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Model Problem



Model Problem

e steady-state flow through porous media: Darcy's law

e second-order elliptic PDE

e consider simple 3D flow cell



Representation of Uncertainty



Representation of Uncertainty

e model k(x;w) as a lognormal field
e use Kl-expansion to take samples of Z = log(k):

where 6, and f,, are eigenvalues and eigenfunctions of
covariance operator

C(z,y) = oc’exp <—w> xz,ycD=10,1

e in practice, truncate sum after s terms



Representation of Uncertainty

Eigenfunctions in three dimensions




Representation of Uncertainty
A typical sample of k
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Multilevel Monte Carlo methods



Multilevel Monte Carlo methods

e we are interested in some Q = G(p(x;w))
e what is the of the functional E[Q]?

taking a sample of Q(w) consists of 3 steps:
(i) take a sample from the random field,
(i) solve the resulting deterministic PDE, and

(iii) apply the functional G to the discretized solution



Multilevel Monte Carlo methods

e hierarchy of nested grids {hg}fzo, hy = ho27¢, called

° = take samples not from one approximation Qs
for Quantity of Interest but from multiple Q¢, £ =0...L

E[@:] = E[Qo]+ (E[Q:] — E[Qo])
E[Qo] + E[Q1 — Qo]

E[Q:] = E[Qi]+E[Q2 - Q1]
= E[Qo] +E[Q: — Qo]

+ E[Q2 — Q1]

ElQr]

E[Qo] + Y E[Qr — Q1] i= Y E[V]



Multilevel Monte Carlo methods

Error analysis

e 2 unknowns: # samples at each level Ny and # levels L

e total error = stochastic error + discretization error

I U
N, L



Multilevel Monte Carlo methods

e choose A =0.3, 0 =1, s =100, hg = 1/4, no source term

e geometry of simple 3D flow cell with p(0,y,2) =1 and
p(1,y,2) =0, no outflow through other boundaries

o (Qol) is pressure head at point
x* = (0.12564,0.12564,0.12564)

. . _3\7
e assume cost per level Cy is proportional to (he 3)

e for MATLAB's mldivide, v = 1.653 hence

Crt1

=237 ~ 31.103
Ce

= use (AMG) with v ~ 1.070



Multilevel Monte Carlo methods

mldivide vs AMG
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Multilevel Monte Carlo methods

Performance
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Multilevel quasi-Monte Carlo methods



Multilevel quasi-Monte Carlo methods

e basic idea: use quasi-Monte Carlo points for faster
convergence

e here, we use randomly shifted rank-1 lattice rules:



Multilevel quasi-Monte Carlo methods

Error analysis

discretizg xruncate QQpYOXImat

s e s e

contributions in mean-square-error (MSE):

discretization error = E[G(p — pp)]? —L
truncation error = E[G(p, — p§,)]?

L
stochastic error = Y " Ea [|(Is - Qa,)(G(p}) — g(l’?—l))ﬂ =N



Multilevel quasi-Monte Carlo methods

° lattice rule: take g shifts at each level

e worst-case analysis of stochastic error yields

2
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2a

x Ng

L
. 1
stochastic eror < 3 (10(0}) ~ G(v-1)ly
(=0

solve optimisation problem to find
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estimate norm by 3 = V-]



Multilevel quasi-Monte Carlo methods

Performance
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Multilevel quasi-Monte Carlo methods

Actual computation times

e Quantity of Interest is point evaluation of pressure at x*
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Multilevel quasi-Monte Carlo methods
Other Qol’s

e Quantity of Interest is outflow through rightmost face
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Other features

Parallelization

e all samples can be taken independently, as in normal MC
o speedup S = Tyeq/Tpar
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Other features

Probability density function of Quantity of Interest

e Quantity of Interest is outflow through rightmost face
e Qol ~ N(Inx; u, o) with p =~ —0.4917 and o = 0.3342




Other features

Multiple Quantities of Interest and complex geometries
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Other features

Multiple Quantities of Interest and complex geometries
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Other features

Weaknesses

e estimation of discretization error and finest level L is difficult

e use of multiple physical meshes is not always possible



Conclusions

e successfully applied Multilevel method to 3D problem in
subsurface flow

e derivation and implementation of QM C-variant, with cost
O(e~1-2871) instead of O(e~2) for MLMC

e applied MLMC to more complex problems: discontinuous
diffusion coefficients, complex geometries . ..

e MLMC with multiple quantities of interest
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