Practical Aspects for a working
Compile Time Garbage Collection
System for Mercury

Nancy Mazur
Peter Ross
Gerda Janssens
Maurice Bruynooghe

Report CW 810, May 2001

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A — B-3001 Heverlee (Belgium)

Practical Aspects for a working
Compile Time Garbage Collection
System for Mercury

Nancy Mazur
Peter Ross
Gerda Janssens
Maurice Bruynooghe

Report CW 810, May 2001

Department of Computer Science, K.U.Leuven

Abstract

Compile-time garbage collection is still a very uncommon feature
within compilers. In previous work we have developed a compile-
time structure reuse system for Mercury, a logic programming lan-
guage. This system derives so called reuse information. This in-
formation indicates which datastructures can safely be reused at
run-time.

As preliminary experiments were promising, we have continued
this work and have now a working and well performing near-to-
ship compile-time garbage collection system built into the Melbourne
Mercury Compiler.

In this paper we present the multiple design decisions leading to
this system, we report the results of using compile time garbage col-
lection for a set of benchmarks, including real-world programs, and
finally we discuss further possible improvements. Benchmarks show
substantial memory savings and a noticeable reduction in execution
time.

Keywords : Program Analysis, Mercury, Compile-time Garbage Collection
CR Subject Classification : D.3.4, 1.2.3

Practical Aspects for a working Compile Time
Garbage Collection System for Mercury

Nancy Mazur, Peter Ross*, Gerda Janssens, and Maurice Bruynooghe

Department of Computer Science, K.U.Leuven
Celestijnenlaan, 200A, B-3001 Heverlee, Belgium
{nancy,gerda,maurice}Q@cs.kuleuven.ac.be
petdr@miscrit.be

Abstract. Compile-time garbage collection is still a very uncommon
feature within compilers. In previous work we have developed a compile-
time structure reuse system for Mercury, a logic programming language.
This system derives so called reuse information. This information indi-
cates which datastructures can safely be reused at run-time.

As preliminary experiments were promising, we have continued this work
and have now a working and well performing near-to-ship compile-time
garbage collection system built into the Melbourne Mercury Compiler.
In this paper we present the multiple design decisions leading to this sys-
tem, we report the results of using compile time garbage collection for a
set of benchmarks, including real-world programs, and finally we discuss
further possible improvements. Benchmarks show substantial memory
savings and a noticeable reduction in execution time.

1 Introduction

Modern programming languages typically limit the possibilities of the program-
mer to access and manage memory directly. Allocation and deallocation is dele-
gated to the run-time system and its garbage collector. Declarative languages go
further by prohibiting destructive updates of datastructures. The price to pay is
a considerable loss of performance due to the run-time overhead of garbage col-
lection and the cost of creating new datastructures instead of updating existing
ones.

Special techniques have been developed to overcome this handicap and to
improve the memory usage, both for logic programming languages [4,13,20] as
for functional languages [11,23,17]. Some of the approaches depend on a com-
bination of special language constructs and analysis using unique objects [21,1,
24], some are solely based on compiler analyses [7,12,18,10], and others combine
it with special memory layout techniques [23]. In this work we develop a purely
analysis based memory management system.

Mercury, a modern logic programming language with declarations [21] profiles
itself as a general purpose programming language for large industrial projects.

* Mission Critical, Avenue Claire, 27 - B 1410 Waterloo - Belgium

Memory requirements are therefore high. Hence we believe it is a useful research
goal to develop a compile-time garbage collection (CTGC) system for this lan-
guage. In addition, mastering it for Mercury should be a useful stepping stone
for systems such as Ciao Prolog [9] (which has optional declarations and includes
the impurities of Prolog) and HAL [5] (a Mercury-based constraint language).
The intention of the CTGC system is to discover at compile-time when data is
not referenced to anymore, and could be reused for new data.

Mulkers et al. [20] have developed an analysis for Prolog which detects when
memory cells become available for reuse. In [2] this analysis was adapted for
logic languages with declarations. As Mercury supports programming in the
large through the use of modules, the analysis was further refined for modular
logic languages with declarations [16]. A first prototype implementation was
made to measure the potential of the analysis for detecting dead memory cells.

As the results of the prototype were promising, we have continued this work
and implemented a full CTGC-system for the Melbourne Mercury Compiler
(MMC). Once a program is annotated with the derived reuse information, the
CTGC-system has to decide which reuses to actually perform, and how. In this
paper we present different possible decisions that can be made and that we have
implemented. A series of benchmarks are given. These benchmarks measure not
only the global effect of CTGC, but also the effect of the different decisions.

In this work we mainly focus on techniques of reuse-selection that were easy
to implement in the existing compiler. More theoretical approaches are described
in [7], where the concept of reuse maps is used for representing the one-one map-
pings between dead cells and their reuses, and in [4] where a general formulation
of the optimization problem at hand is given.

After presenting the necessary background terminology in Section 2, we de-
scribe the overall structure of the CTGC-system in Section 3. Section 4 presents
the different reuse decisions that were made in orde to obtain a first working
reuse system. In order to increase the performance, low level additions were
made as described in Section 5. The results for the benchmarks are reported
in Section 6. Using a cell cache (Section 7) even better results are obtained.
Finally some further improvements are suggested (Section 8) and a conclusion
formulated (Section 9).

2 Preliminaries

2.1 Mercury

Mercury [8] is a logic programming language with types, modes and determinism
declarations. Its type system is based on a polymorphic many-sorted logic and
its mode-system does not allow the use of partially instantiated datastructures.

The analysis performed by our CTGC-system is at the level of the High
Level Data Structure (HLDS) constructed by the MMC. Within this structure,
predicates are normalized, i.e. all atoms appearing in the program have distinct
variables as arguments, and all unifications X =Y are explicited as one of (1) a

test X ==Y, (2) an assignment X :=Y, (3) a construction X < f(Y3,...,Y,),
or (4) a deconstruction X = f(Y3,...,Y}) [8]. Within the HLDS, the atoms of
a clause body are ordered such that the body is well moded.

Just like in the HLDS we will use the notion of a procedure, i.e. a combination
of one predicate with one mode, and thus talk about the analysis of a procedure.

2.2 Types, selectors, datastructures and aliases

Using a simple example, we recall some basics about types. The polymorphic
type 1ist(T) is defined as: 1ist(T)--->[]1 ; [T|1list(T)]. The right hand
side of this expression defines the different type functors of 1ist (T). A type tree
is a possibly infinite graphical representation of a type definition. A finite type
graph is obtained by imposing that two type nodes on the same branch from the
root are the same when they are labelled with the same type. The type 1ist (T)
has two type nodes (1ist(T) and T) and two functor nodes ([1 and [.]).

Selectors are used to select type nodes in type graphs. The empty selector
is denoted by e, it selects the root node of the type graph of the type to which
it belongs. In general a selector is a tuple (f,4). It selects the it" child of the
functor node labeled f. Selectors can be combined in such a way that they form
a legal path down a type graph. With recursive types, several selectors can be
equivalent — selecting the same type node — and the shortest one can be used as
a representative of the equivalence class.

Terms also have a tree representation and nodes of the term tree are mapped
to the corresponding type tree. With X a variable of type ¢ and s a selector for
t, X*® denotes the nodes in the term tree which are mapped to t*. We refer to
the memory cells implementing these nodes as the datastructure or data cell of
X*. X¢ gelects the root node of the term tree.

Part of the CTGC-system consists of deriving alias information [2]: in order
to decide whether a datastructure d can be reused at some point, we have to
be sure that there are no datastructures which are still needed during further
execution of the program and which share memory with d. Alias information is
expressed as a tuple (X®= Y %) with X® and Y?®v identifying type nodes (of
the same type) in the type graphs of resp. X (of type tx) and Y (of type ty).
Its meaning is that the term trees for X and Y might share memory at nodes
mapped to resp. t3* and t%.

2.3 Reuse information

In [16] we developed a reuse analysis which derives which datastructure might
become available for reuse at some program-point within a procedure. The datas-
tructure is then said to be dead. This is detected during a so called default anal-
ysis which assumes that no aliases exist between the inputs of a procedure when
called, and only the outputs will be accessed after returning from the call.

If a suitable candidate for reusing the available dead datastructure is en-
countered we say that direct reuse is possible. In some cases this reuse can be

independent of the calling environment of the procedure. This is a case of un-
conditional direct reuse. Yet, in general, whether a datastructure can be reused
or not will depend on the caller. We express this as a condition that has to be
met by the calling environment of the procedure in order for the reuse to be safe.
This is conditional direct reuse.

The reuse analysis is not limited to detecting direct reuse. Part of it’s respon-
sibility is to verify whether a call to a procedure can be replaced by a call to
the reuse-equivalent of the procedure. This is done by verifying the reuse condi-
tions. Consider a procedure p, with reuse-version p”, which is called within the
definition of the body of a procedure ¢. In analogy to direct reuse, calling the
reuse-version p” of p might be independent of the calling environment of ¢. This
is unconditional indirect reuse. If it is not independent, then again, conditions
can be derived which express the circumstances in which this substitution is safe.
This is called conditional indirect reuse.

For each analysed module, an interface-file can be generated which records
whether some of its exported predicates allow reuse, and under what conditions.
This interface-file is used during the analysis of modules depending on that
module. For more details we refer to [16].

2.4 Low level representation of typed terms

The CTGC-system aims at reusing datastructures. In the MMC, these datas-
tructurese are represented using different representations for the terms of each
type. Each term is represented by either a single machine word or a tagged
pointer to an object on the heap. We only reuse terms of the latter kind.

We illustrate the representation with the following types:

:— type dir ---> north ; south ; east ; west.
:— type example ---> a(int, dir) ; b(example).

Primitive types such as integers, chars, floats! and pointers to strings are repre-
sented as single machine words. Types such as dir, in which every alternative
is a constant are equivalent to enumerated types in other languages. Mercury
represents them as small consecutive integers starting from zero. This represen-
tation is stored directly in a machine word. Terms of types such as example
are stored on the heap. The pointer pointing to the actual term is tagged [6].
This (primary) tag allows the distinction between different function symbols of
a type. Terms of types having more function symbols than a primary tag can
distinguish use secondary tags.

Figure 1 illustrates the internal representation of some terms after the con-
struction unifications: X <= a(3, east), Y <= b(X). Now suppose that it is
known that a datastructure such as X becomes available for reuse, and that the
deconstruction in which this is decided is followed by a construction Z <= a(12,
west). The memory words pointed to by X can be reused for constructing Z: 3

! Depending on the word-size, these might have a boxed representation.

will be set to 12, and 2 (east) to 3 (west). The pointer (at X) can be reused too,
but its effect is not as important as reusing structures on the heap?.

X <= a(3, east)
JEND
2

Y <= b(X)

Fig. 1. Representation of the memory after X <= a(3, east), Y <= b(X).

3 General structure of the CTGC-system

The CTGC-system consists of three parts (see Figure 2): first annotating the
code, then deciding which reuses to perform and finally generating the low-level
code which does the actual reuse. The input consists of a mode-, type- and
determinism-correct HLDS-representation of a Mercury program.

Part one of the CTGC-system consists of two major annotation-phases based
on program analysis. We first annotate each procedure with the possible alias-
ing between the head variables. The aliasing is derived in a goal-independent
analysis and requires a fixpoint computation to cope with recursive calls. Each
module is analysed separately. The analysis relies on alias-information available
in interface-files to deal with procedures defined in other modules than the one
being analysed. The second annotation step derives liveness information. Each
deconstructed datastructure is marked as either available for reuse or not. It also
records the condition for which the reuse is safe. The liveness annotations are
derived by the default liveness analysis. No fixpoint-computation is needed. For
more details about these analyses we refer to previous work [2,14-16].

The second part of the CTGC-system contains all the passes which decide
which reuses will be allowed. The reuse decisions occur at two levels. First decide
which construction unifications in a procedure should reuse available dead cells
(direct reuse). Once the direct reuses are sorted out, and accompanying reuse
conditions are expressed, a pass is needed to verify and decide which procedure
calls can be replaced by their reuse counterparts (indirect reuse). This pass
requires a fixpoint computation as allowing indirect reuse can in itself introduce
new reuse conditions. Finally each procedure is split into different versions: a

2 Reusing the pointer may require that the pointer be kept on the stack, increasing
stack usage in the program. Currently we do reuse the pointer as well.

basic version having no reuse (or only the unconditional ones), and versions
with conditional reuse. While the underlying concepts were already developed
in [16], the pragmatics of our implementation are discussed in the next section.

Finally, the last part generates the low-level code corresponding to the reuses
decided in the previous pass. This pass consists of generating the apropriate
backend-code (e.g. C) which performs the discovered reuse. We will not go into
the low level details of this modification to the Mercury compiler.

(€N dlias-, liveness- .
source
— - | annotated
source annotated code
(3))/

optimized
Compi led + interface

code

Fig. 2. Structure of the CTGC-system. Annotating the code (1), deciding the reuses
(2), and finally, generating the optimised compiled code (3) and extra interface-files.

4 A working reuse decision approach

Consider a predicate which converts a given list of data-elements to another list
of data-elements as shown in Figure 3. After the annotation-pass the procedure
will be said to create no new aliases between the arguments (integers being an
unsharable primitive type), and the datastructures at each of the deconstructions
(List0 and Field1) will be marked as conditionally dead (i.e. if reused, it will
be a conditional direct reuse). The purpose of this pass is to select the reuses
that yield the most interesting saving w.r.t. memory usage and execution time.

4.1 Deciding direct reuse

A first restriction we imposed from the very beginning was to limit reuses to
local reuses, i.e. a dead cell can only be reused within the same procedure. It
cannot be reused within another procedure. In order to allow otherwise could
complicate this decision phase considerably (see also Section 7).

Another restriction we assume is that when executing a construction state-
ment, at most one dead datastructure is reused (not a combination of different
dead structures), and that one dead structure is reused by at most one construc-
tion. This assumption was also taken for simplicity’s sake.

:— type fieldl ---> field1(int, int, int).
:- type field2 ---> field2(int, int).

:= type list(T) ---> [1 ; [T | 1list(T)].

:— pred convert(list(fieldl), list(field2)).
:— mode convert(in, out) is det.

convert(List0O, List):-
(% switch on List0

List0 => [],

List <= []

List0 => [Fieldl | RestO], % (d1)
Fieldl => fieldi(A, B, _C), % (d2)
Field2 <= field2(A, B), % (cl)
convert (Rest0, Rest),

List <= [Field2 | Rest] %h (c2)

Fig. 3. Annotated Mercury code for converting a list of fieldl-elements to a list of
field2-elements. In this code, the modes of the unifications are made explicit.

The default liveness analysis of the example identifies the deconstructed
datastructures (at d1, resp. d2) as available for reuse. The procedure also con-
tains two constructions (c1 and c2) requiring the allocation of memory. Each of
them can potentially reuse the available dead datastructures.

Each of the combinations yields an acceptable reuse-scheme. Yet, which one
yields the most interesting memory reuse? It has been shown that this problem [4]
can be reformulated as an instance of the maximum weight matching problem for
a weighted bipartite graph. However for simplicity of implementation we have
reduced this general matching problem to two orthogonal decisions: imposing
constraints on the allowed reuses, and using simple strategies to select amongst
different candidates for reuse. We will discuss each of these.

Constraints on allowed reuses. Constraints allow to express desirable properties
between the dead cell and the newly constructed cell. Here we have used con-
straints on the differences in arity or constructor that we allow between these
cells. For example, reusing a cell of arity 15 for a cell of arity 2 might not be
desirable if the garbage collector is not able to recover the 13 remaining memory-
words. Or if changing the type of a data cell is impossible?, than we can only
allow reuses for matching constructors.
These are the constraints we have implemented:

— Matching constructors. Only allow reuse of a dead cell which has exactly the
same constructor as the new cell. In the example of figure 3 this means that
c1 cannot reuse anything, and c2 can reuse the available memory of d1.

3 This is the case when using .NET as the backend for Mercury.

— Matching arities. This is more flexible as it allows reuse even if the construc-
tors are different, yet in the example no extra reuses would be allowed.

— A limit on the difference between the arities. This constraint expresses the
intuition that it might be interesting to reuse a dead cell, even if some
memory-words cannot be reused. In our example, allowing a difference of
size one would already make the memory of d2 available for reuse in the
constructions c1 or c2.

Selection strategies The above constraints are insufficient to obtain a clear one-
to-one match between deconstructed cells available for reuse, and constructions
where they can be reused (e.g. c1 could reuse either the cell available from d1
or d2) We have experimented with two simple strategies:

— lifo. Traverse the body of the procedure and assign the reuses using a last-

in-first-out selection strategy. This means that when a choice is left for a
given construction, always choose the dead cell which has been deconstructed
most recently. The intuition here is that after deconstructing a variable,
chances are that the first structure one constructs will be fairly similar. This
similarity can have a positive effect on the number of data-fields that have
to be updated when reusing the dead cell.
e.g. If c1 is allowed to reuse the cells of d1 or d2, then according to this
strategy, Field1 will be reused for constructing Field2 and ListO for List.
In this example, this corresponds to the best choice one can make as the
reuse of Field1 corresponds to a simple tag change on the pointer®.

— random. The intuition behind the lifo-strategy might not always be true.
Therefore we have added a simple second strategy which randomly selects
the dead cell amongst all the candidates.

With matching size between dead and reused memory, the selection strategy
only influences the execution time; when allowing size differences, also the total
amount of reuse can be affected.

The configuration combining the constraint of matching arities with lifo as
selection strategy is called the default configuration, or default CTGC.

4.2 Deciding indirect reuse

In order to decide whether a call to a procedure can be substituted by a call
to a reuse version of that procedure, we must be sure that such substitution is
safe. This is tested by checking the reuse-conditions (under the assumption of
a default call pattern). If it is safe to call the reuse-version we have to decide
whether we will do so or not.

Here we have decided for simplicity by always choosing the reuse-version of
a procedure if it is safe to do so. In Section 8 we discuss the drawbacks and
suggest a possible better solution.

4 All the positions of the new cell have the same value as the corresponding positions
of the reused cell.

In our example, at least one local direct reuse is detected and a reuse con-
dition can be expressed. Under the assumption of a default call pattern, it can
be shown that the recursive call satisfies the reuse conditions. Hence, the call
to convert within a reuse version of this procedure can be substituted by a
recursive call to this reuse version.

4.3 Splitting into different versions

Once the possible direct and indirect reuses have been decided, there is one re-
maining decision left: how many versions of a given procedure should be created?
In our example, we might have detected three reuses: we might decide that List0
should be reused by List, Fieldl by Field2, and that the recursive call can
be replaced by the reuse version. Given these decisions, we can generate 4 inter-
esting versions of the initial procedure: a version without any reuse, a version
reusing only List0 (including the recursive reuse call), a version reusing Field1
(and recursive reuse call), and a version reusing both. In general, for a proce-
dure with n possible direct reuses, 2™ interesting versions can be created. In our
current implementation we have limited the number of versions we generate to
at most two: one version which imposes no conditions on the caller (containing
all possible unconditional reuses), and one version containing all possible reuses
that have been detected.

5 Low level additions

Given the previous decisions and strategies, a first working CTGC-system using
the three phases was implemented. Although good results were obtained for small
programs (e.g. naive-reverse), the quality of the results and general behaviour
of the CTGC-system dramatically worsened on more real-life examples. The
reasons for this change in behaviour were:

— Rapid decrease in precision of the aliasing-information, hence more possibil-
ities of sharing data and thus less cells detected for reuse.

— The number of aliases collected within a procedure can become huge. This
makes the operations manipulating them slow and the CTGC process be-
comes too time consuming.

5.1 Enhancing the aliasing precision

The underlying analysis for deriving alias-information uses the concept of top
which expresses that all data parts might be aliased. This is a safe abstraction
in case of total lack of knowledge about the possible existing aliases at some
program point. Once generated, this lack of information will propagate rapidly
as all primitive operations manipulating it will yield top as well.

Such top is generated in the presence of language constructions with which
the analysis cannot cope yet. These are procedures defined in terms of foreign

code (¢, C++), higher-order calls and typeclasses. It is also generated for proce-
dures which are defined in other modules that have not yet been analysed and
for which no interface files have been generated yet.

To obtain a usable CTGC-system, techniques had to be found to limit the
creation and propagation of this lack of information. In our current implemen-
tation, three techniques are used:

1. Using heuristics. Based on the type- and mode- declaration of a procedure,
one can derive whether it can create additional aliases or not, without look-
ing at the procedure’s body. This is the case when the procedure deals with
unique objects (declared di or uo [8]), or has no non-unique output variables®
or when the non-unique output arguments are of a type for which sharing
is not possible (integers, enums, chars, etc.). In all these cases, it is safe to
conclude that the procedure will not introduce new aliases. These heuristics
are applied within the first phase of the system (for generating precise alias-
ing information), as well as in the second phase where the aliases are used
for verifying the reuse conditions.

2. Manual aliasing annotation for foreign code. Important parts of the Mercury
standard library consist of procedures which are defined in terms of foreign
code. Hence the effect of top would be big. With the intention to be used
mainly within this standard library, we have extended the Mercury language
such that foreign code can be manually annotated with aliasing-information.
Such annotations are interpreted by the compiler as a promise which the user
makes about the foreign-code and are not verified by the compiler.

3. Manual iteration for mutual dependent modules. The current compilation-
scheme of Mercury is not yet able to cope with mutual dependent modules.
Consider a module A in which some procedures are expressed in terms of
procedures declared in a module B, and vice versa. The normal compilation
scheme is to compile one of the files, and then the other one. In the presence
of an optimizing compiler this is not enough. At the moment the first module
is compiled, nothing is known from the second one, yielding bad precision
for the first one. This bad precision will propagate further to the second
file as the second file relies on the first one. Bueno et al. [3] propose a new
compilation scheme which is able to handle these cases. As this requires
quite some work, we make a work around by allowing manually controlled
incremental compilation.

5.2 Making compilation faster: widening the aliasing

While it is interesting to have more precise aliasing information than simply
top, introducing more aliases slows down the system. It is not unusual to deal
with thousands of possible aliases at some program points. Now one can argue
that speed is not a major requirement of a CTGC-system as it is not intended

5 A procedure call cannot create additional aliases between input variables which must
be ground at the moment when the procedure is called.

10

to be used at each compilation, only at the final compilation. But even for our
benchmarks we were not ready to wait hours for one single module to compile.
Therefore, in order to produce a usable CTGC-system we have added a special
widening operator which acts onto the aliases produced. This widening operator
can be enabled on a per-module base, such that widening is applied to only a
specific subset of the modules dealt with. The user can also specify the threshold
at which widening should be performed: e.g. only widen the set of aliases if the
size of this set exceeds 1000.

The widening we use consists of replacing a full path of normal selectors by
one selector, a so called type selector. Such a selector consists of a type instead
of a precise tuple containing a type functor and an index. The meaning of a type
selector ¢ applied to a variable V is as follows: V! denotes all the datastructures
within the type tree of the term of variable V which are of type ¢t. We call
this operation type widening. The following example illustrates the effect of type
widening.

Example 1. Consider the following type-definition:

:— type t1(T) ---> empty; consi(T);
cons2(t2(T)); cons3(T, t1(T)).
:- type t2(T) ---> cons4(T, T).

Consider a procedure creating all possible kinds of aliases between an input of
type t1, say V;, and an output of type t1, say V. Using the full standard
selectors, a large alias-set would be generated. If recursive types are always
simplified (the selector (V;,,)*(¢*"s3:2) would be mapped to V), then at most
42 aliases are created. If other variables are involved too, this will have a great
impact on the total number of aliases. Moreover, during the analysis of the
body of a procedure, recursive types are not immediately folded (for reasons of
precision), and thus an even larger set of aliases can be produced. The result
of widening the alias-set will yield only one alias: (V;i¥?¢7 VI¥P¢T) " expressing
that nodes of type T of V;, might be aliased to nodes of type T of V.

This widening leads to a considerable speed-up of the CTGC-system (com-
pilation of some modules taking almost an hour was now reduced to less than 5
minutes), yet has the advantage of not loosing too much of the overall precision.
The expected reuses could still be detected for our benchmarks.

6 First results

We have measured the effectiveness of our CTGC-system on some small toy
benchmarks as well as one major real-life program. All the experiments were run
on an Intel-Pentium IIT (600Mhz) with 256 MB RAM, using Debian Linux 2.3.99,
under a usual workload. Version 0.9.1 of the Mercury compiler was used as a
basis to incorporate the CTGC-system into it. The reported memory information
is obtained using the Mercury memory profiler provided by the compiler. This
profiler computes the sum of all memory allocations on the heap.

11

The small benchmarks are nrev (naive reverse of a large list of integers, this
operation is repeated 100000 times for a list of 30 integers) and gsort (quick
sort applied on a list of 30 integers, repeated 100000 times). We also include the
argo_cnters program (also used in [16]), a benchmark counting various properties
in a file. Figure 1 shows the obtained results. All the CTGC-compiled versions
were compiled with default configuration.

No Reuse Reuse
module C M R C M rel| R
(sec)|(kWord)|(sec)|| (sec) | (kWord) |(%)|(sec)
nrev 1.49199001.20| 6.87 ||14.36| 6000.27 |-94|1.76
gsort 2.05(65000.13| 6.15 {|16.16{10000.13| -84 | 2.45
argo_cnters|| 8.41| 3241.61 |1.45||38.27| 2187.17 |-32|1.41

Table 1. Results for the small benchmarks. C is the total compilation time (in seconds).
M represents the amount of memory used by the program when run (in kilo Words).
R is the time needed to run the program (in seconds). The column labeled ”rel” shows
the relative reduction in memory usage.

Within nrev the CTGC-system is able to recover every list cell deconstructed.
The partitioning procedure used within gsort does not need to allocate any new
memory as everything can be reused locally. For the argo_cnters benchmarks,
reuse is also performed succesfully: the datastructure recording the properties of
the file being updated in place. The difference in timing for this benchmark is
statistically insignificant as most of the execution time is due to I/O.

Next to small benchmarks, we found it important to evaluate the system on
a large real-life program. The large real-life program we used is a ray tracer
program developed for the ICFP’2000 programming contest [19] where it ended
up fourth. This program transforms a given scene description into a rendered
image. It is a quite CPU- and memory-intensive process, and therefore an ideal
candidate for our CTGC-system to be tested on. A complete description of this
program can be found at [22].

The program consists of 20 modules (total of 5700 LOC). All modules could
be compiled without widening, except for one: peephole. This module manip-
ulates large instruction sets and generates up to 11K aliases. Without type-
widening, the compilation of peephole takes 160 minutes. With type-widening
(at 500 aliases), it only takes 40 seconds. The compilation of the program with
CTGC (and widening) takes 5 minutes, compared to 1 minute for a normal
compilation. As some of these modules depend on each other, the technique of
manually iterating the compilation was used to obtain better results. For this
benchmark, the compilation had to be repeated 3 times to reach a fixpoint (for
a total time of 15 minutes). Each time every module was recompiled. In a smart
compilation environment, most of the recompilations could be avoided.

12

To measure the effects of the different constraints and strategies we have
compiled the ray tracer using different CTGC-configurations. As the program
relies on the Mercury standard library, we have repeated the experiments with
and without CTGC in the library.

Table 2 shows the memory-usage and timings of the different versions of the
ray tracer for different scene descriptions. Absolute values are given for the ray
tracer without any CTGC. Relative values are given w.r.t. these absolute values
for the CTGC-configurations. Subscript m is used for memory usage, subscript
t for execution time. The CTGC-configurations use a version of the standard
library with default CTGC, unless explicitly stated otherwise.

input nrm nre 1 1 2m 24 3m 3¢ 4, 4,

(kWord) | (sec) || % % % % % % % %

ch-cylinder|| 7695.82 | 1.61 |[-10.55|-3.73 || -9.52 |-3.11 | -8.15 |-4.35 |-13.77| -6.83
cylinder 24502.26 | 6.88 ||-25.61| -1.60 ||-24.82| -7.27 ||-23.59| -4.36 ||-29.24| -6.54

dice 537487.63 |209.96|(-28.47| -9.61 ||-28.43| -4.55 ||-27.81|-9.35 || -4.80 | 11.31
fib 40276.59 | 11.85 ||-29.64| -6.41 ||-29.61| -5.49 ||-28.81| -6.08 || -7.90 | 10.38
golf 42043.25 | 12.38 || -9.29 | -5.57 || -9.20 | -3.23 || -8.11 | -6.06 ||-13.70| -6.38

mtest10 27152.04 | 7.81 |]-22.77|-12.93||-21.48|-10.12{|-20.90|-12.68(|-18.58| -7.17
mtest1l 24714.49 | 7.07 || -7.42|-6.08 || -7.14 | -2.97 || -6.06 | -6.93 ||-15.95| -9.76

mtest4 7249.93 | 1.92 ||-24.37|-5.21 |-24.36| -3.65 ||-21.13| -7.29 ||-16.10| 2.08
mtestd 9166.16 | 2.36 |-24.21| -6.78 ||-24.20] -3.39 ||-20.84| -6.36 ||-17.51| 0.85
mtest6 11473.07 | 3.26 ||-25.56|-10.12(|-25.55| -8.28 {|-22.90] -9.20 ||-14.18| 0.00
mtest7 121501.36 | 34.78 ||-19.91|-10.47||-19.90| -8.42 ||-17.04(-10.26||-17.01| -6.33
mtest9 5814.33 | 1.53 ||-25.95|-5.88 |-25.93| -5.88 ||-22.90| -8.50 ||-16.54| 0.00
munion 5515.38 | 1.57 [|-19.57| -5.10 (|-19.36| -5.73 ||-16.70| -5.73 ||-17.69| -1.91
reflect 40264.38 | 10.25 ||-19.13| -2.63 ||-19.13| -0.49 ||-15.73| -0.20 ||-15.34| 1.56

reflect2 41105.24 | 10.54 ||-19.11| -2.85 |-19.11| 0.47 ||-15.71]| -3.32 ||-15.37| 1.52
spheres 13609.06 | 3.55 ||-21.73|-3.66 ||-21.72| -3.10 [|-19.65| -5.92 ||-13.39| -0.28
spheres2 14104.01 | 3.70 ||-21.22| -3.24 ||-21.22| -4.32 ||-18.96| -4.59 (|-13.52| 0.27
spotlight 15636.29 | 4.72 ||-30.22|-12.92{|-30.21|-10.81|-28.74|-13.98|(-30.22|-14.41

total 1022670.54|344.56||-27.11|-11.00||-27.01| -7.34 ||-25.72|-10.90||-13.03| 3.20

Table 2. Results for the ICFP-ray tracer program comparing the memory usage and
execution time to the plain non-optimised ray tracer (nry, and nr:).

input: Name of the scene description used as input to the ray tracer.

nr: Absolute memory usage (in kilo words) and execution time of the ray tracer
without any CTGC.

Raytracer with default CTGC-configuration.

As 1, but using the standard library, hence no reuse in library predicates.
Reuse only for matching constructors (lifo strategy) in ray tracer.

Reuse allowed for size difference up to 2 (lifo strategy) in ray tracer.

Ll e

Finally, the last row indicates the total amount of either absolute or relative
memory usage and execution time.

13

Discussion of the results:

— Using the default CTGC configuration (1), up to 27% memory can be saved
globally. For some individual scene descriptions, this can go up to 30%. There
is also a noticeable gain on the execution time.

— Whether the Mercury standard libraries are compiled with CTGC (1) or
without (2) has hardly any effect on the memory usage for the ray tracer.
This can be explained by the fact that the ray tracer makes a limited use of
these libraries. The difference in timings with (1) is not significant enough
to draw any conclusions as this can be due to caching and other factors.

— CTGC under the constraint of only reusing matching constructors (3) gives
a slightly worse memory saving.

— CTGC allowing reuse for constructors with arities within a distance of two
(4) generates the worst results: the amount of memory that can be saved is
less than for (1), but even worse is the execution time which is bigger than
for the ray tracer without CTGC. The decrease in memory reuse is due here
to an inappropriate selection strategy (lifo). Furthermore, the bad timings
can be explained by the fact that with non-matching arities, reuse will leave
space-leaks which cannot immediately be detected by the run-time garbage
collector, with the effect that the garbage collector will be called more often.

We have also experimented with configurations using random as a selection
rule. Combined with the constraints of (1) and (3), results similar to their lifo
counterparts are obtained. The difference in amount of memory reused manifests
itself mostly in the presence of disjunctions within the definition of the proce-
dure®. Redoing (4) with random selection strategy improves the results of (4),
going up to an average of 22% memory saving.

Finally, a default version of the raytracer was built without type-widening.
Compared to the default version presented in Table 2 the overall memory usage
difference is less than 1%. The execution times are comparable.

7 Non-local reuse: cell cache

Currently we have assumed that all dying datastructures must be reused locally,
i.e. within the same procedure in which they die. This means that situations
where a datastructure which dies in some procedure p cannot be reused within
another procedure, say ¢, hence missing quite interesting possibilities of reuse:

pC..) = ..., X = £(, Z),
q(..) := ..., T <= £(4, B),
r(..) :- ..., p(..), qC..),
Seg. X =>£(.), (... Y<=1£(.); ...), Z <= £(..): as the first branch of

the disjunction might not always be executed, it is more interesting to allow Z to
reuse X than Y.

14

There are three ways to achieve non-local reuses as well.

The first and the most difficult is to extend the analysis (i.e. part 1 of the
CTGC) to handle non-local reuse. The analysis would have to propagate possible
dead cells and thus become quite complex. It would also require intensive changes
in the internal calling convention of procedures within the MMC as the address
of the cells to be reused would have to be passed between procedures. The second
approach is to combine reuse analysis with inlining in such a way that the cell
death and subsequent reuse end up in the same procedure. The third approach,
which is the one we implemented, is to cache dead cells. Whenever a cell dies
independently of the exact call pattern of the procedure, and cannot be reused
locally, we mark it as cacheable. At runtime the address of the cell as well as
its size will be recorded in a cache. Before each memory allocation the runtime
system will first check the cell cache to see if a cell of the correct size is available
and use that cell instead of allocating a completely new cell. This operation is not
less expensive as such, rather on the contrary. But by avoiding new allocations
the overall cost of the runtime garbage collection system should go down due to
smaller heap sizes, and less frequent need of garbage collection.

Table 3 compares the performance of the ray tracer using the default CTGC-
configuration combined with the cell-cache technique, with the basic no-reuse
version. Some scene descriptions allow to save up to 70% of memory usage and
up to 12% gain of the execution time. Overal memory reuse increases from
approx. 30% to approx. 50%, accompanied with a small speed-up.

8 Further improvements

In the near future, we intend to explore a number of improvements to our system.
First, for some procedures, several reuse conditions are discovered, generating
restrictive conditions for all reuse possibilities together. This turns out to be too
ambitious with the effect that none of the reuse in it will ever be performed. A
top-down call-dependent version splitting pass could aid in generating more useful
reuse-versions of procedures, yet avoid a full code explosion when generating all
the possible reuse versions.

A second problem is the too absorbant effect of the notion of top currently
used in the alias information. Once top is encountered, it will propagate all
throughout the remainder of the code. A certain increase in precision could
be obtained by additionally recording the variables between which the possible
aliases are unknown. So if a call to a predicate p(X,Y’) is encountered for which
the aliases are unknown, we can conclude that there might be some aliases be-
tween X and Y (denoted as the set {X,Y}), instead of simply saying top. The
effect is that the loss of information will only propagate itself through those vari-
ables. The alias information concerning variables that are not possibly aliased
to the so called top-variables will remain unaffected, hence a possible global in-
crease in precision. In combination with type-selectors, and knowing that sharing
is only allowed between datastructers of the same type, specialised sets could be
generated for each of the subtypes involved.

15

input Nrm nr CCm ccy
(kWord) | (sec) % %
ch-cylinder| 7695.82 1.61 ||-18.62 | 1.86
cylinder 24502.26 | 6.88 ||-35.36|-2.18

dice 537487.63 (209.96||-57.60|-12.96
fib 40276.59 | 11.85 ||-72.66|-9.54
golf 42043.25 | 12.38 || -24.59 | 5.17

mtest10 27152.04 | 7.81 |[-43.72|-11.91
mtest1l 24714.49 | 7.07 |(-23.05|-3.54

mtest4 7249.93 | 1.92 |(|-43.01|-5.21
mtestd 9166.16 | 2.36 ||-42.72|-5.51
mtest6 11473.07 | 3.26 ||-51.31]|-4.60
mtest7 121501.36 | 34.78 ||-47.77(-10.87
mtest9 5814.33 | 1.53 ||-44.21|-4.58
munion 5515.38 | 1.57 ||-36.84|-3.82
reflect 40264.38 | 10.25 || -39.93 | -1.07

reflect2 41105.24 | 10.54 || -39.96 | -1.04
spheres 13609.06 | 3.55 |[-40.35|-3.66
spheres2 14104.01 | 3.70 ||-39.45|-3.24
spotlight 15636.29 | 4.72 ||-33.41|-12.08
total 1022670.54|344.56||-52.27|-12.53

Table 3. Results for the ICFP-ray tracer program with cell-caching (cc) compared to
the normal non-optimized version of the ray tracer (nr).

Third, we will experiment with other selection strategies: selection strategies
which take into account the cost of updating datastructures (and thus preferring
those datastructures where the least fields have to be updated), strategies which
in the case of differing arities will first allocate the larger dead cells to the largest
new cells (so as to be sure not to waste large data cells on small new cells), and
other more sophisticated strategies.

9 Conclusion

This paper describes a complete working compile-time garbage collection sys-
tem for Mercury, a logic programming language with declarations. The system
consists of three passes: program annotation, reuse decision, and finally low level
code generation. The program annotation pass consists of aliasing and liveness
annotations based on previous work [16]. Different restrictions, constraints and
strategies for selecting reuses were presented. In order to obtain an implemen-
tation, low level improvements were introduced.

A major contribution of this work is the integration of the CTGC system in
the Melbourne Mercury Compiler and its evaluation. Some small benchmarks
were used, but also one real-life complex program, a ray tracer. Average global

16

memory savings of up to 50% were obtained, while execution was reduced up to
12%. It would be interesting to compare these results with the total potential of
reuse within the program. This total potential could be approximated using the
techniques used in our first prototype [16] to predict the amount of reuse.

Beside relatively small improvements proposed in Section 8, the system still

needs to be extended such that language constructs such as higher order code
and type classes are handled properly. Currently the aliasing generated for both
are top and no reuse versions of procedures can be used in such calls. This
requires major changes in the underlying aliasing and liveness analysis systems.

References

1.

10.

11.

Yves Bekkers and Paul Tarau. Monadic constructs for logic programming. In John
Lloyd, editor, Proceedings of the International Symposium on Logic Programming,
pages 51-65, Cambridge, December 4-7 1995. MIT Press.

Maurice Bruynooghe, Gerda Janssens, and Andreas Kagedal. Live-structure analy-
sis for logic programming languages with declarations. In L. Naish, editor, Proceed-
ings of the Fourteenth International Conference on Logic Programming (ICLP’97),
pages 33-47, Leuven, Belgium, 1997. MIT Press.

Francisco Bueno, Maria Garcia de la Banda, Manuel Hermenegildo, Kim Marriott,
Germdan Puebla, and Peter J. Stuckey. A model for inter-module analysis and
optimizing compilation. In Tenth International Workshop on Logic-based Program
Synthesis and Transformation, London, UK, 2000. to appear.

Saumya K. Debray. On copy avoidance in single assignment languages. In David S.
Warren, editor, Proceedings of the Tenth International Conference on Logic Pro-
gramming, pages 393-407, Budapest, Hungary, 1993. The MIT Press.

Bart Demoen, Maria J. Garcia de la Banda, Warwick Harvey, Kim Marriott, and
Peter J. Stuckey. An overview of HAL. In Proceedings of the International Con-
ference on Principles and Practice of Constraint Programming, pages 174-188,
Virginia, USA, October 1999. Springer Verlag.

Tyson Dowd, Zoltan Somogyi, Fergus Henderson, Thomas Conway, and David
Jeffery. Run Time Type Information in Mercury. In Principles and Practice of
Declarative Programming, pages 224-243, 1999.

G. Gudjonsson and W. Winsborough. Update in place: Overview of the Siva
project. In D. Miller, editor, Proceedings of the International Logic Programming
Symposium, pages 94-113, Vancouver, Canada, 1993. The MIT Press.

Fergus Henderson, Thomas Conway, Somogyi Zoltan, and Jeffery David. The
Mercury language reference manual. Technical Report 96/10, Dept. of Computer
Science, University of Melbourne, February 1996.

M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez. Program Analysis, Debug-
ging and Optimization Using the Ciao System Preprocessor. In D. De Schreye,
editor, 1999 International Conference on Logic Programming, pages 52—66, Cam-
bridge, MA, December 1999. MIT Press.

Simon Hughes. Compile-time garbage collection for higher-order functional lan-
guages. Journal of Logic and Computation, 2(4):483-509, 1992.

S. B. Jones and D. Le Métayer. Compile-time garbage collection by sharing anal-
ysis. In Proceedings of the Conference on Functional Programming Languages and
Computer Architecture 89, Imperial College, London, pages 54-74, New York, NY,
1989. ACM.

17

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Andreas Kéagedal and Saumya Debray. A practical approach to structure reuse
of arrays in single assignment languages. In Lee Naish, editor, Proceedings of the
14th International Conference on Logic Programming, pages 18-32, Cambridge,
July 8-11 1997. MIT Press.

Feliks KluZniak. Compile-time garbage collection for ground Prolog. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Proceedings of the Fifth International
Conference and Symposium on Logic Programming, pages 1490-1505, Seattle, 1988.
MIT Press, Cambridge.

Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. To-
wards memory reuse for Mercury. Report CW278, Department
of Computer Science, Katholiecke Universiteit Leuven, June 1999.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/ CW1999.html.

Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. Towards memory reuse
for Mercury. In K. Sagonas and P. Tarau, editors, Proceedings of the International
Workshop on Implementation of Declarative Languages, Paris, France, 1999.
Nancy Mazur, Gerda Janssens, and Maurice Bruynooghe. A module based analysis
for memory reuse in Mercury. In John Lloyd, Veronica Dahl, Ulrich Furbach, Man-
fred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luis Moniz Pereira, Yehoshua
Sagiv, and Peter J. Stuckey, editors, Computational Logic - CL 2000, First Inter-
national Conference, London, UK, July 2000, Proceedings, volume 1861 of Lecture
Notes in Artificial Intelligence, pages 1255-1269. Springer-Verlag, 2000.

M. Mohnen. Efficient Compile-Time garbage Collection for Arbitrary Data Struc-
tures. Technical Report AIB-95-08, RWTH Aachen, 1995.

M. Mohnen. Optimising the Memory Management of Higher—-Order Functional
Programs. Technical Report AIB-97-13, RWTH Aachen, 1997. PhD Thesis.

Greg Morrisett and John Reppy. The third annual ICFP programming contest. In
Conjunction with the 2000 International Conference on Functional Programming,
http://www.cs.cornell.edu/icfp/, 2000.

Anne Mulkers, Will Winsborough, and Maurice Bruynooghe. Live-structure
dataflow analysis for Prolog. ACM Transactions on Programming Languages and
Systemns, 16(2):205-258, March 1994.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algo-
rithm of Mercury, an efficient purely declarative logic programming language. The
Journal of Logic Programming, 29(1-3):17-64, October-December 1996.

The Mercury Team. ICFP 2000: The merry mercurians. Descrip-
tion of the Mercury entry to the ICFP’2000 programming contest,
http://www.mercury.cs.mu.oz.au/information/events/icfp2000.html.

Mads Tofte and Talpin Jean-Pierre. Region-based memory management. Infor-
mation and Computation, 132(2):109-176, 1997.

Philip Wadler. The essence of functional programming. In Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1-14, Albequerque, New Mexico, January 1992.

18

