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Model Problem



Model Problem

• steady-state flow through porous media: Darcy’s law
• second-order elliptic PDE

−∇ · (k(x;ω)∇p(x;ω)) = f(x)

• consider simple 3D flow cell



Representation of Uncertainty



Representation of Uncertainty

• model k(x;ω) as a lognormal field
• use KL-expansion to take samples of Z := log(k):

Z(x;ω) = Z̄ +
∞∑
n=1

√
θnfn(x)ξ(ω)

where θn and fn are eigenvalues and eigenfunctions of
covariance operator

C(x,y) := σ2 exp
(
−‖x− y‖p

λ

)
x,y ∈ D = [0, 1]3

• in practice, truncate sum after s terms



Representation of Uncertainty
Eigenfunctions in three dimensions
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Representation of Uncertainty
A typical sample of k



Multilevel Monte Carlo methods



Multilevel Monte Carlo methods

• we are interested in some functional Q := G(p(x;ω))
• what is the expected value of the functional E[Q]?

taking a sample of Q(ω) consists of 3 steps:
(i) take a sample from the random field,
(ii) solve the resulting deterministic PDE, and

(iii) apply the functional G to the discretized solution



Multilevel Monte Carlo methods

• hierarchy of nested grids {h`}L`=0, h` = h02−`, called levels
• basic idea = take samples not from one approximation QM

for Quantity of Interest but from multiple Q`, ` = 0 . . . L

E[Q1] = E[Q0] + (E[Q1] − E[Q0])
= E[Q0] + E[Q1 − Q0]

E[Q2] = E[Q1] + E[Q2 − Q1]
= E[Q0] + E[Q1 − Q0] + E[Q2 − Q1]
...

E[QL] = E[Q0] +
L∑
`=1

E[Q` − Q`−1] :=
L∑
`=0

E[Y`]



Multilevel Monte Carlo methods
Error analysis

• 2 unknowns: # samples at each level N` and # levels L
• total error = stochastic error + discretization error

⇓ ⇓
N` L



Multilevel Monte Carlo methods
Practical details

• choose λ = 0.3, σ = 1, s = 100, h0 = 1/4, no source term
• geometry of simple 3D flow cell with p(0,y, z) = 1 and
p(1,y, z) = 0, no outflow through other boundaries
• Quantity of Interest (QoI) is pressure head at point

x∗ = (0.12564, 0.12564, 0.12564)
• assume cost per level C` is proportional to

(
h−3
`

)γ
• for Matlab’s mldivide, γ ≈ 1.653 hence

C`+1
C`

= 23γ ≈ 31.103

⇒ use algebraic multigrid method (AMG) with γ ≈ 1.070



Multilevel Monte Carlo methods
mldivide vs AMG
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Multilevel Monte Carlo methods
Performance
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Multilevel quasi-Monte Carlo methods



Multilevel quasi-Monte Carlo methods

• basic idea: use quasi-Monte Carlo points for faster
convergence
• here, we use randomly shifted rank-1 lattice rules:

ξn = frac
(
nz

N
+ ∆`

)



Multilevel quasi-Monte Carlo methods
Error analysis

E[G(p)] E[G(ph)] E[G(psh)] Q(G(psh))

discretize truncate approximate

contributions in mean-square-error (MSE):

discretization error = E[G(p− ph)]2 →L

truncation error = E[G(ph − psh)]2

stochastic error =
L∑
`=0

E∆
[∣∣(Is −Q∆`

)(G(ps`)− G(ps`−1))
∣∣2] →N`



Multilevel quasi-Monte Carlo methods
Error analysis

• randomly shifted lattice rule: take q shifts at each level
• worst-case analysis of stochastic error yields

stochastic error ≤
L∑
`=0

1
q
‖G(ps`)− G(ps`−1))‖2H1

mix

C2
s,α

N2α
`

• solve optimisation problem to find

N` '
2α+1

√√√√2αC2
s,α‖ · ‖2H1

mix

q2C`

• estimate norm by variance: ‖ · ‖2
H1

mix
→ V[ · ]



Multilevel quasi-Monte Carlo methods
Performance
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Multilevel quasi-Monte Carlo methods
Actual computation times

• Quantity of Interest is point evaluation of pressure at x∗
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Multilevel quasi-Monte Carlo methods
Other QoI’s

• Quantity of Interest is outflow through rightmost face
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Other features



Other features
Parallelization

• all samples can be taken independently, as in normal MC
• speedup S = Tseq/Tpar
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Other features
Probability density function of Quantity of Interest

• Quantity of Interest is outflow through rightmost face
• QoI ∼ N (ln x;µ, σ) with µ ≈ −0.4917 and σ ≈ 0.3342
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Other features
Multiple Quantities of Interest and complex geometries
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Other features
Multiple Quantities of Interest and complex geometries
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Other features
Weaknesses

• estimation of discretization error and finest level L is difficult
• use of multiple physical meshes is not always possible



Conclusions

• successfully applied Multilevel method to 3D problem in
subsurface flow
• derivation and implementation of QMC-variant, with cost
O(ε−1.2871) instead of O(ε−2) for MLMC
• applied MLMC to more complex problems: discontinuous

diffusion coefficients, complex geometries . . .
• MLMC with multiple quantities of interest
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