0.1;1.6) 0.4 (0.0;0.9)* 0.3 (-0.3;0.9) 0.3 (-0.5;1.0) n/a 

DC (%) † -1.5 (-3.2;0.3) -0.9 (-1.8;0.0)* -0.7 (-2.0;0.6) -0.6 (-2.1;0.9) n/a 

CC (%) † -2.0 (-3.5;-0.4)* -1.1 (-1.9;-0.3)* -0.8 (-2.0;0.3) -1.0 (-2.3;0.3) n/a 

YEM (%) † 1.2 (-0.8;3.2) 1.0 (0.0;2.0) 0.8 (-0.7;2.2) 0.5 (-1.2;2.1) n/a 

RHI †  0.20 (0.10;0.30)** 0.19 (0.06;0.32)* 1.67 (0.76;2.57)** 0.12 (0.03;0.21)* n/a 

Subacute exposure (av06) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Systolic BP (mm Hg) * 0.23 (-1.8;2.26) 0.25 (-0.66;1.15) -0.12 (-1.57;1.34) -1.28 (-2.53;-0.04) -0.14 (-1.10;0.81) 

Diastolic BP (mm Hg) * -0.90 (-2.23;0.43) -0.24 (-0.85;0.37) -0.17 (-1.17;0.82) -0.78 (-1.65;0.10) -0.28 (-0.95;0.39) 

Pulse pressure (mm Hg) * 1.11 (-0.36;2.59) 0.47 (-0.17;1.11) 0.03 (-1.00;1.06) -0.55 (-1.44;0.34) 0.11 (-0.58;0.79) 

PWV (%) † 2.0 (0.8;3.3)** 0.9 (0.4;1.5)** 0.9 (-0.1;1.9) 0.7 (-0.1;1.6) 0.6 (0.0;1.3)* 

DC (%) † -4.6 (-7;-2.2)** -2.1 (-3.3;-1.0)** -2.4 (-4.3;-0.4)* -1.8 (-3.4;-0.1)* -1.3 (-2.5;0.0) 

CC (%) † -4.7 (-6.9;-2.5)** -2.1 (-3.2;-1.1)** -2.5 (-4.3;-0.7)* -2.0 (-3.5;-0.5)* -1.4 (-2.6;-0.3)* 

YEM (%) † 3.8 (0.8;6.9)* 1.9 (0.5;3.3)* 2.3 (0.2;4.5)* 1.5 (-0.4;3.5) 1.4 (0.0;2.8) 

RHI † 0.36 (0.19;0.54)** 0.20 (0.08;0.31)** 0.27 (0.12;0.42)** 0.19 (0.09;0.30)** 0.07 (-0.02;0.15) 
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Legend to Table 2. Coefficients are in mm Hg for the BP variables, and % changes for the carotid 

stiffness variables because we used log-transformed data in these analyses. For all results, N=218 (11 

time points), except for RHI, where N = 118 (6 timepoints).  

Statistically significant results are highlighted in bold. * P<0.05; ** P<0.01; *** P<0.001 

† Adjusted for age at baseline, sex, HR, smoking status, having a cold, medication use for blood 

pressure, date, temperature, relative humidity. 

‡ Additionally adjusted for arterial pressure. 

 

 

 

 

 

 

Figure 3. Crude individual patterns of 20 study volunteers for the association between PWV, CC, DC, 

or YEM and exposure to PM10. Black lines are the linear regression lines for 11 data points, thick red 

lines represent the crude associations from the mixed model. One individual has a divergent 

association between stiffness biomarkers and PM10, this is the same individual for all biomarkers. 



 

 

 

Table 3. Adjusted* changes (with 95% CI) in plasma CRP and blood cell counts associated with a 10 µg/m³ increase in PM10 or NO2, a 5 µg/m³ increase in PM2.5 

or a 1 µg/m³ increase in BC.  

Acute exposure (lag0) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Plasma CRP (%) 2.3 (-2.3;7.0) 1.1 (-1.4;3.5) 0.0 (-3.4;3.5) -1.1 (-4.6;2.5) n/a 

WBC (%) -0.5 (-1.5;0.5) -0.5 (-1.0;0.0) -0.9 (-1.6;-0.1) -1.2 (-2.0;-0.3) n/a 

Neutrophils (%) -0.4 (-1.9;1.1) -0.5 (-1.3;0.2) -1.2 (-2.4;0.0) -1.5 (-2.8;-0.3) n/a 

Lymphocytes (%) -0.4 (-1.4;0.7) -0.2 (-0.7;0.3) -0.2 (-1.0;0.6) -0.4 (-1.3;0.5) n/a 

RBC (106/µL) -0.019 (-0.047;0.009) -0.011 (-0.027;0.006) -0.011 (-0.037;0.015) -0.022 (-0.053;0.008) n/a 

Hb (g/dL) 0.007 (-0.090;0.104) -0.009 (-0.059;0.041) -0.031 (-0.111;0.049) -0.007 (-0.098;0.085) n/a 

Hct (%) -0.28 (-0.56;-0.01)* -0.22 (-0.37;-0.07)** -0.32 (-0.55;-0.09)* -0.45 (-0.71;-0.19)** n/a 

MCV (fL) -0.16 (-0.30;-0.02)* -0.11 (-0.19;-0.04)** -0.17 (-0.30;-0.05)* -0.23 (-0.39;-0.07)* n/a 

Platelets (10³/µL) -2.5 (-6.7;1.8) 0.4 (-2.2;2.9) 3.0 (-0.6;6.6) -1.4 (-5.5;2.7) n/a 

Subacute exposure (av06) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Plasma CRP (%) 2.3 (-4.6;9.1) 0.9 (-2.5;4.3) -0.2 (-5.5;5.1) -0.7 (-5.3;3.8) -2.5 (-5.9;0.9) 

WBC (%) -0.4 (-1.9;1.1) -0.4 (-1.2;0.3) -1.3 (-2.5;-0.1) -0.9 (-2.0;0.2) -0.4 (-1.2;0.3) 

Neutrophils (%) -0.3 (-2.6;2) -0.5 (-1.7;0.6) -1.7 (-3.5;0.2) -1.1 (-2.7;0.5) -0.7 (-1.8;0.5) 

Lymphocytes (%) 0.0 (-1.7;1.7) 0.0 (-0.8;0.8) -0.2 (-1.4;1.1) -0.4 (-1.5;0.8) 0.2 (-0.5;1.0) 

RBC (106/µL) -0.054 (-0.098;-0.010)* -0.025 (-0.050;0.000) -0.032 (-0.072;0.008) -0.039 (-0.074;-0.003)* -0.024 (-0.047;0.000)* 

Hb (g/dL) 0.019 (-0.132;0.169) -0.019 (-0.097;0.060) -0.072 (-0.197;0.052) 0.005 (-0.107;0.118) 0.002 (-0.074;0.078) 

Hct (%) -0.66 (-1.09;-0.23)** -0.39 (-0.62;-0.16)** -0.68 (-1.03;-0.32)** -0.59 (-0.91;-0.27)** -0.42 (-0.63;-0.20) ** 

MCV (fL) -0.24 (-0.52;0.05) -0.15 (-0.30;0.00) -0.37 (-0.64;-0.1)* -0.23 (-0.44;-0.02)* -0.17 (-0.32;-0.01)* 

Platelets (10³/µL) -4.4 (-10.4;1.7) 0.1 (-3.1;3.2) 2.8 (-2.2;7.9) -4.6 (-9.0;-0.2)* -1.2 (-4.2;1.8) 
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Legend to Table 3. Coefficients are % changes for CRP, WBC and differential cell count because we 

used log-transformed variables in the analyses of these variables. For all results, N=219 (11 time 

points), except for MCV, where N=180 (9 time points), because we excluded the Sweden data. 

Statistically significant results are highlighted in bold. * P<0.05; ** P<0.01; *** P<0.001 

* Adjusted for age at baseline, sex, HR, smoking status, having a cold, medication use for blood 

pressure, date, temperature, relative humidity. 

DISCUSSION 

In a panel study with 10 male-female couples of healthy elderly volunteers, we investigated the 

association between exposure to air pollution and various relevant cardiovascular endpoints in a quasi-

experimental way by deliberately exposing study volunteers to the range of ambient pollution levels 

that can be found in Europe. 

We evaluated several indicators of cardiovascular health that have been linked to short-term 

or long-term exposure to air pollution.9,11 Our analyses revealed mixed results: some biological 

endpoints were indeed associated to variation in air pollution exposure, whereas others showed no 

effects of subacute exposure to pollution, and one outcome was associated with air pollution in the 

opposite direction than hypothesized.  

Carotid arterial stiffness 

We found evidence for a link between carotid arterial stiffness, indicated by increased PWV and YEM 

and decreased DC and CC, and short-to- medium-term exposure to several pollutants. Arterial stiffness 

is an important determinant of increased blood pressure and pulse pressure, and therefore of acute 

cardiovascular events such as myocardial infarction and stroke.31,36,37 Since effects of short-term 

elevated air pollution on myocardial infarction and stroke have repeatedly been demonstrated,1,2,4,38 

our results provide a possible pathway for this trigger effect, although pulse pressure itself was not 

linked to air pollution exposure in our study. Similar associations between short-term air pollution 

exposure and arterial stiffness were found in recent intervention and epidemiological studies.15,39-41  
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The small average changes that we found are not clinically relevant for an individual, but the 

entire population is exposed to air pollution, including more vulnerable individuals. Small average 

effects in a population may reflect substantial changes in the most susceptible portion of the 

population.42-44. Moreover, the effects were considerably larger for the 7-days averaged pollutant 

concentrations than for one-day values, indicating that medium-term exposure increases the 

detrimental effect of air pollution. 

Endothelial function 

Contrary to our hypothesis, RHI was positively associated with pollutant concentration, and the risk of 

having endothelial dysfunction (binary approach of RHI with 1.67 as the cut-off value) was lower with 

increasing air pollution. The effect was strongest for the 7-days averaged concentrations. This result 

was unexpected, since endothelial dysfunction, a marker of atherosclerotic processes,45 has repeatedly 

been associated with increased air pollution exposure levels.9,11,12,14  

Endothelial function was measured six times in this study, and the highest average and median 

value were recorded in Milan (session M2), which had also the highest levels of air pollution. 

Measurements in Milan took place in the afternoon and evening (between 16:00h and 20:00h), 

whereas those in Leuven were always in the morning (between 8:00h and 12:00h), and those in Vindeln 

were spread over the whole day. There are some indications that endothelial function sustains a 

circadian rhythm, with a lower RHI in the morning.46 Moreover, the same authors question the 

suitability of EndoPAT to measure endothelial function in small panels, such as those used in clinical 

pharmacology studies (and ours).46  

Whatever the case may be, when removing the M2 results from the analysis, no positive or 

negative association between any of the pollutants and endothelial function could be detected. 

Therefore, our results on endothelial function and air pollution exposure have to be interpreted with 

care. 
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Systemic inflammation 

We found no evidence of systemic inflammation, quantified as concentrations of WBC and plasma CRP. 

Either by a release of inflammatory cytokines into the circulation, or by direct translocation of particles 

through the lung-blood barrier into the circulation,10 systemic inflammation has been held responsible 

for noxious processes such as endothelial dysfunction, development of atherosclerosis, reduced HRV, 

coagulation, and thrombosis.9-11  

In our research group, we already found that concentrations of WBC and differential cell 

counts (neutrophils and lymphocytes) were associated with short-term air pollution exposure in 

susceptible populations such as patients with diabetes16 and lung-transplanted patients.47 However, in 

general, controlled-exposure studies at relatively low exposure levels in healthy humans, such as the 

present study, did not demonstrate a robust inflammatory response.9  

Red blood cells 

We detected a decrease in RBC count, Hct and MCV for short- and medium-term exposure to all 

pollutants. Although RBC and related parameters are generally not discussed in review papers on 

cardiovascular health effects of air pollution,2,9-11 there is growing evidence for decreased oxygen-

carrying capacity of the blood resulting from exposure to elevated levels of air pollution. RBC count, 

Hb concentration, and Hct were lower for increased PM10 exposure in elderly,48 after exercise in 

polluted air by healthy sportsmen,49,50 or in individuals cooking with biomass fuels,51 for time windows 

ranging from less than an hour,50 over days,48 to years49,51 of increased exposure.  

However, in our study, we found no changes in Hb concentration related to air pollution, 

because MCH and MCHC were higher with increased air pollution. In other words, total Hb 

concentration was unaltered by changes in air pollution, but it was more densely concentrated in 

smaller and fewer RBC. It is unclear whether this is a reliable result or an artifact caused by the use of 

three different cell count devices. 
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Clotting 

Rapid platelet activation is a well-documented physiological response to inhalation and translocation 

of pollutants,9,11 but it is not necessarily linked to an increased number of platelets in the blood.16 

Increased MPV has also been recognized as a predictor of thrombotic events and, moreover, 

as a marker of inflammation.52 We found strong positive associations between MPV and exposure to 

all pollutants in both time windows. However, MPV was not measured by the device used in Sweden 

and we found a poor correlation between Leuven and Milan values in the validation experiment. When 

removing Milan data from the analysis, the positive association disappeared.  

Therefore, it is not clear whether our results reflect a true effect of air pollution exposure on 

MPV, or were caused by a difference in MPV quantification by the devices used. 

Strengths and limitations 

We expected to find ambient PM10 concentrations as low as 10 µg/m³ in rural Sweden and as high as 

50 µg/m³ in Milan during several days in a row. Although this was true for some days during each stay, 

we also recorded daily averages higher than 20 µg/m³ in Sweden and lower than 20 µg/m³ in Milan. 

This resulted in average one-week exposures (av06) of 19.8 µg/m³ in Sweden (S1) and only 30.6 µg/m³ 

in Milan (M2), which was considerably higher and lower than their respective yearly average.17,18 No 

less than three assessment periods in Leuven, intended as intermediate exposure occasions, had lower 

one-week averages for PM10 than our stay in Sweden. A similar pattern was found for exposure to 

PM2.5, but not for BC and NO2, which had both much higher values in Milan and lower values in Sweden 

than in Leuven. Nevertheless, despite the lower range in PM exposures than aimed at, we found 

significant results for PM10 and PM2.5, just as for BC and NO2.  

In addition to the unpredictable air quality at the time of our study trips, the 10-day stays 

abroad also posed some logistic challenges. For example, we learned by experience that blood cell 

counts can differ among automated cell counters, even when devices have been calibrated and 

validated. As a consequence, results for MCV, MCH, MCHC, and MPV have to be interpreted with care. 

 



 

116 

 

We used interpolated data from central monitoring stations to estimate personal exposure to 

air pollution. For those days we measured PM and BC ourselves, the correlations between own values 

and those from monitoring stations were very high. Moreover, the NO2 measurements with the clip-

on passive samplers were successful, and they clearly indicated an enormous difference between an 

urban (Milan) and a rural area (Vindeln) in real-life exposure to NO2, which is a typical traffic-related 

pollutant with much more spatial variation in ambient concentration than PM. 53 

A 10-day group travel abroad is very different from the common home situation in many 

aspects that can confound the association between biological endpoints and exposure to air pollution. 

We quantified physical activity, alcohol use, and mental state and adjusted all analyses for these 

covariates, but due to missing values, we eventually removed them from the list of covariates in the 

final analyses, as shown in the tables. Including PAD, steps, alcohol use, PA and NA did not produce 

substantially different results. We still may have overlooked other, real confounders of the associations 

found. However, when we totally excluded a possible “trip effect” by analyzing only Leuven data or by 

just comparing Milan to Sweden results, the parameter estimates, especially those for carotid stiffness, 

were still similar to those when we analyzed the whole dataset.  

Our longitudinal study includes 11 health assessment periods during one year in a panel of 20 

healthy elderly volunteers, without any missing measurements, drop-out or important changes in 

health status. Moreover, we used a large battery of objective health and exposure measurements, 

including personal exposure measures of NO2. This strongly increased the statistical power of the 

analyses, allowing us to find subtle, but significant changes in cardiovascular health parameters related 

to changes in air pollution in only 20 subjects. 

Public health relevance 

The changes we found in carotid arterial stiffness and hematology, in relation to short-to-medium-

term exposure to air pollution, were small and probably of little clinical relevance for the healthy 

individual study participants. However, since ambient air pollution is ubiquitous, the whole population 

is exposed, including more susceptible subgroups such as children, patients with preexisting diseases, 
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and elderly.54 As a consequence, small individual risks result in a large global burden. Moreover, the 

time window of exposure in our study was relatively short. Many people living in urban environments 

are continuously exposed to much higher levels of air pollution than those our study subjects were 

exposed to during 10 days.55 Long-term exposure to air pollution induces pathophysiological processes, 

eventually causing cardiovascular events and chronic diseases. Thus, it increases the risk for mortality 

to an even greater extent than the triggering effect of short-term exposures.2,9 

According to the Global Burden of Disease (GBD) 2010 study, 3.7 million deaths and 3.1% of 

disability-adjusted life years (DALYs) worldwide were attributed to air pollution, placing it in the top 10 

of risk factors.56 In our study, we found that decreases in air pollution exposure, compared to the 

‘normal’ level of exposure, were associated with decreases in biomarkers of cardiovascular health. Our 

result is in line with follow-up analyses of the Harvard Six Cities cohort study, showing a reduction in 

mortality risk in association with a decrease in ambient PM concentration.57,58 These observations 

clearly demonstrate that measures leading to a reduction in exposure to air pollution are likely to have 

beneficial public health effects worldwide. 

Conclusion 

In a panel study of 20 healthy elderlies, exposed to different ambient air pollution levels typical for 

Europe, we found evidence for effects of subacute exposure to PM, BC and NO2 on carotid stiffness. 

Oxygen-carrying capacity and coagulation showed some association with air pollution as well, but 

these results need to be interpreted with care.  

The small individual effects that we found in healthy subjects are relevant for public health 

policy, since the whole population is exposed to air pollution, often to much higher concentrations 

than those in our study, and many individuals can be considered as more susceptible to the effects of 

air pollution than our healthy study volunteers. Finally, our intervention study suggests that decreasing 

exposure leads to fewer adverse health effects.  
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Supplemental Table S1. Crude changes (with 95% CI) in blood pressure and indicators of carotid wall stiffness and endothelial function, associated with a 10 

µg/m³ increase in PM10 or NO2, a 5 µg/m³ increase in PM2.5 or a 1 µg/m³ increase in BC.  

Acute effects (lag0) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Systolic BP (mm Hg) -0.05 (-1.28;1.18) 0.37 (-0.25;0.99) 0.69 (-0.15;1.53) 0.32 (-0.57;1.20) n/a 

Diastolic BP (mm Hg) -0.45 (-1.34;0.44) 0.07 (-0.39;0.54) 0.51 (-0.11;1.13) 0.42 (-0.19;1.03) n/a 

Pulse pressure (mm Hg) 0.39 (-0.46;1.24) 0.30 (-0.13;0.73) 0.18 (-0.41;0.76) -0.10 (-0.72;0.51) n/a 

PWV (%) 1.0 (0.2;1.8)* 0.4 (0.0;0.8)* 0.3 (-0.3;0.9) 0.3 (-0.3;0.9) n/a 

DC (%) -2.0 (-3.6;-0.4)* -0.9 (-1.7;-0.1)* -0.7 (-1.8;0.5) -0.6 (-1.8;0.6) n/a 

CC (%) -2.6 (-4.0;-1.1)** -1.1 (-1.9;-0.4)** -0.9 (-2.0;0.1) -1.1 (-2.1;0.0)* n/a 

YEM (%) 1.5 (-0.3;3.3) 1.0 (0.1;1.9) 1.0 (-0.2;2.3) 0.8 (-0.5;2.1) n/a 

RHI 0.11 (0.02;0.19)* 0.07 (-0.03;0.17) 0.51 (-0.1;1.12) 0.05 (-0.02;0.12) n/a 

Subacute effects (av06) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Systolic BP (mm Hg) 0.51 (-1.09;2.11) 0.58 (-0.10;1.26) 1.08 (0.11;2.05)* 0.32 (-0.56;1.20)* 0.62 (0.04;1.19) 

Diastolic BP (mm Hg) -0.28 (-1.36;0.79) 0.18 (-0.30;0.66) 0.77 (0.06;1.49)* 0.31 (-0.37;0.98)* 0.44 (-0.04;0.92) 

Pulse pressure (mm Hg) 0.84 (-0.41;2.09) 0.40 (-0.07;0.87) 0.31 (-0.37;0.98) 0.03 (-0.59;0.65) 0.18 (-0.22;0.58) 

PWV (%) 2.0 (1.0;3.0)*** 0.9 (0.4;1.3)** 0.8 (0.2;1.5)* 0.7 (0.1;1.3)* 0.5 (0.1;0.8)* 

DC (%) -4.1 (-6.1;-2.1)*** -1.8 (-2.7;-0.8)** -1.7 (-3;-0.4)* -1.4 (-2.6;-0.3)* -1.0 (-1.7;-0.2)* 

CC (%) -4.7 (-6.4;-3.1)*** -2.0 (-2.8;-1.2)*** -2.2 (-3.4;-1.0)** -1.9 (-2.9;-0.8)** -1.2 (-1.9;-0.5)** 

YEM (%) 3.7 (1.4;6.0)** 1.8 (0.8;2.9)** 2.1 (0.7;3.5)** 1.4 (0.1;2.7)* 1.0 (0.1;1.8)* 

RHI 0.12 (-0.01;0.25) 0.03 (-0.04;0.11) 0.05 (-0.05;0.15) 0.07 (-0.01;0.14) 0.02 (-0.03;0.07) 

 



 

 

 

Legend to Table S1. Coefficients are in mm Hg for the BP variables, and % changes for the carotid stiffness variables because we used log-transformed data 

in these analyses. For all results, N=218 (11 time points), except for RHI, where N = 118 (6 timepoints).  

Statistically significant results are highlighted in bold. * P<0.05; ** P<0.01; *** P<0.001 

 

 

 

Supplemental Table S2. Adjusted* changes (with 95% CI) in indicators of carotid wall stiffness, associated with a 10 µg/m³ increase in PM10 or NO2, a 5 µg/m³ 

increase in PM2.5 or a 1 µg/m³ increase in BC for other lag structures of subacute exposure. 

av04: average exposure on five consecutive days (day of health measurement and four days before); av02: analogously for three consecutive days. 

* Adjusted for age at baseline, sex, HR, arterial pressure, smoking status, having a cold, medication use for blood pressure, date, temperature, relative humidity. 

Subacute effects (av04) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

PWV (%) 2.1 (0.9;3.4) 1.0 (0.4;1.5) 0.8 (-0.1;1.7) 0.8 (0.0;1.6) 0.6 (-0.1;1.2) 

DC (%) -4.3 (-6.8;-1.7) -1.9 (-3.1;-0.7) -1.7 (-3.5;0.2) -1.6 (-3.2;0.0) -1.2 (-2.5;0.1) 

CC (%) -4.7 (-6.9;-2.4) -2.1 (-3.1;-1.0) -2.1 (-3.8;-0.5) -2.1 (-3.4;-0.7) -1.3 (-2.5;-0.1) 

YEM (%) 4.2 (1.3;7.1) 2.1 (0.7;3.4) 2.2 (0.3;4.2) 1.6 (-0.2;3.3) 1.0 (-0.4;2.5) 

Subacute effects (av02)      

PWV (%) 1.5 (0.5;2.5) 0.8 (0.2;1.3) 0.6 (-0.1;1.4) 0.6 (-0.1;1.3) 0.6 (-0.1;1.2) 

DC (%) -3.0 (-5.1;-0.9) -1.5 (-2.5;-0.5) -1.3 (-2.8;0.2) -1.3 (-2.7;0.2) -1.2 (-2.5;0.1) 

CC (%) -3.4 (-5.2;-1.5) -1.6 (-2.5;-0.7) -1.6 (-3.0;-0.2) -1.6 (-2.9;-0.3) -1.3 (-2.5;-0.1) 

YEM (%) 3.2 (0.9;5.5) 1.8 (0.7;3.0) 1.7 (0.1;3.4) 1.2 (-0.4;2.9) 1.0 (-0.4;2.5) 



 

 

 

Supplemental Table S3. Crude changes (with 95% CI) in plasma CRP and blood cell counts associated with a 10 µg/m³ increase in PM10 or NO2, a 5 µg/m³ 

increase in PM2.5 or a 1 µg/m³ increase in BC.  

Acute effects (lag0) PM10 PM2.5 BC NO2 (stations) NO2 (portable) 

Plasma CRP (%) 3.4 (-1.4;8.1) 2.2 (-0.3;4.6) 3.1 (-0.2;6.3) 3.7 (0.6;6.8) n/a 

WBC (%) -0.3 (-1.3;0.6) -0.3 (-0.8;0.2) -0.4 (-1.1;0.2) -0.4 (-1.1;0.2) n/a 

Neutrophils (%) -0.2 (-1.6;1.2) -0.5 (-1.2;0.3) -0.9 (-1.9;0.1) -0.9 (-1.9;0.1) n/a 

Lymphocytes (%) -0.5 (-1.5;0.5) 0.0 (-0.5;0.5) 0.3 (-0.4;0.9) 0.2 (-0.5;0.9) n/a 

RBC (106/µL) -0.031 (-0.057;-0.004) -0.009 (-0.023;0.006) -0.004 (-0.027;0.02) -0.012 (-0.039;0.015) n/a 

Hb (g/dL) 0.011 (-0.071;0.093) 0.002 (-0.04;0.043) -0.011 (-0.085;0.063) 0.001 (-0.083;0.086) n/a 

Hct (%) -0.40 (-0.66;-0.14) -0.22 (-0.36;-0.09) -0.27 (-0.48;-0.06) -0.35 (-0.58;-0.12) n/a 

MCV (fL) -0.19 (-0.32;-0.07) -0.13 (-0.2;-0.06) -0.19 (-0.3;-0.09) -0.21 (-0.35;-0.07) n/a 

Platelets (10³/µL) -4.2 (-8.0;-0.4) 0.1 (-2.1;2.2) 2.7 (-0.2;5.6) -1.1 (-4.2;1.9) n/a 

Subacute effects (av06)      

Plasma CRP (%) 2.6 (-3.2;8.3) 2.1 (-0.8;5.0) 4.4 (0.2;8.7) 4.2 (0.6;7.8) 2.2 (-0.3;4.8) 

WBC (%) -0.3 (-1.5;0.9) -0.2 (-0.9;0.4) -0.4 (-1.2;0.5) -0.2 (-1.0;0.6) 0.1 (-0.5;0.6) 

Neutrophils (%) -0.2 (-2.0;1.6) -0.3 (-1.2;0.6) -0.8 (-2.1;0.5) -0.5 (-1.6;0.7) -0.2 (-0.9;0.6) 

Lymphocytes (%) -0.7 (-2.1;0.6) -0.1 (-0.7;0.6) 0.4 (-0.5;1.3) 0.1 (-0.7;0.9) 0.4 (-0.1;0.8) 

RBC (106/µL) -0.080 (-0.117;-0.043) -0.031 (-0.054;-0.009) -0.023 (-0.057;0.010) -0.030 (-0.060;-0.001) -0.016 (-0.034;0.003) 

Hb (g/dL) 0.027 (-0.087;0.141) 0.004 (-0.061;0.070) -0.009 (-0.113;0.095) 0.016 (-0.078;0.109) 0.008 (-0.045;0.061) 

Hct (%) -0.86 (-1.22;-0.49) -0.43 (-0.63;-0.23) -0.53 (-0.82;-0.23) -0.49 (-0.76;-0.22) -0.28 (-0.45;-0.12) 

MCV (fL) -0.26 (-0.50;-0.01) -0.16 (-0.29;-0.03) -0.29 (-0.51;-0.06) -0.22 (-0.40;-0.04) -0.12 (-0.25;0.00) 

Platelets (10³/µL) -8.6 (-13.4;-3.8) -1.9 (-4.4;0.6) 0.6 (-2.9;4.1) -3.8 (-6.9;-0.7) -1.2 (-3.0;0.6) 



 

 

 

Legend to Table S3. Coefficients are % changes for CRP, WBC and differential cell count because we used log-transformed variables in the analyses of these 

variables. For all results, N=219 (11 time points), except for MCV, where N=180 (9 time points), because we excluded the Sweden data. Statistically significant 

results are highlighted in bold.  
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ABSTRACT 

Background and Purpose: Epidemiological studies suggest an association between stroke incidence 

and stroke mortality and long-term exposure to particulate matter (PM) air pollution. However, the 

magnitude of the association is still unclear.  

Methods: We searched the Pubmed citation database for epidemiological studies and reviews on 

stroke and PM exposure. Then, we carried out a meta-analysis to quantify the pooled association 

between stroke incidence and mortality and long-term exposure to PM. Meta-analyses were 

performed for stroke events and stroke mortality and for PM10 and PM2.5 separately and jointly. 

Results: We identified 20 studies, including a total of >10 million people, on long-term PM exposure 

and stroke event or stroke mortality. For exposure to PM10 (including estimated exposure to PM10 from 

studies using PM2.5), the pooled hazard ratio for each 10 µg/m³ increment in PM10 was 1.061 (95% 

confidence interval 1.018-1.105) and 1.080 (0.992-1.177) for overall stroke events and stroke 

mortality, respectively. A stratified analysis by continent revealed that the association between stroke 

and long-term PM10 exposure was positive in North America [1.062 (1.015-1.110)] and Europe [1.057 

(0.973-1.148)], but studies in Asia [1.010 (0.885-1.153)] showed a high degree of heterogeneity. 

Considering exposure to PM2.5 (Europe and North America combined), the hazard ratios for a 5 µg/m³ 

increment were 1.064 (1.021-1.109) and 1.125 (1.007-1.256) for stroke events and mortality, 

respectively. 

Conclusions: The scientific evidence of the past decade identifies long-term exposure to PM, and PM2.5 

in particular, as a risk factor for stroke. However, we found some currently unexplained geographical 

variability in this association. 
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INTRODUCTION 

With an incidence rate of 40 to > 300 cases per 100,000 inhabitants, depending on the region, and a 

global death rate of 110 per 100,000 inhabitants, stroke is one of the most prominent causes of 

mortality, accounting for 12% of all deaths worldwide.1,2 Stroke, an acute event itself, can be triggered 

by acute events occurring a few hours or days before the stroke onset, such as alcohol abuse3 or an 

outburst of anger.4 However, long-term underlying conditions are even more important predictors of 

stroke. In a recent study5, 90% of all ischemic and hemorrhagic strokes could be attributed to 10 major 

risk factors, with history of hypertension and current smoking as the most prominent causes.  

From the past decade of the 20th century on, numerous epidemiological studies found that 

respiratory and cardiovascular diseases, as well as general morbidity and mortality, could be associated 

with increased levels of air pollutants, especially particulate matter (PM).6-8 Biological pathways that 

have been proposed to explain the association between PM and cardiovascular diseases6,7,9,10, are 

plausible mechanisms for a link between PM exposure and certain cerebrovascular events as well.11 

Studies investigating the triggering effect of recent exposure to peak concentrations of PM10 

or PM2.5 (PM with an aerodynamic diameter of <10 µm or <2.5 µm, respectively) on stroke, were 

summarized in 3 recent meta-analyses on the short-term effects of PM on stroke hospitalization and 

mortality.12-14 These meta-analyses suggested a small but significant effect of recent PM exposure and 

the risk of stroke in general and ischemic stroke in particular. In contrast to our knowledge about short-

term exposure to air pollution being a trigger of stroke, the record for long-term effects of PM on 

cerebrovascular disease is much less extensive. Three comprehensive narrative reviews6,11,15 provided 

a summary of the literature on the topic, but no meta-analyses were conducted. Although studies 

discussed in these review papers reported fairly mixed results, the overall size and importance of the 

effect is still unclear. Therefore, we conducted a meta-analysis of the existing literature to quantify the 

association between the risk of stroke event and stroke mortality and long-term exposure to PM air 

pollution. A better understanding of the magnitude of the effect of air pollution on a common cause 

of death, such as stroke, is important in the light of public health. 
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METHODS 

Literature search 

A bibliographic search was carried out by 2 independent reviewers (HS and LJ) in the Pubmed database 

(last accessed on July 20, 2015) to identify original studies analyzing the associations of long-term 

exposure to PM10 or PM2.5 with stroke events (both fatal and non-fatal). Details on the search terms 

used can be found in the online-only Data Supplement. Study designs could be ecological or cohort 

studies. Experimental studies, case reports, studies on short-term associations between PM and 

stroke, and publications with no or incomplete results were excluded. Articles not written in English 

were considered for inclusion. Reviews and the reference lists of eligible studies were screened for 

additional data. Our meta-analysis complies with the preferred reporting items of the Meta-Analysis 

of Observational Studies in Epidemiology (MOOSE) statement for meta-analyses of observational 

studies.16  

Data management 

Study results were classified according to the endpoint of the analysis: stroke event or stroke mortality. 

When available, preference was given to results obtained by models fully adjusted for covariates. We 

assessed quality of the selected studies taking into account the following aspects: study design, 

number and nature of covariates in the analysis, definition of the endpoint, and estimation of the 

exposure (details can be found in the online-only Data Supplement). 

We needed to standardize reported results to hazard ratios (HRs) for a 10 µg/m³ increment of 

PM10, because HRs of individual studies have been reported for increments other than 10 µg/m³ (e.g. 

an interquartile range increment) or in comparison with a reference category. Results for PM2.5 were 

converted to estimated results for PM10 to be included in the overall analysis. Details on calculations 

and conversions made to standardize the data can be found in the online-only Data Supplement. 
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Meta-analysis 

For those studies that provided results on both stroke event and stroke mortality, the most 

comprehensive data set (i.e. on stroke event) was selected for the overall analysis. When a study 

presented results for both PM10 and PM2.5 exposure, we selected PM10. However, we also performed 

separate analyses for PM10 and PM2.5, and additional analyses for stroke mortality only. We performed 

sensitivity analyses per continent and according to the result of the quality assessment. For articles 

with independent subgroups within 1 study (e.g. different cities or different types of stroke), we used 

the general HR resulting from a meta-analysis by the authors, or, if no general HR was provided, we 

treated each subgroup as a separate study. 

The overall HR and 95% confidence interval were estimated using a random-effects model, 

which is more conservative than a fixed-effect model and accounts for heterogeneity between studies 

in terms of population and methodology.17 Heterogeneity and publication bias were tested with the I² 

statistic and Egger linear regression method, respectively (details can be found in the online-only Data 

Supplement).  

All tests were two-sided with α=0.05. Meta-analyses, including tests for heterogeneity and 

publication bias, were performed with StatsDirect statistical software (StatsDirect Ltd, Altrincham, 

United Kingdom). 

RESULTS 

Selection and characteristics of studies 

A flow chart of the selection procedure is given in Figure S1 in the online-only Data Supplement. We 

included 20 publications on stroke and long-term PM exposure in our meta-analysis.18-37 They are listed 

by region and then chronologically in Table 1. Fourteen studies were cohort studies and included 

covariates at an individual level; the other 6 made use of registered-based entries of stroke mortality 

or hospital admission and provided covariates on an ecological scale. Eight studies were conducted in 

Europe, 7 in North America and 5 in Eastern Asia. 
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The exposure levels reported by the 20 selected studies are shown in Figure 1. The exposure 

measure was PM10 in 9 studies and PM2.5 in 7 studies; 4 publications investigated the association of 

stroke with exposure to both PM2.5 and PM10. The endpoint was stroke event (8 studies), stroke 

mortality (7 studies), or stroke event with separate results for mortality (5 studies). More details on 

the definition of the outcome can be found in Table S1 in the online-only Data Supplement. 

All publications displayed adjusted results for at least age and, when applicable, sex. Other 

covariates varied among studies, but the most common variables included in the adjusted models were 

body mass index, smoking status, alcohol use, and a measure of socio-economic status (SES) at an 

individual or area level (Table S1 in the online-only Data Supplement). 

Main analyses on long-term exposure and stroke 

The overall meta-analysis, including >10 million people and >200,000 stroke events from 20 scientific 

articles, showed a pooled HR with 95% confidence interval of 1.061 (1.018-1.105) for a 10-µg/m³ 

increment in long-term PM10 or (converted) PM2.5 exposure (Table 2, Figure 2). Twelve of 20 

publications presented results on stroke mortality. The result of the analysis was similar to that of 

stroke event, with a slightly higher HR of 1.080 (0.992-1.177). A stratified analysis by continent 

revealed that the association between long-term PM exposure and stroke event was positive in North 

America and Europe (but not statistically significant for the latter) and null in Asia (Table 2). 

 



 

 

 

Table 1. Characteristics of the selected studies on stroke and long-term exposure to PM  

ID First author (year 

of publication) 

Area Study 

period 

Pollu-

tant 

Pollutant 

concentration 

(µg/m³) 

Study 

design║ 

Population 

(number) 

Stroke type (as in 

publication) 

Official 

classification 

Endpoint Number 

of cases 

1 Ueda (2012)35 Japan 1985-2004 PM10 27.3-43.1‡ COH ≥30y (7,250) Stroke ICD-9 430-438, 

ICD-10 I60-69 

Mortality 250 

2 Nishiwaki 

(2013)29 

9 cities, Japan 1990-2008 PM10 17.2-43.7§ COH >40y (78,057) Stroke ICD-10 I60-69 Mortality unknown 

7 cities, Japan 17.2-28.7§ >40y (62,142) Stroke ICD-10 I60-69 Incidence 2,181 

   Ischemic stroke unknown Incidence unknown 

   Subarachnoid hemorr. unknown Incidence unknown 

   Intracerebral hemorr.  unknown Incidence unknown 

3 Zhang (2014)37 4 cities, China 1998-2009 PM10 144 (36)* COH All (39,054) Cerebrovascular disease ICD-10 I60-69 Mortality 295 

          Hosp. adm. 5,122 

4 Qin (2015)32 3 cities, China 2006-2008 PM10 123.1 (14.6)*,  

123 (19)† 

COH 18-74y (24,845) Stroke Self-reported Incidence 589 

5 Wong (2015)36 Hong Kong, 

China 

1998-2011 PM2.5 35.3 (33.8-37.2)† COH >65y (66,820) Cerebrovascular disease ICD-10 I60-69 Mortality 1,621 

6 Maheswaran 

(2005)26 

Sheffield, UK 1994-1998 PM10 18.8 (16.8-20.6)‡ ECO ≥45y (199,682) Stroke ICD-9 430-438,  

ICD-10 I60-69 

Mortality 2,979 

7 Beelen (2009)19 The 

Netherlands 

1987-1996 PM2.5 Unknown COH 55-69y 

(111,391) 

Cerebrovascular disease ICD-9 430-438, 

ICD-10 I60-69 

Mortality 1,175 

8 Huss (2010)21 Switzerland 2000-2005 PM10 18.8 † ECO ≥30y 

(4,580,311)) 

Stroke ICD-10 I60-64 Mortality 25,231 

9 Maheswaran 

(2012)27 

London, UK 1995-2004 PM10 25.1 (1.2)* ECO All (267,839) Stroke unknown 1st / Mort. 2,610 / 

179 

  Ischemic unknown 1st / Mort. 1,832 / 41 

  Hemorrhagic unknown 1st / Mort. 348 / 64 



 

 

 

ID First author (year 

of publication) 

Area Study 

period 

Pollu-

tant 

Pollutant 

concentration 

(µg/m³) 

Study 

design║ 

Population 

(number) 

Stroke type (as in 

publication) 

Official 

classification 

Endpoint Number 

of cases 

10 Atkinson (2013)18 England, UK 1982-2000 PM10 19.7 (2.3)* ECO 40-89y 

(819,370) 

Stroke ICD-10 I61, I63-64 First stroke 13,012 

11 Beelen (2014)20 22 cohorts in 

13 countries, 

Europe 

1985-2012 PM2.5 

PM10 

6.6-31.0§ 

13-50§ 

(estimated)# 

COH All (367,383) Cerebrovascular disease ICD-9 430-438,  

ICD-10 I60-69 

Mortality 2,484 

12 Katsoulis (2014)23 Athens, 

Greece 

1994-2011 PM10 39.4 (4.0)* COH All (2,752) Stroke ICD-10 I60-69 Incidence 60 

13 Stafoggia 

(2014)33 

11 cohorts in 

5 countries, 

Europe 

1992-2010 PM2.5 

PM10 

7-31§ 

14-48§ 

COH All (99,446) Stroke ICD-9 431-436,  

ICD-10 I61-64 

First stroke 3,086 

14 Pope (2004)30 50 states, 

USA 

1982-1998 PM2.5 17.1 (3.7)* COH ≥30y (319,000) Cerebrovascular disease ICD-9 430-438,  

ACS-CPS-II 6 

Mortality 21,692 

15 Miller (2007)28 36 cities, USA 1994-1998 PM2.5 13.5 (3.7)* COH Women 50-79y 

(65,893) 

Cerebrovascular disease unknown First stroke 600 

Mortality 122 

16 Johnson (2010)22 Edmonton, 

Canada 

2003-2007 PM2.5 5.0 (0.2)* ECO All (103,4945) Stroke ICD-10 I60-68, 

G45 

First hosp. 

admission 

7,336 

 

  Hemorrhagic ICD-10 I60-62 

  Non-hemorrhagic stroke ICD-10 I63-68 

TIA** G45 

17 Lipsett (2011)25 California, 

USA 

1996-2005 PM2.5 

PM10 

15.64 (4.48)*  

29.21 (9.73)* 

COH Female 

teachers ≥30y 

(73,489) 

Cerebrovascular disease ICD-9 430-438, 

ICD-10 I60-69 

Mortality 486 

Stroke ICD-9 431-

434,436,  

ICD-10 I61-64 

Incidence 1,179 



 

 

 

ID First author (year 

of publication) 

Area Study 

period 

Pollu-

tant 

Pollutant 

concentration 

(µg/m³) 

Study 

design║ 

Population 

(number) 

Stroke type (as in 

publication) 

Official 

classification 

Endpoint Number 

of cases 

18 Puett (2011)31 13- states, 

USA 

1989-2003 PM2.5 

PM10 

17.8 (3.4)* 

27.9 (5.8)* 

COH M health 

professionals 

40-75y (17,545) 

Ischemic unknown Incidence 230 

Hemorrhagic unknown Incidence 70 

19 Kloog (2012)24 New England, 

USA 

2000-2006 PM2.5 9.65 (0.81)*,  

9.65 (9.16-10.14)† 

ECO >65y 

(1,963,293) 

Stroke ICD-9 430-438 Hosp. adm. 125,382 

20 To (2015)34 Ontario, 

Canada 

1980-2013 PM2.5 12.5 (2.4) * COH Female 40-59y 

at baseline 

Stroke ICD-9 433-436,  

ICD-10 G45-46, 

I63-64 

Incidence 5,993 

 

*average (SD); †median (IQR); ‡median (20%-80%); §lowest and highest average of all cities in study; ║COH = cohort study; ECO = ecological study; #estimated from 

graph in publication; **TIA = transient ischemic attack 
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Figure 1. Exposure levels of 20 publications included in the meta-analysis. Publication IDs correspond 

to those in Table 1. Values are mean ± SD, median (IQR), or range, as reported by the respective 

authors. In order to distinguish PM10 from PM2.5 when no central value is given, the error bars are 

presented as T for PM10 and I for PM2.5. The dotted lines at 10 µg/m³ and 20 µg/m³ represent the WHO 

air quality guidelines for long-term exposure to PM2.5 and PM10, respectively.38 

Sensitivity analyses 

The 3 studies conducted in China32,36,37 reported high ambient PM concentrations (3 to 6x the 

respective World Health Organization air quality guideline values for long-term exposure to PM2.5 or 

PM10
38). A meta-analysis of these study results revealed a highly significant association between stroke 

onset and PM exposure [HR, 1.123 (1.010-1.248)]. Because the Chinese studies reported such 

exceptional exposure levels and the 2 Japanese studies were deviant with respect to circumstances, as 

well as study design and results (see Discussion), we excluded the 5 Asian studies from subsequent 

sensitivity analyses.  

For PM10 alone (n=9 studies), that is, without the converted PM2.5 results from 6 studies, the 

association between stroke event and PM10 exposure disappeared, with a HR of 1.021 (0.975-1.069) 

for a 10-µg/m³ increment in PM10. In contrast, the estimate for PM2.5 exposure only was significantly 
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higher than 1:  HR, 1.064 (1.021-1.109) for a 5-µg/m³ increment in PM2.5 (n=10 studies; Figure 3). A 

similar difference between PM10 and PM2.5 exposure, but with generally higher HRs, was found for 

stroke mortality (Table 3). 

A subanalysis including only studies with a high-quality score (more than the median overall 

quality score; Table S1 in the online-only Data Supplement) resulted in a pooled HR of 1.087 (1.023-

1.154) for stroke event (n=8) and 1.056 (0.957-1.165) for stroke mortality (n=4), for a 10-µg/m³ 

increment in PM10 or converted PM2.5. The corresponding HRs for a 5-µg/m³ increase in PM2.5 exposure 

alone were slightly higher (Table 3). All high-quality studies had a prospective cohort design, and all 

but one estimated personal exposure by using spatial interpolation models instead of raw data from 

monitoring stations.  

Results for analyses with converted PM2.5 data proved to be robust against changes in the 

conversion factor for PM2.5 (Table S2 in the online-only Data Supplement). Our a priori choice for 

random effects models was justified, given the considerable heterogeneity. We found no indications 

of publication bias in most analyses (more details can be found in the online-only Data Supplement; 

Figures S2-S4). 
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Figure 2. Forest plot of the overall analysis on stroke event and long-term PM exposure. Hazard ratios 

(HR) with 95% confidence intervals (CI) for a 10 µg/m³ increment in PM10 are presented (including 

converted HRs from PM2.5 exposure). Circles are for PM10, squares for converted PM2.5; symbol size is 

proportional to the weight of the study in the meta-analysis. Open diamonds represent pooled results 

from meta-analysis. 

*Weights are calculated as (1/SE²) / (Σ 1/SE²) * 100 (with SE² the variance of each study effect, and Σ 

1/SE² the sum of inverted variances for all study effects):  within continent / overall (sum may differ 

from 100 due to rounding).  

†IS = ischemic stroke; HEM = hemorrhagic stroke 



 

 

 

Table 2. Results of overall meta-analyses and stratified analyses by continent 

    Meta-analysis  Tests of heterogeneity  Test of publ. 

Pollutant Endpoint Stratum 

Nr. of 

studies Combined HR * (95% CI) 

P value 

(model)  

 

P value† I² in % (95% CI)  

bias 

P value‡ 

PM10 + 

converted 

PM2.5
 

Stroke event All 20 1.061 (1.018-1.105) 0.005   0.004 85.8 (80.2-89.3)  0.11 

Asia 5 1.010 (0.885-1.153) 0.88   <0.001 89.9 (81.9-93.5)  0.079 

Europe 8 1.057 (0.973-1.148) 0.19   0.050 50.2 (0-75.9)  0.066 

 North America 7 1.062 (1.015-1.110) 0.009   0.030 54.9 (0-77.8)  0.26 

 Europe + North America 15 1.045 (1.011-1.081) 0.010   <0.001 68.6 (41.7-80.1)  0.018 

 Stroke 

mortality 

All 12 1.080 (0.992-1.177) 0.077   <0.001 90.9 (86.6-93.4)  0.21 

 Asia 4 0.986 (0.788-1.234) 0.90   <0.001 90.8 (78.2-94.8)  0.091 

 Europe 5 1.213 (0.955-1.541) 0.11   <0.001 81.2 (42.9-90.2)  0.16 

 North America 3 1.041 (0.932-1.162) 0.48   0.063 63.8 (0-87.6)  n/a§ 

 Europe + North America 8 1.085 (1.004-1.172) 0.039   <0.001 74.8 (38.5-85.9)  0.040 

 

*HR for a 10 µg/m³ increment in PM10 or converted PM2.5; †P for Cochran’s Q test; ‡P for Egger’s test; §Too few studies for calculation of bias indicator. 
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DISCUSSION 

Our meta-analysis on risk of stroke event and fatal stroke in association with long-term exposure to 

PM air pollution includes 20 epidemiological studies, comprising > 10 million people and 200,000 

stroke events on 3 different continents. We found a positive association between the risk of stroke 

and PM exposure, with a 2% to 21% excess risk, depending on the definition of exposure, outcome, 

and population.  

Considerable geographical variation was observed, with the highest combined HR found in 

Europe and high heterogeneity in Asia. The 5 studies conducted in Asia were remarkable in various 

ways. The reported average PM concentrations in Chinese cities32,36,37 were 3- to 10-fold higher than 

those found in European and North American cities (Figure 2). In addition, the authors found strong 

associations between stroke and long-term PM exposure. The 2 Japanese studies29,35 reported 

contrasting findings. According to the authors of both publications, stroke incidence in Japan is more 

prominent in rural areas than urban areas, and it has been attributed to high salt intake in those low-

polluted but socioeconomically lower-rated rural areas. These 2 publications did not adjust their 

analysis for diet, and they were the only studies in our systematic review not adjusting for SES 

indicators. Moreover, they did not account for Asian dust storms (ADS). During ADS, a common 

weather phenomenon in Eastern Asia, dust from the deserts in Mongolia and China is transferred 

through the atmosphere to countries like Japan and Taiwan. Composition of PM in Japan, particularly 

during ADS, is likely to be different (containing more crust elements and sea salt) from that in Europe 

and North America. Adverse health effects of ADS have been reviewed in 2010,39 and many additional 

epidemiological and experimental studies have confirmed the importance of ADS on respiratory and 

cardiovascular health in more recent years. Therefore, we decided that the 3 Chinese and 2 Japanese 

studies were too dissimilar from those conducted in North America and Europe to include them in the 

sensitivity analyses. 

Recently, 3 meta-analyses on stroke mortality and hospitalization in association with recent 

PM exposure have been published.12-14 The pooled HR for stroke mortality was 1.014 (1.009-1.019)12 
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or 1.013 (1.003-1.024)13 for a 10-µg/m³ increment in PM2.5. These increases in risk per 10-µg/m³ 

increment are smaller than those we obtained for a 5-µg/m³ increment in long-term exposure, but it 

should be noted that daily variation in ambient PM levels is usually substantially higher than spatial 

variation within a region. Recent exposure and long-term exposure to PM are different concepts and 

deserve equal attention. For short-term variation in ambient PM levels, the research question is when 

adverse events, such as strokes, are most likely to occur, whereas for long-term exposure, the question 

is rather where people are most at risk. However, although different in concept, the effects of short-

term and long-term exposure to PM are not entirely independent from each other because peak 

elevations of PM (the exposure measure for short-term effects) are likely to occur more frequently in 

locations with higher long-term ambient PM concentrations. 

Other studies on stroke and air pollution 

Two studies on stroke and long-term PM exposure were not included in our meta-analysis because the 

study cohort was not representative for the general population. Koton et al.40 found no association 

between stroke and PM2.5 exposure in a cohort of myocardial infarct survivors. Similarly, Maheswaran 

et al.41 studied a cohort of stroke survivors and found a 52% increased risk of all-cause death for a 10-

µg/m³ increase in PM10 concentration. 

We restricted our meta-analysis to publications on exposure to PM, but we also found studies 

quantifying (traffic-related) air pollution by using other pollutants, residential proximity to a major 

road, or noise as the exposure variable. Most of these studies were reviewed by Ljungman and 

Mittleman,15 and they reported positive associations between stroke and long-term exposure to NO2 

or NOx
22,26,42, SO2

18, or CO26. However, null results for NOx
43 and ozone18,42 were found as well. In 

addition, Maheswaran and Elliott44 reported higher stroke mortality for living within 200m of a main 

road compared with >1000m; Finkelstein et al45 published similar results using 50m for an urban road 

and 100m for a highway as the exposure cut-off value. 

Overall, these findings support those of our meta-analysis. 
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Figure 3. Forest plot of the subanalysis on stroke event and long-term PM2.5 exposure. Hazard ratios 

(HR) with 95% confidence intervals (CI) for a 5 µg/m³ increment in PM2.5 are presented. Symbol size is 

proportional to the weight of the study in the meta-analysis. Open diamonds represent pooled results 

from meta-analysis. 

*Weights are calculated as (1/SE²) / (Σ 1/SE²) * 100 (with SE² the variance of each study effect, and Σ 

1/SE² the sum of inverted variances for all study effects):  within continent / overall (sum may differ 

from 100 due to rounding). 

†IS = ischemic stroke; HEM = hemorrhagic stroke 

 



 

 

 

Table 3. Results of sensitivity analyses*  

Stratum Pollutant Endpoint 

Nr. of 

studies 

Meta-analysis  Tests of heterogeneity  Test of publ.  

Combined HR†,‡ 

(95% CI) 

P value 

(model) 

 
P value§ 

I² in % 

(95% CI) 

 bias  

P value║ 

All (Europe + 

North America) 

PM10
† Stroke event 9 1.021 (0.975-1.069) 0.38  0.16 31.3 (0-66.3)  0.09 

Stroke mortality 5 1.091 (0.958-1.242) 0.19  0.011 74.5 (3.5-87.8)  0.33 

PM2.5
‡ Stroke event 10 1.064 (1.021-1.109) 0.003  0.006 59.8 (1.7-77.7)  0.070 

Stroke mortality 5 1.125 (1.007-1.256) 0.037  0.024 64.5 (0-84.4)  0.016 

           

High quality 

score (Europe + 

North America) 

PM10 + 

converted 

PM2.5
† 

Stroke event 8 1.087 (1.023-1.154) 0.007  0.10 39.6 (0-70.8)  0.23 

Stroke mortality 4 1.056 (0.957-1.165) 0.28  0.09 53.9 (0-82.9)  0.18 

PM2.5
‡ Stroke event 5 1.094 (1.038-1.153) 0.001  0.36 8.2 (0-64.1)  0.88 

Stroke mortality 4 1.081 (0.981-1.190) 0.12  0.09 54.0 (0-82.9)  0.065 

*The five Asian studies29,32,35-37 were excluded from the sensitivity analyses; †HR for a 10 µg/m³ increment in PM10; ‡HR for a 5 µg/m³ increment in PM2.5; §P for 

Cochran’s Q test; ║P for Egger’s test 
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Biological mechanisms 

Ambient air pollution is a mixture of several pollutants, but epidemiological and experimental evidence 

suggests that PM explains the harm caused by air pollution best. By selecting PM10 as a common 

indicator, we may capture all effects of different sources and components of PM.  

Four recent reviews6,7,9,10 summarized the literature concerning biological pathways of the 

relationship between exposure to PM air pollution and cardiovascular disease. Chronic inhalation of 

pollutants may cause chronic pulmonary and systemic oxidative stress and inflammation that are 

critical and well-documented factors leading to the manifestation of endothelial dysfunction, 

vasoconstriction and atherosclerosis at the vasculature level and coagulation and thrombosis at the 

blood tissue level.9,10,46,47 These processes in turn are key factors in the development of chronic or 

acute cardiovascular diseases, and similarly, they are critical for the onset of cerebrovascular events, 

such as stroke, especially ischemic stroke. Moreover, the neural cells of the brain are also vulnerable 

to long-term PM exposure. Particulates can impair the blood-brain barrier, either directly (after having 

penetrated into the circulatory system) or through the inflammatory processes mentioned above, and 

subsequently cause chronic inflammation and oxidative stress within the neural cells.11 

Strengths and limitations 

In this comprehensive literature review, we pooled data of 20 different studies from several 

geographical regions in 1 meta-analysis, thus increasing the statistical power and allowing an 

investigation of regional patterns. Furthermore, all these studies were published in the past decade 

(and even 14 of 20 in the past 4 years), indicating that data on both the exposure and the outcome are 

recent and relevant. By recalculating results for PM2.5 to estimated results for PM10, we were able to 

pool studies using PM2.5 and those using PM10 as the exposure measure in the main analysis, in addition 

to separate analyses for both fractions.  

This recalculation implies the use of a conversion factor. We opted for a conversion factor of 

0.748 because PM2.5/PM10 ratios in the range of 0.5 to 0.8 have been reported, depending on region or 

city.38 Although the estimated values may not reflect the true PM10 concentration for the studies in 
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question, changing the conversion factor to 0.5, 0.8, or a region-specific value did not at all influence 

the overall result (Table S2). In our subanalyses of PM2.5 data only, the estimated effects were always 

higher than those in the corresponding analyses using PM10 and converted PM2.5, indicating the 

importance of measuring PM2.5 directly and confirming the hypothesis that the PM2.5 fraction is more 

hazardous than the coarse fraction (PM2.5-10) of PM10 .8 

By pooling data for ischemic stroke and hemorrhagic stroke, we might have underestimated 

the true association between PM exposure and the onset of ischemic stroke. Indeed, evidence found 

in the literature suggests that the PM-related risk of ischemic stroke is higher than the risk of 

hemorrhagic stroke.11,15 This is not surprising because ischemic stroke is related to general 

cardiovascular disease, whereas hemorrhagic stroke has a different pathogenesis. Unfortunately, only 

4 of 20 publications in our meta-analysis published results for ischemic and hemorrhagic stroke 

separately. 

Two other potential limitations concern the methodology of the original studies. First, the 

estimation of exposure was based on data obtained by central monitoring stations. All authors made 

efforts to approach the personal exposure by using data from the monitoring station closest to the 

home of the study subject, sometimes excluding subjects living too far from a station, or by applying 

spatial interpolation models. However, it is clear that the true exposure, taking into account time spent 

outdoors versus indoors, in traffic, at work, or in other regions can never be measured at an individual 

level in large-scale cohort or population-based studies. Moreover, 3 studies21,27,28 extrapolated air 

pollution data recorded in 1 year to an estimate for the whole study period, hereby neglecting possible 

long-term trends. 

Second, the ecological nature of register-based studies makes it difficult to account for 

confounding factors, such as smoking status and SES, because these data are generally not provided in 

the databases from which stroke events are retrieved. The 6 register-based studies included an 

estimate of SES on the area level (eg. a deprivation index), but only 1 included data on smoking status. 

In contrast, all 14 cohort studies adjusted for smoking and 9 adjusted for individual SES, by using 
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educational level, household income, employment status, or a combination of these factors as an 

indicator of SES. Notably, the 2 studies not adjusting for the important confounder SES were those 

conducted in Japan29,35, which is another reason to interpret their study results with greater care. 

Because of these important differences in study design and methodology, we created a quality 

index based on the design, exposure measurement and inclusion of important covariates. All high-

quality studies had a prospective cohort design and measured air pollution exposure over the whole 

study period. In addition, all but one used spatial interpolation models to estimate personal exposure 

instead of raw data from monitoring stations. Including only high-quality studies resulted in higher 

pooled estimates for stroke event, but lower HRs for stroke mortality than the corresponding overall 

analyses. 

Implications for public health 

The Global Burden of Disease (GBD) 2010 study49 provided global statistics on attributable deaths and 

disability-adjusted life years (DALYs) for 67 risk factors, including environmental air pollution. 

Worldwide, 3.7 million deaths and 3.1% of global DALYs were attributed to air pollution, placing it in 

the top 10 of risk factors. Cardiovascular and circulatory diseases (including stroke) accounted for the 

majority of deaths attributed to air pollution. According to the subsequent GBD 2013 study1, stroke 

was the third cause of death, with a death rate of 110 per 100,000 inhabitants, resulting in > 6 million 

deaths worldwide in 2013. A recent paper,50 based on the GBD 2013 study and exclusively dealing with 

stroke, presented new figures on DALYs due to stroke for selected risk factors. The authors reported 

16.9% of DALYS attributed to air pollution, which is much higher than the 3.1% mentioned above, but 

here, percentages are not mutually exclusive. There was considerable geographic variation in the 

impact of air pollution. Globally, stroke-related burden of ambient air pollution increased in the period 

1990-2013, but in high-income countries there was a significant reduction in DALYs due to air pollution 

(10.2% of DALYs, compared to 18.4% for low-income and middle-income countries). These values are 

similar to the PAFs for alcohol use, diabetes mellitus, and psychological stress, published in the 

INTERSTROKE study, a global case-control study on risk factors for stroke.5 
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Given the high incidence of stroke and stroke-attributed mortality1,51, a substantial reduction 

of exposure to PM may result in an equally substantial decrease in stroke incidence and stroke 

mortality, not only in areas with extremely high exposures to PM, such as many cities in China, but also 

in areas with substantially lower ambient concentrations (although still higher than the World Health 

Organization guideline values), such as many regions in Western Europe and North America. A 

reduction of ambient PM concentrations requires urgent attention in many areas of the world. Indeed, 

in large cities worldwide, annual mean PM10 concentrations of 30 (Los Angeles), 60 (Sofia, Bulgaria), 

70 (Santiago, Chile), 100 (Johannesburg, South Africa), or even 120 µg/m³ (Beijing, China) have been 

reported.2 The argument that it is difficult to meet standards in densely populated areas ignores the 

fact that the importance of a factor with respect to public health increases in proportion to the number 

of people who are exposed to it. Several cities in North America, Scandinavia and the United Kingdom 

prove that ambient PM10 concentrations of < 20 µg/m³, as recommended by the World Health 

Organization38, are realistic, even in an urban environment. 

Measures taken to reduce the emissions of PM will not only decrease the risk of 

cerebrovascular disease but also, and to an even greater extent, that of cardiovascular and pulmonary 

disease6,8. Furthermore, such measures will lead to a decline in the occurrence of peak days with high 

levels of air pollution and, hence, to a decrease in acute effects caused by short-term exposure, such 

as stroke12, cardiovascular and respiratory events and all-cause mortality52.  

Conclusion 

 In addition to the recognition of PM air pollution as a causal factor in the progression and triggering 

of cardiovascular disease, our meta-analysis provides evidence for a positive association between the 

risk of stroke and long-term PM exposure. Given the fact that the whole population is exposed, air 

pollution is an important risk factor for stroke, and among other diseases, stroke incidence and stroke 

mortality would substantially decrease when measures are taken to reduce ambient air pollution 

levels.  



 

149 

 

ACKNOWLEDGMENTS AND FUNDING SOURCES 

This work was supported by grants from the Funding for Scientific Research (Vlaanderen) and The 

European Research Council (grant no. ERC-2012-StG 310898). 

REFERENCES 

1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific 

all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the 

Global Burden of Disease Study 2013. Lancet 2014;385:117-71. 

2. Ambient (outdoor) air pollution in cities [database online]. Geneva, Switzerland: World Health 

Organization; Updated 1-5-2014. 

3. Guiraud V, Amor MB, Mas JL, Touze E. Triggers of ischemic stroke: a systematic review. Stroke 

2010;41:2669-77. 

4. Mostofsky E, Penner EA, Mittleman MA. Outbursts of anger as a trigger of acute cardiovascular events: 

a systematic review and meta-analysis. Eur Heart J 2014;35:1404-10. 

5. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P et al. Risk factors for ischaemic and 

intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. 

Lancet 2010;376:112-23. 

6. Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air 

pollution on human health. J Med Toxicol 2012;8:166-75. 

7. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K et al. Expert position paper on 

air pollution and cardiovascular disease. Eur Heart J 2015;36:83-93. 

8. Pope CA, III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste 

Manag Assoc 2006;56:709-42. 

9. Brook RD, Rajagopalan S, Pope CA, III, Brook JR, Bhatnagar A, Diez-Roux AV et al. Particulate matter air 

pollution and cardiovascular disease: An update to the scientific statement from the American Heart 

Association. Circulation 2010;121:2331-78. 

10. Nemmar A, Hoylaerts MF, Hoet PH, Nemery B. Possible mechanisms of the cardiovascular effects of 

inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett 2004;149:243-53. 

11. Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J 

Toxicol 2012;2012:1-23. 

12. Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: 

a systematic review and meta-analysis. J Am Heart Assoc 2014;3:1-23. 

13. Yang WS, Wang X, Deng Q, Fan WY, Wang WY. An evidence-based appraisal of global association 

between air pollution and risk of stroke. Int J Cardiol 2014;175:307-13. 

14. Yu XB, Su JW, Li XY, Chen G. Short-term effects of particulate matter on stroke attack: meta-regression 

and meta-analyses. PLoS One 2014;9:e95682. 



 

150 

 

15. Ljungman PL, Mittleman MA. Ambient air pollution and stroke. Stroke 2014;45:3734-41. 

16. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al. Meta-analysis of observational 

studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in 

Epidemiology (MOOSE) group. JAMA 2000;283:2008-12. 

17. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88. 

18. Atkinson RW, Carey IM, Kent AJ, van Staa TP, Anderson HR, Cook DG. Long-term exposure to outdoor 

air pollution and incidence of cardiovascular diseases. Epidemiology 2013;24:44-53. 

19. Beelen R, Hoek G, Houthuijs D, van den Brandt PA, Goldbohm RA, Fischer P et al. The joint association 

of air pollution and noise from road traffic with cardiovascular mortality in a cohort study. Occup 

Environ Med 2009;66:243-50. 

20. Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K et al. Long-term 

exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. 

Epidemiology 2014;25:368-78. 

21. Huss A, Spoerri A, Egger M, Roosli M. Aircraft noise, air pollution, and mortality from myocardial 

infarction. Epidemiology 2010;21:829-36. 

22. Johnson JY, Rowe BH, Villeneuve PJ. Ecological analysis of long-term exposure to ambient air pollution 

and the incidence of stroke in Edmonton, Alberta, Canada. Stroke 2010;41:1319-25. 

23. Katsoulis M, Dimakopoulou K, Pedeli X, Trichopoulos D, Gryparis A, Trichopoulou A et al. Long-term 

exposure to traffic-related air pollution and cardiovascular health in a Greek cohort study. Sci Total 

Environ 2014;490:934-40. 

24. Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD. Acute and chronic effects of particles on 

hospital admissions in New-England. PLoS One 2012;7:e34664. 

25. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M et al. Long-term exposure to air 

pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respir Crit Care 

Med 2011;184:828-35. 

26. Maheswaran R, Haining RP, Brindley P, Law J, Pearson T, Fryers PR et al. Outdoor air pollution and 

stroke in Sheffield, United Kingdom: a small-area level geographical study. Stroke 2005;36:239-43. 

27. Maheswaran R, Pearson T, Smeeton NC, Beevers SD, Campbell MJ, Wolfe CD. Outdoor air pollution 

and incidence of ischemic and hemorrhagic stroke: a small-area level ecological study. Stroke 

2012;43:22-7. 

28. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL et al. Long-term exposure to 

air pollution and incidence of cardiovascular events in women. N Engl J Med 2007;356:447-58. 

29. Nishiwaki Y, Michikawa T, Takebayashi T, Nitta H, Iso H, Inoue M et al. Long-term exposure to 

particulate matter in relation to mortality and incidence of cardiovascular disease: the JPHC Study. J 

Atheroscler Thromb 2013;20:296-309. 

30. Pope CA, III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D et al. Cardiovascular mortality and 

long-term exposure to particulate air pollution: epidemiological evidence of general 

pathophysiological pathways of disease. Circulation 2004;109:71-7. 



 

151 

 

31. Puett RC, Hart JE, Suh H, Mittleman M, Laden F. Particulate matter exposures, mortality, and 

cardiovascular disease in the health professionals follow-up study. Environ Health Perspect 

2011;119:1130-5. 

32. Qin XD, Qian Z, Vaughn MG, Trevathan E, Emo B, Paul G et al. Gender-specific differences of interaction 

between obesity and air pollution on stroke and cardiovascular diseases in Chinese adults from a high 

pollution range area: A large population based cross sectional study. Sci Total Environ 2015;529:243-

8. 

33. Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R et al. Long-term exposure to 

ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts 

within the ESCAPE project. Environ Health Perspect 2014;122:919-25. 

34. To T, Zhu J, Villeneuve PJ, Simatovic J, Feldman L, Gao C et al. Chronic disease prevalence in women 

and air pollution--A 30-year longitudinal cohort study. Environ Int 2015;80:26-32. 

35. Ueda K, Nagasawa SY, Nitta H, Miura K, Ueshima H. Exposure to particulate matter and long-term risk 

of cardiovascular mortality in Japan: NIPPON DATA80. J Atheroscler Thromb 2012;19:246-54. 

36. Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB et al. Satellite-Based Estimates of Long-

Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents. 

[published online ahead of print 2015]. Environ Health Perspect. 2015. 

http://ehp.niehs.nih.gov/1408264/. Accessed July 1, 2015 

37. Zhang LW, Chen X, Xue XD, Sun M, Han B, Li CP et al. Long-term exposure to high particulate matter 

pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ 

Int 2014;62:41-7. 

38. WHO working group. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and 

sulfur dioxide. Geneva, Switzerland: World Health Organization; 2005 Oct 20. 

39. Hashizume M, Ueda K, Nishiwaki Y, Michikawa T, Onozuka D. Health effects of Asian dust events: a 

review of the literature. Nihon Eiseigaku Zasshi 2010;65:413-21. 

40. Koton S, Molshatzki N, Yuval, Myers V, Broday DM, Drory Y et al. Cumulative exposure to particulate 

matter air pollution and long-term post-myocardial infarction outcomes. Prev Med 2013;57:339-44. 

41. Maheswaran R, Pearson T, Smeeton NC, Beevers SD, Campbell MJ, Wolfe CD. Impact of outdoor air 

pollution on survival after stroke: population-based cohort study. Stroke 2010;41:869-77. 

42. Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G et al. Spatial analysis of air 

pollution and mortality in California. Am J Respir Crit Care Med 2013;188:593-9. 

43. Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve PJ. Long-term exposure to traffic-

related air pollution and cardiovascular mortality. Epidemiology 2013;24:35-43. 

44. Maheswaran R, Elliott P. Stroke mortality associated with living near main roads in England and wales: 

a geographical study. Stroke 2003;34:2776-80. 

45. Finkelstein MM, Jerrett M, Sears MR. Environmental inequality and circulatory disease mortality 

gradients. J Epidemiol Community Health 2005;59:481-7. 

46. Emmerechts J, Hoylaerts MF. The effect of air pollution on haemostasis. Hamostaseologie 2012;32:5-

13. 



 

152 

 

47. Jacobs L, Emmerechts J, Hoylaerts MF, Mathieu C, Hoet PH, Nemery B et al. Traffic air pollution and 

oxidized LDL. PLoS One 2011;6:e16200. 

48. Nawrot TS, Perez L, Kunzli N, Munters E, Nemery B. Public health importance of triggers of myocardial 

infarction: a comparative risk assessment. Lancet 2011;377:732-40. 

49. GBD 2010 Mortality and Causes of Death Collaborators. A comparative risk assessment of burden of 

disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a 

systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60. 

50. Feigin VL, Roth GH, Naghavi M, Parmar P, Krishnamurthi R, Chugh S et al. Global burden of stroke and 

risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease 

Study 2013. Lancet Neurol 2016;15:913-24. 

51. Global Health Estimates 2014 summary tables: deaths by cause, age and sex, 2000-2012 [database 

online]. Geneva, Switzerland: World Health Organisation; Updated 1-6-2014. 

52. Atkinson RW, Mills IC, Walton HA, Anderson HR. Fine particle components and health-a systematic 

review and meta-analysis of epidemiological time series studies of daily mortality and hospital 

admissions. J Expo Sci Environ Epidemiol 2014;69:660-5. 

  



 

153 

 

SUPPLEMENTAL METHODS AND RESULTS 

Literature search and selection of studies 

We used the following search terms in the Pubmed database, without the use of quotation marks: 

air pollution stroke 

air pollution cerebrovascular disease 

air pollution stroke mortality 

air pollution cerebrovascular disease mortality 

air pollution stroke hospital admissions 

air pollution cerebrovascular disease hospital admissions 

particulate matter stroke 

particulate matter cerebrovascular disease 

particulate matter stroke mortality 

particulate matter cerebrovascular disease mortality 

particulate matter stroke hospital admissions 

particulate matter cerebrovascular disease hospital admissions 

A flow chart of the selection procedure is given in Figure S1. Of the 596 studies identified after our 

initial search, 572 were excluded for various reasons. Of 24 included publications, six were further 

excluded because they reported findings based on the same population as another included study. 

Two initially undetected studies were added on the basis of references and reviews. Thus, we 

eventually included 20 publications on stroke and long-term PM exposure in our meta-analysis.1-20  

The definition of the endpoint varied slightly among publications. Both terms ‘cerebrovascular 

disease’ and ‘stroke’ were found. All but four studies10,11,14,15 defined stroke type based on the 

International Classification of Diseases (ICD) provided by the World Health Organization (WHO). Hence, 

it was possible to distinguish between all strokes (ICD-9 430-438 or ICD-10 I60-I69), ischemic strokes 

(ICD-9 434 or ICD-10 I63) and hemorrhagic strokes (ICD-9 430-432 or ICD-10 I60-I62). However, too 

few studies reported results for ischemic stroke or hemorrhagic stroke separately to allow analyses by 

stroke type. On the other hand, one study14 did not show combined results for all strokes, but only for 

ischemic and hemorrhagic stroke separately, and we included both HRs in the meta-analysis. Seven 

studies published results on stroke mortality only. The other 13 papers included non-fatal strokes and 

defined the outcome as ‘stroke incidence’ (6), ‘first stroke’ (4 publications), ‘hospital admission’ (2), or 

‘first hospital admission’ (1). Five out of these 13 studies conducted a subanalysis on stroke mortality 

(see Figure S1).  
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Variation in PM2.5 values in the Edmonton study5 was low, which resulted in a HR with a very 

large CI, thus having virtually no weight in the meta-analysis. Qin et al.15 presented no overall HR, but 

only results for stratified analyses by body weight class (normal, BMI<25; overweight, 25<BMI<30; 

obese, BMI>30). We included these stratified analyses as separate study results in the meta-analysis. 

Quality of studies and standardization of results 

We assessed quality of the selected studies taking into account the following aspects: study design, 

number and nature of covariates in the analysis, estimation of the exposure, and definition of the 

endpoint. Scores for each of these aspects and the overall quality score are presented in Table . Studies 

with an overall quality score above the median were included in the subanalyses of high quality studies. 

After removing the five Asian studies12,15,18-20 from the list, the cut-off was a score of 7 for overall stroke 

event (n=15 studies) and 6.75 for the mortality subset (n=8). 

We standardized reported results to hazard ratios (HR) for a 10 µg/m³ increment of PM10 in 

three steps. First, whenever the HR or relative risk (RR) was not presented on a continuous scale, but 

as a HR or RR for each exposure quantile with the lowest quantile as a reference, we calculated the 

difference (D) between the means of the highest and the lowest quantile and treated the HR for the 

highest quantile compared to the lowest as a HR for a D µg/m³ increment of PM (HRD).  

Second, each HRD and each HR for an interquartile range (IQR) increment (HRIQR) was 

recalculated to a HR per 10 µg/m³ increment (HR10µg) with the formula HR10µg = HRD^(10/D) or HR10µg = 

HRIQR^(10/IQR) for PM10 and, analogously, to a HR per 5 µg/m³ increment for PM2.5: HR5µg = HRD^(5/D) 

or HR5µg = HRIQR^(5/IQR). 

Third, since we aimed to insert study results for both PM10 and PM2.5 in a single meta-analysis, 

we transformed results for PM2.5 to estimated results for PM10 by applying a conversion factor 

assuming that, on average, PM10 consists of 70% of PM2.5 (HRPM10 = HRPM2.5^0.7).21 However, 

proportions of 50% to 80% have been reported in studies measuring both fractions in the same 

environment.22,23 Therefore, the main analyses on stroke event and stroke mortality were repeated 

with conversion factors of 0.5 and 0.8. Moreover, we estimated PM10 values for each of the six studies 

concerned by applying a region-specific conversion factor, based on the WHO 2014 air pollution 

database.24 This conversion factor was 0.6 for the four studies from the US7,11,13,17, 0.36 for the study 

conducted in Edmonton, Canada5, and 0.67 for the Dutch study2.  

Hazard ratios (HR), 95% confidence intervals (CI), and tests for heterogeneity and publication 

bias proved to be robust against changes in the conversion factor (Table S2). 
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Heterogeneity and publication bias  

The overall HR and 95% confidence interval (CI) was estimated using a random-effects model. To check 

the assumption of substantial heterogeneity among studies, we applied Cochran's Q test and 

calculated the I² statistic. I² values of ≤25%, 25-75% and ≥75% indicate low, moderate and high 

heterogeneity, respectively.25 Publication bias was assessed by visual inspection of funnel plots and by 

formal testing with Egger’s linear regression method.26  

Statistics on heterogeneity among studies and publication bias are shown in Tables 2 and 3 of 

the main text. Our a priori choice for random effects models was justified, given the considerable 

heterogeneity. Cochran’s Q test was significant in most main and subgroup meta-analyses, and I² 

values indicated moderate to high heterogeneity. 

Figures S2 to S4 show the funnel plots for the inspection of publication bias in the overall 

analysis (15 studies from Europe and North America, Figure S2), the analysis of stroke mortality data 

only (8 studies, Figure S3) and the analysis of PM2.5 exposure data only (10 studies, Figure S4). Severe 

departure from symmetry around the meta-estimate (indicated by the vertical axis) suggests 

publication bias towards negative (left) or positive (right) study results. 

We found no indications of publication bias in most analyses. However, Egger’s test results and 

funnel plots of the main analyses for Europe and North America taken together suggest a bias towards 

positive results for studies with large CIs (P=0.018 for stroke event and P=0.040 for stroke mortality) 

(Table 2 in main paper). When considering only the high quality studies, moderate publication bias was 

found only in the subset of stroke mortality with PM2.5 exposure. 

 



 

 

 

Supplemental Tables 

Table S1. Quality assessment of studies included 

Reference Study 

designa 

Covariates Exposure measurement Definition 

of strokei 

Overall 

quality 

scorej 
Age + sexb 

Lifestyle 

factorsc 
Healthd SESe Otherf Periodg Methodh 

Ueda et al. (2012)18 2 1 2 1 0 0 1 0 1 8 

Nishiwaki et al. (2013)12 2 1 2 1 0 0 1 0 1 8 

Zhang et al. (2014)20 1 1 2 0 1 0 1 0 0.5 6.5 

Qin et al. (2015)15 1 1 2 0 1 0 1 1 0 7 

Wong et al. (2015)19 2 1 2 0 1.5 0 1 1 0.5 9 

Maheswaran et al. (2005)9 0 1 0 0 0.5 0 1 1 0.5 4 

Beelen et al. (2009)2 2 1 1 0 0.5 0 1 1 0.5 7*,† 

Huss et al. (2010)4 0 1 0 0 1.5 0.5 0 1 0.5 4.5 

Maheswaran et al. (2012)10 0 1 0 0 0.5 0 0 1 0.5 3 

Atkinson et al. (2013)1 0 1 1 1 0.5 0 1 1 1 6.5 

Beelen et al. (2014)3 2 1 2 0 1.5 0 1 1 0.5 9*,† 

Katsoulis et al. (2014)6 2 1 2 1 1 0 1 1 0.5 9.5* 

Stafoggia et al. (2014)16 2 1 1 0 1.5 0.5 0.5 1 1 8.5* 

Pope et al. (2004)13 2 1 2 0 1 0 0.5 0 0.5 7*,† 

Miller et al. (2007)11 2 1 1 1 1 0 0 0 0.5 6.5 

Johnson et al. (2010)5 0 1 0 0 0.5 0 1 1 0.5 4 

Lipsett et al. (2011)8 2 1 2 1 0.5 0 1 1 1 9.5*,† 

Puett et al. (2011)14 2 1 2 1 0 0.5 1 1 0.5 9* 

Kloog et al. (2012)7 0 0.5 0 0 0.5 0.5 1 1 0.5 4 

To et al. (2015)17 2 1 2 0 1.5 0 1 1 0.5 9* 
  



 

 

 

aProspective cohort with personal baseline questionnaire of all subjects: 2 points; Cohort study with questionnaire organized later: 1 point; Register-based 

ecological study: 0 points 

bAdjusted for age and sex: 0.5 points each (in cohort studies on men or women only, the 0.5 points were awarded) 

cAdjusted for lifestyle factors: 1 point for smoking status; 1 point for at least two of: alcohol consumption, diet, physical activity, occupational exposure. 

dAdjusted for health: 1 point for BMI plus at least one of: blood pressure (hypertension, medication), cholesterol, diabetes, family history of cardiovascular 

disease 

eAdjusted for SES: 1 point for estimation of SES at an individual level (at least one of: income, education, employment status), 0.5 points for area-level 

estimation (e.g. deprivation index) 

fAdditionally adjusted for at least one of: noise, distance to major road, temperature, season. 

gMeasured during the whole study period: 1 point; Measured during 1 year and extrapolated to whole period: 0 points; Measured during >1y but less than 

study period: 0.5 points 

hInterpolation model used (e.g. land-use regression model): 1 point; Raw data from nearest monitoring station: 0 points 

iBased on CD-9 or ICD-10 coding: 0.5 points; First stroke (i.e. individuals with stroke history excluded): 0.5 points 

jSum of scores 

*Included in the overall subanalysis on high-quality studies (Europe and North America only) 

†Included in the mortality subanalysis on high-quality studies (Europe and North America only) 

  



 

 

 

Table S2. Results with other conversion factors for PM2.5 

Pollutant Endpoint 
Conversion factor for 

PM2.5 

Nr. of 

studies 

Meta-analysis Tests of heterogeneity 
Test of 

publ. bias 

Combined HR* 

(95% CI) 
P (model) 

P 

(Cochran's 

Q) 

I² in % (95% CI) 
P (Egger's 

test) 

PM10 + 

converted 

PM2.5 

Stroke event 0.5 20 1.056 (1.019-1.093) 0.003 <0.001 85.6 (79.8-89.1) 0.13 

0.7 20 1.061 (1.018-1.105) 0.005 <0.001 85.8 (80.2-89.3) 0.11 

0.8 20 1.062 (1.017-1.110) 0.006 <0.001 85.9 (80.3-89.3) 0.10 

specific† 20 1.057 (1.016-1.099) 0.005 <0.001 86.3 (80.8-89.7) 0.14 

        

Stroke mortality 0.5 12 1.073 (0.996-1.156) 0.063 <0.001 90.9 (86.6-93.4) 0.21 

0.7 12 1.080 (0.992-1.177) 0.077 <0.001 90.9 (86.6-93.4) 0.21 

0.8 12 1.082 (0.990-1.184) 0.083 <0.001 90.9 (86.6-93.4) 0.21 

specific† 12 1.075 (0.994-1.161) 0.080 <0.001 90.9 (86.6-93.4) 0.21 

In bold the conversion factor and related results chosen by the authors of the present paper  

*HR for a 10 µg/m³ increment in PM10 or converted PM2.5 

†For the six studies concerned,2,5,7,11,13,17 the conversion factor was 0.6, 0.6, 0.36, 0.67, 0.6, and 0.6, respectively.24 
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Supplemental Figures 

 

Figure S1. Flowchart of the literature search. 

  

596 studies identified  

(PubMed search) 

20 studies included on long-term PM exposure and stroke: 

• 7 on stroke mortality only 

• 8 on stroke event without separate data on mortality 

• 5 on stroke event with separate data on mortality 

572 studies excluded 

• 276 not relevant (did not study either air 

pollution or stroke) 

• 144 other approach (short-term exposure, 

patient cohort) 

• 35 other pollutant than PM 

• 77 no data analysis (reviews, comments, 

letters) 

• 40 experimental studies (human, animal, 

in vitro) 

24 studies selected for 

inclusion 

18 studies included 

6 studies excluded because of duplicate with 

the same population 

2 additional studies identified from reviews 

and reference lists 
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Figure S2. Funnel plot of individual study hazard ratio (presented on a natural log scale) for the 

association between stroke event and PM10 (including converted PM2.5) exposure (n=15 studies, North 

America + Europe). 
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Figure S3. Funnel plot of individual study hazard ratio (presented on a natural log scale) for the 

association between stroke mortality and PM10 (including converted PM2.5) exposure (n=8 studies, 

North America + Europe). 
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Figure S4. Funnel plot of individual study hazard ratio (presented on a natural log scale) for the 

association between stroke event and PM2.5 exposure (n=10 studies, North America + Europe). 
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In this PhD project, I investigated adverse effects of exposure to ambient air pollution on human health 

in four studies. Although these studies differed in their target populations, time windows of the 

exposure, and health outcomes (Table 1), they all established positive associations between air 

pollution and risk of mortality or morbidity.  

In summary, we found that brief periods (1 to 3 days) of elevated particulate matter (PM) 

concentration can trigger mortality in late neonates (Chapter 1) and graft rejection in lung-

transplanted (LTx) patients (Chapter 2) in Flanders, Belgium. The region of Flanders currently has PM 

exposure levels around (for daily averages) or below (for yearly averages) the European Union (EU) 

limit values, but well above the more stringent guideline values proposed by the World Health 

Organization (WHO). We then found effects of short- to medium-term (up to one week) exposure to 

air pollution on carotid stiffness, a biomarker of cardiovascular disease, in a study panel of elderly 

volunteers (Chapter 3). These effects were detected in both directions: carotid stiffness decreased 

when air pollution concentrations were below the volunteers’ usually experienced level of exposure, 

and increased when air pollution levels increased. Finally, I provided meta-analytical evidence for an 

association between long-term exposure to air pollution and the risk of having a stroke, including 

stroke mortality (Chapter 4). 

EXPOSURE ASSESSMENT 

In epidemiology, correctly measuring exposure to air pollution is crucial to estimate health effects 

related to it. However, measuring true exposure is a challenging task: first, especially for PM, not only 

mass concentration, but also size, chemical composition and oxidative potential of the particles can 

determine the eventual effects on health.1-5 Second, air pollution concentrations that are routinely 

measured by fixed monitor stations do not necessarily reflect accurately levels of exposure for 

individuals, since these levels are also determined by personal factors and activity patterns.6,7 Third, 

the amount of PM that eventually penetrates into the alveoli is not measured directly in epidemio-

logical studies, but is assumed to be proportional to the ambient concentration or to another proxy, 
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such as distance to major roads. I will discuss these three issues, and how we tackled them, in the 

following paragraphs. 

Characteristics of particles 

Size. In our studies on infant mortality and LTx patients, we used PM10 mass concentrations as a 

measure of exposure. PM10 levels were obtained from the Belgian telemetric air quality network, which 

is managed by the Belgian Interregional Environment Agency (IRCEL). During the time periods of 

exposure in these two studies, PM2.5 was monitored by only a limited number of stations. However, in 

the panel study on carotid stiffness, the growing number of monitor stations measuring PM2.5 allowed 

us to include PM2.5 as an exposure variable. Ambient concentrations of ultrafine particles (UFP or 

PM0.1), which are considered the most hazardous fraction of PM,1 are not being measured by the air 

quality network.  

 

 

Table 1. Characteristics of study populations and methodologies used in this PhD thesis. 

Chapter Study 

population 

Time window of 

exposure* 

Health effect Study type 

1 Infants Acute / short-term 

(1 to 3 days) 

Mortality Case-crossover 

2 LTx patients Acute / short-term 

(1 to 3 days) 

Graft rejection Cohort, follow-up 

3 Healthy elderly Subacute / 

medium-term  

(1 to 7 days) 

Carotid stiffness,  

markers of inflammation,  

endothelial function 

Cohort,  

observational and 

intervention 

4 General 

population 

Chronic / long-term 

(several years) 

Stroke Meta-analysis of 

literature 

*For exposure, both sequences acute-subacute-(subchronic-)chronic and short-medium-long term are 

used. All these time windows of exposure can be related to acute or chronic health events. 
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In the carotid stiffness study, we found significant and similar health effects of PM10 and PM2.5 for most 

variables (see Table 2 in Chapter 3), and in the stroke meta-analysis, we clearly found stronger effects 

in the studies using PM2.5 than in those using PM10 as a measure of exposure (see Table 3 in Chapter 

4). These findings are compatible with the idea that more pronounced effects would be found when 

using a more refined indicator of exposure (e.g. UFP) than those already detected with the crudest 

indicator, PM10. However, it is clear that this speculation can only be confirmed when UFP 

concentrations will be monitored on a large scale (as recommended in the “Ten principles for clean 

air”8). 

Chemical composition. It was beyond the scope of this thesis to quantify chemical composition 

of particles. In an epidemiological study conducted in Belgium, investigators from our research group 

quantified elemental composition of PM2.5 and oxygenated polycyclic aromatic hydrocarbons (oxy-

PAHs) in PM10.9 They found significant effects of concentrations of vanadium (V), nickel (Ni), iron (Fe), 

and two different oxy-PAHs on pulse pressure in elderly subjects. These and other chemicals originate 

from (incomplete) combustion processes (by both industry and vehicles), and have been linked to 

oxidative stress10-12 and cardiovascular disease.13,14 In Belgium, main emission sources of PM2.5 are 

general energy use and road transport.15 We assume that, in general, PM, as measured in our studies, 

has a similar chemical composition as the samples analyzed by Jacobs et al.,9 and that both the sources 

(i.e. incomplete combustion processes in various economic sectors) and health effects of PM can be 

explained similarly. 

In the carotid stiffness study, we estimated exposure to NO2 and black carbon (BC), in addition 

to PM2.5 and PM10. NO2 is a good marker of traffic-related exposure, and BC, a component of PM2.5, is 

a good indicator of the combustion-derived and potentially very harmful parts of PM.16 We found 

similar effects of PM10, PM2.5, NO2 and BC in the carotid stiffness study, again suggesting that using 

mass concentration of PM10 (and PM2.5) continues to be a valid tool to investigate health effects of 

exposure to air pollution.  



 

170 

 

Estimating individual exposure 

In all our studies, we used PM data from the Belgian telemetric air quality network as the measure of 

exposure. To better estimate residential exposure to PM10, PM2.5, and NO2, a land use regression model 

combined with a dispersion model was developed to interpolate data from measurement stations to 

values in 4 by 4 km grids (or to PM10 values by municipality of residence in the infant mortality study, 

as the exact addresses were unknown).17 For the large-scale epidemiological studies on infant 

mortality and LTx patients, measuring exposure at a more individual level was unachievable, but in 

sensitivity analyses, we proved that the effect of spatial variability was negligible, and that only 

temporal variation is important in studies on short-term exposure to PM.  

In the carotid stiffness study, the study population consisted of a panel of 10 elderly couples. 

During the trips abroad, in Milan (Italy) and Vindeln (Sweden), exposure to air pollution and activity 

patterns were assumed to be fairly similar among study volunteers. Therefore, we used two portable 

laser-operated aerosol mass analysers to measure common exposure of the whole panel to PM10, 

PM2.5, and BC. In addition, during each measurement period of this study, we estimated real personal 

exposure to NO2 using Radiello diffusive samplers (Figure 1).18 Six to 10 study volunteers wore the clip-

on device during six days prior to each health assessment day. Then, we collected the devices and sent 

them to a specialized lab for the quantification of average exposure to NO2 during the sampling period.  

In general, we had good experiences with the use of these NO2 samplers. In contrast to the PM 

and BC mass analysers, they are passive samplers, and hence, much cheaper and not prone to 

mechanical failure. The devices are easy to clip on a shirt or coat and convenient to wear, as they are 

small and very light. During stationary activities (e.g. sleeping, other indoor activities, gardening), the 

samplers can simply be put on a table. The major drawback of this method is that study volunteers are 

responsible for a correct use of the samplers: when going out, the device can easily be forgotten; the 

sampler body should not be in contact with water (e.g. heavy rain); and it should not be removed from 

the triangular support plate, as any contact with the adsorbing cartridges inside the sampler has to be 
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avoided. Also, analysis of the adsorbed amount of NO2 produces only one value for the whole sampling 

period, so any daily variation during the six days of sampling remains undetected. 

Analysis of exposure data in the carotid stiffness study revealed that individual NO2 exposure, 

as measured by the Radiello samplers, was higher than the exposure estimated from central 

monitoring stations in Milan, and much lower than that in Sweden (Figure 2 in Chapter 3). This was 

not surprising because in Milan, study volunteers walked along busy roads and used the metro 

frequently, and in Sweden, central NO2 values were measured in the city of Umeå, whereas the 

volunteers resided in the rural town of Vindeln and frequented the surrounding woods. This 

observation illustrates the added value of measuring exposure to air pollution at an individual level in 

panel or cohort studies. 

 

 

 

 

 

Figure 1. Radiello diffusive sampler consisting of 

an adsorbing cartridge (brown in this picture), a 

cylindrical diffusive body, and a triangular clip-on 

support plate (Sigma-Aldrich, Bellefonte, PA, 

USA) 
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Measuring “true” amount of inhaled particles 

Even when measured at an individual level, ambient concentrations of air pollutants are not 

necessarily equal or proportional to the amount of particles that eventually penetrate into the alveoli 

and beyond. Inhaled particles are phagocytosed by airway macrophages, and the BC core of particles 

can be visualized using light microscopy. Researchers from our group demonstrated that the amount 

of BC inside airway macrophages can serve as a marker of individual exposure to PM,19 and recently 

wrote a review on the literature on this topic.20  

We collected induced sputum samples from the volunteers in the carotid stiffness study. These 

samples are currently being analyzed in our lab in an attempt to estimate “true” exposure to PM in 

three European locations with different levels of ambient air pollution levels. 

HEALTH EFFECTS OF EXPOSURE TO AIR POLLUTION 

In the Introduction, I wrote an elaborate review on the history and current state of knowledge on 

health effects of air pollution, including a discussion of biological pathways and susceptible 

populations. Therefore, here, I will discuss only those aspects that are relevant in regard of this thesis. 

Susceptible populations 

Infants. Children are considered particularly susceptible to air pollution, because their lungs and 

immune system are immature during the first few years of life. Using a case-crossover (CCO) approach, 

we found an elevated risk of mortality in late neonates (2-4 weeks of age) associated with short-term 

increases in ambient PM10 levels.  

At the time of publication of this study, the available literature yielded mixed results, and the 

number of CCO studies and studies conducted in western Europe on infant mortality was rather 

limited. Recently, a study in Japan found similar results as ours for infant mortality and same-day PM2.5, 

except that they found stronger associations in postneonates (OR = 1.06) than in neonates (OR = 1.02, 

NS), although not distinguishing between early and late neonates.21 A German study reported a 

decrease in infant mortality associated with a decrease of ambient SO2 levels over an 18-year period.22 
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In addition, other endpoints, such as low birth weight,23-26 preterm birth,25,27 impaired lung function,28 

and childhood asthma28-31 have abundantly been associated to air pollution exposure during pregnancy 

and early life, providing convincing evidence that infants and young children are indeed particularly 

susceptible to adverse health effects of air pollution. 

Lung-transplanted patients. We found that short-term variation in exposure to PM was 

associated to an increased risk of graft rejection in LTx patients at the UZ Leuven (Chapter 2), and a 

similar association has been reported for long-term exposure.32,33 In a multi-center research project 

involving 13 LTx centers throughout Europe, our colleagues from the Lung Transplantation Unit have 

recently found evidence for lung allograft dysfunction and mortality among LTx patients associated 

with long-term exposure to air pollution,34 thus confirming our single-center study results mentioned 

above. In addition, protective effects of macrolides, such as azithromycin, were found in both studies. 

These findings are clinically relevant, since the transplanted lung experiences a higher rejection rate 

than other solid organ transplantations. 

Elderly. A gradual decline in physiological processes over time, and a higher prevalence of pre-

existing cardiovascular and other diseases are two factors that make elderly more susceptible for the 

adverse effects of air pollution.35 However, in our panel study on carotid stiffness, we deliberately 

selected healthy elderly with no pre-existing conditions. Still, we detected significant associations 

between biomarkers of carotid stiffness and air pollution. Associations of a similar magnitude have 

been found in healthy women averaging 40 years of age,36 and healthy men averaging only 26 years of 

age.37 Therefore, it is not clear whether the effects of air pollution exposure on carotid stiffness that 

we found in our study panel, were present because of their older age. 

Susceptibility for hypertension. In the meta-analysis on stroke, there was no supposedly 

susceptible “target” population, but we found considerable geographical heterogeneity in the results: 

in Western Europe and North America, we found a positive association between stroke and air 

pollution exposure, whereas the two Japanese studies38,39 reported a negative association (for details, 
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see Chapter 4). The reasons for this discrepancy have not entirely been elucidated yet, but there is 

very likely a role for hypertension. 

Hypertension is the most important risk factor for stroke,40,41 and stroke is more prevalent in 

the Far East than in Western Europe.39,42,43 There are indications that Asians are more susceptible for 

diet-related hypertension (and hence, stroke) than Caucasians.42-44 This may explain how the 

apparently protective effect of air pollution in Japan actually might reflect an adverse effect of diet, 

with higher salt intakes in rural and coastal regions (with lower air pollution) than in urban regions 

(with higher air pollution).  

In other words, diet-related hypertension is such a dominant risk factor for stroke that it may 

mask the additional risk of air pollution exposure, especially in East Asia. However, this hypothesis 

requires further investigation and, to complicate the matter even more, blood pressure itself has also 

been shown to be adversely related to air pollution.3,45,46 

Biological pathways 

Inflammation. Inhalation of particles into the alveoli can cause pulmonary oxidative stress and 

inflammation, and subsequently, systemic oxidative stress and inflammation, by lung-blood transport 

of either inflammatory mediators (cytokines, activated WBC, platelets), or the particles themselves.1,3 

We quantified markers of inflammatory responses in two studies, yielding mixed results.  

In the cohort of LTx patients, we found positive associations between recent exposure to 

elevated levels of PM and numbers of neutrophils and lymphocytes in bronchoalveolar lavage (BAL) 

fluid. However, we could not detect a direct mechanistic link between PM10 exposure and airway 

neutrophilia, since relevant cytokines (IL-6 and IL-8) were not associated with exposure. Concerning 

the circulatory system, plasma levels of C-reactive protein (CRP), a marker of systemic inflammation, 

showed no association with PM exposure either, whereas circulatory white blood cells (WBC) were not 

available in this study. 

In the panel of healthy elderly, we measured biomarkers of inflammation in plasma, but not in 

the airways. We found no evidence of systemic inflammation, quantified as concentrations of WBC 
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(including differential counts of neutrophils and lymphocytes) and CRP. In general, controlled-

exposure studies at relatively low exposure levels in healthy humans, such as ours, have not 

demonstrated a robust inflammatory response.3 

Arterial stiffness. In the same study, we found evidence for a link between carotid arterial 

stiffness, indicated by increased PWV and YEM and decreased DC and CC, and short-to- medium-term 

exposure to several pollutants. Arterial stiffness is an important determinant of acute cardiovascular 

events such as myocardial infarction and stroke.47,48 Since acute effects of elevated air pollution on 

myocardial infarction and stroke have repeatedly been demonstrated,49,50 our results provide a 

possible pathway for this trigger effect. Similar associations between short-term air pollution exposure 

and arterial stiffness were found in recent intervention and epidemiological studies.36,37  

Endothelial function. Endothelial dysfunction, a marker of atherosclerotic processes,51 has 

repeatedly been associated with increased air pollution exposure levels.3,52,53 However, in our panel 

study of healthy elderly, we found a positive association between endothelial function and 

concentrations of four different pollutants. Possible explanations for this unexpected result, such as 

the circadian rhythm of endothelial function and the suitability of the device used, are discussed in 

Chapter 3. In brief, endothelial function in Milan, i.e. the location with highest air pollution exposure, 

was remarkably high. However, it was also the only occasion with measurements of endothelial 

function in the late afternoon or evening. In Leuven and in Vindeln, we always quantified this 

parameter in the morning. There are indications that endothelial function sustains a circadian rhythm, 

with a lower RHI in the morning. Therefore, our results on endothelial function and air pollution 

exposure have to be interpreted with care. 

Shape of the association 

From the infant mortality study, we concluded that a linear model adequately described the 

association between infant mortality and air pollution, with no evidence for a threshold at low levels 

of PM or a plateau value in the higher regions of exposure. In the carotid stiffness panel study, non-

linear exposure terms were tested, but did not show stronger associations with health outcomes than 
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a linear model. No formal tests of linearity were performed in the study on LTx patients or in the stroke 

meta-analysis. 

Our indications that the association between PM concentration and health endpoints is linear, 

with no evidence for a threshold or a ‘safe level’, are in line with those from earlier studies that 

modeled the shape of the exposure-response relationship.54-56 This is an important observation when 

it comes to public health and air pollution policy (see further). 

PUBLIC HEALTH RELEVANCE 

In four different study settings, we found significant associations between adverse health effects and 

exposure to air pollution, but calculated risks were always in the order of magnitude of a few percent, 

which is rather low from an individual point of view. [A notable exception is the 74% increased risk of 

infant mortality for days with PM10 > 50 µg/m³ compared to days below this cutoff value]. However, 

the whole population is exposed to air pollution and, therefore, small changes in population mean 

effects, could have substantial public health relevance and are important for prevention.57,58  

The linear shape of the exposure-response curve means that there is no ‘safe level’ of air 

pollution, but also that any decrease in ambient air pollution levels should proportionally result in a 

decrease in adverse health effects. In our panel study on carotid stiffness, we found indeed that 

decreases in air pollution exposure, compared to the ‘normal’ level of exposure, were associated with 

decreases in stiffness. Follow-up analyses of the Harvard Six Cities cohort study showed a reduction in 

mortality risk in association with a decrease in ambient PM concentrations.59,60 Similarly, a Swiss study 

found reduced rates of respiratory symptoms related to decreased PM10 exposure.61 

FUTURE PERSPECTIVES AND RECOMMENDATIONS 

We found adverse health effects of air pollution in susceptible populations (infants, LTx patients, and 

elderly) and for different time windows (short-term variation in exposure, subacute exposure of one 

week, long-term exposure). In this final paragraph, I will briefly discuss what these results, combined 

with an impressive and still growing amount of scientific evidence, could be of relevance for 



 

177 

 

researchers, policy makers, and the general population. In the Introduction, I already discussed many 

of these items on the basis of the “Ten principles of clean air”.8 

Scientists and health professionals 

Among researchers, there is a broad consensus that air pollution is responsible for a wide variety of 

adverse health effects, but further investigation is still required to fully understand the (public) health 

impact of air pollution. A current challenge in air pollution research is that subtle changes in health 

parameters are susceptible to residual error and confounding. To reduce noise and uncertainty in the 

proposed pathophysiological pathways, continued efforts are needed to estimate true exposure with 

greater precision. Routine measurements of UFP and BC, and further research toward the magnitude 

of the health effects of these pollutants are required, since these are considered the most hazardous 

fractions of PM, and have much steeper gradients close to roadways than the more homogenously 

distributed coarse fraction of PM. 

Clinicians, such as pneumologists and cardiologists, should keep abreast of the newest insights 

in the mechanisms of pollution-related disease, in order to provide appropriate curative treatment 

(e.g. administration of macrolides to LTx patients). General practitioners have an even more important 

role to play. As primary health care providers and confidential advisors, they will need to counsel their 

patients correctly on prevention strategies, such as avoiding use of indoor combustion, or limiting 

outdoor exercise at times (e.g. peak traffic periods) or places (e.g. busy roads) with elevated exposure 

to air pollution. 

Policy makers 

First, local authorities need to develop ad hoc smog alert protocols to minimize the impact of brief 

episodes of air pollution peaks. Measures can range from warning the population to refrain from 

certain activities (e.g. physical exercise) to imposing temporary speed limits or even a complete ban of 

road traffic. Swift communication with clear instructions via different channels is also an important 

part of the protocol. 
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Second, more stringent measures concerning emissions of diesel cars are needed, and their 

use should be discouraged. NOx and PM emissions by diesel vehicles are much higher than those by 

cars driven by other fuels,62 and hence, they largely contribute to ambient air pollution. Unfortunately, 

there are some recent examples of poor policy making regarding this subject. In 2010, the Belgian 

federal government implemented an “Eco Premium” for the purchase of small diesel cars because of 

their (theoretically) low CO2 emission.62 In February 2016, in the aftermath of the Volkswagen 

emissions scandal, the European Commission implemented a temporal relaxation of NOx emission 

limits for diesel cars.62,63 On the plus side, the Eco Premium has been abandoned in 2012 and, 

moreover, road taxes for diesel cars have recently been raised in Flanders. As a result, the share of 

diesel cars in newly inscribed private cars has decreased from 63% to 23% over the past six years in 

Flanders.64 

Third, it is time for a more ambitious long-term planning by the EU. The most recent EU 

directive, dating from 2008, imposes limit values for ambient PM concentrations that are much more 

relaxed than those recommended by the WHO (see Table 2 in the Introduction). There is ample recent 

scientific evidence, including from our own study on infant mortality, that compliance with current EU 

limit values does not offer complete protection from adverse effects on public health.65-67 Adopting 

the WHO guideline values as the new target for EU member states, would be a drastic, but necessary 

step towards clean air for all citizens. Even though the WHO guideline values are solely based on 

scientific evidence and ignore technical or economic feasibility, this should not discourage the proper 

authorities. Indeed, cost-benefit analyses showed that monetized benefits from a more stringent air 

pollution regulation would outweigh the costs.68,69 

What can we do? 

Not only scientists and policy makers, but also the general population has a role in the pursuit of a 

cleaner atmosphere. We have to be aware that we are not only victims of air pollution, but also 

producers. In the course of the 21st century, the overall emission of air pollutants has decreased in 

Flanders. This reduction is mainly a result of more stringent standards for industrial emissions and a 
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more efficient energy use. Consequently, the relative share of household and road traffic emissions 

has increased.70 

The use of biomass fuel (i.e. wood) for heating is currently being promoted because of its CO2-

neutral image. However, combustion products from ordinary wood stoves and hearths are as toxic as 

those from fossil fuels. Better options for household heating are natural gas or electricity from solar 

panels. In any case, burning should be done in modern installations with efficient and clean burning, 

and only dry and untreated wood should be used. Indoor or outdoor burning of treated or painted 

wood, paper, cardboard and any other products than untreated wood is forbidden by law in Flanders. 

Also barbecues and indoor candles are frequently underestimated household contributors to air 

pollution. 

There are plenty of fairly simple measures that we can take to reduce our emission of air 

pollution in traffic. This is a non-exhaustive list of advices: for short distances, take a bike instead of 

the car; make use of public transport; when driving, limit tailpipe emissions (implement an economical 

driving style, do not always turn on the air conditioning); carpool if possible; when purchasing a car, 

choose wisely in terms of fuel type (no diesel) and size. Be aware that also non-tailpipe emissions, 

originating from friction of brakes, tyres and road surfaces, contribute significantly to ambient PM at 

roadside.8 

Global climate change caused by increasing emissions of greenhouse gases such as CO2, is a 

hot topic and a serious problem indeed. Examples such as the eco premium for diesel cars and the 

promotion of biomass fuels might suggest a conflict of interest between climate-related and air 

pollution-related measures. However, recent research showed that air pollutants, and ozone and BC 

in particular, have a positive climate forcing and, as a result, warm the climate.71,72 Moreover, 

combined public health effects of air pollution and high temperatures during heat waves, are expected 

to be more severe than those of air pollution alone.8 In general, simple behavioral adaptations to 

reduce one’s personal emission of air pollutants, will also result in a smaller climate footprint, and vice 

versa.73  
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During the past years, the problem of air pollution has gained increasing attention in popular 

media. Both promotors of this PhD thesis have been interviewed for TV, radio and newspapers. Issues 

such as the Volkswagen emission scandal in 2015, the Oosterweel Link (a long running proposed 

project intended to complete the ring road around Antwerp, involving air pollution-related problems), 

the shifts in taxes on cars driven by different fuels, and the episodes of very poor air quality in cities 

such as Beijing, are regular news items in the Belgian media. In addition, air pollution is now discussed 

in biology textbooks for secondary education,74 so teachers (also in primary schools) can also 

contribute to raise the awareness of the adults of the future.  

There is certainly a need for more scientific research, but we already know a lot about the 

causes of, and solutions to, the public health impact of air pollution. It is now time to act in accordance 

with that knowledge.  
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BACKGROUND 

In the past few decades, exposure to air pollution has been found to be associated with all-cause 

mortality, cardiovascular and respiratory morbidity, both in the short term (acute exposure) and the 

long term (chronic exposure).  According to the most recent report by the World Health Organisation 

(WHO, 2014), 3.7 million deaths worldwide and per year are attributed to ambient air pollution, placing 

it in the top 10 of risk factors. 

Ambient air pollution consists of particulate matter (PM) and gases, such as NO2, SO2, and 

ozone. Of all pollutants, PM is most reliably associated with human disease. It is usually classified 

according to particle size, with PM10 (particles smaller than 10 µm) as the most commonly studied 

fraction. The European Union (EU) has set two limit values for PM10 concentrations: annual mean levels 

of PM10 must not exceed 40 μg/m³ (25 µg/m³ for PM2.5), and daily averages must not exceed 50 μg/m³ 

on more than 35 days/year, for any monitoring station in the EU member states. In contrast, the WHO 

advises that annual averages of PM10 levels should not exceed 20 μg/m³ (10 µg/m³ for PM2.5) and that 

daily averages should not exceed 50 μg/m³ on more than 3 days/year. 

OBJECTIVES 

The general objective of this PhD project was to gain more insight in the relationship between PM and 

human health in susceptible subgroups, such as infants, lung-transplanted patients and elderly. Also, 

in two of the four studies conducted within the scope of this thesis, I investigated the possible 

biological mechanisms involved in the pathway from PM inhalation to disease. Finally, I aimed to 

evaluate EU limit values and WHO guidelines for ambient PM concentrations, based on our study 

results. 

MAIN STUDY RESULTS 

In a first study (Chapter 1), I investigated effects of daily variation in environmental PM10 on risk of 

infant mortality (<1y of age) in Flanders. 2382 infants died during the study period (1998-2006). The 

PM10 concentration averaged 31.9 µg/m³, and there were 321 days (an average of 35.7 days per year) 
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with a mean daily concentration exceeding 50 µg/m³. This means that the EU air quality standards 

were met for the yearly average, but barely for the daily average. It is clear, however, that the more 

stringent WHO guideline values were not met at all in Flanders.  

Using a bidirectional time-stratified case-crossover (CCO) design, I found that PM10 was 

associated with infant mortality, especially in the late neonatal stage (i.e. between one week and one 

month of age, N=372). For each 10 µg/m³ increment of PM10, the risk of late neonatal mortality 

increased with 11% (95% CI 1-22%). On days with average PM10 levels exceeding the EU limit value of 

50 µg/m³, the risk of mortality was 74% higher (95% CI 18-158%) than on days below that value. The 

current EU limit value for PM10 is not protective to prevent triggering infant mortality. Moreover, the 

linear shape of the association between exposure and mortality gives no evidence for a threshold or a 

save level. 

In a second study (Chapter 2), we investigated whether graft rejection after lung transplantation (LTx) 

could be linked to recent exposure to PM air pollution, and which underlying mechanisms are involved. 

In the period 2001-2011, transbronchial biopsies were repeatedly executed in 397 LTx recipients at the 

UZ Leuven. I linked estimated PM10 levels for each patient’s home address with symptoms of graft 

rejection and related physiological parameters.  

We found that a 10 µg/m³ increase in PM10 concentration 3 days before biopsy increased the 

risk of lymphocytic airway disease (LAD) with 12% (95% CI 1-25%). LAD is the pathological correlate of 

acute graft rejection after LTx. Additionally, PM10 exposure was positively associated with BAL counts 

of neutrophils and lymphocytes, indicating that inflammation plays a part in the physiological pathway. 

Preventive treatment with the antibiotic azithromycin appeared to block the effect of PM10 on acute 

graft rejection. 

In chapter 3, I investigated whether a decrease or increase of exposure to air pollution during several 

days (compared to a person’s ‘normal’ level) can already result in changes in biomarkers of 

cardiovascular health. During the course of one year, we measured air pollution exposure, carotid 
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arterial stiffness (a well-established marker of cardiovascular disease), and other biomarkers in a panel 

of 20 retired and healthy men and women in different locations:  during a 10-day stay in Milan (Italy, 

PM10 > 50 µg/m³), during a similar 10-day stay in Vindeln (rural area in northern Sweden, PM10 < 10 

µg/m³) and at regular time points in Leuven (reference location, PM10 ≈ 30 µg/m³). 

Compared with Leuven, exposure to pollutants was higher in Milan and lower in Vindeln, with 

the highest contrast found for NO2 (averages: Milan 63.7 µg/m³; Vindeln 4.4 µg/m³).We found strong 

associations between 7-days exposure to air pollution and arterial stiffness, e.g. a 4.4% decrease in 

compliance (i.e. an increase in stiffness) for a 10 µg/m³ increment in PM10. However, no direct 

inflammatory effects, measured as concentration of plasma CRP and leukocytes, were detected. 

Stroke, or cerebrovascular accident, is a prominent cause of mortality and it has been linked with 

exposure to air pollution. I performed a meta-analysis of the current literature to quantify the pooled 

association between stroke and long-term exposure to PM10 or PM2.5 (Chapter 4). 

I identified 20 studies on long-term PM exposure and stroke. The association between PM and 

stroke was positive in North America (N=7 studies), Europe (N=8), and China (N=3, with extremely high 

exposures), and negative in Japan (N=2). The estimated effect of PM2.5 [6% increase (95% CI 2-11%) in 

stroke risk for a 5 µg/m³ increment in PM2.5] was higher than the corresponding result using PM10 [2% 

increase (95% CI -2 to 7%) in stroke risk for a 10 µg/m³ increment in PM10). This indicates the 

importance of measuring PM2.5 directly and confirms the hypothesis that PM2.5 is more hazardous than 

the coarse fraction (PM2.5-10). 

CONCLUSIONS 

In this thesis, I found detrimental health effects of air pollution in different susceptible populations 

and for different time windows of exposure. Both short-term exposure (1 to 3 days) and long-term 

exposure (several months to years) can trigger acute events, such as stroke, lung graft rejection or 

infant mortality, but long-term exposure can also accelerate the development of chronic 

cardiovascular or respiratory diseases, such as atherosclerosis or lung cancer. The two panel studies 
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(LTx and health elderly) provided mixed results concerning the role of inflammation in the process, as 

measured by levels of leukocytes and plasma CRP.  

Compared to other environmental factors, such as smoking, diet and physical activity, 

individual risk estimates are rather small, but exposure to air pollution is involuntary and ubiquitous. 

Given the fact that the whole population is exposed, our studies demonstrated that air pollution is an 

important public health issue. In Belgium (and in Western Europe in general), yearly ambient 

concentrations of PM10 have decreased over the past 10 years to levels well below the EU limit value 

of 40 µg/m³, but still above the WHO guideline value of 20 µg/m³, especially in urban areas, where 

most people live. In accordance with other studies, we found no indications for a threshold or ‘save’ 

level of air pollution, so public health will benefit from every single µg/m³ decrease in concentration. 

This is a shared responsibility of policymakers, industry, and the general population (since road traffic 

and household combustion of wood are important and even increasing sources of air pollution) alike. 

 



 

 

 

 

 

 

 

 

 

 

SAMENVATTING 





 

195 

 

ACHTERGROND 

Wetenschappelijk onderzoek heeft de afgelopen 20 jaar aangetoond dat er een duidelijk verband 

bestaat tussen blootstelling aan luchtvervuiling enerzijds en cardiovasculaire en respiratoire 

morbiditeit anderzijds, zowel op korte termijn (acute blootstelling) als op lange termijn (chronische 

blootstelling). De meest recente studie van de Wereldgezondheidsorganisatie (WGO, in 2014) 

rapporteert dat er jaarlijks wereldwijd 3,7 miljoen mensen overlijden ten gevolge van 

luchtverontreinging. Hierdoor staat dit in de top 10 van de meest voorkomende risicofactoren voor 

vroegtijdig overlijden. 

Luchtvervuiling in de atmosfeer bestaat uit fijn stof (PM, particulate matter) en gassen, zoals 

NO2, SO2  en ozon. Van alle polluenten heeft fijn stof de duidelijkste invloed op de menselijke 

gezondheid. Fijn stof wordt gewoonlijk ingedeeld volgens deeltjesgrootte. Fijn stof waarvan de deeltjes 

kleiner zijn dan 10 µm (PM10) wordt het vaakst gemeten en gebruikt in studies. De Europese Unie (EU) 

heeft twee grenswaarden voor deze PM10 waarden vastgelegd. In alle EU-lidstaten moet het 

gemiddelde jaarniveau van PM10  minder dan 40 μg/m³ bedragen in elk meetstation van luchtkwaliteit 

(en 25 µg/m³ voor PM2.5). Bovendien mag het daggemiddelde op niet meer dan 35 dagen per jaar de 

50 μg/m³ overschrijden. De WGO daarentegen adviseert dat het gemiddelde jaarniveau van PM10  niet 

meer dan 20 μg/m³ mag bedragen (10 µg/m³ voor PM2.5) en dat het daggemiddelde niet meer dan 3 

dagen per jaar de waarde van 50 μg/m³ mag overschrijden.  

DOELSTELLINGEN 

De algemene doelstelling van dit doctoraatsonderzoek was meer inzicht krijgen in de relatie tussen fijn 

stof en menselijke gezondheid in gevoelige populaties zoals zuigelingen, longtransplantatiepatiënten 

en ouderen. In twee van de vier studies onderzocht ik eveneens mogelijke biologische mechanismen 

die het verband verklaren tussen inademing van fijn stof en het optreden van ziekten. Ten slotte 

trachtte ik op basis van onze studieresultaten de EU-grenswaarden en de WGO-richtlijnen voor fijn 

stof kritisch te evalueren.  
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BELANGRIJKSTE ONDERZOEKSRESULTATEN 

In de eerste studie (hoofdstuk 1) onderzocht ik de effecten van de dagelijkse variatie in PM10 

concentraties op het risico op zuigelingensterfte (< 1 jaar oud) in Vlaanderen. 2382 baby’s stierven 

tijdens de onderzoeksperiode (1998-2006). De concentratie van fijn stof (PM10) tijdens deze periode 

was gemiddeld 31.9 µg/m³ en er waren 321 dagen (of gemiddeld 35.7 dagen per jaar) met een 

gemiddelde dagelijkse concentratie hoger dan 50 µg/m³. De luchtkwaliteit voldeed dus aan de EU-

normen voor het jaarlijkse gemiddelde, maar de norm voor het daggemiddelde werd echter nauwelijks 

gehaald. Het is ook duidelijk dat de veel strengere WHO-richtwaarden ruim overschreden werden in 

Vlaanderen. 

Met een bidirectionele tijd-gestratificeerde case-crossover analyse toonde ik aan dat PM10 

gerelateerd was met kindersterfte, voornamelijk in de late neonatale fase (d.w.z.tussen een week en 

een maand oud N=372). Voor elke stijging van PM10 met 10 µg/m³ steeg het risico op sterfte met 11% 

(95% CI 1-22%). Op de dagen waarop het gemiddelde PM10-niveau de EU-grenswaarden van 50 µg/m³ 

oversteeg was de kans op overlijden 74% hoger (95% CI 18-158%) dan op de dagen waarop de PM10-

waarden onder de grenswaarden bleven. Hieruit blijkt dat de huidige EU-waarden voor PM10 niet 

streng genoeg zijn om het risico op kindersterfte zo klein mogelijk te houden. Bovendien is het verband 

tussen de blootstelling aan fijn stof en overlijden lineair, wat betekent dat er geen ‘veilige’ 

drempelwaarde kan worden bepaald. 

In hoofdstuk 2 bestudeerden we het verband tussen de acute afstoting van een donorlong na 

longtransplantatie (LTx) en recente blootstelling aan fijn stof, met aandacht voor de onderliggende 

mechanismen die hier mogelijk bij betrokken zijn. In het UZ Leuven werden tussen 2001 en 2011 bij 

397 LTx-patiënten herhaaldelijk transbronchiale biopten genomen. Ik bracht voor deze patiënten de 

geschatte PM10-waarden op hun thuisadres in verband met symptomen van afstotingsverschijnselen 

en de daarbij horende fysiologische parameters. 
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Uit het onderzoek bleek dat een stijging van de PM10-waarden met 10 µg/m³, gemeten drie 

dagen voor de biopsie, het risico op lymfocytische luchtwegaandoeningen (lymphocytic airway 

disease, LAD) deed stijgen met 12% (95% CI 1-25%). LAD is de pathologische uitingsvorm van acute 

afstoting na LTx. Daarnaast vonden we een positief verband tussen blootstelling aan PM10 en BAL 

tellingen van neutrofielen en lymfocyten, wat betekent dat ontstekingsreacties mogelijk een rol spelen 

in het fysiologisch proces. Een preventieve behandeling met het antibioticum Azithromycine bleek het 

effect van PM10 op de acute afstoting tegen te gaan.  

In een derde studie (hoofdstuk 3) onderzocht ik of een toe- of afname van luchtverontreiniging 

gedurende verschillende opeenvolgende dagen (vergeleken met het ‘normale’ blootstellingsniveau 

van een persoon) kan resulteren in veranderingen in cardiovasculaire biologische merkers. Een jaar 

lang onderzochten we de luchtvervuiling, stijfheid van de halsslagader (een gekende merker van hart- 

en vaatziekten) en andere biomerkers in een testgroep van 20 gepensioneerde, gezonde mannen en 

vrouwen op verschillende locaties: tijdens een verblijf van 10 dagen in Milaan (Italië , PM10 > 50 

µg/m³),een gelijkaardig verblijf in Vindeln (een landelijk gebied in het noorden van Zweden, PM10 < 10 

µg/m³) en op verschillende tijdstippen in Leuven (als referentieplaats, PM10 ≈ 30 µg/m³). 

In vergelijking met Leuven was de luchtvervuiling groter in Milaan en kleiner in Vindeln. Het 

grootste verschil vonden we in de waarden van NO2, met een gemiddelde van 63.7 µg/m³ in Milaan en 

4.4 µg/m³ in Vindeln. Uit het onderzoek kwam een duidelijk verband naar boven tussen blootstelling 

aan luchtvervuiling gedurende 7 dagen en de stijfheid van de halsslagader. Zo vonden we bijvoorbeeld 

een 4.7% daling van de compliantie (dus een stijging van de stijfheid van de wand) bij een stijging van 

10 µg/m³ van PM10. We vonden echter geen directe inflammatoire effecten, zoals een stijging van de 

concentratie leucocyten of plasma CRP. 

Beroerte of cerebrovasculair accident is wereldwijd een van de meest voorkomende doodsoorzaken 

en wordt bovendien in verband gebracht met blootstelling aan luchtvervuiling. Ik voerde een meta-
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analyse uit van de huidige vakliteratuur om het verband tussen beroerte en langdurige blootstelling 

aan PM10 of PM2.5 te kwantificeren (hoofdstuk 4). 

Ik vond 20 studies over het verband tussen langdurige blootstelling aan fijn stof en het 

voorkomen van een beroerte. Ik vond een positief verband voor Noord-Amerika (N=7 studies), Europa  

(N=8) en China (N=3, met extreem hoge blootstellingen) en een negatief verband in Japan (N=2). Het 

geschatte effect van PM2.5  [een stijging van 6% (95% CI 2-11%) van het risico op beroerte bij een 

toename van 5 µg/m³ in PM2.5] was groter dan het effect van PM10 [een stijging van 2% (95% CI -2 to 

7%) van het risico op beroerte bij een toename van 10 µg/m³ in PM10 ]. Deze bevindingen duiden op 

het belang van directe metingen van PM2.5 en bevestigen de hypothese dat de kleine partikels in fijn 

stof (PM2.5 ) schadelijker zijn voor de gezondheid dan de grovere partikels (PM2.5-10 ). 

CONCLUSIES 

In deze thesis vond ik nadelige effecten van luchtvervuiling op de gezondheid in verschillende 

kwetsbare bevolkingsgroepen en voor verschillende tijdsduren van blootstelling. Zowel kortetermijn-

variatie (1 tot 3 dagen) als langetermijnblootstelling (meerder maanden tot jaren) kan acute 

aandoeningen uitlokken, zoals een beroerte, het afstoten van getransplanteerde longen of 

zuigelingensterfte. Op lange termijn kan blootstelling aan luchtvervuiling bovendien de ontwikkeling 

van chronische cardiovasculaire en respiratoire aandoeningen versnellen, zoals atherosclerose of 

longkanker. Uit de twee panelstudies (LTx-patiënten en gepensioneerden) verkregen we gemengde 

resultaten aangaande de rol van ontstekingen in dit proces, gemeten als concentraties van leukocyten 

en plasma CRP. 

Op individueel niveau heeft blootstelling aan luchtverontreiniging een kleiner effect op de 

gezondheid dan andere omgevingsfactoren (zoals roken, voeding en lichamelijke activiteit). 

Blootstelling aan luchtvervuiling gebeurt echter onvrijwillig en is alomtegenwoordig. Aangezien de 

hele bevolking wordt blootgesteld tonen onze studies aan dat luchtverontreiniging wel degelijk een 

belangrijk probleem is voor de volksgezondheid.  
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Gedurende de afgelopen 10 jaar zijn in België (en in West-Europa in het algemeen) de PM10- 

concentraties gedaald tot waarden duidelijk onder de EU-grenswaarde van 40 µg/m³. De waarden 

overschrijden echter nog steeds de richtlijnen van de WHO van 20 µg/m³,voornamelijk in stedelijke 

gebieden, waar het grootste deel van de bevolking woont. Zoals ook uit eerdere studies bleek, vonden 

we geen aanwijzing voor een ‘veilige’ grens voor luchtvervuiling. Dit betekent dat de volksgezondheid 

gebaat is bij elke µg/m³ daling in de concentratie van fijn stof. Dit is een gedeelde verantwoordelijkheid 

van de overheid, de industrie en ook de algemene bevolking: het toenemende wegverkeer en 

huishoudelijke houtverbranding zijn immers een steeds belangrijkere vorm van luchtvervuiling. 
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Het allerlaatste woord geef ik aan de twee grootste filosofen van de 21ste eeuw. 

 

O:  Maar maar, ik wil niet dat papa naar de werk is! 

K: Maar dat moet van zijn baas. 

O: Maar papa is toch de baas van de werk! 

K: Nee nee, die heeft een baas die boos wordt als papa niet komt werken. 

O: Ah... (lange pauze) Papa is de baas van de fietsers dan. 

 

Slaapwel jongens! 


