The implementation of a new segment

preserving and/or (multi-)generational

copying garbage collection for a WAM
and its approximation

Ruben Vandeginste, Bart Demoen

Report CW 819, July 2001

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A — B-3001 Heverlee (Belgium)

The implementation of a new segment

preserving and/or (multi-)generational

copying garbage collection for a WAM
and its approximation

Ruben Vandeginste, Bart Demoen

Report CW 819, July 2001

Department of Computer Science, K.U.Leuven

Abstract

The implementation of previously developed generational copy-
ing garbage collection algorithms based on a novel way to preserve
segments or approximate segments by pages, is described in the con-
text of the ilProlog system. During the implementation, issues arose
that were not foreseen during the introduction and more theoretical
study of the principles. In particular cross page pointers and a trade
off between generations and trailing were investigated. We present
empirical evidence on the usefulness of the alternatives.

The implementation of a new segment preserving
and/or (multi-)generational copying garbage collection
for a WAM and its approximation

Ruben Vandeginste
Bart Demoen

Department of Computer Science
Katholieke Universiteit Leuven
B-3001 Heverlee, Belgium
{ruben,bmd}@cs kuleuven.ac.be

Abstract

The implementation of previously developed generational copying garbage collection al-
gorithms based on a novel way to preserve segments or approximate segments by pages, is
described in the context of the ilProlog system. During the implementation, issues arose that
were not foreseen during the introduction and more theoretical study of the principles. In par-
ticular cross page pointers and a trade off between generations and trailing were investigated.
We present empirical evidence on the usefulness of the alternatives.

1 Introduction

We assume familiarity with the WAM [18, 1], with Prolog garbage collection as in [2, 4, 8]. For an
excellent overview of issues in Prolog garbage collection , see also [3]. More about garbage collection
in general can be found in [11]. An early reference to generational garbage collection is [13].

In [15], a new way to preserve heap segments during a copying garbage collector is presented:
while a sliding collector (based on the Morris algorithm for instance - see [14]) preserves even the
order of individual cells - and thus a priori also the order heap segments delimited by choice points - a
copying collector in general does not preserve the order of individual cells, and it requires extra work
(and new algorithms) to preserve segment order nevertheless. One algorithm and implementation
that does preserve the order of segments, is presented in [8] and is based on a reverse traversal of
the segments during the copying phase. Omne characteristic of this algorithm is that in principle
it smproves the contents of segments, in the sense that it moves useful data to the most recent
segment it is reachable from. However, when combined with a generational algorithm, it can also
move data from an older to a younger generation. This is contrary to the idea of generational
garbage collection , but it also shows that in a context with backtracking, there is no clear cut way
to deal with generations. The preservation of order of segments presented in [15] is based on a very
simple but powerful idea: count the number of useful cells in a segment. This is possible and useful
only because marking is mandatory: marking is unusual in a copying context, but it is necessary
in principle (see [4]) and useful in practice (see [8]). So, the method presented in [15] also relies on
a marking phase that precedes the copying and makes further use of it.

In section 3 we give enough detail on the method in [15] to follow this paper, but we refer to
[15] for more details.

We implemented the methods of [15] in ilProlog ([5]): ilProlog is not a standard conforming
Prolog system but it is based on the WAM and similar enough to other Prolog systems to make
the reported experience in this paper useful for other systems that are WAM based as far as the
control data structures and the structure representations.

We start by describing what we want and what we do not want to investigate with the bench-
marks in 2. We then explain briefly the basic idea of preserving segments in 3 and present also the
basic implementation. Section 4 shows different ways of approximating the exact segment structure:
performance is the reason for investigating this. Section 5 shows how to combine use the segment
structure for generational garbage collection . in particular, the pushing of a generational choice
point (section 5.2.1) and local stack generations are discussed (section 5.2.3). Also the problems
in combining pages with generations is explored in section 5.3. Section 6 shows the benchmark-
ing results of our garbage collectors, as well as the overhead of changes to the (ilProlog) WAM
(section 6.3; we also discuss the results. Section 7 discusses our basic choices in policy. Section 8
gives a conclusion and indicates future work. The appendix contains a set of extreme and artificial
examples.

2 Benchmarking philosophy

It is important to state what exactly we want to measure and how the benchmarks achieve this. It
is also important to state what we do not want to measure.

e the benchmarks do not aim at comparing sliding with copying collectors: this has been done
in the past in several contexts (see e.g. [16])

e the benchmarks do not aim at comparing policies of the memory management: we have
obviusly made choices about the number of generations, the expansion treshold, the tenuring
policy etc.; but this paper does not investigate their impact on overall performance

e the benchmarks do not aim at judging the allocation policy of the underlying abstract ma-
chine: ilProlog is WAM based, but one deviation from WAM that is important for memory
management, is that free variables are always allocated on the heap;

¢ we do not try to minimize the total runtime (mutator + collector) of a benchmark, instead,
we run benchmarks always with the least possible heap size so that no expansion is performed;
this stresses the garbage collector most, so that we get more information out of the figures;

e we are not measuring how well the different schemas scale; we do not run the same benchmarks
with increasing input; instead we have chosen one particular input which gave running times
that are reasonably significant

e we do not aim at comparing the implementation of our collector schemas with collectors in
other Prolog systems; only occasionally we will mention for a particular program how long
the SICStus Prolog garbage collector (3.8.2) or Yap (4.3.19) takes; the SICStus and Yap
collectors are based on sliding and not fully generational

So, we are after comparing different implementation choices within the same system: a copying
collector in a WAM implementation. In particular, we compare the novel techniques described
in [15] with the original copying collector within ilProlog: this collector is non-generational and
collapses all segments into one, as described in [4].

Most benchmarks were taken from [12] - the same benchmarks show up in performance tests.
These programs are quite small but their input can be set large enough to strain the garbage
collector. They usually do not represent real-life programs. We have excluded two benchmarks
from this set (queens and rev) because the former uses too few heap cells (queens-24 uses about
356) and the latter has a very peculiar memory behaviour: see appendix A.6.

One benchmark consists of an old version of the ilProlog compiler compiling itself.

Two more benchmarks come from the real-life application in data mining ACE [5]: ilProlog
was especially constructed to support such activity. These benchmarks have a more realistic mix of
deterministic and non-deterministic computation, require larger heap sizes and have longer running
times: ACE and ilProlog deal with applications of data mining that require runs that last several
hours on databases of several gigabytes of memory.

Finally, throughout the text and in the appendix, we will use artificial programs to illustrate a
particular point.

3 The basics of the segment counting method

As explained in [15] we count during the marking phase how many cells survive in each segment.
To this purpose, at the start of the collection, a segment list is made with an associated counter.
This counter is updated during the marking phase. These counts are then used at the beginning
of the copying phase for making the new segments in the to-space. More details are in the next
sections. The version of the garbage collector that implements this is later in the tables referred to
as new. It performs always a major collection, i.e. the whole heap is subject to collection, as in the
old version of the collector, which we refer to as oldgc. Note that the ilProlog compiler generates
precise information (in the form of live variable maps) which environment cells are live at each
possible continuation point in the program; these maps are used during marking.

3.1 Making the segment list

Since we need to count the number of live cells in each segment, we must be able to determine
during the marking phase, for each cell that is marked, to determine in which segment the cell
resides. Similarly, during the copying phase, we need to know for each cell we copy to which
segment in the to-space it must be copied. Thus we need a function to determine to which segment
a cell belongs. We will call this function the segment lookup function. For each surviving cell
we need two segment lookups: one during the marking phase and one during the copying phase.
This makes the performance of the lookup function quite important. We implemented the segment
lookup function as a binary search in the segment list, which simply contains all segment pointers
(pointers in the heap to the start of a segment). The segment list is built by traversing the choice
point stack and storing the heap pointer found in each choice point.

3.2 Marking

The difference between the marking phase in the old collector and the new one is the use of several
counters. We need as many counters as segments. For each marked cell, we augment the counter
corresponding with the segment the cell belongs to. These counters then allow us to allocate the
new to-space and determine precisely the segments in it.

3.3 Copying

In the copying phase we use the Cheney algorithm which copies heap cells from the from-space to
the to-space [6]. The original Cheney algorithm uses two pointers scan and nezt. The algorithm
is easily adapted to copy to segments in the to-space. We simply use one scan and next pointer
for each segment in the to-space. These pointers are both initialised to the beginning of their
segment. To compute the start of each segment in the to-space we use the list of counters created
in the marking phase. After this has been done, we copy each marked cell to the next-pointer of
its segment. Copying is finished when all scan pointers are equal to their respective next pointer.

As soon as the size of the new segments is known, we can adjust the heap pointers from the
choice points: this is combined with the forwarding of the root set in the choice points. The heap
pointer in the choice point is set to the start of the new segment. This is essential for preserving
the segments. In [4], all heap pointers from choice points point to the new top of the heap and no
segments are preserved. Although segments and their order are preserved, the order of cells within
one segment is not retained. Retaining segments after collection is good because it allows instant
reclaiming of heap space on backtracking. Respecting segment order is beneficial for generational
garbage collection .

3.4 Further implementation issues

Earlier, we mentioned that for each live cell, the lookup function is called twice. This is not
completely correct: during copying, we follow [4] and forward as a whole contiguous blocks of
marked cells. This means that during marking typically for exactly one cell in such a block the
lookup function is called. The origin (or destination) segment of other cells is determined by simply
checking whether the boundary between the current segment and the next one is crossed. This
effect is clearly visible in the tables later, where marking in the segment preserving can become
significantly more expensive, accounting for most of the higher garbage collection time.

We mentioned also that the scan pointer of every segment must have caught up with its next
pointer for the copying to end. In the segment preserving versions (new for instance - see later table
1) it is enough to iterate twice over all segments. In the pages version (see section 4.2), pointers
which do not appear in the trail, can cross pages and the number of times one must iterate over all
pages is not known in advance.

4 Approximations to preserving segments

4.1 Collapsing segments

The most visible extra cost in the segment counting method (compared to a non segment preserving
copying garbage collector) is the segment lookup function. We use a binary search for this, which
is O(log(n)) with n the number of segments. Since this function is executed at least once for each
live heap cell, it might take an important amount of time in the collection cycle.

Having too many segments indeed results in a real slowdown. Not only the lookup function
will make performance worse, but also the fact that each segment needs its own scan-next pair of
pointers. A solution to this is to merge small adjacent segments into one segment while making
the segment list. We call this collapsing segments. We set a minimum segment size and collapse
a segment which is smaller than the minimum size with the older segment just next to it. An
alternative to setting a minimum size in advance, is to let the minimal allowed size of a segment
depend on the total size of the heap and take for instance heap_size/64 as the minimum: this has

a extra benefit that there will be at most 64 segments ever, putting some upper bound on the cost
of the lookup function.

The effect of merging segments is that after collection there will be one mixed segment for each
set of collapsed segments. This also means that on backtracking over one of the choice points which
previously delimited one of the segments in the mixed segment, there will be no instant reclaiming.
But if we only collapse small segments, the small amount of heap space we would recover on
instant reclaiming might not be worth the speed we gain with a faster lookup function: indeed,
when collections take less time, we can afford doing more collections. So, in collapsing segments
there is a trade-off between the speedup because of a faster lookup and the instant reclaiming of
heap space.

4.2 Pages

Another approach to have a faster lookup is the use of pages as an approximation for segments.
This has been described in [15]. If we use pages with a size of a power of 2, the lookup function is
very simple and indeed O(1), i.e. independent from the number of pages.

It is clear that by using pages, some opportunity for instant reclaiming is lost as in the case
of collapsing segments: if the page size is set large, then a page might contain several segments.
If the page size is set small, there will be less loss of instant reclaiming, but since in general page
boundaries don’t match segment boundaries, the loss will be there.

Another important consequence of the fact that a page boundary does not necessarily coincide
with a segment boundary, is that such a boundary can also be in the middle of a structure, by
which we mean a functor+its arguments. This is different from segments, because in the ilProlog
system we know that a structure will be completely in one segment and not spread over two (or
more) segments. Regardless of the aspect of segments or not, the order of cells inside a structure
determines the meaning of the structure and this order should be kept during copying. In fact we
must consider a structure as one block of cells which should be treated as one heap object. If we are
about to copy the argument of a functor for instance, we must copy the whole structure at once so
as to preserve the layout of structures. Normally this is done by copying the whole continuous block
of active cells around the to-copy-cell at once. It should be clear that this works if our to-space
doesn’t contain several segments. If there are several segments, but each structure block contains
cells belonging to the same segment, everything will be copied to the same new segment and still
be one continuous block. The problem in the case of pages is that even if we copy the whole block
of active cells at once, we will not be sure that the layout will be preserved. Indeed, suppose that
the first part of a structure is in page A and the rest in page A + 1. If this structure is the first
object copied to the new page A, then after copying there will be a gap between the two parts of
the structure, resulting in a corrupt heap. The solution we implemented is to copy the first part of
the structure to the end of page A and make sure that the second part of the structure is copied
to the beginning of page A 4+ 1. The copy function checks whether the block of active cells crosses
a page boundary. If this is the case, then we lower the scan-next pointers of page A 4+ 1 in the
to-space with the amount of cells in page A that are in the active block. To summarize, we make
the new page A + 1 bigger, so that we can put the first part of the structure in it. Note that this
method requires that we try to copy these structures before we start the normal copying phase. If
we would already have copied cells to the new page A + 1, we wouldn’t be able to make the new
page bigger by lowering the scan-next pointers. This is only possible if the new page A + 1 is still
empty. There is no much extra overhead for handling these special cases. The cost is at most the
number of pages times the time needed to check whether a cell is already forwarded.

Using pages seems a good solution because of the constant cost lookup function. Since the cost
of the lookup function doesn’t depend on the number of pages, nor on the size of pages, we are
able to chose the pages as small as we want without changing the cost of the lookup. Using smaller
pages reduces the loss on instant reclaiming. Smaller pages will also keep better overall order on
the heap in case of large segments. This can benefit locality. One disadvantage of smaller pages
is that you need more scan-next pointers. Later we will mention a disadvantage of pages when we
try to combine the idea with generations (see section 5.3). The use of pages is implemented in a
version that is later referred to as pages in the tables. Also here, we have experimented with a fixed
page size and one that depends on the size of the heap.

4.3 Further implementation issues

For both pages and collapsing segments, all data structures already mentioned in the explanation of
the segment counting method can be used in the same way as before. For both the use of pages and
the use of collapsing segments, care has to be taken to put the heap pointers in the choice points
right. The heap pointer in a choice point should point to just after the end of the new collapsed
segment. We can keep on using the algorithm mentioned before because it does this.

5 Generations and segments

5.1 Basics

Introducing generations in an existing collector seems attractive and at first sight also easy. One
famous implementor [7] said recently I thought that I would just remember H at the moment of
garbage collection and at a later garbage collection ignore everything above it. Things are a wee bit
more complicated.

It has been noted already in [2] and later in [4] that the choice point at the moment of a garbage
collection can be used as the barrier between the old and the new generation: the trail naturally
acts as an exception list and the barrier is in fact a write barrier. This idea can be generalized as
follows in two ways:

e at garbage collection time, any choice point can be used to delimit the part of the heap that
will be collected and the part that is not

¢ a sequence of choice points can be used to delimit different generations - this observation was
made in [15], but might have been made before by others

With this approach, the collected part of the heap always consists of a set of most recent
segments on the heap. This is compatible with sliding as well as copying collectors and even with
non segment preserving ones like in [4].

The implementation that uses the choice point at the moment of collection as a generational
write barrier is referred to as newgen.

Using the choice points that arise from normal execution of the program has the advantage
of simplicity, but the disadvantage that during a long deterministic computation with garbage
collections , no new write barriers are set up. This can even result in a worsening of complexity,
exactly like non-generational garbage collection can, as an example in [15] shows. Such behaviour
has been observed also in practical programs and benchmarks.

That is why the idea has occurred to several people to push after garbage collection a genera-
tional choice point whose failure continuation just cuts-fails. This seems like a simple idea, but the

practice is different. In comp.lang.prolog, Joachim Schimpf wrote at some point (not exactly): we
used this generational choice point in ECLiPSe for some time, but it caused too many bugs and it
was taken out again. [15] points out ways to manage the generational choice points. We describe
the actual implementation later. We refer to it as gencp.

Finally, it is also possible to have the same generational division of the local stack ': this saves
time during marking and copying - see for instance [2]. In the context of ilProlog, this was not so
obvious as free permanent variables are always allocated on the heap and prior to the introduction
of generational garbage collection , environment cells never needed trailing. The system that
implements this is referred to as traills and discussed in more detail in section 5.2.3. All other
implemented versions of the garbage collector scan the whole environment stack (during marking
and copying). The trade off is efficiency of normal execution and garbage collection .

5.2 Extensions and choices
5.2.1 Managing generations and generational choice points.

The basic idea is to push a generational choice point after garbage collection : this choice point
will naturally act as a write barrier so that the next garbage collection can ignore everything older
than that choice point. There are the following problems with this:

1. the generational choice point can disappear due to backtracking or a cut

2. the generational choice point blocks the environment that is current at the moment of the
garbage collection , even if - without garbage collection - that environment would have been
deallocated by TRO

3. the generational choice point keeps the variables that are in the blocked environment alive

4. when garbage collection occurs frequently - in a long running application for example - there
will be many generational choice points and it becomes crucial that they do not introduce
complexity problems

In [15] several ways to deal with disappearing choice points were described. We have imple-
mented the following two:

e the collector keeps a list of generational choice points; at each collection, an appropriate choice
point is searched for so that garbage collection is (hopefully) generational: an appropriate
choice point has to meet following conditions :

— the choice point should be a real choice point, appearing in the linked list of choice points

— if the first condition is met, we have a valid choice point, but it’s not guaranteed to
be the same as when it was recorded in the list; to be more accurate on this, we also
record the heap pointer found in the choice point in the list of generational choice points;
depending on whether the heap pointer found in the choice point is the same, lower or
higher than the recorded value, we respectively accept, accept or reject this choice point
as a generational choice point; the point here is that we only reject it if accepting it
would make the old generation bigger

normal execution is not affected, i.e. no abstract machine instruction needs to be changed

for the trail, this is obvious

e at cut and at execution of the trust instruction (and variants of trust), the list of generational
choice points is updated if any generational choice point disappears; this puts a mild overhead
on normal execution, which will be measured in section 6.3; we name this precise_gcp

The generational choice point blocks environments that belong to otherwise deterministic clauses
and keeps variables in these clauses alive. This is a consequence of a naive implementation of the
generational choice point idea. The consequences are disastrous to some benchmarks (e.g. tak):
the blocked environments result in a much larger local stack ? and are repeatedly traversed.

Moreover these protected environments will keep extra cells alive and also worsen marking time,
because the whole environment stack will be traversed during the marking phase. See appendix
A.5 for an example.

However, one can observe that a generational choice point has no forward continuation. This
means that the E (and CP) field in a generation choice point are never used during the execution, so
it seems correct to also ignore the generational choice points during garbage collection. During the
marking phase this fits in easily and also during the copying phase, this is possible. However, the
environments remain blocked, thereby enlarging the memory footprint of the program. However,
since a generational choice point does not need to protect environments, it’s sufficient to let it
protect the same environments as the previous choice point. This is achieved by putting in the
generational choice point as top-of-local-stack pointer the same tops as in the previous choice point.
In this way, the check for tail-recursion-optimization in the deallocate instruction - which looks at
the tops in the current choice point - will not unnecessarily fail.

This solution doesn’t introduce any extra problems and is implemented in the final version of
the collector. Note that in a traditional WAM with a combined environment and choice point stack,
this solution will not work: environments are not only logically but also physically blocked by the
generational choice point.

5.2.2 Dealing with many generational choice points

Pushing generational choice points can introduce complexity problems when repeated collections
make a chain of generational choice points, which delimit very small segments (takgc is an example
of such behaviour). The problem with such behaviour is that the choice point stack will grow very
large and each garbage collection we traverses it three times (during marking, reversing choice point
pointers, copying). Several things can be done to reduce or solve this problem. A first point to
note is that there is little use in pushing a generational choice point, if the segment that it will
create is smaller than the defined minimum segment size. In the next garbage collection cycle,
such a segment would be collapsed with another segment anyway. A second point is that there
is no use anymore for a chain of generational choice points (pushed by the garbage collector), on
the condition that the segments they delimit already reached tenuring age. One could decide to
update the generational choice point after collection, instead of pushing a new one. Updating is
done by replacing the heap pointer in the choice point. This prevents the building up of a chain of
generational choice points. A more complex solution could allow a maximum number of chained
pushed generational choice points.

5.2.3 Generations in the local stack

As also mentioned in [2] it is possible to treat the environment stack (or combined choice point/environment
stack) in a generational way and only scan the most recent environments for root pointers. Of course

%ilProlog has a separate environment and choice point stack

to make this work, pointers from environment cells to the heap should be conditionally trailed. This
required small changes to the ilProlog system, because formerly, such trailing of environment cells
was not necessary. This extra trailing introduces a small overhead on the normal execution mech-
anism: timings can be found in 6.3.

Dealing with the environment cells in the trail turned out to be more difficult than expected.
The problem here is cut or rather the fact that ilProlog does not tidy the trail on cut: this results
in two more or less problematic types of pointers in the trail.

1. a cut can have the effect of allowing the later (or immediate) deallocation of an environment
that was previously blocked by the now cut away choice point; this can result in pointers from
the trail to a location on the local stack that (a) is not in any environment at all, (b) contains
the previous E pointer or the continuation pointer of a (in the mean time newly allocated)
environment, (c) a newly initialized cell in a new environment

2. more than one trail entry can point to the some location in the local stack
A small example shows the latter problem:

p:- (£X), ! ; true), £(X), p.
£(0).

The query 7 — p. results in an unbounded amount of trail and each trail entry points to the
same location in the local stack. Since only bindings to a (tagged) pointer to the heap need to
be trailed, the ehap and trail will grow at the same rate in this example (since ilProlog allocates
variables always on the heap); the local stack in this example has constant size. Still the trail grows
unlimited.

To get out of this mess, we saw three solutions:

e tidy the trail on cut: we could implement a tidy trail and that would keep the trail clean; we
rejected that solution because of its worst case time performance - see for instance [9]

e just before the first goal in a clause that requires an environment, initialize all environment
cells by binding them to a free variable on the heap; this removes the need for trailing
of environment cells, since now all bindings happen in the heap; this solution would involve
changes in the compiler and affects space and time behaviour of programs not needing garbage
collection ; so we also rejected this solution

e a cautious approach in which we check during garbage collection whether the environment
pointer on the trail is pointing to something valid and in which we duplicate trail entries are
removed

We choose for the cautious approach: it is relatively easy to implement - although we got it
wrong a couple of times first. Pointers of the kind (a) can be detected simply by a range check and
deleted from the trail. Pointers of the kind (b) can point to cell that is not a (tagged) heap pointer
and can also be removed. The kind (c) can result in redundant trail pointers, but they do not pose
a problem otherwise.

Duplicate entries in the trail are a bit more difficult, because of the way the copying algorithm
works and because we do not detect them during the marking phase: the environment cells are
treated (as root set) before the trail. Root cells are in principle visited only once during the copying

phase and relocated immediately to the final destination of the cell they point to. So, a root cell
never contains a forwarding pointer. We changed that so that after the trail is treated for the first
time during the copying phase, environment cells pointed to by trail cells contain a forwarding
pointer. In this way, a duplicate trail entry can be recognised as one pointing to a forwarding
pointer, and set to null. Since we traverse the trail at this point from young to old, this removes
all duplicates except the youngest, which is exactly what is needed. Then the environments are
treated - of course taking into account the forwarding pointers they can contain. Afterwards, the
trail is scanned from old to new, removing the null entries and compacting the trail, while at the
same time changing the forwarding pointers in environments to their final value.

An extra bit for each environment cell, indicating whether it is pointed to by a trail entry or not
would have also solved this problem, but our internal representation does not allow for an extra bit
in the cell itself, and the environment cells we deal with here not even have a mark bit allocated
for them because they belong to the non-collected generation.

5.3 Combining pages and generations

While trying to use the pages approach in a generational way we came across a few problems which
hadn’t been thought of before in [15]. These problems make the pages approach less attractive
than originally anticipated.

We already explained the problem with structures crossing page boundaries in a previous section.
Although not directly related to that, the problem is also caused by the fact that page boundaries
can be anywhere.

When we work generational, every choice point should be able to act as a generational choice
point. To be able to garbage collect the young generation, we need to keep track of all pointers from
the old generation to the young one. As discussed in the segment approach, we record intersegment
pointers on the trail. To know the segment boundaries, we look at the heap pointers in the choice
points.

There is a big difference between the pages and the segments approach in what they will do
with the heap pointers in the choice points. In the segments approach, after collection (whether
segments have been collapsed or not) every choice point’s heap pointer will split the heap in two
parts so that all cells of a segment are either all above or all under that pointer. This means that
we can find in the trail all pointers from the older part to the newer part. This works also with
collapsed segments, because these are treated as one big segment. So in the case of a segment
preserving garbage collector, the heap pointer in a choice point has the extra meaning of delimiting
segments on the heap.

In the case of pages, this assumption is no longer true. A heap pointer in a choice point does
not split the heap on (old) segment boundaries. When using pages, the meaning of a heap pointer
in a choice point is just a pointer to a place on the heap to which one can safely reclaim heap
space upon backtracking over to choice point. The same could be said in the case of a non segment
preserving copying collector.

A choice point containing such a heap pointer cannot be used as a generational choice point.
The reason is that such a heap pointer might have cells of the next segment under it and above it.
So it’s possible that a cell from that segment lies under the heap pointer and points to a cell above
(newer than) that heap pointer. The trail does not contain a pointer to that cell, because this is
in fact an intra-segment pointer. If that cell above the heap pointer is only accessible through that
other cell, the marking phase will miss it.

We have not found any satisfying solution for these cross-page pointers. It also seems that

10

a solution would cause so much additional overhead that it’s overall performance would be less
than with the segments approach. In practice, it means that generations cannot be combined with
pages, or to say the least: a choice point whose H field was adapted during a garbage collection
with pages, can in general not serve as a delimiter between generations. In practice this means that
if the pushed generational choice point is lost (by backtracking or cut) the next garbage collection
will be major.

6 Evaluation

All measurements were performed on a Pentium IIT 866Mhz with 256 Mb RAM and timings are
given in milliseconds.

6.1 Comparing the different options

Table 1 shows some statistics about the simple benchmarks: the figures are given for respectively
e the old garbage collector which does not preserve segments and is non-generational (oldgc)
e the new garbage collector in a mode that preserves segments, but is non-generational (new)
e the new garbage collector in a mode that preserves segments and is generational (newgen)

e the new garbage collector in a mode that preserves segments, is generational and pushes
generational choice points (gencp)

e the new garbage collector in a mode that preserves segments, is generational, pushes gen-
erational choice points and keeps precise information about the generational choice points
(precise_gcp) as described in section 5.2.1

e the new garbage collector in a mode that preserves segments, is generational, pushes genera-
tional choice points, keeps precise information about the generational choice points and trails
environment variables as described in 5.2.1 and 5.2.3 (precise_gcp-traills)

The statistics are about:

e totalmarked: the total number of marked cells during the run of the program
e heaprecovered: number of heap cells recovered by instant reclaiming

e trailrecovered: number of trail cells recovered during garbage collection

e maxls: high water mark of the environment stack

e maxtr: high water mark of the trail

e maxcp: high water mark of the choice point stack

e nrcollections: total number of collections

e totalmarktime: total time taken by marking

e totalgctime: total time taken by the collections

11

totalruntime: total time taken in running the benchmark

The name of each benchmark is followed by the heap size with which this benchmark was run.
No expansions were needed during these runs.

Since the granularity of timing is 10 milliseconds, it is clear that a timing of e.g. 90 milliseconds
totalgctime for 155 collections is not very meaningful. In such cases, one should look rather at the
totalruntime.

Table 2 contains similar figures for the larger benchmarks.

new recovers more heap space on backtracking than oldgc; however, although that in some
benchmarks (boyer, tsp) the difference is noticeable, it doesn’t have any influence on total-
marked or nrcollections; a reason for this is that the benchmarks don’t do much backtracking

new is slower than oldgc, mainly because of the segment lookup function; in most benchmarks
the totalgctime is about 20% slower, however the benchmarks gsort and serialgc show some
strange behaviour: totalgctime is smaller with new than with oldgc; we can’t find a profound
explanation for this, but it seems that cache effects play a role here

newgen is mostly slower than new; most of the benchmarks are deterministic and only have
a choice point near the start of the heap, the benefit of newgen here is not-collecting that
small part (it will become the old generation); this gain isn’t enough to justify the overhead of
keeping the generation list; because of this most benchmarks have a higher totalgctime with
newgen, only boyer does really benefit from the generational approach which can be seen in
the difference of totalmarked

gencp (and also precise_gcp and precise_geptraills) have in some cases more collections than
the other collectors; the reason herefore is that in deterministic applications other collectors
will be forced to collect the whole 'deterministic’ segment, while gencp will artificially split
up the segment in smaller parts and only collect the most recent parts; by doing this gencp
will possibly keep more cells alive (it has a bigger old generation) and this results in more
collections

gencp and precise_gcp won’t necessarily have the same amount of collections because they
use different choice points as generational choice points; precise_gcp will move its generational
choice point on backtracking or cut, while gencp will jump back to the previously recorded
generational choice point; as a result precise_gcp will have a bigger old generation; after a
few collections some cells in these segments will die; in the case of precise_gcp these won’t be
cleaned up because they sit in the old generation, but they will be cleaned up with gencp;
then gencp has more free space in its heap will have fewer collections

gencp (and also precise_gcp and precise_geptraills) will have a bigger maxcp; this is expected
because they push a new choice point on the stack after each collection; on deterministic
benchmarks with many collections (tak, tsp) however this can blow up the use of choice point
stack space; we also expect the trail usage to be higher because of the higher number of choice
points; in gsort and serialgc though, maxtr is lower, this is something we can’t explain

precise_gcptraills uses more trail space than precise_gcp, but it also recovers more trail
space; this can be seen in boyer and all realistic benchmarks; the most remarkable here
is muta_model_1: while its trailrecovered almost doubles, the amount of maxtr becomes only
slightly bigger; this is probably because there are many duplicates in the trailed environment
cells

12

benchmark what oldgc new newgen gencp | precise_gcp | precise_gcp
traills

boyer totalmarked | 52079509 | 52079509 | 38870130 | 52079509 29194142 29216960
6M heaprecovered 7260877 | 11334108 10856703 11334123 10856703 10877938
trailrecovered | 10791464 | 10791747 | 10869262 | 10791753 10869278 11078459

maxls 459 459 459 459 459 459

maxtr 813310 813306 813306 813306 813306 827890

maxcp 235 235 235 235 242 235

nrcollections 20 20 21 20 21 21

totalmarktime 3470 4190 3220 4220 2590 2890

totalgctime 10440 12060 9330 11990 7350 7510

totalruntime 26660 28320 25550 28440 24460 24450

browse totalmarked 1400475 1400475 1400461 850630 850630 850630
500K heaprecovered | 14485089 | 14765177 | 14765192 | 14770942 14770942 14770942
trailrecovered 24044 24048 24048 24026 24026 24026

maxls 60 60 60 60 60 60

maxtr 16805 16805 16805 16805 16805 16805

maxcp 86 86 86 96 96 96

nrcollections 5 5 5 5 5 5

totalmarktime 60 110 120 70 80 60

totalgctime 260 320 350 220 200 200

totalruntime 9020 9060 9140 9020 9250 9440

dnamatch totalmarked 4563750 4563750 4562882 277188 277188 277188
250K heaprecovered 179723 181477 181492 191484 191484 191484
trailrecovered 103312 102667 102667 103281 103281 103281

maxls 67 67 67 67 67 67

maxtr 1549 1549 1549 1549 1549 1549

maxcp 68 68 68 1145 1145 1145

nrcollections 127 127 127 155 155 155

totalmarktime 210 370 440 40 0 20

totalgctime 680 860 960 70 30 80

totalruntime 6180 6320 6390 5610 5770 5970

gsort totalmarked 5685001 5685001 5684861 2741869 2741869 2741869
500K heaprecovered 1836037 2134925 2134940 2199177 2199177 2199177
trailrecovered 1738706 1738685 1738685 1729324 1729324 1729324

maxls 183 183 183 183 183 183

maxtr 99373 99355 99355 94599 94599 94599

maxcp 68 68 68 236 236 236

nrcollections 23 23 23 25 25 25

totalmarktime 950 530 550 310 280 260

totalgctime 1640 1400 1420 720 680 710

totalruntime 2720 2490 2490 1750 1790 1830

serialgc totalmarked | 23520742 | 23520734 | 23520713 19409637 19409637 19409637
10M heaprecovered | 16932749 | 17357475 | 17357490 | 23177546 23177546 23177546
trailrecovered 6537512 6537562 6537562 5117693 5117693 5117693

maxls 118 118 118 118 118 118

maxtr 2295067 2295001 2295001 2092710 2092710 2092710

maxcp 68 68 68 75 75 75

nrcollections 6 6 6 6 6 6

totalmarktime 3160 2500 2520 2170 2240 2210

totalgctime 6370 6100 6130 5690 5710 5700

totalruntime 24210 23890 24020 23740 24450 24350

tak totalmarked 58633 58633 49995 74702 74702 74702
10K heaprecovered 1144 1172 1187 5939 5939 5939
trailrecovered 16945 0 0 23149 23149 23149

maxls 256 256 256 256 256 256

maxtr 35 2 2 57 57 57

maxcp 68 68 68 12493 12493 12493

nrcollections 1237 1237 1237 1776 1776 1776

totalmarktime 90 20 20 50 110 20

totalgctime 120 70 60 160 220 80

totalruntime 3590 3600 3610 3750 3790 3800

tspgc totalmarked | 28389147 | 28389147 | 28380705 670143 670143 670143
250K heaprecovered 8517 31983 31998 199889 199889 199889
trailrecovered 52278 45296 45296 50868 50868 50868

maxls 75 75 75 75 75 75

maxtr 204 204 204 2844 2844 2844

maxcp 68 68 68 10202 10202 10202

nrcollections 1209 1209 1209 1448 1448 1448

totalmarktime 1430 2070 2130 460 640 80

totalgctime 3230 41343 4170 690 850 250

totalruntime 65800 67240 67700 63990 63770 65900

Table 1: Comparing garbage collections on smallish benchmarks

benchmark what oldgc new newgen gencp | precise_gcp | precise_gcp
traills

comp totalmarked 425145 425145 425145 425145 425094 425104
260K heaprecovered 3423966 3536358 3536373 3536373 3536373 3536386
trailrecovered 212055 212102 212102 212102 212102 224939

maxls 6255 6255 6255 6255 6255 6255

maxtr 44796 44796 44796 44796 44796 47687

maxcp 5917 5917 5917 5917 5917 5917

nrcollections 6 6 6 6 6 6

totalmarktime 40 70 60 50 60 40

totalgctime 110 130 120 120 120 130

totalruntime 2540 2560 2570 2510 2570 2710

muta_model_1 totalmarked 3957027 3940411 3880039 3904746 3625855 3544412
300K heaprecovered | 277587743 | 277627758 | 277611466 | 277606016 277683262 277590406
trailrecovered 193439 193455 193360 193816 193166 356861

maxls 3925 3925 3925 3925 3925 3925

maxtr 18560 18413 18413 18417 18429 18938

maxcp 1636 1636 1636 1636 1636 1636

nrcollections 118 118 120 118 124 125

totalmarktime 190 370 350 320 290 440

totalgctime 650 890 950 830 790 830

totalruntime 57670 59220 59400 57770 59250 60930

muta_nomodel_1 totalmarked | 370409112 | 370421395 | 372673278 | 370421395 374100790 370783244
5M heaprecovered | 325879386 | 325879872 | 325877716 | 325879884 325879850 325880563
trailrecovered 33768107 33765016 33765022 33766804 33788773 34596489

maxls 9295 9295 9295 9295 9295 9295

maxtr 828300 828284 828284 828284 828284 828364

maxcp 7495 7495 7495 7502 7495 7495

nrcollections 239 239 240 239 241 241

totalmarktime 22120 35640 35930 35630 36100 35920

totalgctime 76940 94880 97050 95020 95530 96700

totalruntime 696440 716630 719700 715840 712720 728340

Table 2: Comparing garbage collections on more realistic benchmarks

e gencp and precise_gcp clearly offer the best performance on the smallish benchmarks; on
the realistic benchmarks they’re still the best segment preserving collectors, but oldgc is
overall better there; especially for muta_nomodel_1 oldgc performs remarkably better, a better
policy for the generational collector might help here: precise_gcp which has the second best
totalruntime, actually marks more cells than oldgc does; the reason for this is that it keeps
cells alive by never doing a major collection; another remark about muta_nomodel 1 is that
it doesn’t benefit much from a generational approach, the old generation is all times only 1%
of the total heap size;

in some cases precise_gcp is slower than gencp in totalruntime; mostly when this is the case,
totalmarked will be the same for the two; the reason for the difference in totalruntime is the
runtime overhead with precise_gcp

there are few benchmarks which really benefit from precise_gcptraills; mostly totalruntime is
a little slower than with precise_gcp; the causes for this is that (a) (like already mentioned)
there are many duplicates on the trail and while they will be removed out of the trail, they
still cause overhead in at least one collection cycle and (b) the trailing of environment cells
causes an additional runtime overhead; it seems that the win of traills isn’t enough to win
back its cost

14

6.2 Comparing different ways of collapsing/approximating segments

Tables 3 and 4 show the effect of different approximations to segments. In the columns, newgc
none means that no segments are merged (this amounts to setting the minimally allowed segment
size to 1); newge 8K means the minimally allowed segment size is 8K cells; newgc H/64 sets it to
the heap size divided by 64. A similar explanation is valid for pages, but H/64 is always rounded
to the nearest power of 2.

The figures show some performance advantage for the pages, but the number of segments in
almost all benchmarks is very low. This seems to be inherent in the way Prolog programs are
written: backtracking is usually not deep and choice points are discarded quickly.

6.3 The overhead of precise generational choice point maintainance and of en-
vironment cell trailing

At the start, one of our guiding principles was that no changes should be made to our WAM, and
that execution of programs that do not need garbage collection should not be slowed down. Some of
the implemented alternatives do not adhere to that principle, in particular the precise generational
choice point maintenance and the introduction of environment cell trailing. So it is worthwhile
measuring the overhead of each of these mechanisms independently of garbage collection .

Note first that precise generational choice point maintenance does not affect space, and adds
a cost to the total of the execution which is linear in the number of pushed generational choice
points: complexity is not affected. The cost of environment cell trailing is a constant factor for
some instructions (getpvar for instance), but has an unbounded worst case space behaviour in the
absence of tidy trail at cut as was shown by the example in 5.2.3.

Table 5 shows for our set of benchmarks the overhead of both mechanisms.

The overhead seems small and acceptable for precise generational choice point maintenance.
Trailing local stack variables has a slightly higher cost.

7 Policy

As mentioned before, the aim of the paper was not to evaluate the policy of the memory manager.
Still, some choices had to be made in the implementation. Here is a short overview of them without
any justification.

e our tenuring policy is that a cell moves to the older generation after it has survived two
garbage collections

e we allow at most 300 entries in the generation list: when this overflows, we merge every two
adjacent entries into one, so that we keep 150

e a major collection is performed when the marking of the minor collection detects that not
more than 30% of the heap will be free after the minor collection

e the default for merging segments is that segments are merged (newgc H/64 in tables 3 and
4), wiyth the minimum segment size depending on the heap size

Also, the main underlying principle in the implementation of generations with pushing a gen-
erational choice point has been that at every collection, such a choice point would be pushed and

15

benchmark what newgc newgc newgc pages pages
benchmark none 8K H/64 8K H/64
boyer totalmarked | 52079514 | 52079509 | 52079509 | 52079509 | 52079509
6M heaprecovered 11334130 11334120 11334108 11325938 11268579
trailrecovered | 10791547 | 10791610 | 10791747 | 10791652 | 10791725

maxls 459 459 459 459 459

maxtr 813296 813304 813306 813310 813310

maxcp 235 235 235 235 235

nrcollections 20 20 20 20 20

totalmarktime 4450 4420 4330 3440 3510

totalgctime 12370 12530 12120 10880 10820

totalruntime 28560 29010 28540 27270 27340

browse totalmarked 1400475 1400475 1400475 1400475 1400475
500K heaprecovered | 14765196 | 14765189 | 14765177 | 14757007 | 14761088
trailrecovered 24048 24048 24048 24048 24048

maxls 60 60 60 60 60

maxtr 16805 16805 16805 16805 16805

maxcp 86 86 86 86 86

nrcollections 5 5 5 5 5

totalmarktime 130 140 350 90 80

totalgctime 330 320 570 300 270

totalruntime 9170 9110 9350 9080 9040

dnamatch totalmarked 4563750 4563750 4563750 4563750 4563750
250K heaprecovered 181496 181489 181477 179976 180030
trailrecovered 102667 102667 102667 102667 102667

maxls 67 67 67 67 67

maxtr 1549 1549 1549 1549 1549

maxcp 68 68 68 68 68

nrcollections 127 127 127 127 127

totalmarktime 390 390 290 180 190

totalgctime 830 820 780 680 710

totalruntime 6270 6310 6360 6170 6180

gsort totalmarked 5685001 5685001 5685001 5685001 5685001
500K heaprecovered 2134944 2134937 2134925 2130648 2134729
trailrecovered 1738685 1738685 1738685 1738685 1738685

maxls 183 183 183 183 183

maxtr 99355 99355 99355 99355 99355

maxcp 68 68 68 68 68

nrcollections 23 23 23 23 23

totalmarktime 550 510 550 290 310

totalgctime 1340 1390 1360 1190 1210

totalruntime 2440 2480 2430 2280 2270

serialgc totalmarked | 23520734 | 23520734 | 23520734 | 23520486 | 23521442
10M heaprecovered | 17357494 | 17357487 | 17357475 | 17349057 | 17324216
trailrecovered 6537562 6537562 6537562 6537606 6537541

maxls 118 118 118 118 118

maxtr 2295001 2295001 2295001 2294994 2295143

maxcp 68 68 68 68 68

nrcollections 6 6 6 6 6

totalmarktime 2530 2500 2500 1830 1890

totalgctime 6140 6070 6070 5600 5560

totalruntime 23980 23900 23920 23270 23320

tak totalmarked 58633 58633 58633 58633 58633
10K heaprecovered 1191 1156 1172 1159 1164
trailrecovered 0 16945 0 16945 1393

maxls 256 256 256 256 256

maxtr 2 35 2 35 17

maxcp 68 68 68 68 68

nrcollections 1237 1237 1237 1237 1237

totalmarktime 20 30 80 20 10

totalgctime 50 50 100 70 70

totalruntime 3610 3600 3610 3540 3570

tspgc totalmarked | 28389147 | 28389147 | 28389147 | 28389147 | 28389147
250K heaprecovered 32002 31995 31983 23813 29942
trailrecovered 45296 45296 45296 45296 45296

maxls 75 75 75 75 75

maxtr 204 204 204 204 204

maxcp 68 68 68 68 68

nrcollections 1209 1209 1209 1209 1209

totalmarktime 2110 1930 2060 1370 1450

totalgctime 4230 | 16 4090 4050 3280 3810

totalruntime 67590 67400 67260 66640 67030

Table 3: Collapsing and approximation of segments for smallish benchmarks

benchmark what newgc newgc newgc pages pages
benchmark none 8K H/64 8K H/64
comp totalmarked 425145 425145 425145 425145 425145
260K heaprecovered 3536389 3536370 3536358 3528198 3534327
trailrecovered 212090 212102 212102 212099 212092

maxls 6255 6255 6255 6255 6255

maxtr 44796 44796 44796 44796 44796

maxcp 5917 5917 5917 5917 5917

nrcollections 6 6 6 6 6

totalmarktime 70 60 30 50 20

totalgctime 150 140 100 120 90

totalruntime 2550 2560 2550 2540 2540

muta-model_1 totalmarked 3939492 3940411 3940411 3957868 3939356
300K heaprecovered | 277609440 | 277622298 | 277627758 | 277545957 | 277569532
trailrecovered 193298 193487 193455 193571 193483

maxls 3925 3925 3925 3925 3925

maxtr 18413 18421 18413 18448 18426

maxcp 1636 1636 1636 1636 1636

nrcollections 118 118 118 118 118

totalmarktime 400 330 360 240 310

totalgctime 870 830 880 800 830

totalruntime 59610 59220 59300 58720 58010

muta_nomodel_1 totalmarked | 370418927 | 370421395 | 370421395 | 370406992 | 370406489
5M heaprecovered | 325880698 | 325879884 | 325879872 | 325879362 | 325879589
trailrecovered 33764946 33765015 33765016 33764925 33765010

maxls 9295 9295 9295 9295 9295

maxtr 828276 828284 828284 828297 828297

maxcp 7495 7495 7495 7495 7495

nrcollections 239 239 239 239 239

totalmarktime 42140 35500 38650 27860 27740

totalgctime 101830 95110 99120 85840 85640

totalruntime 726800 718630 1951710 709410 711320

Table 4: Collapsing and approximation of segments for realistic benchmarks

that even on a major collections, we keep the generations. This leads to anomalies in some pro-
grams: tak is a good example of that. We have described some techniques for keeping the number
of generational choice points low, but have not fully experimented with them.

The benchmarking is not really influenced by some of the above decisions: if there are too few
generational choice points, the strategy for dealing with too many such choice points is immaterial,
and major collections occur rarely during the benchmarks.

8 Conclusion and future work

As a compromise between the efficiency as shown by the benchmarks and the convenience of
implementation, we favour the following choices in the implementation:

benchmark | newgc | precise_gcp | traills
boyer 2000 2010 2170
browse 1550 1560 1590
dnamatch 2190 2150 2340
gsort 1060 1050 1060
serialgc 1800 1830 1880
tak 3290 3360 3490
tspgc 3080 3170 3300
comp 2200 2200 2290

Table 5: The overhead of dealing with retracted generational choice points and environment cell
trailing

17

e keep information about multiple generations as precise as possible, i.e. precise_gcp
e merge segments and do not make very small new generations

e avoid large number of generational choice points - possibly a clean up of the choice point
stack must be considered or a different architecture which allows for an extra generational
choice point stack

e no environment cell trailing

The latter requires a bit more explanation: the worst case of scanning the complete environment
stack on every garbage collection is as bad as doing non-generational garbage collection . However,
in practice it turns out that local stack consumption is not that large: maintaining TRO is more
important.

There are many issues that we have not touched in this study and that are worth exploring:

e an adaptive policy which changes according to the observed occupancy or fragmentation - see
for instance [17]

e using a policy that takes into account the cache - see for instance [19]

e adopting some form of the policy of [12], which moves the heap limit during the computation

We intend to design and implement a garbage collector for GNU-Prolog [10]: in that context,
we will also have to deal with a value trail. In ilProlog, we had to deal with a non-backtrackable
form of setarg/3 already: this gives rise to heap cells that are trailed multiple times and they are
dealt with in essentially the same way as multiple trailed local stack cells (see 5.2.3)). The issue of
a value trail has been dealt with in other contexts as well and no special problems are anticipated
when the collector is truly generational.

Finally, in principle we have implemented everything needed to deal with any number of gen-
erations. In practice, we deal only with two generations: when a minor collection does not free
enough space (this is actually detected after a marking phase already), our policy is to do a major
collection. We could instead attempt to collect a larger part of the heap but not the complete heap.
However, the larger applications (ACE) indicate that older generations (i.e. sets of segments that
have survived several collections) are very small. If this is true for the typical application written
in Prolog, there is little point in maintaining multiple generations. Also here, adaptive strategies
should be investigated.

Acknowledgements

We are grateful to the machine learning team of the department of computer science of the
K.U.Leuven for providing us the ACE benchmarks.
References

[1] Hassan Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT Press,
Cambridge, Massachusetts, 1991. See also: http://www.isg.sfu.ca/~hak/documents/wam.html.

[2] K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin. Garbage collection for Prolog based on
WAM. Communications of the ACM, 31(6):719-741, June 1988.

18

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Y. Bekkers, O. Ridoux, and L. Ungaro. Dynamic memory management for sequential logic
programming languages. In Y. Bekkers and J. Cohen, editors, Proceedings of IWMM’92: In-
ternational Workshop on Memory Management, number 637 in LNCS, pages 82-102. Springer-
Verlag, Sept. 1992.

J. Bevemyr and T. Lindgren. A simple and efficient copying garbage collector for Prolog. In
M. Hermenegildo and J. Penjam, editors, Proceedings of the Sizth International Symposium on
Programming Language Implementation and Logic Programming, number 844 in LNCS, pages
88-101. Springer-Verlag, Sept. 1994.

H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele. Ex-
ecuting query packs in ILP. Inductive Logic Programming, 10th International Conference,
ILP2000, London, UK, July 2000, Proceedings (J. Cussens and A. Frisch, eds.), Lecture Notes
in Artificial Intelligence, vol. 1866, Springer, 2000, pp. 60-77.

C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM,
13(11):677-678, Nov. 1970.

Vitor S. Costa Private communication.

B. Demoen, G. Engels, and P. Tarau. Segment order preserving copying garbage collection
for WAM based Prolog. In Proceedings of the 1996 ACM Symposium on Applied Computing,
pages 380-386. ACM Press, Feb. 1996.

B. Demoen and K. Sagonas. CHAT is ©(SLG-WAM). Proceedings of the 6th International
Conference on Logic for Programming and Automated Reasoning; pp. 337-357; Sept. 1999,
Thilisi, Georgia

D. Diaz and P. Codognet. GNU Prolog: beyond compiling Prolog to C Proceedings of the
Second International Workshop, PADL 2000, Boston, MA, USA, January 2000. LNCS 1753,
pp. 81-92 See also http://gprolog.inria.fr

R. Jones and R. Lins. Garbage Collection: Algorithms for automatic memory management.
John Wiley, 1996. See also http://www.cs.ukc.ac.uk/people/staff/rej/gcbook /gcbook.html.

X. Li. Efficient memory management in a merged heap/stack Prolog machine. In Proceedings
of the 2nd International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP’00), pages 245-256. ACM Press, Sept. 2000.

H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of objects.
Communications of the ACM, 26(8):419-429, June 1983.

F. L. Morris. A time- and space-efficient garbage compaction algorithm. Communications of
the ACM, 21(8):662-665, Aug. 1978.

K. Sagonas and B. Demoen. From (multi-)generational to segment order preserving copying
garbage collection for the WAM. K.U.Leuven, CW report 303, October 2000

P. M. Sansom. Combining copying and compacting garbage collection or Dual-mode garbage
collection. In R. Heldal, C. K. Holst, and P. Wadler, editors, Functional Programming, Work-
shops in Computing, Glasgow, Aug. 1991. Springer-Verlag.

19

[17] Yoshikawa Takahide and Chikayama Takashi. An Adaptive Generational GC Scheme that
Dynamically Adjusts the Young Generation Size Preprint

[18] D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI International,
Menlo Park, U.S.A., Oct. 1983.

[19] Paul R. Wilson, Michael S. Lam, Thomas G. Moher. Caching considerations for genera-
tional garbage collection. Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, San Francisco, California, pp. 32-42, June 1992.

20

A Some extreme examples

Extreme examples serve the purpose of showing a particular feature of algorithms.

A.1 Deterministic execution and garbage collection .

This example is meant to show clearly the problem of non-generational garbage collection for
deterministic programs: in program below, the list L2 is constructed incrementally and a non-
generational collector will marked and copy repeatedly all parts, leading in fact to a quadratic
algorithm, instead of a linear. With generations, only the last increment of L2 is marked and
collected at any collection.

go(N) :-
mklist(N,L1,[]),
b(L1,L2),
use(L1-L2).

b([_IR],L) :-
mklist (10000,L,S),
garbage_collect,
b(R,S).

use(_).

mklist(N,L,S) :-

N=0 -
L=3S
Mis N -1,
L = [N|R],
mklist(M,R,S)
).

The query 7 — go(100). yields the timings (only garbage collection) reproduced in table 6

oldgc | gencp | SICStus Yap
34.560 800 23.330 | 29.880

Table 6: True generational version non-generational garbage collection in deterministic code

Note that the collectors in SICStus and Yap are of the sliding type and that there is no garbage:
this is the reason why sliding beats the non-generational copying collector in oldgc.

21

A.2 Quasi-deterministic execution and garbage collection

In Prolog, execution can become deterministic by a cut: programmers have different styles in using
the cut, which can also be hidden in an if-then-else construct. The following program builds a list
of 100K integers and then repeatedly collects it: the program does have a choice point which is cut
away either early or late. The reason for having this program is that a similar situation occurs in
the benchmark boyer.

go(N) :-
mklist(100000,L1),
mklist(N,L2),
a(lL2),
use(L1-L2).

%% this version of a/1 has a late cut
a([_IR]) :-
(x(R), a(R) ; true), !.

%% alternative definition of a/l1 with an early cut
%h a([_IR]) :-
YAA (x(R), !, a(R) ; true).

x([_1_1) :- garbage_collect.

use(_).
mklist(N,L) :-
(N=0 -
L=1[]
Mis N -1,
L = [N|R],
mklist(M,R)
).

The query 7 — go(100) results in the figures in table 7

gencp | SICStus | Yap
late cut 120 4.430 | 5.870
early cut | 4.240 4.380 | 5.870

Table 7: Effect of cutting away generational choice points

Note that this shows a shortcoming in the way we are dealing with cut away generational choice
points.

22

A.3 Recovery on backtracking

It is clear that instant reclaiming has an overal beneficial effect, but it also affects garbage collection
itself; although it costs time to retain the order of the segments for our copying collector, instant
reclaiming pays for it more than this cost. The following program shows that - note that it will
not benefit from pushing generational choice points, as the point of garbage collection is always
backtracked over.

go :-
mklist(650000,L),

cp(L).

cp(L) :-
mklist(320000,_),
mklist(80000,L2),
use(L2),
fail.

cp(L) :-
mklist(340000,L3),
use(L3),
fail.

use(_).

mklist(N,L) :-
(N=0 ->
L=1[]

Mis N -1,

L = [N|R],

mklist (M,R)
).

The query ? — go yields the following timings (only garbage collection) and amount of heap
recovered by instant reclaiming (in heap cells). Both SICStus 3.8.6b and Yap 4.3.0use a sliding
collector and retain the full capacity of instant reclaiming.

oldgc new | SICStus | Yap
gctime 370 260 250 | 390
recovered | 142147 | 2140138

Table 8: Effect of recovery on backtracking on garbage collection time

23

A.4 Generations and environments

When running a system with a generational collector, one can also impose the same generation
structure on the environment stack as indicated in section 5.2.3. In the context of ilProlog, this
means that environment cells also need (conditional) trailing. One can also consider the whole local
stack as belonging to the generation to be collected. The following is an artificial example showing
the effect of choosing either: first 1M environments are created - without any local variable - and
then 100 garbage collections are triggered.

go :-
mkenv (1000000) .
mkenv(N) :-
(N ==0 ->
choice,
go(100)
Mis N -1,
mkenv (M) ,
tail
).
choice. % a pity we need this choice point
choice :- fail. % the result of tos/e in gencp
tail.
go(N) :-
N> o0,
garbage_collect,
Mis N -1,
go(M).

Table 9 shows the timings on different versions of our collectors and on SICStus and Yap.

oldgc | traills | SICStus Yap
gctime | 9.970 310 25.640 | 14.910

Table 9: Effect of avoiding to traverse all environments

24

A.5 Naive generational choice points can keep dead objects alive

Consider the following deterministic and tail recursive predicate:
p :- read(X), X \== end_of_file, write(X), p.

The structure of this predicate is typical for many applications. When there is enough input to
read, eventually a garbage collection will taken place during the call to read/1. For simplicity, we
rewrite the clause so as to make the garbage collection and the pushing of the generational choice
point explicit.

p :- read(X), gencp, X \== end_of_file, write(X), p.

gencp :- garbage_collect.
gencp :- fail.

It is clear that only the term just read is useful. The generation choice point has now as effect
that a choice point is pushed, which keeps the environment of p/0 alive and which also keeps alive
the read term that would have become garbage after it is written out.

We had not anticipated this side effect of generational choice points. We have dealt with it as
described in section 5.2.1.

However, the issues are different in different versions of the collector: first of all, in no case
should the E-CP fields in a generational choice point pushed by the collector be used as a starting
point for marking. Further,

e in the version that traverses the whole local stack on garbage collection , just putting the
tos field of the generational choice point to the tos of the previous choice point will allow
deallocation in deterministic mode

e in the version traills there is another issue: the tos field in a choice point is used not only for
deallocation of environments, but also for conditional (environment cell) trailing; this means
that environment cells younger than this tos might not get trailed, so these environments must
be traversed during garbage collection ; this means that also the E field of the genrational
choice point must be set to the same value as the tos: that is the reason we needed the extra
choice point in A.4

There seems to be some inherent problem here: the price for not being able to deallocate
environments is having to traverse them during garbage collection . Even in a system that has
environment cell trailing from the start, this problem occurs. This requires further investigation.

25

A.6 Why reverse/2 is a bad garbage collection benchmark

The reverse/2 predicate basically works like a copylist/2 predicate and it is slightly easier to explain
the reasoning on copylist/2.

copylist([1,[]).
copylist ([XIR], [X|S]) :- copylist(R,S).

called as in ? — mklist(L), copylist(L, NewL). where only NewL is non-garbage at the end of
the computation.
From the point of view memory management it can be rewritten as:

copylist([1,[1).
copylist (In,Out) :-
In = [X|R],
forgetlocations(In,X,R), % the values of X and R are in registers now
% and In is no longer needed
allocatelocations(Out,X,S),
Out = [X|S],
copylist(R,S).

It is clear that the size of the useful data is constant and equal to the size of the input list. Also,
the oldest cells of the input list become garbage while newer list cells in the output become alive.
Clearly, at every non-generational garbage collection , as much data as that size needs to be touched.
Now suppose the heap size is just large enough to contain size+ 1 cells, then the number if garbage
collections will be in the order of size and we get a quadratic process. Any non-generational schema,
suffers from this problem. And also in a generational schema, the problem remains the same, as
long as the policy is to have a fixed heap size and only perform garbage collection when that heap
is full, i.e. when no more cells can be allocated at the top of the heap. For this type of program, a
better policy is offered by [12], which (simplified for deterministic computations) consists in

e assuming a virtually unlimited heap

e performing a generational garbage collection after a certain number of heap cells have been
newly allocated (since the last garbage collection)

It is clear that such policy will perform garbage collection work linear in the size of the input
list, at the cost of needing an effective heap large enough to contain both the input and output list.

The policy of [12] is attractive, however, a policy that does not deal with major collections at
all, is unrealistic at the moment.

26

