A practical Multilevel quasi-Monte Carlo method for simulating elliptic PDEs with random coefficients

Pieterjan Robbe

(pieterjan.robbe@cs.kuleuven.be)

Co-Authors: D. Nuyens, S. Vandewalle

September 17, 2015

Overview

Model Problem

Representation of Uncertainty

Multilevel Monte Carlo methods

Multilevel quasi-Monte Carlo methods

Other features

Model Problem

Model Problem

- steady-state flow through porous media: Darcy's law
- second-order elliptic PDE

$$-\nabla \cdot (k(\boldsymbol{x};\omega)\nabla p(\boldsymbol{x};\omega)) = f(\boldsymbol{x})$$

consider simple 3D flow cell

- model $k(x; \omega)$ as a lognormal field
- use KL-expansion to take samples of $Z := \log(k)$:

$$Z(x;\omega) = \bar{Z} + \sum_{n=1}^{\infty} \sqrt{\theta_n} f_n(x) \xi(\omega)$$

where θ_n and f_n are eigenvalues and eigenfunctions of covariance operator

$$C(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \sigma^2 \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{y}\|_p}{\lambda}\right) \quad \boldsymbol{x}, \boldsymbol{y} \in D = [0, 1]^3$$

ullet in practice, truncate sum after s terms

Eigenfunctions in three dimensions

A typical sample of k

- we are interested in some functional $Q := \mathcal{G}(p(x;\omega))$
- what is the expected value of the functional $\mathbb{E}[Q]$?

taking a sample of $Q(\omega)$ consists of 3 steps:

- (i) take a sample from the random field,
- (ii) solve the resulting deterministic PDE, and
- (iii) apply the functional ${\cal G}$ to the discretized solution

- hierarchy of nested grids $\{h_\ell\}_{\ell=0}^L, h_\ell=h_02^{-\ell}$, called levels
- basic idea = take samples not from one approximation Q_M for Quantity of Interest but from multiple $Q_\ell, \ell=0\dots L$

Error analysis

- 2 unknowns: # samples at each level N_ℓ and # levels L
- total error = stochastic error + discretization error

$$egin{array}{ccc} \downarrow & & \downarrow \ N_{\ell} & & I \end{array}$$

Practical details

- choose $\lambda=0.3$, $\sigma=1$, s=100, $h_0=1/4$, no source term
- geometry of simple 3D flow cell with $p(0, \boldsymbol{y}, \boldsymbol{z}) = 1$ and $p(1, \boldsymbol{y}, \boldsymbol{z}) = 0$, no outflow through other boundaries
- Quantity of Interest (QoI) is pressure head at point $\boldsymbol{x}^* = (0.12564, 0.12564, 0.12564)$
- ullet assume cost per level \mathcal{C}_ℓ is proportional to $\left(h_\ell^{-3}
 ight)^\gamma$
- ullet for MATLAB's mldivide, $\gamma pprox 1.653$ hence

$$\frac{\mathcal{C}_{\ell+1}}{\mathcal{C}_{\ell}} = 2^{3\gamma} \approx 31.103$$

 \Rightarrow use algebraic multigrid method (AMG) with $\gamma \approx 1.070$

mldivide vs AMG

Performance

- basic idea: use quasi-Monte Carlo points for faster convergence
- here, we use randomly shifted rank-1 lattice rules:

$$\xi_n = \operatorname{frac}\left(rac{noldsymbol{z}}{N} + oldsymbol{\Delta}_\ell
ight)$$

Error analysis

contributions in mean-square-error (MSE):

discretization error
$$= \mathbb{E}[\mathcal{G}(p-p_h)]^2 \qquad \to L$$

$$\text{truncation error} = \mathbb{E}[\mathcal{G}(p_h-p_h^s)]^2$$

$$\text{stochastic error} = \sum_{\ell=0}^L \mathbb{E}_{\Delta} \left[\left| (I_s - Q_{\Delta_\ell})(\mathcal{G}(p_\ell^s) - \mathcal{G}(p_{\ell-1}^s)) \right|^2 \right] \quad \to N_\ell$$

Error analysis

- randomly shifted lattice rule: take q shifts at each level
- worst-case analysis of stochastic error yields

$$\text{stochastic error} \leq \sum_{\ell=0}^L \frac{1}{q} \|\mathcal{G}(p_\ell^s) - \mathcal{G}(p_{\ell-1}^s))\|_{H^1_{\min}}^2 \frac{C_{s,\alpha}^2}{N_\ell^{2\alpha}}$$

solve optimisation problem to find

$$N_{\ell} \simeq \sqrt[2\alpha C_{s,\alpha}^2 \|\cdot\|_{H^1_{\text{mix}}}^2}$$

• estimate norm by variance: $\|\cdot\|_{H^1_{\min}}^2 \to \mathbb{V}[\cdot]$

Performance

Actual computation times

ullet Quantity of Interest is point evaluation of pressure at x^*

Other Qol's

• Quantity of Interest is outflow through rightmost face

Parallelization

- all samples can be taken independently, as in normal MC
- speedup $S = T_{seq}/T_{par}$

Probability density function of Quantity of Interest

- Quantity of Interest is outflow through rightmost face
- QoI $\sim \mathcal{N}(\ln x; \mu, \sigma)$ with $\mu \approx -0.4917$ and $\sigma \approx 0.3342$

Multiple Quantities of Interest and complex geometries

Multiple Quantities of Interest and complex geometries

Weaknesses

- ullet estimation of discretization error and finest level L is difficult
- use of multiple physical meshes is not always possible

Conclusions

- successfully applied Multilevel method to 3D problem in subsurface flow
- derivation and implementation of QMC-variant, with cost $\mathcal{O}(\epsilon^{-1.2871})$ instead of $\mathcal{O}(\epsilon^{-2})$ for MLMC
- applied MLMC to more complex problems: discontinuous diffusion coefficients, complex geometries . . .
- MLMC with multiple quantities of interest