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Abstract

The prediction of the time of default in a credit risk setting via survival analysis
needs to take a high censoring rate into account. This rate is due to the fact that
default does not occur for the majority of debtors. Mixture cure models allow the
part of the loan population that is unsusceptible to default to be modelled, distinct
from time of default for the susceptible population. In this paper, we extend the
mixture cure model to include time-varying covariates. We illustrate the method via
simulations and by incorporating macro-economic factors as predictors for an actual
bank data set.
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1 Introduction

With recent compliance guidelines such as the Basel accords, increased attention is devoted

to more accurate calculations of the minimum amount of capital banks need to hold to

provide a buffer against unexpected losses (Van Gestel and Baesens, 2008). Typically the

probability of default (PD) of a certain loan applicant is estimated using classification

techniques such as logistic regression. However, alternative methods have gained more

importance in the recent credit scoring literature. In particular, survival analysis is an

interesting tool as this method enables modeling of time until default, and not just whether

a certain customer will default and the can be estimated over any time horizon.

Originally mainly used in medical science (see Collett, 2003; Cox and Oakes, 1984),

survival analysis was first introduced in the credit scoring context by Narain (1992). While

initially using fully parametric accelerated failure time survival models, other authors ex-

tended the idea of Narain (1992), using a Cox proportional hazards (PH) model (see Banasik

et al., 1999), extensions on Cox PH models (Stepanova and Thomas, 2002) and including

macro-economic variables (MVs) through time-varying covariates (TVCs) in Cox PH mod-

els (see Bellotti and Crook, 2009). Crook and Bellotti (2010) review several models for

consumer loan credit risk modeling. Divino and Rocha (2013) compare survival analysis

to the use of logistic regression models. In these papers, it is shown that survival analysis

is a competitive method to logistic regression, and extending the Cox PH model further

improves the accuracy of the estimated PD.

The survival function is S(t) = P (T > t), which is the probability of observing an

event time T larger than some given t. A basic property of the survival function is that

S(t) = 1 − F (t), where F (t) is the cumulative distribution function. Because of this

relationship, S(t) is assumed to go to zero as time proceeds, which means that all subjects

under observation are expected to experience the event of interest eventually. As opposed

to medical science where the event of interest is usually death, this property does not seem

valid in the credit risk context, as a substantial part of the population will never experience

default. In fact, it can be argued that unsusceptibility to default is the main reason behind

the high censoring rate. The proportion of observations where default is not observed might

in practice even exceed 95%. Figure 1 clearly demonstrates this phenomenon for the credit
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Figure 1: A sample of 20 estimated Kaplan-Meier estimates of the survival probability

for the credit loan data as used in Section 6. The bounds indicate the region of all such

estimated curves for this data example.

loan data set used in this paper (see Section 6). In this figure the continuous variables

have been discretized by using their median, resulting in 128 estimated survival curves

using the Kaplan-Meier estimator. To improve visibility, a random sample of 20 curves is

shown in Figure 1, together with the bounds that the region of all 128 curves span. Clearly,

the assumption that the survival function goes to zero does not hold. This implies that

standard survival analysis methods and models do not apply well to this data set.

A remedy for this, the “mixture cure model”, was initially proposed by Berkson and

Gage (1952) and Farewell (1982) to model long-term survivors in the medical context.

This model contains a logistic regression component, modeling “unsusceptibility” to the

event of interest, and a survival component, modeling the survival times of an individual

conditioning on susceptibility. While using parametric survival distributions in the survival

component initially, Kuk and Chen (1992) extended the mixture cure model using non-

parametric survival distributions (see also Peng and Dear, 2000; Sy and Taylor, 2000).

Cai et al. (2012b) introduced the smcure-package in R (R Core Team, 2013) to estimate

semi-parametric mixture cure models. This latter version of the mixture cure model was

introduced in the credit risk context by Tong et al. (2012). Dirick et al. (2015) developed

a model selection criterion for these models, and applied this to credit risk data.

While the use of TVCs has been investigated in (non-mixture) survival models, both in

medical research (see among others Andersen, 1992) and in the credit context (see Bellotti
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and Crook, 2009), to our knowledge TVCs have not been implemented before in mixture

cure models. In the present paper, we examine TVCs in these models, more specifically

macro-economic factors, along with the usual time-independent covariates. The inclusion

of TVC allows us to get a better understanding of why customers default. These insights

can then be successfully adopted for ongoing credit risk monitoring (also called behavioural

scoring in the industry) which help to determine provisions and capital buffers for both

expected as well as unexpected losses.

The remainder of this paper is organized as follows. In Section 2, we give a short

overview of different types of TVCs. In Sections 3 and 4, we discuss the mixture cure

model with TVCs and the likelihood function, while computational details are placed in

Appendix A. The simulation setup and results are discussed in Section 5, and a credit risk

data example is presented in Section 6. Section 7 concludes.

2 Time-varying covariates

2.1 Internal versus external TVCs

TVCs can be segmented into two classes: internal and external TVCs; see, among others,

Kalbfleisch and Prentice (2002, Chapter 6), Hosmer et al. (2008, Chapter 7) and Cortese

and Andersen (2010). An internal TVC is one whose value is typically subject-specific and

requires the subject to be under direct observation. An example of an internal TVC in the

credit risk context is a customer’s current account balance, or a patient’s cholesterol level

in the medical context. From the biomedical point of view, an internal covariate generally

requires the survival of the individual for its existence. In this sense, the internal TVC-path

carries direct information on the timing of the event if this event is death.

An external TVC does not require subjects to be under direct observation, nor does its

existence depend on the occurrence of the event of interest. Examples of external TVCs are

the inflation rate (in the credit risk context) and air pollution (in the biomedical context).

In general, these TVCs are usually environmental factors that apply to all subjects under

observation; however, subject-specific properties such as age are considered to be external

as, given a subject’s birth date, age can be determined at any time. A time-fixed covariate
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can be seen as a special case of an external time-dependent covariate, where its value is

measured in advance and fixed for the entire study (e.g. the applicant’s bureau score).

Formally, in a non-mixture survival context, denote xi(t) = (xi1(t), . . . , xil(t)) as the

covariate vector at time t for individuals i = 1, . . . , n. Additionally, denote the covariate

history up to time t: Xi(t) = {xi(u); 0 ≤ u < t}. The available information for each

observation i is given by the time Ti = min(Ui, Ci), where Ui denotes the true event time

and Ci is the censoring time, a corresponding censoring indicator δi = I(Ui ≤ Ci) and

Xi(ti), the covariate history until ti.

A TVC is external when for all v, t, such that 0 < v ≤ t it satisfies the condition

(Kalbfleisch and Prentice, 2002, Chapter 6)

P (T ∈ [v, v + dv) | X(v), T ≥ v) = P (T ∈ [v, v + dv) | X(t), T ≥ v) . (1)

The rationale behind this condition is that although a time-dependent covariate may in-

fluence the event rate over time, its future path until any time t is not affected by the

occurrence of the event of interest at time v, or rather, in the interval [v, v + dv) where dv

is a very small increment in time. The difference between internal and external covariates

has great implications on survival function estimation. In presence of external covariates,

the standard relationship between the survival function and the hazard function,

S(t | X(t)) = P (T > t | X(t)) = exp
(
−

∫ t

0

λ{v | X(v)}dv
)

(2)

holds, where λ{v | X(v)} is the hazard function using the historyX(v). All TVCs described

in this paper are macro-economic external variables, hence (2) can be used.

However, bear in mind that in case of internal covariates, extra attention should be

given to the estimation of the survival function, see Andersen (1992) for a probabilistic

model for survival function estimation in presence of internal TVCs. Because of the nature

of internal TVCs and non-compliance to (1), however, estimation of instantaneous hazards

is possible, but cumulative hazards and survival probabilities are no longer feasible through

(2). To see this, we reconsider the example of the internal covariate cholesterol level in a

study where the event of interest is death. From (2), any measurable cholesterol level

value would indicate that the subject under investigation is still alive, hence, S (t | X(t)) =

P (T > t | X(t)) = 1 given that X(t) is measurable. For more information on this issue,

we refer to Kalbfleisch and Prentice (2002, Chapter 6) and Fisher and Lin (1999).
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2.2 Macro-economic factors

Being a function of a (continuous) time t, TVCs can theoretically change continuously.

This is approximately the case for some macro-economic variables (e.g. stock prices), others

tend to be documented over longer periods of times such as unemployment rates (weekly,

monthly or yearly). To manage TVCs in survival models, the observation period of each

subject is split in several time-periods, which are defined by adjacent event times (Fox,

2002). Let xip(t) (where p ∈ {1, . . . , l}) be one specific time-dependent covariate, and let

B1 < . . . < Bm be all the unique event or censoring times observed in the data set. To

manage the data, subject i must have exactly one TVC value for each of the intervals

{(0, B1], (B1, B2], . . . , (Bki−1, Bki]}, where ki ∈ {1, . . . , m} and Bki = ti, hence each subject

has its own set of TVC values until its own censoring or event time ti.

Applied to default events in loans, these intervals represent the respective number of

months a subject has been repaying until default or censoring. As a result, the TVCs

are the monthly averages of specific macro-economic factors. This is denoted by replacing

xip(t) by x̄ip(t) =
(
x̄ip((0, B1]) , x̄ip ((B1, B2]) , . . . , x̄ip ((Bki−1, Bki])

)
, where x̄ip ((Bj−1, Bj ])

is the average value of TVC p for subject i over the time interval (Bj−1, Bj].

3 A mixture cure model with TVCs

In a mixture cure model, cases are categorized into two groups: a group that will experience

the event, and a group of so-called ‘unsusceptible’ cases that will not experience the event of

interest. These groups are modeled using a mixture distribution where a logistic regression

model provides a mixing proportion of the unsusceptible cases and where a survival model

describes the cases susceptible to the event of interest (Tong et al., 2012). In the credit

risk context, where the event of interest is loan default, every event-type that is not default

(e.g. loan maturity, early repayment) is considered as censored. By consequence, there is

heavy right-censoring and a large group of unsusceptible cases is expected to be present.

For each subject i, the censoring indicator δi denotes whether subject i experiences the

event of interest during the observation period (δi = 1), or not (δi = 0). This censoring

indicator provides partial information on susceptibility; however, when an observation is
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censored, it is unclear whether the event will still occur after the observation period has

terminated. Introducing a susceptibility indicator Yi, where Yi = 1 when an observation

is susceptible and Yi = 0 if not, three different combinations of Yi and δi are possible: (1)

Yi = 1 and δi = 1: uncensored and susceptible, the event takes place during the observation

period; (2) Yi = 1 and δi = 0: censored and susceptible, the event will take place, however is

not observed; (3) Yi = 0 and δi = 0: censored and unsusceptible, the event is not observed

and will never take place. For each observation i, Ti and δi are fully observed, Yi is only

observed and equal to 1 when δi = 1.

3.1 The model

In a model with both time-dependent covariates x(t) and time-fixed covariates z, the

unconditional survival function of the mixture cure model is given by

S(t | z,x(t)) = π(z)S(t | Y = 1, z,x(t)) + 1− π(z). (3)

The ‘incidence model’, π(z) = P (Y = 1 | z), is the proportion of susceptible accounts

given covariate vector z = (z1, . . . , zs)
′, modeled using a binary logit, with b = (b1, . . . , bs)

′

π(z) = exp(b′z)/{1 + exp(b′z)}. (4)

Note that, in this part of the mixture cure model, only time-fixed covariates are incorpo-

rated. The conditional survival function is modeled using a semi-parametric proportional

hazard regression model such that, with β = (β1, . . . , βs)
′,

S(t | Y = 1, z,x(t)) = exp

(
− exp(β′z + β′

Tx(t))

∫ t

0

h0(u | Y = 1)du

)
, (5)

with h0 the unspecified baseline hazard function, x(t) = (x1(t), . . . , xl(t)) a l-vector of

time-dependent covariates and z = (z1, . . . , zs) a time-fixed covariate vector identical to

the one in the incidence model. Note that from a theoretical point of view, the incidence

and latency time-fixed covariate vectors may contain different variables; however in this

paper, focusing on time-dependent covariates, these covariates are kept equal in all practical

examples. For mixture cure models with different time-fixed covariate elements in latency

and incidence models, we refer to Dirick et al. (2015).
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3.2 The likelihood function

To construct the likelihood function, specific attention should be devoted to the TVCs.

Data management is the biggest challenge. We require that each time period (bounded

by B1 < . . . < Bm, see section 2.2) for a specific individual appears in a separate row in

the data set (Fox, 2002). Denote λi,j the interval-specific censoring indicator for interval

j ∈ {1, . . . , ki} of observation i. The complete likelihood, given full information on Y , is

Lc(b,β,βT ) =

n∏

i=1

(
1− π(zi)

)(1−Yi)π(zi)
Yi

ki∏

j=1

h(tj |Yi=1, zi,xi(tj))
λi,jYiS(tj |Yi=1, zi,xi(tj))

Yi

where h(tj | ·) and S(tj | ·) are, respectively, the hazard and survival contributions at the

time point given by the upper bound Bj of the corresponding interval, and xi(tj) is the

value of the TVC of observation i in the interval (Bj−1, Bj]. The log likelihood function

can be written as the sum of the latency and incidence log likelihoods,

logLc(b,β,βT | z,x(t), Y ) = logLinc(b | z, Y ) + logLlat(β,βT | z,x(t), Y ), (6)

where

logLinc(b | z, Y ) =

n∑

i=1

(1− Yi)
(
1− π(zi)

)
+ Yi π(zi) (7)

logLlat(β,βT | z,x(t), Y ) =
n∑

i=1

ki∑

j=1

Yiλi,j log h(tj | Yi = 1, zi,xi(tj))

+Yi log S(tj | Yi = 1, zi,xi(tj)). (8)

As noted at the start of Section 3, Yi is missing for the censored cases. As we do not have

an exact expression for logLc(b,β,βT | z,x(t), Y ), the expectation maximization (EM)

algorithm is used. This is an iterative procedure to find the maximum likelihood estimates

using data that are incomplete (Dempster et al., 1977). We provide the needed adjustments

to the algorithm to incorporate TVCs in mixture cure models, see the Appendix.
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δi ti z1 z2

obs 1 1 1 -1 2

obs 2 0 2 0.3 3

obs 3 1 3 0.4 2.3

Bj−1 Bj λi,j δi ti z1 z2 x1(t) x2(t)

obs 1 0 1 1 1 1 -1 2 0.3 -0.7

obs 2 0 1 0 0 2 0.3 3 0.2 0.4

obs 2 1 2 0 0 2 0.3 3 0.7 -0.1

obs 3 0 1 0 1 3 0.4 2.3 0.5 -1

obs 3 1 2 0 1 3 0.4 2.3 0.2 -0.3

obs 3 2 3 1 1 3 0.4 2.3 0.4 0.2

Table 1: Example of the incidence versus latency model data structure. At the left: data

structure for the binomial logit part of the mixture cure model, where no TVCs are present.

At the right: the long data structure incorporating TVCs in the survival part of the model.

4 Computational scheme

4.1 Data structure

Including TVCs in the survival part of the mixture cure model requires rearrangement of

the data. To make TVCs computationally feasible in a Cox PH model, each time period

(Bj−1, Bj] with j = 1, . . . , ki for each individual i is represented as a single row in the

data set (Fox, 2002). Note that the number of rows for each observation depends on the

observation itself as Bki = ti. The advantage of this data structure is that one can use the

coxph-function in package survival in R (Therneau, 2014), using preamble “Surv(start,

stop, default)” instead of the more familiar “Surv(time, default)”.

The mixing proportions of the mixture cure model modeled by the binomial logit do

not include TVCs, and using several lines per observation in this model part would lead to

wrong estimates of b. As a result, for the mixture cure model with TVCs, different data

set structures are used depending on whether the respective calculations are performed on

the latency or the incidence part of the model. An example of the ‘short’ (incidence) data

structure versus the ‘long’ (latency) data structure is given in Table 1. To transform the

short form of survival data into the long structure, Fox and Carvalho (2012) introduced

the “unfold” function in the R-package RcmdrPlugin.survival.
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4.2 Procedure

The procedure consists of three main steps: initialization, the E-step and the M-step.

4.2.1 Initialization

1) Initialize w: Initialize w
(0)
i by taking w

(0)
i = δi. Each observation has one w

(0)
i .

2) Initialize b: Fit a binomial logit model to w
(0)
i using the ‘short’ data set and covariate

vector z, in order to retrieve an initial estimate b̂
(0)
.

3) Initialize β and βT : Obtain β̂
(0)

and β̂
(0)

T using the coxph-function for the long

survival data including TVCs. Use wi’s as weights in the model, matching wi with

each line that corresponds with observation i.

4) Initialize S0(t): Compute Ŝ
(0)
0 (t) using formula (14).

4.2.2 Expectation step

1) Compute π
(1)
i (zi) for each i, using Formula (4), and b̂

(0)
.

2) Compute w
(1)
i for each i, using Formula (13), and β̂(0). Note that the survival esti-

mates used here, Ŝ(0)(ti | Yi = 1, zi,xi(ti)) = Ŝ
(0)
0 (ti)

exp(β̂
′(0)zi+β̂

′(0)
t xi(ti)), correspond

for each observation to the estimate at the time of the last observation, hence the

linear predictor consists of the TVC-values at time ti.

4.2.3 Maximization step

1) Update b: Obtain a new estimate b̂
(1)

using the w
(1)
i of the E-step when fitting the

binomial logit model.

2) Update β and βT : Obtain β̂
(1)

T and β̂
(1)

including the w
(1)
i s as weights.

3) Update S: Obtain a new estimate Ŝ(0)(t) using formula (14).

The E and M-step are repeated with all updated estimates, until parameter convergence.

The algorithm stops when the sum of the squared differences between (β̂
(r+1)

T , β̂
(r+1)

T , b̂
(r+1)

)

and (β̂
(r)

T , β̂
(r)

T , b̂
(r)
) is smaller than a pre-specified value.
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5 Simulation study

5.1 Simulating survival times with time-dependent covariates

We include both time-fixed covariates z (associated with b and β) and TVCs x(t) (asso-

ciated with βT ). When simulating survival times using an exponential distribution with

only time-invariant covariates, the survival times and the cumulative hazard function can

be defined piecewise, with u ∼ U(0, 1),

T = −
log(u)

λ exp(β′z)
, H(− log(u), z) = λ exp(β′z)(− log(u)).

Austin (2012) describes a method for generating survival times in the presence of TVCs

which are constrained to be dichotomous variables with a limited number of changes be-

tween 0 and 1. For our purpose, we generalized this setting in two ways. (1) The TVC

can change value from one time period to another, where a time period is defined by two

adjacent event or censoring times. (2) The TVC can take any value, and does not need to

be dichotomous.

In the simulation we set the boundaries that define the TVC intervals as follows. We

denote by Bj the timepoints where the covariate values change. Note that j ∈ {1, . . . , m}

withm ≤ n−1, with n the number of cases, as both the event and censoring times are unique

in a simulation study when using continuous time distributions. As a notational convention,

we use x(tj) for the value of the time-dependent covariate in the interval (Bj−1, Bj ]. In a

generalization of the simulation method by Austin (2012), the cumulative hazard function

is given by

H(υ, z, x(t))

=





λ exp(β′z + β′
Tx(t1))(υ) if υ ≤ B1

λ exp(β′z)
[
exp(β′

Tx(t1))B1 + exp(β′
Tx(t2))(υ−B1)

]
if B1 < υ ≤ B2

...

λ exp(β′z)
[ m∑

j=1

(
exp(β′

Tx(tj))(Bj−Bj−1)
)
+ exp(β′

Tx(tm+1))(υ−Bm)
]

if Bm < υ

where υ = − log(u). The domain of the cumulative hazard function can be divided into

mutually exclusive intervals D1 = (0, B1], D2 = (B1, B2], . . . , Dm+1 = (Bm,∞), with the
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corresponding ranges of the cumulative hazard functions,

R1 =
(
0, λ exp(β′z + β′

Tx(t1))B1

]
;

R2 =
(
λ exp(β′z + β′

Tx(t1))B1, λ exp(β
′z){exp(β′

Tx(t1))B1 + exp(β′
Tx(t2))(B2−B1)}

]
;

...

Rm+1 =
(
λ exp(β′z)

m∑

j=1

(
exp(β′

Tx(tj))(Bj−Bj−1)
)
,∞
)
.

By inverting each of the piecewise components of the cumulative hazard function we can

simulate the survival time as H−1(υ, z, x) with

H−1(υ, z, x(t))

=





υ

λ exp(β′z + β′
Tx(t1))

if υ ∈ R1

υ − λ exp(β′z + β′
Tx(t1))B1 + λ exp(β′z + β′

Tx(t2))B1

λ exp(β′z + β′
Tx(t2))

if υ ∈ R2

...

υ + λ exp(β′z)
{∑m

j=1 (− exp(β′
Tx(tj))(Bj−Bj−1)) + exp(β′

Tx(tm+1))(Bm)
}

λ exp(β′z + β′
Tx(tm+1))

if υ ∈ Rm+1.

5.2 Simulation setup and results

5.2.1 Uncorrelated time-varying covariates

The probability of being unsusceptible is generated using a logistic model where π(z) =

exp(b′z)/{1 + exp(b′z)}, and the survival times of the susceptible cases are generated

using an exponential distribution with λ = 0.7. We generate two uncorrelated time-fixed

covariates z1 ∼ N(1.5, 0.6) and z2 ∼ bin(1, 0.5), and two time-dependent covariates x1(t) ∼

N(2, 0.5) and x2(t) ∼ N(0.8, 0.5).

Different simulation settings are implemented in order to explore different aspects of

model behaviour. In settings I, II and III, β = (−1.2, 1)′ and βT = (1,−0.7)′, while in set-

tings IV, V and VI, β = (1,−3)′ and βT = (−0.5, 0.9)′. Susceptibility is managed through

the vector b, which is (2, 0.5, -2.3) for settings I and IV (low censoring/susceptibility),

(-0.5, 0.8, -1.5) for settings II and V (medium censoring/susceptibility) and (-1.5, 0.5, -2)

for settings III and VI (high censoring/susceptibility). Censoring times are generated from

an exponential distribution using λ = 0.1 for low and medium settings, and λ = 0.2 for the
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high censoring settings. For each of the six settings, we take n=300, n=500 and n=1000

and use 100 replications for each sample size. Note that the TVC can theoretically change

value n − 1 times. To imitate real-data situations, we constrained the TVCs to change

values at most 60 times, as the data sets we typically use have a loan term of 60 months

(i.e. five years) or less.

In Table 2 and 4, the true generating parameter values are shown, as well as the mean of

the parameter estimates, the standard errors over the 100 simulation runs for each sample

size and the absolute biases and the mean squared errors between the parameter estimates

and the true values.

From Tables 2 and 4, we see that higher censorship leads to higher MSE, while a

larger n tends to lower the MSE. A small n in combination with high censorship led to

a degeneration of some of the β̂2 estimates for Setting IV. This issue does not translate

to the bias, despite the fact that the same effect of sample size and censorship seems to

apply. Even under large censorship, the parameter estimates related to the TVCs (β̂T1 and

β̂T2) are more stable according to the simulations. The abundant information in the TVCs

(for each case in our simulation 40 to 60 different values for one TVC) enables an accurate

parameter estimation.

Table 3 shows the results of a comparison with the standard Cox proportional hazard

regression model. The results are for settings I–III, for sample size n = 1000 and should

be compared to the corresponding cases in Table 4. Other settings give a similar inferior

performance as compared to the mixture cure models, although those results are not shown.

In particular the time independent variables are estimated with a bias.

5.2.2 Correlated time-varying covariates

In real life, macro-economic factors are all linked and influence each other. To mimic this

behaviour, setting VII takes TVCs that are highly correlated. Time-fixed covariates have

the same distributions as for the previous settings, n = 1000 and the generating parameters

are as in setting I. However, this time we included three TVCs that are highly correlated,
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n = 300 n = 500 n = 1000

true avg est avg sd bias MSE avg est avg sd bias MSE avg est avg sd bias MSE

S
et
ti
n
g
I

b̂0 2.00 2.151 0.474 0.151 0.384 2.151 0.368 0.151 0.249 2.076 0.254 0.076 0.094

b̂1 0.5 0.481 0.269 0.019 0.105 0.532 0.213 0.032 0.077 0.540 0.153 0.040 0.027

b̂2 -2.3 -2.349 0.290 0.049 0.219 -2.439 0.225 0.139 0.235 -2.368 0.148 0.068 0.079

β̂1 -1.2 -1.137 0.125 0.063 0.032 -1.152 0.101 0.048 0.018 -1.150 0.070 0.050 0.009

β̂2 1.0 0.898 0.132 0.102 0.043 0.876 0.108 0.124 0.033 0.894 0.077 0.106 0.022

β̂T1 1.0 0.983 0.132 0.017 0.016 0.990 0.102 0.010 0.010 0.988 0.072 0.012 0.005

β̂T2 -0.7 -0.687 0.132 0.013 0.023 -0.692 0.101 0.008 0.014 -0.691 0.071 0.009 0.006

S
et
ti
n
g
II

b̂0 -0.50 -0.372 0.332 0.128 0.203 -0.453 0.255 0.047 0.120 -0.421 0.183 0.079 0.088

b̂1 0.8 0.796 0.165 0.004 0.086 0.889 0.120 0.089 0.063 0.896 0.109 0.096 0.050

b̂2 -1.5 -1.571 0.231 0.071 0.093 -1.612 0.181 0.112 0.094 -1.655 0.123 0.155 0.081

β̂1 -1.2 -1.072 0.160 0.128 0.064 -1.088 0.132 0.112 0.040 -1.029 0.084 0.171 0.042

β̂2 1.0 0.911 0.185 0.089 0.094 0.896 0.142 0.104 0.045 0.838 0.097 0.162 0.049

β̂T1 1.0 0.991 0.170 0.009 0.029 0.976 0.130 0.024 0.019 1.006 0.091 0.006 0.006

β̂T2 -0.7 -0.680 0.168 0.020 0.045 -0.673 0.129 0.027 0.024 -0.715 0.090 0.015 0.009

S
et
ti
n
g
II
I

b̂0 -1.50 -1.316 0.396 0.184 0.421 -1.391 0.315 0.109 0.247 -1.379 0.213 0.121 0.126

b̂1 0.5 0.449 0.227 0.051 0.147 0.494 0.145 0.006 0.114 0.521 0.093 0.021 0.061

b̂2 -2.0 -2.020 0.338 0.020 0.226 -2.048 0.265 0.048 0.163 -2.091 0.187 0.091 0.072

β̂1 -1.2 -1.000 0.293 0.200 0.241 -1.080 0.233 0.120 0.134 -1.064 0.148 0.136 0.069

β̂2 1.0 0.921 0.387 0.079 0.284 0.848 0.320 0.152 0.250 0.866 0.204 0.134 0.096

β̂T1 1.0 0.974 0.311 0.026 0.102 0.978 0.230 0.022 0.064 0.943 0.159 0.057 0.025

β̂T2 -0.7 -0.697 0.306 0.003 0.100 -0.693 0.231 0.007 0.076 -0.686 0.159 0.014 0.027

Table 2: Simulation study. True values, averaged estimates, standard deviation, bias

and mean squared error for different settings and sample sizes. Setting I: unsusceptible=

22.63%, censoring= 32.89%; Setting II: unsusceptible= 50.9%, censoring= 58.26%; Setting

III: unsusceptible= 80.70%, censoring= 86.08%.

x(t) = (x1(t), x2(t), x3(t))
′ with mean, covariance matrix and correlation matrix

µ =




2

0.8

−0.7


 ; Σ =




0.7 0.8 0.8

0.8 1.2 0.8

0.8 0.8 1.0


 ; ρ =




1 0.873 0.956

0.873 1 0.730

0.956 0.730 1


 .

In setting VII, censoring times are generated using an exponential distribution with λ =

0.15. Although mean standard errors of the TVCs are larger as compared to the time-fixed

covariates and the results in Tables 2 and 4 (the right panel for Setting I in particular),
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Setting I true value avg est avg std Bias MSE

β̂1 -1.2 -0.3315 0.0645 0.8685 0.7579

β̂2 1.0 -0.4704 0.0801 1.4704 2.1687

β̂T1 1.0 0.9216 0.0777 0.0784 0.0118

β̂T2 -0.7 -0.6530 0.0777 0.0470 0.0082

Setting II true value avg est avg std Bias MSE

β̂1 -1.2 0.1224 0.0808 1.3224 1.7546

β̂2 1.0 -0.7599 0.1038 1.7599 3.1088

β̂T1 1.0 0.9022 0.0985 0.0978 0.0199

β̂T2 -0.7 -0.6492 0.0986 0.0508 0.0130

Setting III true value avg value avg std Bias MSE

β̂1 -1.2 0.0274 0.1419 1.2274 1.5267

β̂2 1.0 -1.5891 0.2205 2.5891 6.7396

β̂T1 1.0 0.9003 0.1708 0.0997 0.0322

β̂T2 -0.7 -0.6490 0.1710 0.0510 0.0266

Table 3: Simulation study with n = 1000 and using the Cox proportional hazard regression

model. True values, averaged estimates, standard deviation, bias and mean squared error

for different settings.

Table 5 show that biases and mean squared errors are not notably larger for b and βT .

Estimators of β1 and β2 seem to have a higher bias. This result is due to the larger gap

between the percentage of censored and unsusceptible cases (39.01 − 22.72% = 16.29%).

Throughout our simulations, it has become clear that the estimates of β deteriorate when

this gap becomes bigger than 10%. The βT estimates, however, do not seem to be affected.

6 Data set with macro-economic variables

The data used was provided by a major Belgian financial institution. The sample, consisting

of 20 000 personal loans with a fixed loan term of 36 months, spanned a period of loans that

were initiated between January 2004 and May 2014. Among these 20 000 loans, 839 ended in
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n = 300 n = 500 n = 1000

true avg est avg sd bias MSE avg est avg sd bias MSE avg est avg sd bias MSE

S
et
ti
n
g
IV

b̂0 2.00 2.232 0.489 0.232 0.617 2.120 0.355 0.120 0.328 2.121 0.244 0.121 0.146

b̂1 0.50 0.499 0.229 0.001 0.199 0.527 0.174 0.027 0.112 0.475 0.120 0.025 0.056

b̂2 -2.30 -2.429 0.423 0.129 0.372 -2.367 0.324 0.067 0.193 -2.195 0.217 0.105 0.122

β̂1 1.00 1.012 0.131 0.012 0.024 0.978 0.098 0.022 0.017 0.990 0.068 0.010 0.006

β̂2 -3.00 -2.983 0.255 0.017 0.126 -2.960 0.172 0.040 0.052 -3.016 0.118 0.016 0.023

β̂T1 -0.50 -0.441 0.135 0.059 0.030 -0.388 0.103 0.112 0.021 -0.406 0.072 0.094 0.014

β̂T2 0.90 0.907 0.137 0.007 0.027 0.895 0.105 0.005 0.013 0.895 0.073 0.005 0.006

S
et
ti
n
g
V

b̂0 -0.50 -0.464 0.305 0.036 0.216 -0.419 0.233 0.081 0.134 -0.470 0.166 0.030 0.066

b̂1 0.80 0.809 0.186 0.009 0.089 0.799 0.141 0.001 0.047 0.797 0.098 0.003 0.023

b̂2 -1.50 -1.455 0.249 0.045 0.123 -1.496 0.187 0.004 0.097 -1.415 0.132 0.085 0.049

β̂1 1.00 1.007 0.164 0.007 0.035 0.970 0.124 0.030 0.026 0.983 0.087 0.017 0.012

β̂2 -3.00 -2.910 0.319 0.090 0.135 -2.925 0.227 0.075 0.115 -2.985 0.141 0.015 0.045

β̂T1 -0.50 -0.424 0.167 0.076 0.042 -0.406 0.128 0.094 0.024 -0.395 0.090 0.105 0.022

β̂T2 0.90 0.852 0.169 0.048 0.040 0.886 0.130 0.014 0.019 0.882 0.091 0.018 0.010

S
et
ti
n
g
V
I

b̂0 -1.50 -1.351 0.380 0.149 0.324 -1.465 0.292 0.035 0.214 -1.415 0.202 0.085 0.118

b̂1 0.50 0.459 0.226 0.041 0.104 0.496 0.176 0.004 0.064 0.480 0.121 0.020 0.035

b̂2 -2.00 -2.226 0.396 0.226 0.567 -2.315 0.313 0.315 0.372 -2.190 0.207 0.190 0.176

β̂1 1.00 1.094 0.261 0.094 0.131 0.962 0.196 0.038 0.070 0.977 0.150 0.023 0.024

β̂2 -3.00 -3.219 125.338 0.219 9.256 -3.114 94.559 0.114 9.057 -2.576 0.335 0.424 0.503

β̂T1 -0.50 -0.416 0.273 0.084 0.085 -0.404 0.210 0.096 0.070 -0.415 0.145 0.085 0.033

β̂T2 0.90 0.917 0.278 0.017 0.088 0.843 0.213 0.057 0.049 0.888 0.145 0.012 0.023

Table 4: Simulation study. True values, averaged estimates, standard deviation, bias and

mean squared error for different settings and sample sizes. Setting IV: unsusceptible=

22.56%, censoring= 36.51%; Setting V: unsusceptible= 51.07%, censoring= 58.14%; Setting

VI: unsusceptible= 80.67%, censoring= 83.45%.

a default and 5 376 in an early repayment. As could be expected given the rather short term

of the loans, the loan amounts are sized accordingly. The distribution of loan amounts is

shown in Figure 2. In the sample, 76.28% of the loan amounts are below 10 000 and 97.85%

below 20 000. In each of the models that are discussed, seven time-independent covariates

described in Table 6 (further information about these covariates cannot be disclosed due to

reasons of commercial confidentiality) are included as a baseline. As these variables are used

in a Cox PH model, a graphical check, through parallel discretized Kaplan-Meier curves,
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true avg est avg sd bias MSE

b̂0 2 2.0834 0.2654 0.0834 0.1273

b̂1 0.5 0.6053 0.1562 0.1053 0.0592

b̂2 -2.3 -2.3036 0.1682 0.0036 0.1363

β̂1 -1.2 -1.0529 0.0728 0.1471 0.0303

β̂2 1 0.6866 0.0769 0.3134 0.1189

β̂T1 1 0.9276 0.2716 0.0724 0.1048

β̂T2 -0.7 -0.6663 0.0924 0.0337 0.0120

β̂T3 0.5 0.5036 0.1673 0.0036 0.0367

Table 5: Results for simulation setting VII, true values, averaged estimates, standard

deviation, bias and mean squared error. Unsusceptible= 22.72%, censoring= 39.01%.

Description Type

z1 Annual income (per 1000) continuous

z2 Age continuous

z3 Monthly child allowance (Y/N) categorical

z4 Number of years at current address continuous

z5 Total employment years continuous

z6 Bureau score continuous

z7 Mortgage on real estate (Y/N) categorical

Table 6: Credit loan data, time-independent covariates. Covariates z1, z2, z4 and z5 are

mean-centered and z6 log transformed.

for the proportional hazards assumption was performed and showed that this assumption

was satisfied. Additionally, six macro-economic factors were gathered through the online

database from the Belgian National Bank (NBB, 2015). A TVC-value was retained for each

month in the years 2004 until 2014, correcting for both trend and seasonality by taking the

yearly difference for each TVC (e.g. the TVC-value for unemployment in August 2008 is the

difference between its value in August 2008 and August 2007). As some macro-economic
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Type Lag Description

x̄1(t) Interest Rate 6 months

As the interest rates of the Belgian financial institution were not disclosed,

the minimum bid interest rate was chosen. This refers to the minimum

interest rate at which counterparties may place their bids for refinancing

operations.

x̄2(t) BEL 20 index none

The benchmark stock market index of Euronext Brussels, consisting of ten

to twenty (depending on the period) companies that are traded at Brussels

Stock Exchange. The TVC is expressed as the difference between the index

of the current period and the previous year, divided by 1000.

x̄3(t) Consumer confidence none

Monthly survey on a variable sample of 1850 households conducted by the

National Bank. The survey, harmonized at European level, supplies infor-

mation on the appreciation of the consumers regarding the progress of the

economy in general and regarding their own situation in particular.

x̄4(t) Gross Domestic product none
Growth in the Belgian Gross Domestic Product with respect to the same

period in the previous year (GDP growth is documented quarterly).

x̄5(t) Inflation rate 6 months
Percentage changes in consumer price compared to the corresponding period

of the previous year.

x̄6(t) Unemployment 6 months

Harmonised data derived from the Labour Force Survey (LFS, population

older than 15 years), monthly adjusted by using the administrative national

unemployment figures, in accordance with the Eurostat methodology.

Table 7: Time-dependent covariates x̄1(t) to x̄6(t) are differential macro-economic factors

that change month by month. A specific TVC is the difference between the nominal macro-

economic factor value in a specific month and the same factor twelve months earlier.

factors may have a delayed effect on default, time lags of six months were introduced for

the TVCs of market interest rate, inflation rate and unemployment. Hence, we examine

the effect of the inflation rate in, say, February 2005 on possible default in August 2005.

As the financial crisis of 2007–2008 was fully covered in the sample, we examined the

effect of the crisis on the number of defaults. Figure 3 shows the proportion of defaults

in each month, represented by the number of defaults in each month divided by the total

number of loans that were actually running in that month (and were hence “at risk”).

Evidence of elevated defaults in the period 2007-01 to 2008-12 is present in the histogram,

with an average monthly default proportion of 0.0021 in the latter period versus an overall

average of 0.0017.

18



Loan Amounts (in EUR)

F
re

qu
en

cy

10000 20000 30000 40000 50000

0
50

0
10

00
20

00
30

00

Figure 2: Data example. Histogram representing the distribution of the loan amounts.

Only 3 loans had amounts over 50 000 EUR (not shown in the plot for reasons of clarity).
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Figure 3: Data example. Proportion of defaults in each month as a fraction of the total

number of loans that were actually running in each month.

6.1 Data analysis using the mixture cure model

Information about the time-independent and time-dependent covariates can be found in

Tables 6 and 7 respectively. Several mixture cure models, each including the same seven
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time-independent covariates, and three or four different TVCs (leading to thirty-five mod-

els in total) were analyzed. For each of these models, a corrected version of the Akaike

information criterion (named complete-data AIC or the AICcd) was computed. This AICcd

is based on the converged complete-data log likelihood Q
(
Θ̂ | Θ̂

)
instead of the standard

log likelihood and can be computed through

AICcd = −2Q
(
Θ̂ | Θ̂

)
+ 2d+ 2 trace{DM(Id −DM)−1},

where d is the length of the parameter vector, Id is a d× d identity matrix and DM is the

matrix rate of convergence of the EM algorithm, which is automatically computed when

using the SEM-algorithm (Meng and Rubin, 1991). The AICcd in the mixture cure context

is discussed in detail in Dirick et al. (2015).

When performing model selection one typically fits a series of models that are deemed

appropriate for the data at hand. A statistical model search via information criteria differs

from fitting one full model and reducing this by considering individual significance tests,

which leads to well-known multiple testing and pre-testing problems (Danilov and Magnus,

2004). The efficiency of AIC makes it preferable to other such criteria (e.g. the Schwarz

Bayesian information criterion) when the model is to be used to make predictions (see

for example Claeskens and Hjort, 2008, Chapter 2), which is the purpose of credit risk

modeling. Statistical individual significance is not considered in this process.

A general result from the analysis of the thirty-five models was that both BEL 20 index

and the interest rate tended to have a significant impact on default. The other macro-

economic factors, however, did not have a significant effect. The parameter information for

the three best models with respect to the AICcd-values, along with the model that only

contains the seven time-independent covariates, are given in Table 8. As a general result,

the AICcd clearly improves by including TVCs in the models. On the other hand, a lower

AICcd does not guarantee a model with significant TVCs, as can be seen in the AICcd

“best” model. For an explanation on how particular parameter estimates affect default, we

look at the model with significant effects for the interest rate and BEL 20 index. Residential

stability (z4), length of employment (z5), a higher bureau score (z6) and the presence of

a mortgage (z7) lead to a lower susceptibility (b̂ is negative). The corresponding negative

estimates β̂ for these four variables indicate a longer time until default as well. Both b̂ and
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AICcd (int) z1 z2 z3 z4 z5 z6 z7 IR BEL 20 cons conf GDP infl unempl

no TVC b 2.492 0.016 0.005 -0.076 -0.023 -0.039 -1.083 -1.319

(0.015) (0.002) (0.001) (0.033) (0.001) (0.002) (0.038) (0.026)

*** *** *** ** *** *** *** ***

30126.98 β -0.000 -0.011 -0.074 -0.024 -0.023 -0.615 -0.488

(0.005) (0.003) (0.077) (0.004) (0.006) (0.104) (0.092)

ns *** ns *** *** *** ***

best b 3.55 0.046 0.058 0.192 0.009 -0.07 -1.406 -2.153

(0.085) (0.002) (0.002) (0.037) (0.002) (0.002) (0.04) (0.033)

*** *** *** *** *** *** *** ***

26685.22 β -0.011 -0.026 -0.188 -0.036 -0.016 -0.519 -0.119 -0.003 -0.011 0.001

(0.005) (0.003) (0.076) (0.004) (0.006) (0.101) (0.077) (0.005) (0.021) (0.041)

* *** * *** ** *** ns ns ns ns

second best b 2.861 0.035 0.034 0.067 -0.003 -0.059 -1.23 -1.829

(0.079) (0.002) (0.001) (0.036) (0.002) (0.002) (0.039) (0.032)

*** *** *** · * *** *** ***

27743.78 β -0.008 -0.021 -0.133 -0.031 -0.016 -0.543 -0.188 0.071 -0.14 0.009 -0.033

(0.005) (0.003) (0.077) (0.004) (0.005) (0.1) (0.075) (0.036) (0.057) (0.022) (0.041)

· *** · *** ** *** * · * ns ns

third best b 3.309 0.028 0.023 0 -0.011 -0.048 -1.22 -1.588

(0.072) (0.002) (0.001) (0.034) (0.002) (0.002) (0.037) (0.033)

*** *** *** ns *** *** *** ***

29378.38 β -0.002 -0.015 -0.108 -0.029 -0.025 -0.659 -0.489 -0.003 0.005 -0.051

(0.005) (0.002) (0.074) (0.004) (0.006) (0.102) (0.085) (0.005) (0.031) (0.05)

ns *** ns *** *** *** *** ns ns ns

Table 8: Data example. Parameter estimates for the three best models according to their

AICcd-values and for the model without TVCs. (·) significant at the 10% level, (*) at the

5% level, (**) at the 1% level and (***) significant at the 0.1% level.

β̂ indicate that debtors with more job and residential stability, as well as a higher bureau

score and having a real estate mortgage tend to be less prone to default. The effect of

annual income (z1), age (z2) and presence of a monthly child allowance (z3) is less clear:

with positive estimates b̂, susceptibility to default is increased, but the negative estimates β̂

indicate delayed default. Comparing parameter estimates over all models, it seems that the

only variable that leads to significant parameter estimates that have consistently opposite

signs for the two model parts, is variable z2 (age). It is not surprising that the signs

often are the same because the underlying intuition behind both model parts is risk of

default. However, a higher risk of being susceptible to default does not necessarily mean

that default will occur sooner. This is what is observed for the variable age: it seems that

susceptibility to default increases slightly with age, but older people seem to go into default
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closer to the maturity of the loan. When looking at the TVCs, logically, a higher interest

rate leads to an increase in default hazard (β̂T is positive), and a better state of the BEL

20 index leads to a decrease in default (negative sign). With insignificant effects of the

gross domestic product and inflation rate on default, there is no conclusive effect of these

TVCs on default. Baseline hazard estimates (not shown here) are consistently larger for

the model without TVCs as compared to the estimates for the other models. The model

that has been selected as the best gives the lowest baseline hazard estimates, compared to

the whole range of models.

The magnitude of the macro-economic effects is small, which is an expected result,

as the models are averaging across people that are more or less likely to be affected by

the economy. Small effects at individual level will potentially aggregate to large effects at

portfolio level, as macro-economic factors will have the same effect for all individuals. This

result also follows previous studies such as Bellotti and Crook (2009).

6.2 The effect of the covariate value on the survival probability

To illustrate the effect of a certain covariate combination on the fitted probabilities of

default, we looked at two different covariate combinations in the data set and fitted survival

probabilities using the best model in Table 8. Additionally, a combination of two different

time-dependent covariate vectors was examined. The resulting covariate values can be

found in Table 9. In covariate combinations 1a and 2a, the lowest observed consumer

confidence level was attached, along with the lowest observed GDP and the highest inflation

rate. These values lead to the worst possible survival probabilities in presence of the time-

fixed covariates for covariate 1 or 2 (because of the negative sign for the former two TVC-

parameters, and the positive sign of the latter). For covariate combinations 2a and 2b, the

best observed consumer confidence level was attached, along with the best observed GDP

and the worst observed inflation rate.

The fitted survival probabilities for multiples of six months using the covariate values

in Table 9 and the best model in Table 8 are shown in Table 10. Fitting the model using

covariate combinations 1a and 2a leads to lower survival probabilities compared to 1b and

2b respectively, and the time-fixed covariates for covariate combinations 1a and 1b lead to
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higher survival probabilities compared to 2a and 2b. The difference in TVCs can make up

to nearly 3% difference in the 36th month of the loan.

It is important to note that these fitted probabilities are purely intended as an illustra-

tion of the effect certain covariate values might have on the probability of default (ie 1 -

survival probability). In reality forecasting and stress testing can only be done using eco-

nomic forecasts and not the actual values of the macro-economic factors. Secondly, TVCs

change from one month to another, whereas for this illustration, TVCs were assumed to

stay at their maximal (minimal) level for the entire loan duration.

Example z1 z2 z3 z4 z5 z6 z7 cons conf GDP infl

1a 6.46 10.17 1 -3.73 13.80 2.29 0 -21 -6.30 5.91

1b 6.46 10.17 1 -3.73 13.80 2.29 0 20 7.20 -1.69

2a -11.49 8.17 0 -7.81 -8.28 1.61 1 -21 -6.30 5.91

2b -11.49 8.17 0 -7.81 -8.28 1.61 1 20 7.20 -1.69

Table 9: Data example. Two random covariate combinations for the non-TVCs were

selected from the data set. For each of them, the lowest (highest) observed TVC-level for

consumer confidence and GDP, and the highest observed TVC-level for the inflation rate

were attached. This results in four different covariate combinations 1a, 1b, 2a and 2b.

Time (months) 6 12 18 24 30 36

1a 0.9949 0.9895 0.9846 0.9807 0.9755 0.9258

1b 0.9962 0.9921 0.9884 0.9854 0.9814 0.9432

2a 0.9892 0.9780 0.9679 0.9602 0.9498 0.8618

2b 0.9919 0.9833 0.9756 0.9696 0.9616 0.8907

Table 10: Data example. Fitted survival probabilities for multiples of six months.

6.3 Extension: the multiple event mixture cure model

In reality, default is not the only possible event when considering credit risk. Another event

type is early repayment, which occurs when a customer repays the loan before the prede-
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fined end term. The mixture cure model could be used to repeat the exact same analysis

for modeling early repayment instead of default, but it is also possible to include early

repayment as an extra term in the mixture cure model (for more information on mixture

cure models with multiple events, see Watkins et al., 2014; Dirick et al., 2015). For this

type of models, event-specific censoring indicators δi,d, δi,e and δi,m are introduced (denot-

ing default, early repayment and maturity indicators respectively), along with a general

censoring indicator δi = δi,d + δi,e + δi,m for each observation i. Analogous to the suscep-

tibility indicator Yi, three indicators Yi,d, Yi,e and Yi,m are introduced. The unconditional

survival function of the multiple event mixture cure model is then given by

S(t | z,x(t)) = πe(z)Se(t | Ye = 1, z,x(t)) + πd(z)Sd(t | Yd = 1, z,x(t)) +
(
1− πe(z)− πd(z)

)
,

with Se(t | Ye = 1, z,x(t)) and Sd(t | Yd = 1, z,x(t)) the conditional survival functions for

early repayment and default respectively. These functions are modeled using two Cox PH

models, as in (5).

Two major changes with regard to the single event mixture cure model are the compu-

tation of πd(z) and πe(z), and the conditional expectations of the Y -indicators, resulting

in the weights w. With more than two groups, the binomial logit is replaced by the multi-

nomial logit,

πd(z) = P (Yd = 1 | z) =
exp(bd

′z)

1 + exp(bd
′z) + exp(be

′z)
(9)

and πe(x) is found analogously. As an extension to (13), the event-specific weights for

early repayment and default can be computed, with in this case Θ = (b,βd,βT,d,βe,βT,e),

and O = (λd,i,j, λe,i,j, δi, δi,d, δi,e, δi,m, ti,d, ti,e). The interval-specific censoring indicators λ

as well as the event time t depend on the event type, default or early repayment. The

event-specific weight for default is then given by

w
(r)
i,d = E(Yi,d | Θ(r),O) (10)

=





πd(zi)Sd(ti |Yi,d=1, zi,xi(ti))

πe(zi)Se(ti |Yi,e=1, zi,xi(ti))+πd(zi)Sd(ti |Yi,d=1, zi,xi(ti))+
(
1−πe(zi)−πd(zi)

) for δi = 0

1 for δi,d = 1.

0 for δi,d = 0 ; δi = 1

Note that, when δi = 0, ti,d = ti,e = ti, w
(r)
i,e can be computed in a similar fashion. Again,

the EM-algorithm is used for computation of the expected complete-data log likelihood.
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The multiple event mixture cure model was applied to the data, adding the information

about early repayments which was ignored when applying the single event mixture cure

model.

Ten arbitrarily selected models containing three to four TVCs were analyzed, each time

including the same TVCs for the default and early repayment events. The result for one

of these models is listed in Table 11. A general result from the ten models was that, where

the effect and statistical significance of b̂ on default lies relatively close to the results in

Table 8, nearly all β̂ became statistically insignificant. The significant effects that generally

remain, are the number of years at current address and the bureau score. Additionally, no

significant β̂T remains for default. The signs of the early repayment parameter estimates

tend to be the same as those of the default parameter. While an early repayment does

not immediately incur costs for a bank, this event type does lead to a decline in expected

revenue, as the interest payments for the months following the time of early repayment are

lost. In fact, one can look at both default and early repayment as events that are results

of a common trigger, which is customer instability. Therefore early repayment is seen as

a negative event that banks prefer to avoid, and this is also reflected in the parameter

estimates. For early repayment, two TVCs tend to have a significant effect on the hazard

of early repayment, which is also illustrated in the model from Table 11, by the BEL20

index and the gross domestic product.

6.4 Extension: The mixture cure model with piecewise linear

relationship for the TVCs

With abundant information on the TVCs (with one TVC-value per subject per month that

the subject is observed), estimating just one βT for each TVC might be overly simplistic.

On the other hand, the effect of a certain TVC on default might depend on the specific range

this TVC is in. For example, the effect of the TVC associated with the GDP value might

be different when the GDP is declining with respect to the previous year, compared with

when GDP is increasing. A way of overcoming this is by using piecewise linear functions

instead of just one linear effect (or one βT ) per TVC.

Six new models were constructed from our data, each time with the seven “baseline”
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d/e (int) b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 AICcd

d -0.033 0.006 -0.014 -0.103 -0.037 -0.047 -1.246 -1.208 98836.3

(0.163) (0.004) (0.003) (0.078) (0.004) (0.005) (0.1) (0.083)

ns ns *** ns *** *** *** ***

e 0.695 -0.007 -0.017 0.008 -0.017 -0.014 -0.741 -0.217

(0.095) (0.002) (0.001) (0.034) (0.002) (0.002) (0.041) (0.034)

*** ** *** ns *** *** *** ***

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 IR BEL20 C Conf GDP infl rate unemp

d -0.001 -0.001 -0.049 -0.007 -0.006 -0.198 -0.107 0.039 0.011 0.007 0.029

(0.005) (0.003) (0.079) (0.004) (0.006) (0.103) (0.086) (0.038) (0.061) (0.022) (0.042)

ns ns ns . ns . ns ns ns ns ns

e 0.002 -0.001 0.037 -0.002 -0.001 -0.176 -0.136 0.01 -0.056 0.023 0.022

(0.002) (0.001) (0.036) (0.002) (0.002) (0.042) (0.035) (0.019) (0.025) (0.009) (0.023)

ns ns ns ns ns *** *** ns * * ns

Table 11: Data example. The parameter estimates of a multiple event mixture cure models

containing four TVCs. d are parameter estimates related to the default event, e denotes

early repayment parameter estimates.

time-independent covariates and just one of the TVCs, split into four piecewise linear

functions. The TVC-part of the linear predictor in (5), β′z+β′
Tx(t) is replaced by several

TVCs x̄j(t) for each j = 1, . . . , 6:

βT1x̄j(t) + βT2

(
x̄j(t)−Q1

)
+
+ βT3

(
x̄j(t)−Q2

)
+
+ βT4

(
x̄j(t)−Q3

)
+
, (11)

where Q1, Q2 and Q3 refer to the first quantile, the second quantile (or median value) and

the third quantile of all the TVC-values of the relevant macro-economic factor in the data

set. The notation
(
x)+ denotes the value x if x > 0, or 0 otherwise. The result of this

construction is that the effect of a TVC changes depending on whether the xj(t) are in the

interval [0, Q1], [Q1, Q2],[Q2, Q3] or [Q3, Q4] (respectively βT1, βT1 + βT2, βT1 + βT2 + βT3

and βT1 + βT2 + βT3 + βT4).

In Table 12, this principle is illustrated using the interest rate. While this model shows

that the effect between interest rate and default hazard rate is negative in the interval

[0, Q1], the effect is positive (as would be expected) in all other intervals (the effects are

-0.064, 0.404, 0.343 and 0.034 respectively). The effect of the middle ranges of the interest

rate seems to be more distinct (0.404, 0.343) compared to the “border intervals”. However,

it should be noted that from the results, no conclusions can be drawn, as none of the

estimates are statistically significant. Other TVCs were examined using this method as
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(int) z1 z2 z3 z4 z5 z6 z7 β̂T1 β̂T2 β̂T3 β̂T4 AICcd

b 4.019 0.05 0.041 0.062 0.005 -0.066 -1.506 -1.95 27484.3

(0.084) (0.002) (0.002) (0.035) (0.002) (0.002) (0.039) (0.034)

*** *** *** . ** *** *** ***

β -0.007 -0.02 -0.131 -0.033 -0.02 -0.574 -0.351 -0.064 0.468 -0.061 -0.309

(0.004) (0.003) (0.079) (0.003) (0.006) (0.101) (0.083) (0.057) (0.344) (0.509) (0.39)

. *** . *** *** *** *** ns ns ns ns

Table 12: Data example. The parameter estimates of mixture cure models containing the

TVC interest rate, split up into four piecewise linear pieces bounded by the quantiles of

the interest rate, as expressed in (11).

well, but they all lacked statistical significance hence these results are not included in this

paper.

7 Discussion

The main reason and motivation for using the mixture cure models is that the common

assumption of survival analysis, that the survival function goes to zero as time goes to

infinity, clearly does not hold in many practical application settings (e.g. credit risk mod-

eling, fraud prediction, churn detection) as illustrated in Figure 1. We have shown that

time-dependent covariates can be included in mixture cure models to address this problem

whilst also enabling our models to include macroeconomic conditions.

A general result we found for the data set we used is that only a limited number of

macro-economic factors tended to have an effect on default (in the single event mixture

cure model) and early repayment (in the multiple event mixture cure model). Where the

BEL20 index had an influence on both event types, the interest rate had an influence on

the former and GDP on the latter event type only. It is indeed plausible that some macro-

economic factors do not affect default or early repayment. Let us take the unemployment

rate as an example: because of a selection bias (as banks only granted loans to suppos-

edly creditworthy customers), the debtors in the data set might not be affected by higher

unemployment, if a rise in unemployment was not present among the subjects in the data

set. On the other hand, some actual effects of TVC on default might be lost as a result
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of the averaging of TVCs over a monthly period. Interesting results might be obtained by

applying the models when looking at weekly or even daily TVC levels; however, this would

largely increase the data size, and requires daily information regarding default and early

repayment events.

De Leonardis and Rocci (2014) approached the mixture cure models from a discrete

time perspective and applied this to study the default of firms. In that paper they work

only with the observed data likelihood. This simplification allows them to avoid the use

of the EM algorithm. An extension of the discrete time model of De Leonardis and Rocci

(2014) to incorporate multiple events, i.e. default, early repayment and maturity, would

be interesting for further research.

Several extensions of the basic model are possible. Piecewise linear functions can model

more complex relationships between the TVCs and the event of interest. An interesting

future research focus is setting appropriate “knots” instead of the quantile values.

As the goal of this study was to include time-dependent covariates in the latency part of

the already existing (and popular) mixture cure model, we did not explore time-dependent

incidence models. In fact, this is not straightforward as we are using a logistic regression

model. A related yet different type of model that accommodates for time-dependency

in both model parts is the promotion time cure model (Yakovlev et al., 1993). Its use for

default modeling is an interesting topic for further research, as are the use of an accelerated

failure time model as well as a Bayesian modeling approach.

Our extension of mixture cure models with time varying covariates is relevant in other

settings too. In a fraud analytics setting, where not all customers become fraudsters,

our approach will allow better disentanglement of the time varying tactics adopted by

fraudsters which may lead to better fraud prevention mechanisms. In a churn prediction

setting, where some customers may end up never churning, the inclusion of TVCs can

enable an understanding of latent and time varying symptoms of customer dissatisfaction.

To summarize, we think there are many application settings with high censoring rates

caused by the fact that the event does not occur for a majority of subjects. We believe our

extension of mixture cure models with time varying covariates is a valuable tool to better

understand the time varying nature of the events studied.
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A Appendix. Implementation using the EM-algorithm

A.1 The E-step

Denote the parameter-triplet (b,β,βT ) by Θ, and the observed information for each ob-

servation (λi,j, δi, ti) by O. The conditional expectation of the complete-data log likelihood

(formula (6)) in the (r + 1)th E-step is given by

Q(Θ(r+1) | Θ(r)) = E[logLc(Θ
(r+1) | z,x(t), Y ) | Θ(r),O]. (12)

It can easily be seen that these functions are linear in Yi, which reduces the problem to

find an expression for the conditional expectation of Yi, which is given by

w
(r)
i = E(Yi | Θ

(r),O) =





π(zi)S(ti | Yi = 1, zi,xi(ti))

π(zi)S(ti | Yi = 1, zi,xi(ti)) + (1− π(zi))
for δi = 0

1 for δi = 1.

(13)

Note that E(Yi | Θ
(r),O) takes one value per iteration for each observation. The weights

w
(r)
i are computed using the value of the TVCs at time of censoring, and can be interpreted

as the probability that individual i will be susceptible to the event.

A.2 The M-step

The expected complete-data log likelihood in (12) is maximized with respect to the un-

known parameters. The conditional expectation of the incidence log likelihood is straight-

forward, replacing Yi’s in (7) by w
(r)
i . The conditional expectation of the latency log
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likelihood (8) equals, using λi,j logw
(r)
i = 0 and λi,jw

(r)
i = λi,j (Cai et al., 2012a)

E[logLlat(β,βT | z,x(t), Y ) | Θ(r),O]

=
n∑

i=1

ki∑

j=1

λi,j log
(
w

(r)
i h(tj | Yi = 1, zi,xi(tj))

)
+ w

(r)
i logS(tj | Yi = 1, zi,xi(tj))

= log

n∏

i=1

ki∏

j=1

(
w

(r)
i h0(tj) exp(β

′zi + β′
Txi(tj))

)λi,j
(
S0(tj)

exp(β′zi+β′

Txi(tj))
)w(r)

i

= log

n∏

i=1

ki∏

j=1

(
h0(tj) exp(β

′zi + β′
Txi(tj) + logw

(r)
i )
)λi,j

(
S0(tj)

exp(β′zi+β′

Txi(tj)+logw
(r)
i

)
)
.

When (12) is maximized, the baseline survival function of the rth M-step is updated before

proceeding with the next E-step. This is done non-parametrically using the Breslow-type

estimator for S0(t) and combining the results of Andersen (1992) and Cai et al. (2012a).

Denote R(tj) the individuals at risk in the interval (Bj−1, Bj], then

Ŝ0(t) = exp

(
−
∑

j:tj≤t

∑n

iǫR(tj )
λi,j

∑n

iǫR(tj)
w

(r)
i exp(β′(r)zi + β

′(r)
T xi(tj))

)
. (14)

The E-step and the M-step are repeated until parameter convergence.

A.3 Variance estimation

Standard errors of parameter estimators obtained via an EM-algorithm are not directly

available. A widespread method for estimating variances in the mixture cure context is

bootstrapping (e.g. Peng, 2003; Cai et al., 2012a; Tong et al., 2012). While easy to im-

plement, this method is computationally expensive, especially with big data sets and a

slow convergence of the EM-algorithm. We use the supplemented EM (SEM) algorithm

introduced by Meng and Rubin (1991). While other approximation methods exist (see,

among others, Sy and Taylor (2000); Peng and Dear (2000)) the advantage of SEM is that

it can be applied to any problem to which EM is applied, assuming that there is access to

the complete-data asymptotic variance-covariance matrix, which is indeed the case here.
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