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Abstract

In the course of developing hProlog - an alternative backend for HAL - we felt the need to
check our implementation of certain features both for correctness and performance against other
implementations. The first such feature was freeze/2 and later grew out in a set of benchmarking
programs for catch&throw, findall, global variables, meta call (and variants), arithmetic, if/3
and copy-term. Some of these are not even ISO conforming, but they may be crucial for many
applications. We discuss the problems in constructing benchmarks for such features, present the
benchmark programs and the measurements in a number of relevant systems (B-Prolog, GNU
Prolog, SICStus, Yap, hProlog, SWI-Prolog and ECLiPSe). Even though all these systems are
(to some extent) WAM-based, we find huge differences and wherever we can, we try to explain
them and/or indicate when an obvious explanation is wrong. As a side effect, we gain some
insight in the overhead that ISO imposes.

1 Introduction

We will assume working knowledge of Prolog and its implementation without further explanation.
For a good introduction to Prolog see [16]; to WAM, see [1, 18]; for B-Prolog, see [19, 20]; the
SICStus implementation is described in [3]. About Yap one can find implementation details in
[5]; for GNU Prolog at [11] ; SWI Prolog can be found at [17]; ECLiPSe at [12]. hProlog has a
predecessor [8] and is available at [13]. The ultimate documentation of these systems, their source
code, is accessible, either for free or at a small cost for academia.

It is clear that only very rarely one would select a particular Prolog system because of its per-
formance: features are more important than speed. Amongst appreciated features, ISO compliance
and robustness score high, as so does user friendliness. However, performance is important as well,
especially if performance does not come at the cost of the other more appreciated features. It is
not always clear whether this is possible and especially when just a few people - or even one person
- develop and maintain a complete system, performance might be the last thing one worries about.

About the performance of the most basic Prolog features - unification, backtracking, indexing,
some built-in predicates - the community has developed an understanding. There remain however
the less well known - say odd - predicates that sometimes aren’t even standardized: different systems
have implemented them in different ways and it is not always clear how systems perform neither
what the reason is for a particular performance. Sometimes it is just believed that tout est pour le
mieuz dans le meilleur des mondes because a particular renowned implementation performs in a
particular way, but we should be more inquisitive.



Even though users will not port easily their code to a new implementation because it implements
feature X more efficiently, it is always worthwhile pointing out that feature X can be implemented
in better ways - sometimes dramatically better. A comparative study of the performance of the
odd features found in a series of systems can help achieving this goal. Such has been our interest
for a long time, but only while we were building a new system - named hProlog (see section 13) -
did we find the need to start this study: indeed, while adding features in hProlog, we needed to
know whether our implementation was on the right track both performance wise and regarding the
semantics.

The first such feature was freeze/2 (see e.g. [4]) and we ran into severe problems comparing our
implementation with others: see 12. At first we compared hProlog with B-Prolog and SICStus and
this for the obvious reasons: B-Prolog makes a point of implementing delayed goals very efficiently
by means of a stack frame and stack frame freezing, while SICStus uses a more conventional heap
based approach - which hProlog also uses. B-Prolog claims that its speed (of delayed goals) derives
from its different implementation.

We also became interested in the performance of other systems for the same feature and we
choose to include besides the above two mentioned systems also SWI-Prolog, Yap, ECLiPSe and
GNU-Prolog for rather obvious reasons: SWI-Prolog is quite visible, has a wide user base and
a robust reputation; Yap is reputedly and amazingly fast; ECLiPSe is one of the most complete
but very old systems with an undeserved low profile and of course GNU-Prolog has done more
for Prologs visibility in the real world than any other LP action since hyper resolution saw the
light. All these systems have the advantage that they largely support the same set of features, even
though they are not always based on exactly the same underlying architecture.

Freeze/2 was just the first feature we tested in different systems: the other features were findall/3
and exception handling by means of the predicates catch/3 and throw/1. Then a renewed discussion
on call/n on comp.lang.prolog in February 2001 prompted us to do also some benchmarking of those
predicates.

These features are implemented with an amazing difference in performance and we have also
tried to identify the reason. Also if/3 is in this category.

All the above mentioned built-in predicates are meta predicates: they call a goal that was
constructed as a term, basically by means of the predicate call/1 !. Therefore, we start our
measurements with a benchmark that measures only call/1 in section 3.

Another feature that HAL relies on, is global variables: these can be mimicked in any ISO-
conforming Prolog system, but some systems offer support at a better level. The outcome of the
measurements was interesting. Global variables arouse interest periodically in news groups and
their functionality might be subject to standardization in the future. Related to global variables
- but also to findall/3 - is the performance of copy_term/2 (see section 5). Also the sort/2 was
investigated further, especially since the compare/3 family of ISO bips does not work really on
variables, so a user has to rely on system support at least sometimes.

We then also made a short attempt at benchmarking arithmetic: see section 11.

We have other feature on our wish-list-to-benchmark: interrupt handling and garbage collection
for instance. These will be the subject of future investigations.

This report clearly is not about assessing the general performance of a Prolog system neither
does this report pretend to offer a suite for measuring some of the odd features of Prolog systems:
it is quite difficult

e to measure exactly what one wants

'in B-Prolog, this is not true for freeze/2



e to measure something relevant
e to measure it in a uniform way across Prolog systems

Certainly, this report is not about showing off how well we did with hProlog, although we have
not much to be ashamed off either. Indeed, hProlog turns out to be among the fastest (if not the
fastest) for every single benchmark. Still, we are no better implementors than others, so obviously,
the reason must be that we have made different basic choices or tradeoffs. When we can, we will
indicate these choices. In particular, we will indicate - when possible - how the ISO Prolog standard
seems to impose an overhead on certain features that is not always wanted neither needed.

So what is this report about ? It is about showing that without sacrificing robustness and
ISO-compliance, better than currently available average performance is possible - sometimes much
better. Let the user community prod their Prolog supplier for it.

The paper should contain enough information to understand the inner part of each benchmark.
The full set will be obtainable from http://www.cs.kuleuven.ac.be/ bmd/odd_benches 2.

The version of hProlog with which the benchmarks were done, can also be obtained from the
same place. It is currently only tested on Intel with Linux.

The experiments were performed on a Pentium III, 500MHz, 128 Mb - our findings might not
carry over to other architectures, but we are actually convinced they do. Timings are reported
in milliseconds. We used B-Prolog 4.0 #3, SICStus 3.8.5, Yap4.3.0, SWI-Prolog (Version 3.4.4),
GNU Prolog 1.2.6, ECLiPSe Version 5.1.0 and the continuously evolving version 1.3 of hProlog. We
have formerly done more extensive measurements comparing B-Prolog and hProlog: see [7]. The
main reason for including B-Prolog in this report is its implementation of delay. Since B-Prolog is
written in ANSI-C - while most other systems rely for speed partly on gcc specifics - we have in
many tables included figures for a version of hProlog that was compiled with the -ansi option.

While running the benchmarks, we encountered regularly problems with particular systems -
memory leaks, segmentation violations, inconsistencies between the manual and the implementation
... We have most often reported these to the author(s) of the systems and most problems have been
fixed in the mean time - we were however not always organised well enough to run our benchmarks
again with the fixed system. These occasional problems and also misunderstandings from our side
have lead to some empty entries in some of the tables: these empty entries should be interpreted
as no information.

Before presenting any benchmark results at all, we have to stress that we consider differences in
implementation that are in the order of 50% or less rather uninteresting; a factor of two or more is
what we find meaningful. Consequently, we will treat small percentages as noise and not comment
on them.

2 Issues in benchmarking Prolog features

When benchmarking a particular feature, the benchmark needs to be repeated many times to give
meaningful timings: we name this loop the interesting loop. It is then customary to subtract some
sort of empty loop from the interesting loop, so that the loop overhead does not mask the feature
that we want to measure. This is potentially deceiving. Let’s take the example of a benchmark
involving findall/3. This built-in predicate is composed of at least two ingredients: it (usually) meta
calls the generator and it copies (by a method similar to copy_term) the template (perhaps even
twice). If one wants to benchmark findall/3, should the empty loop do a meta call (of true/0 for

%if it is not, ask the first author



instance) or not ? For a system with a fast meta call, it does not matter. For a system with a slow
meta call, it does. The argument in favour of doing a meta call in the empty loop is that after all
findall/3 does a meta call that in practice can always be avoided: in most programs, the generator
is indeed not a program variable. The argument against doing the meta call in the empty loop, is
that it seems that no system avoids the meta call in findall/3, even if that is possible, maybe - but
perhaps not justifiably - because of the code growth that could results. We have resolved this issue
as follows: since we made a separate measurement of the meta call (see section 3), it makes sense
to put a meta call in the empty loop of the other benchmarks whose interesting loop contain meta
calls: in this way, we measure the issues separately. The measurements of freeze/2 are an exception
to this rule, for reasons explained in section 12.

A second issue relates to ISO compatibility, or more generally, to the exact semantics of a
feature in case it is abused: indeed, most often systems do agree on the semantics of features when
they are used correctly. The most blatant example is again meta call: ISO requires that for a goal
like call((foo,7)), the exception for the illegal goal 7 is raised before the goal foo is executed. So,
ISO requires basically to make a pre-pass over the goal to be executed. Some systems don’t do
that - and thus do not conform to ISO - and they might unjustifiably show good results during the
benchmarking. This means that just running a benchmark is not enough: one needs also to take
into account the conformance to a certain semantics standard (ISO being the only more or less
rigorous one). The other edge of the sword is that one might gain an insight in the performance
penalty ISO is imposing: this issue has not been given much attention and probably is one of the
reasons for more than one bad decision by the ISO committee. Section 3 will show more on this.

A third issue is related to supported features that are ISO compliant (as implementation defined
or dependent features) but are not visible in a particular subset of ISO Prolog. A particular example
is the support for rational trees and its impact on e.g. copy_term: one way to cater for rational
trees is to short circuit the term that is being copied (similar to the way that unification would do).
This affects the speed at which structured terms are copied, even if they are not circular. But it
doesn’t affect copying atoms or at least, it shouldn’t. It means that hidden (and good !) features
can have a negative impact on speed and without mentioning this, the benchmarks results become
less meaningful.

In view of the above, we have tried to critically examine both the benchmarks and the context
in which they are run. We cannot claim we have made a full discussion of every benchmark:
examining just one built-in feature would require a full paper, and would interest few people.

Finally, we have made sure that during the benchmarks, garbage collection was never ran.
Memory management in Prolog is still too little understood, so we could not allow this to blur the
picture.

3 A key factor: call/1

The benchmarks in most of the following sections involve meta calling a goal: call/n (with n > 1),
findall/3, exception handling, if/3 and freeze/2. So it is crucial to measure the performance of call/1
independently: when in the other benchmarks, meta call is part of the empty loop, the results in
this section will complete the picture.

Before looking at the benchmarks, it is worth looking at the characteristics of the meta call
in different systems: ISO requires two things from the meta call; the argument is interpreted as a
body and

e if it contains a (runtime) variable X - at the moment of doing the meta call - it must mean



the same as if it were actually call(X); we name this var replacement.

e if it contains a number as a goal, it must throw an exception before executing any part of its
argument; this will be referred to as precheck

The meta call in SWI, SICStus, GNU and hProlog is by default ISO compliant. In ECLiPSe
and Yap, it is by option. B-Prolog has only the non-ISO mode for call/1 and in hProlog we also
have a non-ISO call/1 just for the sake of comparison. Also, we must admit that we added precheck
and var replacement to hProlog while working on this paper: as a backend for HAL, none make
sense and we will remove them later.

An ISO-compliant meta call also needs to deal with modules (meta expansion and mod-
ule lookup) at runtime and SICStus even performs goal expansion. Following a discussion on
comp.lang.prolog March 2001, we measured that for SICStus the overhead of modules is in the or-
der of about 35% and 22% for goal expansion (when no goal expansion needs to be done). Note that
e.g. SWI Prolog has the same module system as SICStus Prolog, but the figures below show that
the cost there is much lower. The modules standard is quite recent, but SICStus has implemented
modules quite close to ISO already for many years.

The most commonly meta called goals are just single goals, so our artificial benchmarks test
those to start with: a goal with one argument, and a goal with 10 arguments. Meta calling these
goals is contrasted with calling them directly. ISO conformance when meta calling a single goal
should not impose any overhead at all. Then follow meta calls of conjunctions with 2 and 3 goals
(all with arity 1). For the systems in which this is possible, we give the figures for these tests both
in ISO conforming and non-conforming mode: in non-conforming mode, neither precheck nor var
replacement is performed.? The goals are shown in the first column of table 1. The definitions of
g/1 and g/10 are simply

g(). and - G I
B-Prolog | hProlog | ECLiPSe | SWI | SICStus | GNU | Yap | hProlog
(ansi)

call(g(1)) 310 140 170 | 700 4600 | 2600 | 360 100
call(g(1,2,3,4,5,6,7,8,9,0)) 380 250 260 | 879 4700 | 2820 | 390 190
module call(g(1)) (**) 320 350
module call(g(1,...9,0)) (**) 430 370
g(1) 130 60 10 | 229 90 90 20 10
g(1,2,3,4,5,6,7,8,9,0) 240 130 120 | 380 180 130 | 120 90
ISO call((g(1),g(1))) 2610 2980 9640 | 4170 | 4810 1920
1SO call((g(1),g(1),g(1))) 4310 3569 | 14450 | 5660 | (*) 2900
non 150 call(g(1),g(1)) 1240 450 800 1790 410
non ISO call(g(1),g(1),g(1)) 1940 770 1350 2380 660

Table 1: Call/1

(*) a bug needed fixing in Yap; it was detected by performance measurements :-)

The figures in the rows marked with (**

) have only a SICStus and a hProlog column: the

SICStus column was obtained by replacing the goal call(X) by the goal prolog:call_module(X,user,[])

3the module system of hProlog is atom based and has by nature zero overhead at runtime




which seems to be the basic call for a single goal once goal expansion and the module system is
dealt with; in the hProlog column, essentially the same call_module/2 goal was measured in the
hProlog context: although hProlog never needs to make runtime decisions on which module to call a
predicate in, the functionality to make a dynamic decision to call a certain predicate in a particular
module exists anyway. The result shows that the basic meta call of SICStus Prolog is reasonable
(and also in the same ball park as Yap for instance). The overhead by the runtime module call, is
quite high (a factor of 3 and more) but the overhead resulting from the other features seems overly
excessive.
The following things are noteworthy in our opinion:

1. the cost of meta calling a single goal is excessively high in SICStus Prolog and GNU Prolog

2. even in hProlog, whose meta call is much faster than in the other ISO conforming systems,
the overhead of being ISO conforming is huge for conjunctions

3. for single goals - i.e. not a conjunction or another non-simple construct - the overhead due
to being ISO conformance is actually non-existent in hProlog: hProlog uses for every meta
call the basic one, and it is the meta called version of the , /2 predicate that will pay some
ISO price only; in contrast, SICStus uses (must use because of meta and goal expansion) the
full blown meta call even for simple goals

There is a saying Sometimes a cigar is just a cigar, but we think that most often a meta call
is just a meta call, not a demand for goal expansion, meta predicate expansion, module detection,
error detection ... It seems unthoughtful to have a Prolog language with advertised and built-in
meta programming capabilities, which puts undue overhead when such meta features are used.

4 Call/n withn > 1

Call/n is a recurring topic in news groups and FAQs: a user can define her own (faked_)call/(n+1)
for instance as

faked_call(Goal,Argl, ..., Argn) :-
Goal =.. [Name| [Args],
append (Args, [Argl, ..., Argn],NewArgs),
NewGoal =.. [Name|NewArgs],
call (NewGoal) .

SWI and hProlog provide a faster implementation of call/n 4. Table 2 shows some measurements
for call/2 in different systems, either as provided or as written by the user. The empty loop does
not contain any meta calls in this case.

The figures indicate clearly that low level support of call/n, pays off. In terms of system
implementation effort, call/n costs nearly zip.

5 Copy_term/2

Before measuring findall/3 in the next section, and since copying a term is part of most imple-
mentations of findall/3, we benchmark copy_term/3. This predicate is a dangerous built-in to

“hProlog provides other forms of fast meta calling as well, because it needs to support type classes



B-Prolog | hProlog | ECLiPSe | SWI | SICStus | GNU Yap | hProlog

(ansi)
call(a,a) - 1190 - | 2270 - - - 750
call(a(1,...,9),a) - 1570 -1 3179 - - - 1200
faked_call(a,a) 9030 6700 6460 | 20179 29530 | 16740 | 5670 4980
faked_call(a(1,...,9),a)) 18030 16250 12000 | 73900 34920 | 25410 | 10480 9950

Table 2: Call/2 and faked call/2

benchmark: some implementations preserve the internal sharing in a term while copying it, while
others don’t. This is related to, but not the same as supporting rational trees or cyclic terms. Such
support for sharing preservation usually affects the performance of copying a structured term, even
if that term has no internal sharing. For copying atoms, there should be no cost. Table 3 has two
parts, testing twice the copying of the same terms: results are given for a copy_term that does not

preserve sharing and for a copy_term that does.

Yap and hProlog can be installed with or without preserving sharing 5. SICStus has this feature

by default.

Copy_term/3 is usually not written in Prolog, so one would expect performance of systems not
to diverge much, but the differences are significant. The results for Yap and hProlog show that the

overhead of preserving sharing is not high at all.

B-Prolog | hProlog | ECLiPSe | SWI | SICStus | GNU | Yap | hProlog
(ansi)

destroy sharing
a 300 140 510 | 400 170 | 110 90
a(0,...,9) 920 470 680 | 899 770 | 330 410
a(a(0),...,a(9)) 1600 830 1250 | 1809 1240 | 900 770
preserve sharing
a 150 480 120 90
a(0,...,9) 490 950 330 440
a(a(0),...,a(9)) 1060 3060 1220 1000

To check whether an implementation preserves sharing, observe its behaviour on the following

Table 3: Copyterm/2

program
test(N) :-
mkterm(N,Term),
copy_term(Term,NewTerm) ,
fail,
use (NewTerm) .
mkterm(N,Term) :-
N >0 ->
MisN-1,

®hProlog does not preserve sharing for lists, but it does so for other structured terms




Term = f(Terml,Terml),
mkterm(M,Terml)

Term = end

).

for the query ? — test(NN). and different values of N.

6 Findall/3

Since findall/3 uses the meta call, every system with a slow implementation of call/1, will perform
poorly on findall/3. To exclude this effect, we have defined the empty loop - which we subtract

from the interesting loop with a findall goal - so that it performs as many meta calls as the findall

loop: the figures in table 4 thus represent the overhead of findall related stuff excluding the meta

call. It also means that to really know what a call to findall/3 costs, one should take table 1 into
account.

The two rows findall-fail, findall-one and findall-ten are obtained by calling the goals findall(a, fails, -),

findall(a, succeeds_once, ) and findall(a, succeeds_ten,_) repeatedly, where we have the defini-

tions:

fails :- fail. succeeds_once.

succeeds_ten. % 10 of these facts

But the implementation of findall/3 is more than meta call alone: usually an initialization of
some data structures needs to be done at the beginning of the execution of findall/3, even before
the goal is meta called. Answers must be copied - in most implementations even twice - and at
the end of the findall/3 call, data structures might need to be cleaned up in some way or another.
Moreover, the whole of findall/3 should be protected from being exited by an exception (thrown
by the goal) without cleaning up. So the following structure of an implementation of findall/3 is
not uncommon:

findall (Template,Goal,AnswerList) :-
init_findall (Handle),

catch(
(
call(Goal),
copy_answer_out (Template,Handle),
fail
retrieve_answers_and_cleanup (AnswerList ,Handle)
),
AnyBall,
(findall_cleanup(Handle), throw(AnyBall))
).

Some systems do not perform a cleanup when an exception is thrown inside the Goal: they
typically crash or have a noticeable (by the UNIX top command) memory leak when this happens
often enough. The code to test for the memory leak is simply:



a :- findall([a,b,c,d,s,X,g,y,h,r,e],f(X), ), fail.
f(X) :- (X =2 ; throw(out)).

go :- (catch(a,_,true), fail ; go).

The table 4 has an indication of what happens in each implementation.

The copying of the template is also a source of discrepancy: some systems support cyclic terms
to the extent that they can be in the answer list of findall/3. Such support has a price. We
have discussed this in more detail in section 5, but note here that the answer list in our findall
benchmarks only contain atoms, so the cyclic term support should not affect the results.

Finally, ISO requires two more checks: AnswerList must be a (partial) list, and Goal must be
callable. Testing the latter can be done without extra overhead. Since the AnswerList is almost
always a new variable, the former can be implemented with a usually negligible cost - but it is not
always done that way. Some implementations perform these checks before starting the essence of
findall/3: see table 4.

B-Prolog | hProlog | ECLiPSe | SWI | SICStus | GNU | Yap | hProlog
(ansi)

findall-fail (*) 630 1290 | 849 2840 240 | 450 470
findall-one (*) 670 3040 | 2240 4290 570 | 760 520
findall-ten (*) 2220 18430 | 7950 11050 | 1870 | 3020 1520
checks list no yes yes no no yes | yes yes
goal check ? yes no no yes yes no yes
cleanup on exception crash ok ok | leak ok | leak | leak ok

Table 4: Findall/3

(*) The benchmark could not be run reliably in B-Prolog, as repeating it, resulted in a seg-
mentation fault.

The results show that it is entirely possible to perform very well, while conforming to ISO. The
leak in some systems can (should !) be closed easily at a reasonable cost.

7 Exception handling

Exception handling through the predicates catch/3 and throw/1 is usually implemented by meta
calling the protected goal. So, also in this benchmark, the empty loop performs as many meta calls
as the interesting loop. The last row in table 5 indicates whether the system performs last call
optimization for clauses that call catch/3; of course this is only possible when the protected goal
is deterministic; the system then has to detect this (at runtime for Prolog) and perform the same
sort of LCO as in usual code. We used the following predicate to test this:

tailcatch(B) :- catch(succeed_once,B,true), tailcatch(B).
succeed_once.

We measured the cost of LCO in hProlog - by simply switching (LCO is done at the source
level) it off for the catch-true row and found its cost about 240 of the 480 in the table: that is



relatively high for hProlog and SWI, but it is (or would be) relatively low in the other systems; see
table 5.
The rows in table 5 correspond to the following goals

catch(succeed_once,_,succeed_once)
catch(throw_direct,_,succeed_once)
catch(throw_after_10,_,succeed_once)
catch(catch_fail_10,_,succeed_once)
catch(backtrack_10,_,succeed_once)

with
succeed_once.

throw_direct :- throw(p).

throw_after_10 :- throw_after_9, just_for_alloc.

throw_after_9 :- throw_after_8, just_for_alloc.
throw_after_1 :- throw(p), just_for_alloc.
catch_fail_10 :- catch(catch_fail_9,_,succeed_once).
catch_fail_9 :- catch(catch_fail_8,_,succeed_once).

catch_fail_1 :- fail.
backtrack_10.

backtrack_10.

\ | ECLiPSe | SWI | SICStus | GNU

Yap ‘ hProlog ‘

catch-true 1260 | 219 2500 | 2530 | 18540 480
catch-throw 9950 | 2899 20520 | 10110 | 20480 1790
catch-throw10 10960 | 7290 21700 | 10230 | 21040 2430
catch-fail 990 | 119 2320 | 2170 | 15460 560
catch-backtrack 3360 | 4730 7220 | 14440 | 61980 3050
‘ LCO ‘ yes ‘ no ‘ yes ‘ yes ‘ no ‘ yes ‘

Table 5: Catch/3 and throw/1

B-Prolog seems not to support catch&throw, hence its absence from table 5.

SWI-Prolog does not follow completely the ISO specification: it does not copy the Ball before
trying to unify it with the Ball; this affects only slightly the figures in the throw and throwl0
case, but the low cost of entering a catch (especially the catch-fail row) is unaffected and quite
impressive.

Note that an implementation of catch&throw along the lines of the JVM is possible but a zero-
cost entering of the protected region as in the try-catch construct in Java is impossible in Prolog
because the standard requires unwinding of the stacks, meaning that a choice point is necessary.
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Finally, note that Yap uses a choice point based implementation of catch&throw, as described
for instance in [6], this in contrast with an environment based method used in other systems and
which is also the natural one in a language like Java. The figures in table 5 seem to settle the
question put forward in [6] which one is better: the choice point method is overall slow and even
particularly slow when the protected goal is non-deterministic. Part of the slowness of Yap might
come from using record instead of a proper global variable for setting the scope of a handler.

The ISO Prolog standard encourages the use of catch&throw based exception handling, since the
abuse of built-in predicates results in the throwing of an exception. It is therefore very important
to have an efficient implementation of this feature. The schemas around are mostly unsatisfactory
and the SWI schema deserves more attention as it seems to be quite efficient in entering and exiting
the scope; maybe a hybrid of the SWI and hProlog way will turn out to be universally acceptable
and most efficient.

8 If/3

If/3 is the logical if-then-else: in contrast with the Prolog if-then-else, it backtracks over the
alternative solutions of the conditions. It is straightforward to implement if/3 in Prolog, as long as
one can get some unique identifiers. Here is one possibility:

if (Cond,Then,Else) :-
gensym(Sym) ,
remember (Sym,nothing) ,

(
call(Cond),
remember (Sym, cond_succeeded) ,
call(Then)
remembered (Sym,nothing),
call(Else)

).

The implementation gensym/1, remember/2 and remembered/2 can be done with assert or
global variables. Apart from being slow (we measured it between 5 and 10 times slower in hProlog
than the version that is supported at the low level) this implementation has at least two more flaws:

1. the disjunction choice point is not cut away in case the condition succeeds

2. the memory used to remember whether Cond succeeded or not is not recovered

Also, a system might run out of symbols (or some other resource) quickly with this implement-
ation !

HAL supports the logical if-then-else (as does Mercury) and therefore it was important for
hProlog to do the same. Both points above are easy to remedy in an implementation with a bit of
support for cutting away or invalidating choice points that are not most recent. Here is the hProlog
way 9:

the knowledgeable reader might recognize some XSB heritage in the naming
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if(A,B,C) :-
if(A,B,C,0).

if(A,B,C,_) :-
’_$savecp’ (CPbefore),
call(a),
smash_cp(CPbefore,4,1), % overwrite the 4th argument of the choice point with
’_$savecp’ (CPafter),
(CPbefore = CPafter ->
! % LCO
true
),
call(B).
if(A,B,C,0) :-
call(C).

Since only hProlog and SICStus support if/3, the following table is restricted to these systems.

‘ goal ‘ SICStus ‘ hProlog ‘
if(true,true,true) 8850 | 1440 (3580)
if(fail,true,true) 18130 | 760 (2670)
if(backtrack10,true,true) 5820 | 870 (1090)

Table 6: If/3

Note that hProlog seems to implement a failing condition much more efficiently than a succeed-
ing one, while SICStus does the opposite. SICStus checks the arguments of if/3 before starting to
execute the condition: as a backend to HAL, this makes no sense for hProlog. So the default is that
there is no pre-checking. Between brackets are the timings with pre-check included for hProlog.

For this benchmark, the empty loop did not contain any meta calls, but it is entirely possible
to avoid meta calls in if/3. Both hProlog and SICStus Prolog do LCO for if/3.

IBM-Prolog 7 used to support if/3 as the construct

Cond some Then none Else

9 Sort/2

Sorting is done in the context of setof/3. It is important that the built-in sort/2 is efficient: if the
user wants a slower one, she will find it easy to write it. The following table shows the timings for
sorting all permutations of a list of 10 different integers.

The Prolog sort/2 is a copy of the SICStus Prolog implementation of sort/2 (which is in Prolog)
attributed partly to R. O’Keefe. The difference in the SICStus column between the figure for the
built-in sort and the Prolog sort is due to a different implementation of must_be/4 (which checks
that the first argument of sort/2 is a list), which we specialized a bit: the difference shows a tradeoff
that SICS has made between implementation effort and performance !

"no, it is not a predecessor of HAL-Prolog :-)
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B-Prolog | hProlog | ECLiPSe SWI | SICStus | GNU Yap | hProlog
(ansi)
built-in sort 373700 26340 18850 | 57070 | 175100 | 26610 | 16230 25710
Prolog sort 243870 | 134670 243910 | 607109 | 118110 | 123730 | 117790 91870
gsort 286960 | 110140 198500 | 464400 | 101880 | 99100 | 101160 65260

Table 7: Sorting

The row with gsort uses a straightforward gsort/2 with accumulating parameter and if-then-
else. Funnily enough, it performs better in almost & all implementations than the very crafty one
by O’Keefe. Of course, a 10-element list is not long enough to draw final conclusions.

One notable issue here: sort/2 written in Prolog relies on compare/3 or on one of the variants
of @; /2. An implementation usually chooses either one as basic. There are always circumstances
where such a choice is the bad one and for overall uniform good performance, both must be
implemented at a lower level: that’s the choice made in hProlog.

10 Global variables

ISO-Prolog does not acknowledge the need of global variables, instead it stuck to dynamic predicates
that can be used to mimick them and moreover, the record-family of predicates became obsolete.
Still, many systems provide global variables which differ from dynamic predicates or recorded
information in mainly three aspects:

e global variables have only one value at any moment (some systems can only store atomic
values, others also structured terms)

e they can be backtrackable or not (not all systems offer both)

e these variables are associated to atoms (sometimes to other types as well)

GNU-Prolog and hProlog offer such global variables.

One of the important usages of global variables is for keeping a counter. So our benchmark just
stores and retrieves integers by means of the mechanisms offered by each implementation. There
is no arithmetic performed during this benchmark.

We also did the benchmark while storing and retrieving a small compound term (f(1,2,3)). The
issue of preserving sharing (or supporting cyclic terms) is present here as well, but we have seen
earlier that this is cheap.

The primitives we used for non-backtrackable global variables are

e SWI: flag/3
e SICStus: bb_put/2 and bb_get/2

GNU: g assign/2 and g_read/2

Yap: set_value/2 and get_value/2

e ECLiPSe: setval/2 and getval/2 (together with a local variable declaration)

8B-Prolog is an exception probably because it doesn’t do the usual optimizations on the Prolog if-then-else
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stored term ECLiPSe | SWI | SICStus | GNU | Yap | hProlog
1

assert/retract 7040 | 4720 12510

record* 3910 6740

nb-globvars 1060 | 1720 3100 350 | 320 200
£(1,2,3)

assert/retract 9520 | 6179 12860

record* 4979 7120

nb-globvars 1520 3530 910 830

Table 8: Non-backtrackable global variables

e hProlog: nb_setval/2 and nb_getval/2

hProlog, Yap and GNU-Prolog seem to have something in common in the implementation that
gives them a speed advantage over the other implementations.

11 Arithmetic

The performance of arithmetic is quite difficult to assess. First of all, one should consider integer and
floating point arithmetic separately of course. For integer arithmetic, implementations all seem to
have a positive MAXINT and negative MININT. Integers within the range [MININT.. MAXINT]
have an efficient representation and either

1. overflow is detected and a different representation is used for integers outside this range or

2. overflow is not detected at all

The form: overflow is detected and throws an exception seems not present.

It is clear that an interpretation of a benchmark result without taking into account these
implementation decisions, cannot provide a good insight. Some systems (e.g. Yap) allow their
installation with and without support for bignums. Others (like SICStus) have only this mode of
installation.

To summarize, SICStus, SWI, ECLiPSe are of the first kind, Yap, GNU of the second and
hProlog can be made to check overflow, and then just throws an exception.

Another issue that is relevant to benchmarking, is the value of MININT and MAXINT: if a
benchmark for one system goes over them, but not for another system, the results will be unreliable,
or at least difficult to interpret. So, before benchmarking, we have made sure that the integer
arithmetic benchmarks do not use integers outside of the range [MININT..MAXINT)] for any
system. We have three benchmarks: one for adding integers, one for adding floating point numbers
and one for multiplying integers.

It is worth noting that none of the tested systems does the kind of optimizations commonly
found in compilers for classical languages. This is fortunate during benchmarking. E.g. one of the
benchmarks contains the clause:

add1([_IR],A,B) :-
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B-Prolog | hProlog | ECLiPSe | SWI | SICStus | GNU | Yap hProlog
(ansi) check /nocheck
integer + 1 1040 430 1730 | 18270 940 | 1690 | 430 500/480
integer + integer 640 800 1870 | 19140 1050 | 2140 | 630 | 610/830(*)
integer * integer 1140 520 2340 | 20019 2680 | 1980 | 650 1200/560
float + float 2820 1800 3770 | 25139 3710 | 3380 | 5280 - /1910
float * float 14270 1430 3770 | 24539 3870 | 3380 | 5280 - /1520

Table 9: Some arithmetic

Z1 is A+ 1, Z2is Z1 + 1, Z3 is Z2 + 1, Z4 is Z3 + 1, Z5 is Z4 + 1,
Z6 is Z5 + 1, Z7 is Z6 + 1, 7Z8 is Z7 + 1, Z9 is Z8 + 1, Z0 is Z9 + 1,
£(Z0),

add1(R,A,B).

which could be optimized to

add1([_|R],A,B) :-
Z0 is A + 10,
£(Z0),
add1(R,A,B).

But it is unfortunate for the state of affairs in Prolog compilers: they are largely responsible for
the vicious circle that goes like “Prolog compilers are no good at compiling arithmetic, so nobody
uses Prolog for arithmetic; since nobody uses Prolog for arithmetic, Prolog compilers tend to ignore
arithmetic”.

The above measurements were particularly unsatisfying: large unexplained fluctuations were
observed. In particular the entry marked with (*) is weird. However, it is clear that most systems
should take arithmetic more serious.

12 Freeze/2

Benchmarking freeze/2 is particularly difficult: there is no standard semantics for melting frozen
goals and it is extremely difficult to assess conformance between two systems, even if for some wide
range of programs, these two systems produce the same answers for a problem. The problems with
the semantics of freeze/2 are well-known: when exactly is the wake-up performed, and in what
order are woken goals activated 7 Some of these problems can be exemplified by:

e in the query 7- freeze(X,gl), freeze(Y,g2), X =Y, X = 1. which of gl and g2 is executed
first 7 is there a reason for choosing the oldest goal first 7 or for choosing the goal from the
originally oldest variable first 7 and what would oldest mean exactly - given ISO’s stand on
the comparison of variables 7

e in the query 7- freeze(X,gl), freeze(X,g2), X = 1. we have a similar problem

e in the query ?- freeze(X,gl), freeze(Y,g2), f(Y,X) = £(1,2). we have again the same problem,
but now, one might argue it depends on the (non-standardized) order of unification ...
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It is clear that an application (or a benchmark) that is written with a particular wake-up model
in mind, might perform better in this model than in others, but there is no guarantee that this is
true. It is even possible that in one wake-up model the program works and in another model it
results in runtime errors; take the queries:

?7- freeze(X,arg(X,£(2),Y)), freeze(Z,arg(Y,f(a,b,c),T)), £(X,Z) = £(1,p).
and
7- freeze(X,arg(X,£(2),Y)), freeze(Z,arg(Y,f(a,b,c),T)), £(Z,X) = £(p,1).

In SICStus Prolog, the first one succeeds, but the second one throws an exception.

One might argue that programs that rely for correctness on a particular wakeup model are
erroneous, and one might be lucky to discover such reliance by running the same program in
different systems. However, a program might rely on a particular model for its performance, and
although this can be considered equally erroneous, this is much more difficult to prove or disprove.

One more problem is fail /0. At the toplevel of Prolog systems, the query ?- freeze(X, write(pok)),
X =1, fail. writes pok before failing in B-Prolog, SICStus Prolog and hProlog; in Yap it fails without
output.

On the other hand, a file with the clause a :- freeze(X, write(pok)), X = 1, fail. when consulted,
and queried with ?- a. will produce output in SICStus, but not when the file was compiled; same
in B-Prolog; in hProlog and Yap, output is never produced °.

Since we wanted to make as fair a comparison as possible, we have spend quite a bit of time
- actually most of the time spend on implementing freeze/2 in hProlog - just trying to make the
order in which goals are melted, exactly as in SICStus Prolog - which happens to be the same as
in B-Prolog as far as we know - but different from Yap’s. Still, any optimization that affects the
order in which arguments of structured terms are unified, could break this immediately.

We got one supposedly non-toy benchmark for freeze/2 from Neng-Fa Zhou; we name it later
shirai after its implementor Yasuyuki Shirai from Mitsubishi Research Institute, Inc. This bench-
mark ran only under B-Prolog, SICStus Prolog and hProlog (under Yap 4.3.0 it bombed; we didn’t
investigate long enough ECLiPSe).

We have also added some artificial benchmarks, just because for these, there should be no
disagreement between systems on when and in which order wake-up is performed.

There is one more problem with running the same benchmarks under hProlog as under other
systems: hProlog does only a wakeup test at the calls to Prolog predicates; e.g. not just before a
cut, nor in between two goals that are inline built-in calls (arg/3 for instance), nor before entering
an explicit disjunction (;/2). As far as being a backend for HAL is concerned, this is no problem,
as the pre-compiler is responsible for adding checks for wake up '°. As for the benchmarks: it is
necessary (both for correctness and for fairness) to add extra calls at specific program points (see
above). So, the shirai benchmark is run as shirai2 in hProlog: goals check-wakeup were added at all
necessary places (and probably a superset of them). The predicate check_wakeup is simply defined
as the fact check_wakeup. ''.

“hProlog does not distinguish between compile and consult

0and because !/0 does not exist in HAL

1 Another problem with shirai is that it uses the record database; hProlog simulates that with its global variables,
which are more efficient but the fraction of the benchmark’s time that is spend in these predicates is less than 1%
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The tables will also mention the number of calls to freeze/2 with a free first argument, with a
bound argument, the number of wake up events (that is a checkpoint at which a series of goals was
woken) and the number of goals actually woken. This was measured for hProlog.

B-Prolog | hProlog | hProlog | SICStus | # freeze | # freeze | # wake up | # executed

(ansi) calls calls events woken

shirai | shirai2 | shirai2 shirai var bound goals

run(8) 30 40 30 60 621 1506 361 884
run(9) 70 70 40 100 871 1857 582 1474
run(10) 270 250 180 320 1180 3102 2497 7130
run(11) 1060 1030 750 1250 1554 6876 8223 28145
run(12) 2540 2380 1670 2730 1999 9888 16612 58683
run(13) 145030 | 133760 93640 | 149430 2521 | 461132 974016 3168216

Table 10: The shirai benchmark

Although shirai is considered a non-tiy benchmark, from the table 10, the best thing one can
conclude is that it does not measure adequately the performance of freeze/2: freeze/2 is called
relatively little, and comparing with table 11 which contains some artificial freeze/2 benchmarks,
one sees that doing in the order of 1M of wakeups, takes in the order of seconds, and since run(13)
takes about 150 secs, less than 10% of the runtime is spend in freeze/2 related actions.

The artificial benchmarks are more interesting, because they try to split out the issues in
delaying and reactivating a goal: these are

e freezing + triggering (by unification) and doing a wakeup once for each frozen goal
e freezing (but failing before a wakeup is triggered)

e freezing + triggering and doing a wakeup often for each frozen goal

The table 11 contains the results for a goal that is an atom, and a goal that has arity 4. M
stands for Mega, K for Kilo.

B-Prolog | hProlog | hProlog | Yap | SICStus
delayed goal (ansi)
g
freeze+uni+melt 1940 3010 1810 | 4070 11470 | IM | 0 | IM | 1M
freeze 1260 910 430 | 1460 850 | IM |0 0 0
freeze+(uni+melt)* 1130 2280 1400 | 2870 10680 | 10K | 0 | 1M | 1M
£(1,2,3,4)
freeze+uni+melt 2010 3150 1940 | 4120 12750 | IM |0 | 1M | 1M
freeze 1250 910 430 | 1480 860 | 1M |0 0 0
freeze+ (uni+melt)* 1190 2430 1560 | 2920 12050 | 10K | 0 | IM | 1M

Table 11: Artificial benchmarks with freeze

It shows that B-Prolog is quite good at melting a goal - about twice as efficient as ANSI hProlog,
but slightly slower in doing the actual freeze. The former conforms to the claim that B-Prolog, by
avoiding reinstalling argument registers repeatedly, is more efficient for reinstalling a goal. Note
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that this is not meta call related: B-Prolog has a slower meta call than hProlog, but that does not
matter here, since B-Prolog does not need to meta call a woken goal. That is also the reason why
the empty loops in the artificial benchmarks do not contain meta call. As we have pointed out
in [7], WAM can easily incorporate the basic idea of freezing a goal like B-Prolog does, without
having to adhere to B-Prolog’s argument passing schema, but the price is a freeze register that
blocks stacks in a similar way as in XSB.

It seems no coincidence that the sum of the rows labeled freeze and freeze+ (uni+melt)* is very
close to the row labeled freeze+uni+melt. We can also get some ball park figures for B-Prolog: it
can do about 1M freezes per second and 1M melts (of individual goal) per second. For ansi hProlog
the former is almost equal, the latter only half of it. Given that B-Prolog and ansi hProlog are on
ordinary programs (not using freeze/2) of almost equal performance, this can help in assessing the
measurements in table 12: it contains the benchmark results for programs from the distribution of
B-Prolog.

B-Prolog | hProlog | hProlog Yap | SICStus
(ansi)
queens_freeze 10 820 1210 760 1980 11930 | 304K 0] 110K 811K
queens_freeze 11 4430 6510 4060 | 10510 64640 | 1604K 0| 546K | 4432K
queens_freeze 12 25790 37280 23220 | 59980 | 374740 | 8991K 0 | 2915K | 25769K
sort_freeze (17) 1880 4110 2640 3930 36510 | 1114K 0| 1114K | 2228K
nreverse_freeze (320) 940 1540 980 | SEGV 6500 | 510K 3K | 510K 510K
sendmoney_freeze 1350 2500 1590 4330 20600 | 105K | 382K | 627K | 1041K

Table 12: Small benchmarks with freeze

Let’s look at the queens freeze benchmark first: the timings for B-Prolog correlate directly
with the figures in the last column and according to 1M/sec. However for the sort_freeze and
sendmoney_freeze, this invariant seems broken and also the timing differences with ansi hProlog
are larger than expected, so a closer look at the benchmarks is in order.

It is well known that the following two goals are equivalent

freeze(A,freeze(B,goal(A,B))) freeze(B,freeze(A,goal(A,B)))

so a compiler is allowed to transform one into the other: if it is known that B will be instan-
tiated later than A, it is actually a good idea to transform the first into the second. However, in
the absence of such information, one might expect the compiler not to do this. Still, B-Prolog does
something like that, i.e. if the source program contains the first goal, then hProlog, Yap, SICStus
also perform effectively the delay first on variable A. In B-Prolog on the other hand, the delay is
put on the variable B. This is confirmed by inspection of generated abstract machine code and by
benchmarking. As it turns out, queens_freeze and sort_freeze contain such doubly nested freezes
and also sendmoney_freeze contains even deeper nested freezes 2. We have done the measure-
ments for queens_freeze and sort_freeze while reversing also the nesting of the freezes: the hProlog
figure improves by about 15% and B-Prolog becomes slower by about 25%, thereby restoring the
confidence in figures :-)

Still, it means that one has to be veeeery careful when benchmarking programs with freeze/2: we
had instrumented the benchmarks at first, so as to be sure that there was the same number of freezes,

2the latter partly because we needed to transform the benchmark slightly since hProlog does not support X =
3+1, Y is X - 2, type of arithmetic
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wakeups etc, but instrumenting a goal like freeze(A, freeze(B, goal(A, B))) was done by replacing
it by myfreeze(A, myfreeze(B,goal(A, B))) with an appropriate definition of myfreeze/2; but
this of course prevents B-Prolog from seeing the nesting and changing the order of delaying.

We end this section with three more remarks

1. Apart from time, freeze/2 also uses space. As B-Prolog freezes goals through stack frames, its
memory requirements are different than those of systems like SICStus or hProlog: a melted
goal can get trapped on the stack and without a stack collector, it cannot be re-used until
failure. But Prolog implementations usually have a heap garbage collector: then, a melted
goal can be garbage collected. This seems a good argument for using the heap based approach.

2. Attributed variables ([14]) are commonly used for implementing delayed goals: being frozen
or not is just one possible attribute. Support for attributed variables can slow down delay.
hProlog does not support attributed variables.

3. The bad performance of SICStus on the freeze benchmarks is mainly due to the slow meta
call of SICStus: when benchmarks are rewritten so as to use the block declaration rather than
freeze, SICStus behaves closer to hProlog. hProlog did not support block declarations when
we started doing these tests and still does not fully so; however, preliminary (hand) testing
indicates that there is little performance gain for block in hProlog, exactly because of its fast
meta call.

13 hProlog and future work

hProlog is (just like ilProlog [2]) a descendant of dProlog ([8, 9]); the differences with dProlog are
e it only supports the heap_vars version

e the tagging schema has been changed (mainly because we needed an extra tag for delaying
goals on the instantiation of variables)

e it no longer uses the XSB compiler for the generation of abstract machine code; instead, it uses
the compiler written by Henk Vandecasteele, but with a few extra instruction compressions
(some of which are described in [7])

¢ the double opcode schema of [5] has been definitely abandoned

hProlog was initially meant as an emulator back end to HAL ([]). This does not require hProlog
to be a full Prolog system, e.g. it uses modules, but not the predicate based modules system of ISO
Prolog; it doesn’t need the whole I/O and many of the built-in predicates of the ISO standard. On
the other hand, its own compiler is written in (h)Prolog and so hProlog is reasonably complete,
definitely by Clocksin-Mellish standards.

As a backend to HAL, hProlog needs to support type classes and that is one reason to do
meta calls (in different forms) well. HAL supports - like Mercury - modes, types and determinism
declarations of predicates, but as a backend, hProlog can ignore these. Still, future research and
implementation effort will go into exploiting such declarations for improved efficiency. For an early
description of how to exploit types in a WAM context, see [15].
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14 Conclusion

Most often benchmarks are used to prove superiority of one system over others. This was not our
aim and even if hProlog turns out to be faster than to other systems for lots of benchmarks, we
prefer the following message: within a context - e.g. being ISO - there are possibilities to improve
13 3 given implementation; sometimes by a huge factor. Such an improvement might be local in
the sense that a 10-fold speed-up of a particular feature will not result in a global 10-fold speedup
of an application, but it is important nevertheless because the feature will become more attractive
to use and so will be logic programming. Also, we might gain insight in the cost of a particular
standard: the decisions in the ISO committee were often made without concern for efficiency, but
also without information about the efficiency. We believe that a revision of the standard taking
into account implementation experience is in order, in particular concerning meta predicates and
modules.
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