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Abstract—Many real-life signals are compressible, meaning
that they depend on much fewer parameters than their sample
size. In this paper we use low-rank matrix or tensor represen-
tations for signal compression. We propose a new deterministic
method for blind source separation that exploits the low-rank
structure, enabling a unique separation of the source signals and
providing a way to cope with large-scale data. We explain that
our method reformulates the blind source separation problem as
the computation of a tensor decomposition, after reshaping the
observed data matrix into a tensor. This deterministic tensoriza-
tion technique is called segmentation and is closely related to
Hankel-based tensorization. We apply the same strategy to the
mixing coefficients of the blind source separation problem, as in
many large-scale applications the mixture is also compressible
because of many closely located sensors. Moreover, we combine
both strategies, resulting in a general technique that allows us
to exploit the underlying compactness of the sources and the
mixture simultaneously. We illustrate the techniques for fetal
electrocardiogram extraction and direction-of-arrival estimation
in large-scale antenna arrays.

Index Terms—Blind source separation, higher-order tensor,
tensor decomposition, low-rank approximation, big data

I. INTRODUCTION

IN blind source separation (BSS) one tries to reconstruct a
set of unobserved sources based only on a set of observed

signals. In this paper, the latter are unknown linear instan-
taneous mixtures of the sources. Applications can be found
in telecommunications, signal processing and biomedical sci-
ences [1]–[4]. In general, there is no unique solution to the
BSS problem, hence, one imposes additional assumptions.

A well-known BSS method, called independent component
analysis (ICA), assumes statistically independent sources [4].
Several ICA methods use higher-order statistics (HOS) in
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order to tensorize the BSS problem and then apply a tensor
decomposition to uniquely identify the sources. Recently, a
class of deterministic methods has been proposed that do
not use (higher-order) statistics but assume that the sources
can be modeled as, e.g., exponential polynomials or rational
functions [5], [6]. Specific tensorization techniques can be
used, such as Hankel-based or Löwner-based tensorization [7].
The source signals can then be uniquely recovered by block
component analysis (BCA). BCA is a framework based on
block term decompositions which was introduced in [8]–[10].
These methods, as well as the method we propose here, go
further than dictionary-based methods. In the latter, one defines
a priori a fixed signal dictionary in which one assumes the
sources can be described sparsely and then one exploits this
sparse representability to identify the sources [11], [12]. Here,
we do not need an initial dictionary.

In this paper, we introduce a new method for BSS that
exploits the fact that many real-life signals are compressible,
i.e., the fact that they can be described in terms of much
fewer parameters than the actual number of samples [13],
[14]. One way of representing signals in a (possibly very)
compact way is a (higher-order) low-rank approximation of a
tensorized version of the signal [15]. This can be interpreted
as approximating the original signals by sums of Kronecker
products of smaller vectors. This strategy is similar to tensor-
based scientific computing in high dimensions [15]–[17],
which has allowed one to solve problems in a number of
unknowns that exceeds the number of atoms in the universe. It
is used in a novel way for BSS in this paper and is a key idea
to handle large-scale BSS problems, i.e., problems with many
sensors and/or samples. In particular, we use a deterministic
tensorization technique, called segmentation, that reshapes
each observed signal into a matrix (tensor) and stacks them
into a (higher-order) tensor. The latter can be interpreted as a
compact version of the Hankel-based tensorization mentioned
above. We show that the BSS problem boils down to the
computation of a decomposition of the tensor obtained by
segmentation if the sources exhibit the hypothesized low-rank
structure. This yields a unique solution to the BSS problem
and provides a way to cope with large-scale problems where
conventional methods fall short. Also, it is illustrated that our
method allows the separation of underdetermined mixtures,
i.e., the separation of more sources than observed signals.

We can apply the same strategy to the mixing coefficients
of the BSS problem (instead of the source signals) following
a similar argument. Indeed, in the context of big data, we
see a large increase in the number of sensors and/or sensor
density in fields such as biomedical sciences and sensor array



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2617858, IEEE
Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, MONTH 2015 2

processing [18], [19]. The mixing coefficients are in that case
often smoothly varying because of the many closely located
sensors, allowing a (higher-order) low-rank approximation
of a tensorized version of the mixing vectors. Conventional
methods such as ICA fall short in a large-scale setting because
of the exponential dependence on the order of the statistics.
Exploiting low-rank structure on the mixing level was briefly
discussed in [20]. In this paper, we go further: we apply the
strategy on the sources, as described above, but also apply
it on both the sources and the mixture simultaneously. The
latter is a natural extension that results into a more general
method that exploits the hypothesized low-rank structure of
the simultaneously tensorized source and mixing level of the
BSS problem, enabling a unique solution for large-scale BSS.

We illustrate the proposed methods with two applications.
First, we have the separation of the fetal and maternal
electrocardiogram (ECG) from multilead cutaneous potential
recordings. Our method allows a clear separation of the two
sources. Second, we have direction-of-arrival (DOA) estima-
tion for large uniform linear arrays in both a line-of-sight and
multipath setting. Our methods provides accurate estimates,
even for close DOAs. In very large-scale applications, the
arrays, however, are typically non-uniform but this is outside
the scope of this paper; here, we focus on the main principles.

In the remainder of this section we introduce the notation
and basic definitions. In Sections II and III, we introduce a new
BSS method that exploits the hypothesized compressibility
of the sources and mixing vectors, respectively. We combine
both strategies in Section IV. Simulations and applications are
presented in Section V. Finally, we conclude in Section VI.

A. Notation and definitions

Tensors, denoted by calligraphic letters (e.g., A), are higher-
order generalizations of vectors and matrices, denoted by bold
lowercase (e.g., a) and bold uppercase (e.g., A) letters, re-
spectively. The (i1, i2, . . . , iN )th entry of an N th-order tensor
A ∈ KI1×I2×···×IN , with K meaning R or C, is denoted by
ai1i2...iN . The nth element in a sequence is indicated by a
superscript between parentheses (e.g., {A(n)}Nn=1). The unit
vector with a one in the ith row is denoted as ei.

A mode-n vector of a tensor A ∈ KI1×I2×···×IN is defined
by fixing every index except the nth, e.g., ai1···in−1:in+1···iN ,
and is a natural extension of the rows and columns of a matrix.
The mode-n unfolding of A is a matrix A(n) with the mode-
n vectors as its columns (following the ordering convention
in [21]). The vectorization ofA, denoted as vec(A), maps each
element ai1i2···iN onto vec(A)j with j = 1+

∑N
k=1(ik−1)Jk

and Jk =
∏k−1
m=1 Im. The outer and Kronecker product are

denoted by ◦ and ⊗, respectively, and are related through a
vectorization: vec (a ◦ b) = b⊗ a. A frontal slice of a third-
order tensor X ∈ KI×J×K , denoted by Xk, is obtained by
fixing the last index.

B. Tensor decompositions

An N th-order tensor has rank one if it can be written as the
outer product of N nonzero vectors. The rank of a tensor is
defined as the minimal number of rank-1 terms that generate

the tensor as their sum. The multilinear rank of an N th-order
tensor is equal to the tuple of mode-n ranks, which are defined
as the ranks of the mode-n unfoldings of the tensor.

Definition 1. A polyadic decomposition (PD) writes an N th-
order tensor A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r . (1)

The columns of the factor matrices U(n) ∈ KIn×R are equal
to the factor vectors u

(n)
r for r = 1, . . . , R. The PD is called

canonical (CPD) when R is equal to the rank of A.

The CPD is a powerful model for several applications within
signal processing, biomedical sciences, computer vision, data
mining and machine learning [21]–[23]. The decomposition is
essentially unique if it is unique up to trivial permutation of
the rank-1 terms and scaling and counterscaling of the factors
in the same rank-1 term. In general, no unique solution exists
in the matrix case without additional assumptions for R > 1.
In the higher-order case, we typically expect uniqueness under
rather mild conditions. Consider a third-order tensor of rank
R and size I × J × K with factor matrices A,B, and C.
Kruskal’s condition states that the CPD is unique if [24]:

2R+ 2 ≤ kA + kB + kC. (2)

The k-rank of a matrix A equals the largest number kA
such that any kA columns of A are linearly independent.
Condition (2) is deterministic in the sense that uniqueness
is guaranteed for a particular choice of factor matrices sat-
isfying the condition. Generic uniqueness conditions consider
uniqueness with probability one when the entries of the factor
matrices are drawn from absolutely continuous probability
density functions. For example, condition (2) implies generic
uniqueness if 2R+2 ≤ min(I,R)+min(J,R)+min(K,R) as
the k-rank of a generic matrix equals its smallest dimension.
In general, milder conditions than Kruskal’s can be obtained.
Let us for instance consider the case where at least one of the
tensor dimensions is not strictly smaller than R. For example,
the CPD is generically unique for K = C if [25], [26]:

R ≤ (I − 1)(J − 1), 3 ≤ I ≤ J, and R ≤ K. (3)

More generally, the CPD is generically unique (with a few
known exceptions) if [27]:

R ≤
⌈

IJK

I + J +K − 2

⌉
− 1 and IJK ≤ 15000, (4)

with dxe the smallest integer not less than x. The bound on the
number of entries IJK has only been verified numerically up
to 15000 but is assumed to hold for larger number of entries
as well. Condition (4) is equivalent with (3) for R ≤ K and
3 ≤ I ≤ J .

Note that condition (4) involves the ratio between the
number of entries in the tensor and the number of parameters
in a rank-1 term (compensated for scaling). The condition
states that the decomposition is unique with probability one
if the number of entries is (strictly) larger than the number
of parameters, i.e., if the tensor is (minimally) compressible.
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Our working assumption to solve the large-scale BSS prob-
lem is based on this compressibility, as will be explained
further. We expect even milder uniqueness conditions when
N > 3 [28], [29]. An overview and state-of-the-art determinis-
tic and generic uniqueness conditions for higher-order tensors
are given in [25], [27], [28], [30]–[35] and references therein.
For a short introduction to CPD uniqueness we refer to [23,
Section IV].
Definition 2. A block term decomposition (BTD) of a third-
order tensor X ∈ KI×J×K in multilinear rank-(Lr, Lr, 1)
terms for r = 1, . . . , R is a decomposition of the form:

X =
R∑
r=1

(ArB
T
r) ◦ cr, (5)

in which Ar ∈ KI×Lr and Br ∈ KJ×Lr have full column
rank Lr and cr is nonzero.

These block terms are more general than the simple rank-1
terms of a third-order PD. Hence, they allow the modeling of
more complex phenomena, see e.g., [8], [36]. Other BTDs and
associated uniqueness results can be found in [5], [9], [10].

II. LARGE-SCALE BLIND SOURCE SEPARATION
VIA LOW-RANK SOURCES

We derive a new BSS method that exploits the hypothesized
compressibility of the sources. We show that this is possible
by applying a particular deterministic tensorization technique
to the observed data matrix. Decomposition of the resulting
tensor allows us to uniquely retrieve the mixing vectors and
the sources. In Subsections II-A, II-B, and II-C, we define
BSS, motivate the working hypothesis, and derive our method.

A. Blind Source Separation

We use a linear and instantaneous data model for BSS [4]:

X = MS + N, (6)

with X ∈ KM×K and S ∈ KR×K containing K samples of
each of the M observed and R source signals, respectively;
M ∈ KM×R is the mixing matrix and N ∈ KM×K is the
additive noise. The goal of BSS is to retrieve the unknown
mixing vectors in M and/or the unknown sources in S, given
only the observed data X. In the derivation of our method we
ignore the noise N for notational simplicity, its influence will
be further investigated in Section V by means of simulations.

The proposed method reshapes each observed signal, i.e.,
each row of X, into a matrix and stacks them into a third-
order tensor. This is illustrated in Figure 1. If the matricized
sources admit a low-rank representation, the BSS problem can
be solved uniquely by decomposing the tensorized observed
data. In general, we reshape each row into an N th-order tensor
and stack them into an (N + 1)th-order tensor. As such,
the parsimonious low-rank models enable very large signal
compressions, allowing one to tackle large-scale problems. In
general, no unique solution to (6) exists without additional
assumptions. By assuming that the source signals are low-rank
signals, which can be written as sums of Kronecker products
of smaller vectors, the problem can be reformulated as a tensor

decomposition. As a decomposition of a higher-order tensor is
unique under mild conditions as discussed in Subsection I-B,
the working assumption enables a unique solution of (6) under
the same conditions.

B. Low-rank sources

Many real-life signals are compressible. For example, many
common types of signals can be expressed in a basis such
that the coefficients decay according to a power law [37]. In
a large-scale setting, the amount of information contained in
the signal can often be represented by a number of parameters
that is much smaller than the total number of entries because
there is some structure in the data [38]. Such compressible
signals can often be represented in a very compact way by a
low-rank approximation of a tensor representation [15], [39];
we call them low-rank signals. It is this notion that is the key
to our approach: it enables a unique separation of the sources
and identification of the mixing vectors. Moreover, it provides
a way to cope with large-scale BSS problems because of the
large reduction in the number of parameters. We show that our
working hypothesis holds exactly for exponential polynomials.

Consider f(t) = azt evaluated in t = 0, 1, . . . , 5. The
resulting vector is reshaped into a (3× 2) matrix S of rank 1:

S = a

 1 z3

z z4

z2 z5

 = a

 1
z
z2

(1 z3
)
. (7)

The (3× 4) Hankelized version H of the same vector is [5]:

H = a

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3
)
. (8)

It is well-known that if the original signal is exponential, then
H has rank one, as illustrated. One can see that the columns
of S are a subset of the columns of H. Hence, if H has
rank one, then clearly S also has rank one. Consider now
a vector f ∈ KK defined by the underlying function f(t)
as fk = f(tk), 1 ≤ k ≤ K, using equidistant samples. We
reshape f into a (I × J) matrix S such that vec(S) = f with
K = IJ . Consider also a Hankelized version H ∈ KI×Jh
such that hijh = fi+jh−1 with K = I + Jh − 1. Hence,
we have that S = HQ with Q ∈ KJh×J the selection
matrix defined by qj = e(j−1)I+1 for j = 1, . . . , J . One
can verify that the matrix Q selects all distinct columns of
H, by comparing, e.g., the matrices in (7) and (8). It is
clear that if H has low rank then S has low rank as well,
while S offers a more compact representation than H. It is
known that H has low rank if the underlying functions are
sums of a limited number of exponential and trigonometric
terms. This fact extends to the larger class of exponential
polynomials [5]. The latter allows one to model a wide range
of signals in many applications, e.g., the autonomous behavior
of linear systems can be described by (complex) exponential
and, if we admit coinciding poles, exponential polynomials. In
Table I we show the coinciding (exact) rank values of H and S
for several common (exponential) polynomials; by combining
such functions one can model a wide variety of signals. For
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X = M S

X =

m1

S1 + . . . +

mR

SR

Segmentation

=

m1

A1

B1
+ . . . +

mR

AR

BR

Fig. 1. Illustration of segmentation: each row of the observed data matrix X is reshaped into a matrix and then stacked into a tensor X . The reshaped sources
appear in the first and second mode, and the mixing vectors appear in the third mode. The BSS problem boils down to a BTD in multilinear rank-(Lr, Lr, 1)
terms if the reshaped sources allow a low-rank representation, enabling a unique separation of the sources and identification of the mixing vectors.

TABLE I
RANK r(H) OF THE HANKELIZED VERSION OF SEVERAL (EXPONENTIAL)
POLYNOMIALS f(t). IF H HAS LOW RANK THEN THE (I × J) RESHAPED
VERSION S HAS LOW RANK AS WELL (IF R < MIN(I, J)). THE LATTER,
HOWEVER, PROVIDES A MUCH MORE COMPACT REPRESENTATION FOR
f(t) THAN THE FORMER. (pr(t) IS A POLYNOMIAL OF DEGREE Qr .)

f(t) r(H) f(t) r(H)

azt 1
R∑

r=1
arztr R

a sin(bt)
a cos(bt)

2
R∑

r=1
ar sin(brt) 2R

azt sin(bt) 2
R∑

r=1
arztr sin(brt) 2R

p(t) =
Q∑

q=0
aqtq Q+ 1

R∑
r=1

pr(t)
R∑

r=1
Qr +R

p(t)zt Q+ 1
R∑

r=1
pr(t)ztr

R∑
r=1

Qr +R

p(t) sin(at) Q+ 2
R∑

r=1
pr(t) sin(art)

R∑
r=1

Qr + 2R

p(t)zt sin(at) Q+ 2
R∑

r=1
pr(t)ztr sin(art)

R∑
r=1

Qr + 2R

example, a sine is a linear combination of two (complex
conjugated) exponentials and, hence, admits a rank-2 model.
Note that, while exponential polynomials can be represented
by low-rank matrices, the latter allow the representation of a
much larger family of signals than only exponential signals.
Moreover, Hankel matrices are often ill-conditioned [40], so
that the numerical rank can be significantly smaller than the
theoretical one.

So far we have discussed signals that admit an exact low-
rank representation. However, our approach also works well
for more general compressible signals. A reshaped version
of the latter often admits an approximate low-rank model as
illustrated in Figure 2. Assume we approximate S by a rank-R
matrix S̃ =

∑R
r=1 ar ◦ br, then the approximation error on

the original function f = vec(S) is:

‖f − vec(S̃)‖2F = ‖f −
R∑
r=1

br ⊗ ar‖2F. (9)

Recall from Subsection I-A that a Kronecker product equals
a vectorized outer product. We can make the approximation

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Fig. 2. Low-rank approximation of a reshaped smooth function often provides
a good representation. This is illustrated for a Gaussian (left), a rational
function (middle), and a sigmoid (right) sampled uniformly 100 times in [0, 1]
( ). The original functions are reshaped into a (10×10) matrix and then
approximated by a low-rank matrix by truncating the SVD. The reconstructed
functions are obtained by vectorizing this low-rank matrix. One can clearly
see that the functions can be better approximated by a rank-2 ( ) than a
rank-1 ( ) approximation.

error (9) as small as desired by increasing R. Since (9) is just
a vectorized version of ‖S − S̃‖2F, Eckart–Young’s theorem
provides an upper bound on the approximation error [41].
Namely, the least-squares error on the representation of the
signal f is the sum of the squares of the discarded singular
values of S. The singular value spectrum of S is often
fast decaying, and hence the signal f often admits a good
representation of the form (9) for low R. It is outside the scope
of this paper to investigate in general under which conditions
on the signal f the error in (9) is small. However, we do
provide explicit bounds by focusing on signals that admit a
good polynomial approximation. We emphasize that these are
only bounds, as 1) polynomials are only a special case of
exponential polynomials and 2) the latter are only a special
case of functions that yield a low-rank matrix S. As such,
assume that we approximate the underlying function f(t) of
f with a Taylor polynomial p(t) of degree R − 1 around
t = t∗. Assuming f(t) and its derivatives up to order R
are continuous, which is satisfied for smooth signals, Taylor’s
theorem provides the following element-wise upper bound on
the error in (9):

|f(t)− p(t)| ≤ fmax

R!
|t− t∗|R (10)

with fmax = maxu f
(R)(u), u ∈ (t∗, t) and f (R) the Rth

derivative of f . The corresponding matrix S̃ of p(t) has rank
R, see Table I; hence, (10) is a bound on the error of the
rank-R approximation of S. Signals with rapidly converging
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Taylor series admit an approximate low-rank model, hence,
only a small R is needed for a good approximation. A general
polynomial approximation p(t) in K uniformly sampled points
in the interval [a, b] gives the following upper bound on (9):

‖f − vec(S̃)‖2F≤
(
hR

4R
f̄

)2

with h = (b− a)/K, f̄ = maxu f
(R)(u), u ∈ [a, b], and f (R)

the Rth derivative of f . Similar results can be derived for other
types of approximations, e.g., a polynomial approximation in
Chebyshev points. In Section V, we illustrate our strategy for
real-life signals as well, showing that our working hypothesis
is valid for a variety of signals and applications.

In this paper we also reshape signals into higher-order
tensors, going further than the Hankel strategy from [5] and
enabling an even more compact representation. In tensor-based
scientific computing one often reshapes a function up to a
(2×2×· · ·×2) tensor of very high order to achieve maximal
compression for a fixed rank R [15], [39]. Here, we allow
much more freedom in the choice of the reshaping parameters,
which enables a trade-off between the approximation error
in (9) and the compression rate, see Subsection V-E.

Let us now describe the strategy more formally. Suppose
one reshapes the rth source sr in (6) into a (I × J) matrix
Sr such that vec(Sr) = sr with K = IJ . Note that this is the
same as stacking different decimated versions of the signal
in the rows of a matrix. If the rth reshaped (or matricized)
source Sr admits a rank-1 representation, which is our working
hypothesis, we have that Sr = ar ◦ br with ar ∈ KI and
br ∈ KJ , as, e.g., in (7). In general, however, this model is
too restrictive. The reshaped sources may admit, or better be
approximated by a low-rank representation, as is, e.g., the case
for a sine and the functions in Figure 2, respectively. Hence,
we have that Sr =

∑Lr

lr=1 alrr ◦ blrr. Note that this means
that we assume that the sources can be written as a sum of
Kronecker products: sr = vec (Sr) =

∑Lr

lr=1 blrr⊗alrr. This
strategy enables a compact representation of the sources, see
Table II. Indeed, the number of parameters is one order of
magnitude lower than the finite length K if I ≈ J .

More generally, we can reshape the sources into a higher-
order tensor, enabling a more compact representation. Suppose
we reshape the rth source sr into an N th-order tensor Sr ∈
KI1×I2×···×IN such that vec(Sr) = sr with K =

∏N
n=1 In. If

the rth reshaped (or tensorized) source Sr admits a (higher-
order) low-rank representation, we have that:

Sr =

Lr∑
lr=1

u
(1)
lrr
◦ u(2)

lrr
◦ · · · ◦ u(N)

lrr
, (11)

in which u
(n)
lrr
∈ KIn for n = 1, . . . , N , where the number of

rank-1 terms Lr can differ between sources. Note that this is a
PD as in (1). This means that the sources can be modeled, or
approximated, by sums of (N − 1) Kronecker products [15]:

sr = vec (Sr) =

Lr∑
lr=1

u
(N)
lrr
⊗ u

(N−1)
lrr

⊗ · · · ⊗ u
(1)
lrr
, (12)

In general, the number of parameter decreases logarithmically
in the number of Kronecker products N (i.e., the order of the

TABLE II
RESHAPING sr IN (6) INTO Sr ∈ KI1×I2×···×IN AND THEN USING A

RANK-Lr REPRESENTATION LEADS TO A CONSIDERABLE COMPRESSION.
IF N = 2, WE USE I AND J . THE NUMBER OF PARAMETERS DECREASES
LOGARITHMICALLY IN N AND INCREASES PROPORTIONALLY WITH Lr .

K for general In In ≈ I , for all n

N = 2 IJ Lr(I + J − 1) O(LrI)

N > 2
∏N

n=1 In Lr(
∑N

n=1 In −N + 1) O(LrNI)

representation) and increases proportionally with the number
of rank-1 terms Lr, see Table II. For example, if In = I for
n = 1, . . . , 3, then K = I3 and only O(3LrI) parameters
are needed. The possibly large compressions indicate the
applicability of this strategy for large-scale BSS problems.

C. Decomposition

We now demonstrate how the BSS problem in (6) can be
reformulated as the computation of a tensor decomposition
when the sources admit a low-rank representation. Let us start
as follows: each row of X is reshaped into a (I × J) matrix
as described earlier and then stacked into a third-order tensor
X ∈ KI×J×M such that vec (Xm) = xm. In other words,
the mth matricized observed signal is equal to the mth frontal
slice of X . Since the tensorization is a linear operation, the
M reshaped observed signals are linear combinations of the
R reshaped sources Sr ∈ KI×J . As such, we have that:

X =
R∑
r=1

Sr ◦mr. (13)

We denote this deterministic tensorization technique by seg-
mentation; see Figure 1 for an illustration. Now assume that
the rth reshaped source in (13) admits a rank-1 representation,
i.e., Sr = ar ◦ br for r = 1, . . . , R, then we have that:

X =
R∑
r=1

ar ◦ br ◦mr. (14)

Equation (14) is a CPD as defined in (1). Consequently, the
BSS problem boils down to the computation of a CPD of
a third-order tensor in R rank-1 terms. Analogously, if the
reshaped sources admit a low-rank representation, the BSS
problem boils down to a BTD in multilinear rank-(Lr, Lr, 1)
terms, as in (5) and illustrated in Figure 1. References to
uniqueness results for both cases have been mentioned in
Subsection I-B. We insist that the compressibility of the
sources has enabled their blind separation.

More generally, we can reshape each observed signal into
a (I1 × I2 × · · · × IN ) N th-order tensor as described ear-
lier and then stack it into a (N + 1)th-order tensor X ∈
KI1×I2×···×IN×M . As such, the mth tensorized observed
signal is equal to the mth N th-order “frontal slice” of X :

X =
R∑
r=1

Sr ◦mr, (15)



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2617858, IEEE
Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, MONTH 2015 6

If the reshaped sources Sr ∈ KI1×I2×···×IN allow a low-rank
representation as in (11), we have:

X =
R∑
r=1

(
Lr∑
lr=1

u
(1)
lrr
◦ u(2)

lrr
◦ · · · ◦ u(N)

lrr

)
◦mr, (16)

which is a decomposition in R (rank-Lr ◦ vector) terms [42].
It is a more general decomposition because it boils down to a
CPD of a higher-order tensor as in (1) if Lr = 1 for all r. Also,
it boils down to a BTD in multilinear rank-(Lr, Lr, 1) terms
as in (5) if N = 2, i.e., if X is a third-order tensor. In that
case, the factor matrices U(1)

r and U
(2)
r of the rth term are not

unique, but their products are (up to scaling and permutation).
On the other hand, for N > 2, the factor matrices U

(n)
r are

unique under mild conditions because they form a rank-Lr
PD of an N th-order tensor. We will exploit this in the DOA
estimation application in Subsection V-G.

The proposed method simultaneously determines both the
mixing vectors and the sources by 1) simply reshaping the data
(using segmentation) and 2) exploiting the fact that many real-
life signals admit a (higher-order) low-rank representation. As
such, the BSS problem boils down to a tensor decomposition
and 3) we can benefit from mild uniqueness properties. More-
over, 4) it is applicable for large-scale BSS problems, i.e.,
large K, as is clear from the possibly huge compressions as
indicated above. However, this is not necessarily a significant
advantage compared to existing methods like ICA. The latter
has only a linear dependence on K and even benefits from
large K accuracy-wise because the K samples are used to
estimate statistics. Finally, 5) the method is deterministic,
meaning that it does not use (higher-order) statistics, hence, it
also works well if the number of samples is small and/or if the
sources are not statistically independent. This is a difference
with statistical methods such as ICA.

III. LARGE-SCALE BLIND SOURCE SEPARATION
VIA LOW-RANK MIXING VECTORS

In the previous section we exploited the fact that many real-
life (source) signals admit a low-rank representation. This is
also a natural assumption for the mixing vectors if one con-
siders, e.g., many sensors and/or high sensor density; we call
them low-rank mixing vectors analogous to low-rank sources.
Such problems arise in biomedical sciences, e.g., wireless
body area networks (WBANs) using electroencephalography
(EEG) [18] and electrocorticography (ECoG) [43] with high
spatial resolution, or neural dust with thousands of miniature
sensors (neural probes) dispersed throughout the brain [44].
Moreover, one often encounters mixing matrices with Vander-
monde structure [45], i.e., each reshaped mixing vector has
exactly rank one. An example are uniform linear (ULAs) and
rectangular arrays (URAs) with far-field sources that emit nar-
rowband signals [46]–[48]. Here, we also see a trend towards
large-scale antennas, also known as massive MIMO [19], [49].
If the signals propagate through several distinct paths, e.g.,
due to reflections or scattering [50], each reshaped mixing
vector has low rank. If the sources are located in the near-
field, the Vandermonde structure is only approximate which
can be accommodated by a low-rank approximation.

Exploitation of the underlying compactness of such low-
rank mixing vectors amounts to a comparable method as in
Section II, which has been briefly addressed in [20]. Let us
illustrate the analogy with the previous section more clearly:
each column (cf. above) of X is reshaped into a (I×J) matrix
with M = IJ and then stacked into a third-order tensor X ∈
KI×J×K . Next, assume the reshaped mixing vectors admit a
rank-1 representation, which is our working hypothesis, i.e.,
Mr = unvec(mr) = ar ◦ br for r = 1, . . . , R. Hence,

X =
R∑
r=1

ar ◦ br ◦ sr. (17)

Note that this boils down to applying the same strategy as
before on the transposed observed data matrix. The general-
ization to higher-order low-rank representations is straightfor-
ward. The same analysis as in Subsection II-C applies, but
now we segment the mixing vectors and exploit the fact that
they possibly admit a (higher-order) low-rank representation.
Moreover, the method has several advantages over ICA: ICA
methods based on (full) HOS are infeasible when M is large
as the number of entries in Qth-order statistics is O(MQ).
Also, our method can handle Gaussian random sources in
contrast to ICA (if the mixing vectors indeed exhibit some
low-rank structure) [4]. Finally, the method imposes only mild
conditions (via the uniqueness conditions) on the sources in
contrast to existing methods, e.g., linear independence instead
of statistical independence as in ICA.

IV. LARGE-SCALE BLIND SOURCE SEPARATION
USING TWOFOLD SEGMENTATION

In the previous two sections we either reshaped the sources
or the mixing vectors and then exploited the hypothesized low-
rank structure. However, as we have illustrated before, both
the mixing vectors and the sources may admit such a higher-
order low-rank representation. Hence, a natural extension is
to use both strategies simultaneously. For instance, one often
has sinusoidal sources, which admit a rank-2 representation,
in ULAs of which the Vandermonde mixing vectors admit a
rank-1 representation. To the best of our knowledge, this is
the first time that tensorization is used on both levels of the
BSS problem and more generally in matrix factorization.

By exploiting the underlying compactness on both levels,
we are again able to reformulate the BSS problem as the
computation of a tensor decomposition. Let us start with
reshaping each column of X into a (I1 × I2) matrix with
M = I1I2 and stacking them in an intermediate third-order
tensor Y ∈ KI1×I2×K . Note that the (i1, i2)th mode-3 vector
of Y equals the (i1 + (i2 − 1)I1)th row of X. Each mode-
3 vector of Y (i.e., row of X) is subsequently reshaped into
a (J1 × J2) matrix with K = J1J2, which overall yields a
fourth-order tensor X ∈ KI1×I2×J1×J2 . Hence, we have that:

X =
R∑
r=1

Mr ◦ Sr. (18)

We denote this by twofold segmentation (cf. Sections II
and III). Let us now assume that both the reshaped mixing
vectors and sources admit a rank-1 representation. In that case,
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it is easy to see that (18) is a CPD of a fourth-order tensor
in R rank-1 terms. More generally, if the segmented mixing
vectors and sources allow a low-rank representation, we have:

X =
R∑
r=1

(ArB
T
r) ◦ (CrD

T
r) , (19)

in which Ar ∈ KI1×Lr and Br ∈ KI2×Lr have full column
rank Lr and Cr ∈ KJ1×Pr and Dr ∈ KJ2×Pr have full
column rank Pr. Note that the ranks Lr and Pr can be different
for each r and do not necessarily have the same value inside
the rth term. This is a new kind of decomposition: X is
decomposed in a sum of R (rank-Lr ◦ rank-Pr) terms.

More generally, we can reshape each row and column of X
into Sr ∈ KJ1×J2×···×JNs and Mr ∈ KI1×I2×···×INm such
that vec(Mr) = mr and vec(Sr) = sr, respectively, with
M =

∏Nm

nm=1 Inm and K =
∏Ns

ns=1 Jns , analogous to the
single segmentation case in (15). As such, we have that:

X =
R∑
r=1

Mr ◦ Sr.

Analogous to (16), the reshaped mixing vectors and sources
can both admit a low-rank representation. Hence, we have that:

X =
R∑
r=1

(
Lr∑
lr=1

◦Nm
nm=1u

(nm)
lrr

)
◦

(
Pr∑
pr=1

◦Ns
ns=1v

(ns)
lrr

)
,

in which u
(nm)
lrr

∈ KInm and v
(ns)
prr ∈ KJns . In comparison

with (19), the block factors U(n)
r and/or V(n)

r are unique under
mild conditions if Nm > 2 and/or Ns > 2. The reason is the
same as for the single segmentation case, see Subsection II-C.

The proposed method offers 1) a framework to exploit the
low-rank structure of both the reshaped mixing vectors and
sources; the same analysis as in the previous sections applies.
Again, we reformulate the BSS problem as the computation
of a tensor decomposition, hence, 2) we can benefit from the
mild uniqueness properties. More specifically, it boils down
to the computation of a new and more general decomposition.
As such, 3) the method is applicable in a big data setting:
it can handle both large sample sizes and large numbers of
sensors efficiently, see Table II. Furthermore, 4) the method
is deterministic, hence, it is not needed per se to have a
large number of samples. Finally, 5) only mild, and natural,
assumptions are imposed on the mixing vectors and the
sources. We simply exploit the low-rank structure which is
often present in real-life signals as explained above.

V. SIMULATIONS AND APPLICATIONS

In Subsection V-A, we give an example of the separation
of two low-rank sources and the separation of two low-rank
sources that are mixed with low-rank mixing vectors. Sub-
section V-B demonstrates the separation of more sources than
observed signals. We investigate the influence of the noise and
the sample size in Subsection V-C. Subsection V-D shows how
well one can approximate the reshaped mixing vectors and/or
sources for varying rank and SNR. In Subsection V-E we
analyze the influence of the choice of reshaping dimensions.
Finally, in the last two subsections, we illustrate the proposed

methods with fetal electrocardiogram extraction and direction-
of-arrival estimation in large-scale uniform linear arrays.

We use the segmentize command from Tensorlab to ap-
ply segmentation to the observed data matrices [51]. The CPD
and BTD in multilinear rank-(Lr, Lr, 1) terms can typically be
computed algebraically by means of a generalized eigenvalue
decomposition [10], [42], [52]. The algebraic solution is exact
in the noiseless case and a good initialization for optimization-
based methods in the noisy case. In this paper, we use least
squares optimization-based algorithms cpd and ll1 to fit the
decomposition to the data until a sufficiently high accuracy is
attained. During the computation, it is theoretically possible
that degeneracy occurs [53], [54]. For example, the magnitude
of some terms grows without bounds but with opposite sign,
resulting in a poor solution but a good fit. Degeneracy can
be avoided in several ways such as increasing the number
of rank-1 terms or imposing orthogonality or non-negative
constraints on the factor matrices [22], [54]–[56]. The decom-
positions in (rank-Lr ◦ vector) and (rank-Lr ◦ rank-Pr) terms
are computed with two adapted versions of cpd_nls called
lvec_nls and lp_nls, respectively, and are available upon
request. For very large tensors, one can resort to large-scale
algorithms as described in [17], [57], [58].

The mixing vectors and sources can only be determined
up to scaling and permutation, i.e., the standard indetermi-
nacies in BSS. Hence, in order to compute the error they
are first optimally scaled and permuted with respect to the
true ones. The relative error is then defined as the relative
difference in Frobenius norm, i.e., we have relative error
εA = ||A − Â||F/||A||F with Â an optimally scaled and
permuted estimate of A. We use Gaussian additive noise
unless indicated otherwise.

A. General experiments

First, we illustrate the method proposed in Section II.
Consider R = 2 low-rank sources: s1(t) = e−t and
s2(t) = sin(4πt) with K = 4096 equidistant samples in
[0, 1]. They are mixed into M = 3 observed signals using
M = [0.5, 2; 2, −3; 1, 0.5]. We use a second-order (N = 2)
rank-1 (L1 = 1) and rank-2 (L2 = 2) approximation for the
first and second source, respectively, with I = J = 64. Note
that the approximation of the first and second source requires
only 127 and 254 values, respectively, see Table II. This is the
maximal reduction for a second-order approximation. Namely,
we have a compression of 1 − Lr

I+J−N+1
M , i.e., 96.90%

and 93.80% for the first and second source, respectively. The
perfectly recovered sources are shown in Figure 3.

Second, we illustrate the method proposed in Section IV.
Consider R = 2 low-rank sources: s1(t) = e−t + et − e0.5t

and s2(t) = 2e−t with K = 4096 equidistant samples
in [0, 1]. The sources are mixed with two low-rank mixing
vectors: m1(ξ) = sin(2πξ) and m2(ξ) = e−2ξ sin(6πξ) with
M = 4096 equidistant samples in [0, 1]. We use a third-
order (Ns = 3) rank-3 (P1 = 3) and rank-1 (P2 = 1)
approximation for the first and second source, respectively,
with J1 = J2 = J3 = 16. Furthermore, we use a second-
order (Nm = 2) rank-2 approximation for both mixing vectors
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Fig. 3. Results for the first experiment of Subsection V-A. Left: the two
original sources. Middle: the observed signals. Right: the recovered sources.
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Fig. 4. Results for the second experiment of Subsection V-A. Top: original
mixing vectors (left) and sources (right). Bottom: perfectly recovered mixing
vectors (left) and sources (right).

(L1 = L2 = 2) with a non-optimal choice of the segmentation
parameters: I1 = 128 and I2 = 32. Hence, we decompose
the (128 × 32 × 16 × 16 × 16) segmented version of X
into a sum of a (rank-2 ◦ rank-3) and a (rank-2 ◦ rank-1)
term. The approximation of the rth mixing vector requires
only Lr(I1 + I2 − Nm + 1) values, i.e., a compression of
1 − Lr

I1+I2−Nm+1
M = 92.19%, although this is not the

maximal compression. Higher compression can be attained by
increasing the order. For instance, the approximation of the
rth source consists of only Pr(J1 +J2 +J3−Ns+ 1) values,
i.e., a compression of 1−Pr J1+J2+J3−Ns+1

M . Specifically, we
have a compression of 96.63% and 98.88% for the first and
second source, respectively. We further investigate the choice
of Inm

and Jns
in Subsection V-E. The perfectly recovered

factors are shown in Figure 4.

B. Underdetermined mixture

We illustrate the separation of more sources than observed
signals. Consider R = 3 complex exponential source signals
sr(t) = e2πirt for r = 1, . . . , R which are mixed into M = 2
observed signals using M = [−1, 0.5, 2; 0.5, 1, 0.5]. We
take K = 4096 uniformly discretized samples in [0, 1]. We use
a second-order (N = 2) rank-1 approximation for both sources
with I1 = I2 = 64. The real part of the recovered sources is
shown in Figure 5: perfect reconstruction is obtained.

C. Noise and sample length

First, we investigate the influence of the noise and the
sample size K for the method of Section III. Consider a
setup in which we have M = 4096 sensors and R = 2

0 0.5 1
−1

0

1

0 0.5 1

−2

0

2

0 0.5 1
−1

0

1

Fig. 5. Results for the underdetermined mixture. The real part of the three
original sources (left), the two observed signals (middle), and the recovered
sources (right).
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Fig. 6. Median across 100 experiments of the relative error on the mixing vec-
tors (left) and the sources (right) as a function of SNR for K = 101 ( ),
102 ( ), and 103 ( ). The mixing vectors are well conditioned.

i.i.d. zero-mean unit-variance Gaussian random sources of
length K = {101, 102, 103}. We construct the low-rank
mixing vectors as the vectorization of a second-order (N = 2)
rank-2 (L1 = 2) and rank-3 (L2 = 3) tensor using (12)
with zero-mean unit-variance Gaussian random factor vectors
and I = J = 64. Hence, we use a second-order rank-2
and rank-3 approximation with I = J = 64, respectively.
In Figure 6, we report the relative error on the mixing
vectors εM and the sources εS; note that the results are very
accurate in comparison with the SNR. Although the method
is deterministic, it is beneficial to increase K under noisy
conditions. However, K can be (very) low in comparison to
typical values in ICA. (Note that in this particular example,
ICA cannot be used since the sources are Gaussian.) εS does
not improve for increasing K because one also has to estimate
longer source signals. Similar results can be obtained for the
method of Section II when increasing the number of sensors
M under noisy conditions.

Next, consider a similar setup as in the previous experiment
but now with the following rank-1 mixing vectors: m1(ξ) =
e0.5ξ and m2(ξ) = e−2ξ with ξ ∈ [0, 1]. We use a second-
order (N = 2) rank-1 approximation for both mixing vectors
(L1 = L2 = 1) with I = J = 64. The results are shown
in Figure 7: in comparison with Figure 6, there is some loss
of accuracy on the mixing vectors and much clearer on the
sources. This is due to the condition of the problem: in the
previous experiment, the mixing vectors are approximately
orthogonal and have about the same size (‖m1‖/‖m2‖ ≈ 0.8),
while now the angle is 37.11◦ and ‖m1‖/‖m2‖ = 2.65.
Hence, the computation of the decomposition is more difficult
and the estimates less accurate.

D. Low-rank approximation

We investigate the influence of deviations from a second-
order rank-1 structure on the relative error as follows. De-
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Fig. 7. Median across 100 experiments of the relative error on the mixing
vectors (left) and the sources (right) as a function of SNR for K = 101

( ), 102 ( ), and 103 ( ). The mixing vectors are ill-conditioned.

fine each mixing vector as the vectorization of a random
matrix with exponentially decaying singular values, i.e.,
mr = vec (Urdiag (σ)Vr) with σ = e−αξ and ξ a vector
containing min (I, J) equidistant samples in [0, 1]. Ur and
Vr are random orthogonal matrices of compatible dimensions.
The exponential decay of the singular values is controlled
with α which is a measure for the rank-1-ness of the mixing
vectors: increasing α leads to more rank-1-like mixing vectors
and vice-versa. We take R = 2 i.i.d. zero-mean unit-variance
Gaussian random sources of length K = 10 and use a second-
order (N = 2) rank-Lr approximation with I = J = 64.

Figure 8 shows the relative errors εM and εS as a function
of α for an SNR of 15 dB and 25 dB using L1 = L2 = 1.
Note that an estimate of the mixing matrix M̂ can be obtained
from the decomposition, i.e., from (17) for this particular case,
in the way explained above. However, one can also estimate it
via the noisy observed data matrix and the pseudo-inverse of
the estimated source matrix: M̂ = XŜ†. The figure illustrates
that εM decreases for increasing α until it stagnates due to
noise. One can also see that, for large α, M̂ computed via
the pseudo-inverse is less accurate than directly extracting M̂
from (17) and imposing rank-1 structure. However, for small
α, the opposite is true. Indeed, for decreasing α, the mixing
vectors become less rank-1 like and our rank-1 model cannot
attain a better estimate than the one given by Eckart–Young’s
theorem [41]. Also, note that the sources are estimated more
accurately than the mixing vectors: the noise on the sources is
more averaged out because this factor is much shorter in the
decomposition (K � I, J) [59].

Figure 9 shows the relative errors for several choices of Lr.
One can observe that for increasing Lr, the relative error
decreases in the case of small α, i.e., in the case of little
rank-1-like mixing vectors. On the other hand, little is lost
through overmodeling (i.e., choosing Lr too large) for large
α. In fact, we overmodel less than conventional methods as
we exploit the low-rank structure. Hence, the choice of Lr is
not so critical, see [5], [6]. In this case one also knows that the
multilinear rank of X is bounded by (

∑R
r=1 Lr,

∑R
r=1 Lr, R).

E. Compression versus accuracy

We investigate the trade-off between compression and ac-
curacy which will lead to a better understanding on how to
choose the segmentation parameters Inm and/or Ins . We do
this by examining the accuracy of a low-rank approximation of
various segmentations of a real-life EEG signal with a sample
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Fig. 8. Median across 100 experiments of the relative error on the mixing
vectors (left), extracted from (17) (dashed) and computed via the inverse of
Ŝ (dotted), and the sources (right) for varying rank-1-ness α and an SNR of
15 dB (cross) and 25 dB (circle). The error bound given by the Eckart-Young
theorem is shown in solid.
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Fig. 9. Median across 100 experiments of the relative error on the mixing
vectors (left) and the sources (right) for varying rank-1-ness α of the mixing
vectors and 20 dB SNR with L1 = L2 = 1 ( ), L1 = L2 = 2 ( ),
and L1 = L2 = 3 ( ). The error estimate given by the Eckart-Young
theorem is shown with dashed lines. Note the small scale of εS (right).

rate of 500 Hz. More precisely, we reshape the EEG signal
of length K = 214 into a (I × J) matrix with I = 2q and
vary q = 2, . . . , 12, then J = 214−q such that K = IJ .
Subsequently, we approximate the reshaped signal with a rank-
L model with L = {1, 2, 3}.

In Figure 10, we plot the normalized number of parameters
K̂ = L(I + J)/K versus the relative error ε of the rank-L
approximation. We see a clear trade-off between compression
and accuracy, hence, what is considered a “good” choice of
parameters will depend on the needs in a particular application.
First of all, the curves are not symmetric since segmentation is
not symmetric in the modes that it creates. Note that one can
easily improve the accuracy without affecting the compression
rate by switching the values of I and J such that I < J
rather than I > J for the same rank. For fixed I and J ,
increasing the rank can greatly improve the accuracy, e.g.,
when I � J (left part of Figure 10). The original signal and
two particular approximations are shown in Figure 11. Note
the relative error decreased from 0.68 to 0.096 by taking I < J
and increasing L for the second approximation. On the other
hand, the compression reduced from 96.88% to 86.72%.

In general, a good choice of the parameters will depend on
the application. If compression is the objective, one should
choose I ≈ J and L not too large. If, on the other hand,
accuracy is the objective, one can try other choices of I and J
and maybe a higher rank L. In practice, one can try a particular
choice of parameters, perform a similar analysis as here on the
estimated sources, and further refine the choice from there.
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Fig. 10. Normalized number of parameters K̂ as a function of the relative
error of a rank-1 ( ), rank-2 ( ), and rank-3 ( ) approximation of
a segmented real-life EEG signal of length K = 214. The signal is reshaped
into a (I × J) matrix with I = 2q and J = 214−q such that K = IJ with
q = 2, . . . , 12 and q increasing from left to right on the curve.
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Fig. 11. Visualization of the original EEG signal ( ) and two approx-
imations. The latter are obtained by first reshaping the original signal into
a (27 × 27) and (25 × 29) matrix, respectively, and then approximating
them by a rank-1 ( ) and rank-2 ( ) matrix by truncating the singular
value decomposition. The reconstructed signals are obtained by vectorizing
these low-rank matrices. Only the first 2000 samples are shown. The rank-2
approximation is much better than the rank-1 as is also clear from Figure 10.

F. Fetal electrocardiogram extraction

We use the method of Section II for the extraction of
the antepartum fetal electrocardiogram (FECG) from multi-
lead cutaneous (i.e., recorded on the mother’s skin) potential
recordings. The FECG is important for analyzing the health
and condition of the fetus. The elimination of the mother’s
dominant heartbeat in the ECG can be seen as a BSS problem
and one can use methods such as ICA [60]. ICA, however,
falls short when only a few samples or heartbeats are available.
FECG extraction is not a large-scale problem, but it is useful
to illustrate a few features of our approach. Our method is
applicable here because the typical QRS complexes in the
ECG admit a low-rank approximation. In other words, we
show that representability by a small number of parameters
can be used as a ground for blind ECG signal separation. We
illustrate our method for a real-life dataset.

The dataset contains eight observed signals, of which
five abdominal and three thoracic; the dataset is available
from DaISY1. Data acquisition and preprocessing is described
in [61]. The sampling rate is 250 Hz. We only use the first
500 samples and scale each signal to unit norm. Each observed
signal is segmented into a (25 × 20) matrix and the overall
data set is stacked into a (25×20×8) tensor. We use a rank-5
approximation for each source (L1 = L2 = L3 = L = 5). At
least three sources are needed to extract the FECG; this is also
the case for ICA [60]. We use this particular segmentation
as to maximize the compression which is only an arbitrary
choice. We determined L by a trial-and-error approach starting
from a rank-10 approximation and then decreasing L. Little

1Available from http://homes.esat.kuleuven.be/∼smc/daisy/daisydata.html
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Fig. 12. Visualization of the two recovered sources in the FECG experiment.
Notice a clear separation of the fetal (above) and maternal (below) ECG.

is lost by choosing a larger L anyway, see Subsection V-D.
Figure 12 shows two recovered sources. One can verify that
the heartbeats of the fetus are no longer visible in the ECG
of the mother and vice versa, i.e, we have a clear separation.
The frequency of the FECG is typically twice as high as the
frequency of the MECG, which can be observed as well.

G. Direction of arrival estimation

We use the method of Section IV for direction-of-arrival
(DOA) estimation of signals impinging on a ULA. Appli-
cations include radar, sonar, wireless communications, and
seismic exploration. Recently, there has been a trend towards
large-scale array processing [19]. Our method is able to cope
with a large number of sensors, where other methods fall short.
We compare our results with two well-known DOA estimation
methods, MUSIC and ESPRIT, in several scenarios [46].

Consider a ULA that consists of M uniformly spaced and
omnidirectional antennas receiving signals from R narrow-
band sources located in the far field. In that case, the problem
can be described by (6) with the mixing vectors defined
element-wise as mmr = θm−1

r with θr = e−2πi∆ sin(αr)λ−1

. ∆
is the inter-element spacing, the angle αr to the normal is the
rth DOA (i.e., −90◦ ≤ αr ≤ 90◦), and λ denotes the wave-
length. Note that the mixing vectors are Vandermonde vectors:
mr =

[
1 θr θ2

r · · · θM−1
r

]T
, hence, they admit a rank-1

representation [29], [48]. In a multipath setting, the mixing
vectors are defined element-wise as mmr =

∑Lr

l=1 θ
m−1
lr

(ignoring path losses for simplicity), with Lr the number of
paths for the rth source, admitting a low-rank representation.
If the sources are located in the near field, the mixing vectors
no longer admit a rank-1 representation but can still be well
approximated by a low-rank model. If one also uses low-rank
source models, we can use the method of Section IV.

First, consider a ULA with M = 64 sensors and ∆ equal
to halve the wavelength. Although our method is applicable
for a large number of sensors, we choose M rather small so
we can compare with MUSIC and ESPRIT. The latter two
methods have to compute a M×M covariance matrix and then
apply an eigenvalue decomposition (EVD). These steps can be
computationally expensive because they have a complexity of
O(M2K) and O(M3), respectively, rendering such methods
infeasible for large M and K. Moreover, MUSIC has to evalu-
ate the MUSIC spectrum for many angles in order to estimate
the DOAs accurately. Here, we evaluated the MUSIC spectrum
in 104 equidistant angles in [−π2 ,

π
2 ]. Note that the number

of evaluation points bounds the attainable accuracy. Consider

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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R = 2 low-rank sources: sr(t) = sin(10πrt) with K = 1024
equidistant samples in [0, 1]. The sources are in line-of-sight
and impinge on the ULA with α11 = 32◦ and α12 = 34◦.
We use a second-order (Ns = 2) rank-2 (P1 = P2 = 2)
approximation for both sources with J1 = J2 = 32 and a
second-order (Nm = 2) rank-1 (L1 = L2 = 1) approximation
for both mixing vectors with I1 = I2 = 8. Note that the model
of the sources and mixing vectors requires only 126 and 15
values instead of 1024 and 64, respectively, see Table II. This
results in a compression of 1−Pr J1+J2−Ns+1

K = 87.70% and
1−Lr I1+I2−Nm+1

M = 76.56%, respectively. In Figure 13 (left),
we report the median of the relative errors on the DOAs εα. It
is clear that the dedicated methods estimate the DOAs more
accurately than our method. On the other hand, by exploiting
the low-rank structure, we show that it is still possible to
get fairly accurate estimates in comparison with well-known
dedicated methods. Moreover, our method is applicable for
large M .

In a second experiment, we add a third source (R = 3)
that impinges on the ULA from two different paths (L3 = 2):
α13 = −15◦ and α23 = 67◦. We use a third-order (Nm = 3)
rank-1 and rank-2 approximation for the first two and last
mixing vector, respectively, with I1 = I2 = I3 = 4. We choose
Nm > 2 such that the different DOAs of the third source
can be found directly from the estimated vectors u

(1)
13 and

u
(1)
23 (instead of the column space of S3), see the discussion

of uniqueness in Subsection II-C. Note that one simply has
to increase the rank Lr in order to cope with a multipath
source, while MUSIC and ESPRIT need additional spatial
smoothing [62]. The results are shown in Figure 13 (right).

In a third experiment, we use the same setup as in the
first experiment but with two near-field sources defined by
a DOA and range relative to the first antenna: α1 = −17◦,
w1 = 2(M − 1)∆, α2 = 41◦, and w2 = 3(M − 1)∆.
We compare our results with a two-dimensional version of
MUSIC [63]. Figure 14 shows the median of the relative
errors on the DOAs εα and the ranges εw. MUSIC estimates
both the DOA and range more accurately but is even more
computationally expensive because now one has to evaluate a
two-dimensional spectrum for many angles and ranges. Here,
we used 102 equidistant angles and ranges in [−π2 ,

π
2 ] and

[5, 12], respectively. In order to cope with near-field sources
in our approach, one simply has to increase the rank Lr.

The final experiment uses the same setup as the first exper-
iment but now with M = 9 and K = 100 with J1 = J2 = 10
and I1 = I2 = 3. As can be seen from Figure 15, MUSIC
fails to distinguish close DOAs when only a few samples
are available and the SNR is low [46]. A small number of
sensors M flattens the peaks in the MUSIC spectrum, making
the problem more difficult. Our method can still estimate the
DOAs accurately in such a setup because it is deterministic,
performing even better than ESPRIT.

VI. CONCLUSION

In this paper, we have introduced a new method for BSS that
exploits the fact that many real-life signals are compressible.
We expressed this by assuming that the tensorized sources
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Fig. 13. Median across 100 experiments of the relative error on the DOAs as
a function of SNR for the line-of-sight (left) and multipath (right) experiment
using segmentation ( ), ESPRIT ( ), and MUSIC ( ).
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Fig. 14. Median across 100 experiments of the relative error on the DOAs
(left) and ranges (right) as a function of SNR for the near field experiment
using segmentation ( ) and MUSIC ( ).

can be well approximated by a low-rank model. In other
words, we assume that the sources can be well approximated
by sums of Kronecker products of smaller vectors. As such,
we have demonstrated that, if the sources indeed admit such
a low-rank representation/approximation, the BSS problem
boils down to the computation of a decomposition of the
resulting tensorized observed data matrix. It is precisely the
compressibility, which is essential in large-scale problems,
that makes it very likely that the tensor decomposition is
unique. Hence, our method provides a unique solution to the
BSS problem and a way to cope with large-scale problems.
Furthermore, we applied the same strategy to the mixing level
motivated by an increasing number of sensors and sensor
density in fields such as biomedical sciences and array pro-
cessing. Moreover, combining both strategies simultaneously
allowed the exploitation of low-rank structure on both levels
of the BSS problem. We have illustrated our methods with
two applications: FECG and DOA estimation for large-scale
ULAs. We note that it is possible to impose constraints on
the sources and/or mixture when applicable, e.g., statistical

−20 −15 −10 −5 0 5 10
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Fig. 15. Median across 100 experiments of the relative error on the DOAs
as a function of SNR for the small-scale line-of-sight experiment using
segmentation ( ), ESPRIT ( ), and MUSIC ( ).
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independence of the sources as in ICA. Such variants are
out of the scope of this paper. Although we focused on the
CPD for modeling the tensorized sources and/or mixture, it is
possible to consider other tensor models such as tensor trains
(TTs) and hierarchical Tucker [15]. The latter are often used in
tensor-based scientific computing because they combine large
compression rates with good numerical properties. For the
CPD of very large tensors, algorithms such as the ones in [17],
[57], [58] can be used.
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Martijn Boussé received the M.Sc. in Mathematical
Engineering from KU Leuven, Belgium in 2014. He
is a Ph.D. candidate affiliated with the STADIUS
Center for Dynamical Systems, Signal Processing
and Data Analytics of the Electrical Engineering
Department (ESAT), KU Leuven and with iMinds
Medical IT. His research concerns the development
of tensor-based methods for blind signal separation
and blind system identification in a big data context.

Otto Debals received the M.Sc. in Mathematical En-
gineering from KU Leuven, Belgium in 2013. He is
a Ph.D. candidate affiliated with the Group Science,
Engineering and Technology of Kulak, KU Leuven,
with the STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics of the Elec-
trical Engineering Department (ESAT), KU Leuven
and with iMinds Medical IT. His research concerns
the tensorization of matrix data, with further interests
in tensor decompositions, optimization, blind signal
separation and blind system identification.

Lieven De Lathauwer received the Ph.D. degree
from the Faculty of Engineering, KU Leuven, Bel-
gium, in 1997. From 2000 to 2007 he was Research
Associate with the Centre National de la Recherche
Scientifique, France. He is currently Professor with
KU Leuven. He is affiliated with the Group Science,
Engineering and Technology of Kulak, with the
STADIUS Center for Dynamical Systems, Signal
Processing and Data Analytics of the Electrical
Engineering Department (ESAT) and with iMinds
Medical IT. He is Associate Editor of SIAM Journal

on Matrix Analysis and Applications and has served as Associate Editor
for IEEE Transactions on Signal Processing. His research concerns the
development of tensor tools for engineering applications.

http://www.tensorlab.net/
http://www.tensorlab.net/

