
Multi-IndexQuasi-MonteCarlo
An algorithm for simulating PDEs with random coe�icients

Pieterjan Robbe
joint work with D. Nuyens and S. Vandewalle

pieterjan.robbe@cs.kuleuven.be

August 16, 2016 Department of Computer Science

mailto:pieterjan.robbe@cs.kuleuven.be


Themissing link?
Monte Carlo Quasi-Monte Carlo

Multilevel MLMCa,b MLQMCc,d,e

Multi-index MIMCf,d ?
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c F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan and E. Ullmann,Multilevel Quasi-Monte
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revision, 2016. [Kuo, 2016]

d F. Y. Kuo and D. Nuyens, Application of Quasi-Monte Carlo Methods to Elliptic PDEs with
Random Di�usion Coe�icients – A Survey of Analysis and Implementation, Foundations
of Computational Mathematics, to appear, 2016. [Kuo, 2016/2]

e I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab and I. H. Sloan,
Quasi-Monte Carlo Finite Element Methods for Elliptic PDEs with Lognormal Random
Coe�icients, Numerische Mathematik, 131 (2014), pp. 329-368. [Graham, 2014]

f A.-L. Haji-Ali, F. Nobile and R. Tempone,Multi-Index Monte Carlo: When Sparsity Meets
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PDEs with Random Coe�icients



PDEswith random coe�icients
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Let (Ω,A, P) be a complete probability space and D ⊂ Rd a
bounded domain
We look for solutions u : D→ R that solve almost surely (a.s.)

−∇ · (a(x, ω)∇u(x, ω)) = f(x) for x ∈ D and ω ∈ Ω

with given boundary conditions

u(x, ·) = u1(x) for x ∈ ∂1D
n(x) · (a(x, ·)∇u(x, ·)) = u2(x) for x ∈ ∂2D

The goal is to compute statistics of the functional G = G(u) for
some su�iciently smooth a and G



Flow through porousmedia
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Represent permeability of the porous medium as a lognormal
random field k(x, ω) = exp(Z(x, ω)), where Z(x, ω) is an
underlying Gaussian random field
A Gaussian random field is characterised by itsmean
µ(x) = E[Z(x)] and covariance function cov(Z(x), Z(y))

Every fixed ω ∈ Ω yields a deterministic realisation of the
random field



On the choice of covariance function
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A common choice is the exponential covariance function

C(ρ) = σ2 exp
(ρ
λ

)
with ρ = ‖x − y‖p and p the usual `p-norm
We choose the more generalMatérn covariance function

C(ρ) = σ2
1

2ν−1Γ(ν)

(√
2ν
ρ

λ

)ν
Kν
(√

2ν
ρ

λ

)
with Γ the Gamma function and Kν the modified Bessel
function of the second kind
The Matérn covariance reduces to the exponential case when
ν = 1/2, ν =∞ is the squared exponential case.



On the choice of covariance function
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Some examples of k(x, ω) for di�erent parameter sets
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The KL expansion

6/27

Classical technique to take samples from k(x, ω) is the
Karhunen–Loève or KL-expansion

k(x, ω) = k̄ + exp

( ∞∑
r=1

√
θrfr(x)ξ(ω)

)

with θr and fr the solutions of the Fredholm equation∫
D
C(x, y)fr(y)dy = λrfr(y), x ∈ D

r = 1 r = 2 r = 4 r = 15 r = 88



The KL expansion
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Approximation quality of the KL expansion determined by
eigenvalue decay rate

θr ∼ O
(
r−

4ν+d
d

)
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Darcy flow
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Steady-state flow through porous media given by Darcy’s law

−∇ · k(x, ω)∇p(x, ω) = f(x)

with k the hydraulic conductivity and p the pressure head
This is an elliptic PDEwith random coe�icients!
Let us choose D = [0, 1]3 and the functionals

G1 = p(x∗), x∗ = (0.5, 0.5, 0.5)

and G2 = −
∫ 1

0

∫ 1

0
k
∂p
∂x

∣∣∣∣
x=1

dydz

Our goal is to compute E[G1] and E[G2]
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FromMLMC to MIMC



Numerical approximation
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We assume that di�erent approximations of u are available
based on the discretization parameter h
For MLMC, one usually assumes a geometricalmesh hierarchy

h` = h02−`

The approximations are indexed by a level ` ∈ N
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Multilevel Monte Carlo
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Suppose we denote by G` the approximation of G at level `

Let∆G` :=

{
G` if ` = 0
G` − G`−1 if ` > 0

Using the telescoping sum identity,

E[GL] =
L∑
`=0

E[∆G`]

the MLMC [Giles, 2008] estimator can be expressed as

ĜML =
L∑
`=0

1
N`

N∑̀
n=1

∆G`(ω`,n)

Main point: MLMC is a recursive control variate strategy that
uses a hierarchy of coarser grids



Numerical approximation (2)
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We assume that di�erent approximations of u are available
based on the discretization parameters hi, i = 1 . . . d
Similar to MLMC, assume a geometricalmesh hierarchy

h`i = h02−`i

Approximations are indexed by amulti-index ~̀ = (`i)
d
i=1 ∈ N
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Multi-IndexMonte Carlo
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Multi-IndexMonte Carlo
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Suppose we denote by G~̀ the approximation of G at index ~̀

Let∆G~̀ :=
(⊗d

i=1 ∆i

)
G~̀ with

∆iG~̀ =

{
G~̀ if `i = 0
G~̀ − G~̀−~ei if `i > 0

for i = 1 . . . d

The MIMC estimator [Haji-Ali, 2016] can be expressed as

ĜMI =
∑
~̀∈I

1
N~̀

N~̀∑
n=1

∆G~̀(ω~̀,n)

where I ⊂ Nd is an appropriate set of indices, the index set



Example
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For d = 2 and ~̀ = (1, 2), we have

∆G(1,2)(ω) = ∆2
(
∆1G(1,2)(ω)

)
= ∆2

(
G(1,2)(ω)− G(0,2)(ω)

)
= (G(1,2)(ω)− G(0,2)(ω))− (G(1,1)(ω)− G(0,1)(ω))

= G(1,2)(ω)− G(0,2)(ω)− G(1,1)(ω) + G(0,1)(ω)

Key point is that these 4 solutions are based on the same
realisation of the random field k(·, ω)

In general, computing a single realisation of∆G~̀ requires the
solution of 2d di�erent PDEs, where the cost is dominated by
the solution at index ~̀



Complexity analysis
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Classical MSE error splitting: MSE = V[Ĝ] + E[(Ĝ− G)]2

By independence, we haveV[Ĝ] =
∑
~̀∈I

V~̀
N~̀

with V~̀ := V[∆G~̀ ]

The second term can be approximated as

E[(Ĝ− G)] =

∣∣∣∣∣∣
∑
~̀ /∈I

E[∆G~̀ ]

∣∣∣∣∣∣ ≈
∣∣∣∣∣∣
∑
~̀∈∂I

E[∆G~̀ ]

∣∣∣∣∣∣
with ∂I the boundary of the index set I. Note: this requires
su�icient decay of theE[∆G~̀ ] (e.g., exponential, see [Haji-Ali,
2016])
Conclusion: error and work complexity depends on choice of
index set!



On the choice of index set
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I(L) =
{
~̀ ∈ Nd : `i ≤ L for all 1 ≤ i ≤ d

}
`x`y

` z

I(L) =

{
~̀ ∈ Nd :

d∑
i=1

`i ≤ L

}
`x`y

` z

I(L) =

{
~̀ ∈ Nd :

d∏
i=1

max(1, `i) ≤ L

}
`x`y

` z



Boundary of an arbitrary index set
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I is valid when it is downward closed
An index ~̀ dominates an index ~τ in a certain direction i if
`i > τi

An index ~̀ is an interior index if it is dominated by another
index in the direction of the position of its maximum entry
The boundary ∂I of an index set I are these indices ~̀ ∈ I that
are part of the index set but are not interior indices

`1

` 2

`1

` 2

`1
` 2
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FromMIMC to MIQMC



TheMIQMC estimator
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Let us assume that we have a randomly shi�ed rank-1 lattice
rule available that approximates

Is(f) =

∫
[0,1]s

f(y)dy ≈ 1
K

K−1∑
k=0

1
N

N−1∑
n=0

f({tn + ∆k})

(see tutorials on Sunday, or first plenary talk by D. Nuyens)
In our setting, the “integral” is the expectation

E[G~̀ ] =

∫
R∞

G~̀(u(·, ξ1, ξ2 . . .))dΦ(ξ1, ξ2 . . .)

≈
∫
[0,1]s

G~̀(u(·,Φ−1(y1), . . . ,Φ−1(ys), 0, . . .)dy

withΦ the cumulative normal density and we apply the
change of variables component-wise

ξ = Φ−1(y) = (Φ−1(y1),Φ−1(y2), . . .) ∈ RN and y ∈ (0, 1)N



TheMIQMC estimator
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The MIQMC estimator reads

Ĝ?MI =
∑
~̀∈I

1
K

K−1∑
k=0

1
N~̀

N~̀−1∑
n=0

∆G~̀(Φ−1({tn + ∆k,~̀}))

For linear functionals G in a single- or multilevel setting, it can
be show that the integrand belongs to a weighted Sobolev
space with (S)POD-weights, see [Graham, 2014], [Kuo, 2016]
and [Kuo, 2016/2]
So�ware for generating these lattice rules: QMC4PDE
The convergence rate depends on decay rate of eigenvalues,
but is independent of the number of dimensions s
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Results



Numerical results (1)
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MLMC MIMC, FT MIMC, TD

MLQMC MIQMC, FT MIQMC, TD
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Numerical results (2)
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Numerical results (3)
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MLMC MIMC, FT MIMC, TD
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Conclusions



Closing Thoughts
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MIQMC is a QMC extension of MIMC [Haji-Ali, 2016] or a MIMC
extension of MLQMC [Kuo, 2016]
We show numerical evidence that the MIQMC estimator
achieves a convergence rate as good as MIMC, and as good as
(or better than) MLQMC for smooth problems
Cost and error analysis of the estimator must take into account
the shape of the index set (can be complicated)
A general-purpose library is available on
https://github.com/PieterjanRobbe/MultilevelEstimators.jl

preprint is available on ArXiv
http://arxiv.org/abs/1608.03157

Future work: adaptive construction of the index set I

https://github.com/PieterjanRobbe/MultilevelEstimators.jl
http://arxiv.org/abs/1608.03157

	PDEs with Random Coefficients
	From MLMC to MIMC
	From MIMC to MIQMC
	Results
	Conclusions

