
Knowledge Representation Analysis of Graph Mining

Matthias van der Hallen†? , Sergey Paramonov†, Michael Leuschel‡, Gerda Janssens†

†KU Leuven, ‡Heinrich-Heine-Universität Düsseldorf

Abstract. Many problems, especially those with a composite structure, can nat-
urally be expressed in higher order logic. From a KR perspective modeling these
problems in an intuitive way is a challenging task. In this paper we study the
graph mining problem as an example of a higher order problem. In short, this
problem asks us to find a graph that frequently occurs as a subgraph among a set
of example graphs. We start from the problem’s mathematical definition to solve
it in three state-of-the-art specification systems. For IDP and ASP, which have no
native support for higher order logic, we propose the use of encoding techniques
such as the disjoint union technique and the saturation technique. ProB benefits
from the higher order support for sets. We compare the performance of the three
approaches to get an idea of the overhead of the higher order support.
We propose higher-order language extensions for IDP-like specification languages
and discuss what kind of solver support is needed. Native higher order shifts the
burden of rewriting specifications using encoding techniques from the user to the
solver itself.

1 Introduction

Many real world problems exhibit a composite structure consisting of multiple smaller
problems which can be combined in many different configurations. These types of prob-
lems lend themselves for a declarative approach as knowledge representation offers a
transparent, natural and extendable model satisfying ‘The Principle of Elaboration Tol-
erance’ [McCarthy, 1998]: declarative specifications are easily adapted to new require-
ments or changed circumstances, e.g. variations in which subproblems are used, and
in the way they are combined. Conversely, the smaller problems in these composite
structures are often already NP or coNP complete. Combining these already complex
problems often raises the computational complexity of the composite problem, up to
a level where it cannot be expressed using first order logic. These problems become
higher order logic problems: We study the Graph Mining problem as an example fea-
turing such a raise in complexity.

Specification languages with support for higher order logic exist, with different lev-
els of support. On the one hand, meta-programming, as known from Logic Program-
ming [Abramson and Rogers, 1989], has inspired the introduction of higher-order atoms
in DLVHex [Eiter et al., 2005] and the higher-order syntax in HiLog [Chen et al., 1993].
As in Prolog, predicate symbols can be either constants (first order case) or variables
(second order case). In the case of predicate variable symbols, these variables range
over predicate names, and not the predicate space itself, essentially combining second
order syntax with first order semantics. This cannot model the graph mining problem.
? Matthias van der Hallen is supported by a Ph.D. fellowship from the Research Foundation -

Flanders (FWO - Vlaanderen).

On the other hand, formal specification languages such as Z [Bowen, 1996], B
[Abrial, 1996], Event-B [Abrial, 2010] and TLA [Lamport, 2002] extend predicate logic
with set theory and offer higher order datastructures. ProB [Leuschel and Butler, 2008]
is a constraint solver, animator and model checker for such languages, implemented
in SICStus Prolog. We can express the graph mining problem in ProB directly using
higher order logic, but in general such systems miss the flexibility to perform multiple
different inferences such as model expansion and optimization without modifying the
specification. Furthermore, ProB requires an encoding to express inductive definitions,
and as it is built on CP techniques and finite domain solvers, it does not benefit from
the recent revolutions in solving techniques such as CDCL.

Therefore, we also look at specification languages that do not allow higher order
syntax. Examples of such languages are the IDP [De Cat et al., 2016] and the ASP [Eiter
et al., 2009] language. For these languages, several techniques exist that allow the user
to simulate higher order logic to model problems such as graph mining, potentially
offering better performance than systems that allow higher order logic directly.

Graph mining is a specific kind of frequent pattern mining, the task of enumerating
patterns which occur frequently in a dataset. A first class of pattern mining is unstruc-
tured mining, such as itemset mining, where the pattern is a set of items without any ad-
ditional structural relation between the different items. This problem is of propositional
nature: De Raedt et al. [2008] modeled it using CP techniques, while Järvisalo [2011]
used ASP. Recently, focus has shifted from unstructured towards structured mining,
such as graph or sequence mining Négrevergne and Guns [2015], Gebser et al. [2016].
Here, the items being mined exhibit additional structure, for example the edge relation
in the case of graph mining. This introduces theNP-coplete problem of graph homo-
morphism [Levin, 1973], and its many variations, which in imperative languages lead to
many different algorithms [Yan and Han, 2002, Dries and Nijssen, 2012]. A declarative
approach can express these variations with only minimal changes.

In our case study of the graph mining problem, we start with from the mathematical
model of graph mining, which is inherently higher order, and identify the following
contributions:

– We identify the higher order aspects of the graph mining problem and show how
the problem can be modeled in IDP, ASP and ProB, proposing concrete modeling
techniques. We also identify a set of desirable properties for a declarative encoding
of the graph mining problem.

– We propose a higher order encoding that closely follows the mathematical model
of graph mining, and satisfies all desirable properties of a declarative graph min-
ing model. We indicate how additional solver support can exploit the additional
structure in this encoding to work more efficiently.

The paper is structured as follows: Section 2 introduces graph mining formally, Section
3 discusses the how to model the problem in IDP, ASP and ProB, identifying a set
of desirable properties. Then, Section 4 discusses the performance of these systems.
Section 5 discusses a faithful encoding of the graph mining problem in an KR language
enriched with HO, and its possible solver implementation. Section 6 draws conclusions
and outlines possible future research directions.

2

2 Formalization of the graph mining problem

2.1 Patterns

We start with a comprehensive formal definition of the graph mining problem.

Definition 1. A labeled graph G is a triple 〈V,E, l〉 where V is the finite set of vertices
or nodes, E is a binary predicate on V that represents the set of (directed) edges and l
is a unary function from V to a set of labels.

Definition 2. A graph G = 〈V,E, l〉 is connected iff for each pair of vertices v and v′

in V , there exists an edge (v, v′) ∈ E or there exists a sequence v, v1 . . . vn, v′ such
that there exist edges (v, v1), (vi, vi+1) and (vn, v

′) ∈ E, where 1 ≤ i ≤ n− 1.

Definition 3. A graph homomorphism f from a labeled graph G = (V,E, l) to a la-
beled graph G′ = (V ′, E′, l′) is an injective mapping f : V → V ′ from vertices of G to
vertices of G′ such that:

– ∀v ∈ V : l(v) = l(f(v)) (the mapping respects labelings), and
– ∀u, v ∈ V, (u, v) ∈ E =⇒ (f(u), f(v)) ∈ E′ (the mapping preserves edges).

If a graph homomorphism from graph G to G′ exists we say G is homomorphic with G′.
Definition 4. Given a pair 〈E+,E−〉 consisting of a set of positive and negative exam-
ples of labeled graphs respectively, and a graph T called the template, Graph mining
is the problem of finding a pattern P which is

– a connected labeled subgraph of T ,
– homomorphic with at leastN+ positive examples E+ ∈ E+, while being homomor-

phic with at most N− negative examples E− ∈ E−.

We call these homomorphisms the positive (negative) homomorphisms, and the re-
striction on their number the positive (negative) homomorphic property, respectively.

(a) Positive Example (b) Negative Example (c) Template

(I) (II)

(d) Pattern Candidates

Fig. 1: A graph mining instance (N+ = 1, N− = 0) with pattern candidates.

Take, for example, the problem set shown in Fig. 1. We assume all nodes have the
same label, and that all edges are bidirectional. The template graph guides the search.
There is one positive example (Fig. 1a), and one negative example (Fig. 1b). Fig. 1c
shows the template graph. Fig. 1d shows a valid and an invalid pattern. They are both
connected subgraphs of the template. Requiring at least one homomorphism with a pos-
itive example, and allowing no homomorphisms with negative examples (i.e. problem
parametersN+ = 1 andN− = 0), Fig. 1I represents a valid pattern. It is clear that there
exists a mapping from each node from the valid pattern to a node of the positive exam-
ple, while no such mapping exists for the negative example. Looking at Fig. 1II, this
graph is clearly homomorphic with both the positive as well as the negative example.
Therefore, it is not a pattern.

3

2.2 Canonical patterns

To extend on the graph mining task described above, we can look for multiple patterns,
instead of just one. In this case, one can impose restrictions on the different patterns
that are found. For example, it stands to reason that one wants only canonical solutions,
meaning that no two patterns found are isomorphic.

Definition 5. A graph isomorphism f between two labeled graphs G = 〈V,E, l〉 and
G′ = 〈V ′, E′, l′〉 is a one-to-one mapping V → V ′ such that f represents a homomor-
phism from G to G′, and its inverse f−1 represents a homomorphism from G′ to G. If
there exist graph isomorphisms between G and G′ we say G and G′ are isomorphic.

(a) First candidate pattern (b) Second candidate pattern

Fig. 2: Possible patterns

Given the graph mining problem as specified in Fig. 1, we have already established
that Fig. 2a is a valid pattern. When we try to mine a second pattern, we might suggest
a pattern as shown in Fig. 2b. A quick check, however, will show that there is a one-to-
one mapping f such that both f as well as its inverse f−1 preserve edges. As a result,
both candidate patterns are isomorphic, and thus only one should be accepted as a valid
pattern.

2.3 Rewording

We want to study how this formal mathematical definition can be expressed in the logics
underlying the IDP [De Cat et al., 2016] and the ProB [Leuschel and Schneider, 2014]
system. First, we will reword the earlier Def. 4 into an equivalent formal definition
that uses logical sentences and language constructs available in general logics. In doing
this, it becomes evident that the graph mining problem has fundamental underlying
characteristics that result in a higher order definition and specification.

The vertices in the graph mining problem have no distinctive property, and can be
reused between different example graphs and patterns. Therefore, we will assume one
shared, sufficiently large set of vertices V and represent example graphs over these ver-
tices V directly as triples 〈Edge, Label, Class〉, consisting of an (binary) edge relation
on V and a labeling function over V , as well as a classification (positive/negative).

Definition 6. Graph Mining (redefined) Given a sufficiently large set of vertices V , a
set G of graphs over this vertex set V , represented by 〈E, l, c〉 triples where E and l
represent the edge relation and labeling function over V respectively, and a template
graph T , we look for a graph P represented by tuple 〈EP , lP〉 such that:

– P is a connected subgraph of T ,
– #

{
〈E, l, pos〉 ∈ G | ∃f : f is a homomorphism from P to 〈E, l, pos〉

}
≥ N+,

– #
{
〈E, l, neg〉 ∈ G | ∃f : f is a homomorphism from P to 〈E, l, neg〉

}
≤ N−.

4

Definition 7. Canonical Patterns A set of canonical patterns is a set P of graphs
P1, ...,Pn, such that for each pair of different elements (of P) Pi,Pj holds that there
does not exist an isomorphism between Pi and Pj .

Graphs are the main concept in the graph mining problem, and, when represented
using triples 〈E, l, c〉, graphs take the form of higher order objects. A set of graphs
is equivalent to a set of triples. The most straightforward representation of such a set
would be a ternary predicate. As the domains of this predicate range over predicates
and functions, it is a higher order predicate.

It is very natural to consider and represent each graph as a coherent ensemble of its
own components: all characteristics (edges, labeling . . .) of a graph are represented by
separate entities or concepts, which are grouped together for each graph G in the triple
that describes it. We refer to this as the local coherence of the graph representation. Not
only is this a very natural representation, this representation also makes it very explicit
that all example graphs are independent, and that the searches for homomorphisms
between a pattern and example graphs are independent as well. This motivates us to
reason about graphs as locally coherent objects in our logical models as well. However,
the higher order representations needed to reason about graphs and sets of graphs as
coherent objects in our models are not yet fully supported by the logics of IDP and ASP.
In the following section discusses how to solve this using several modeling techniques.

3 Modeling

In this section, we show how state-of-the-art KR systems without support for higher
order logic, such as IDP and ASP, can model the graph mining problem and its higher
order features using encoding techniques. We identify the desirable properties that from
a KR perspective should hold for a good modeling of the graph mining problem and we
evaluate how a modeling in ProB, as a KR language with support for higher order sets,
satisfies these properties.

3.1 IDP

Existential Second Order The IDP language can express problems that consist of a set
of symbols, called the vocabulary V , and a theory, called T , that uses symbols from this
vocabulary. The symbols in the vocabulary can be propositions, but they can also repre-
sent predicates and functions. These last two types of symbols make the vocabulary, in
general, a second order object: it is an object that itself contains not only propositional
symbols, but also first order symbols. For example, vocabulary V in Listing 1.1 is a
second order vocabulary as it contains the first order symbol Edge/2.

The theory T is restricted to a first order theory, extended with types, arithmetic,
aggregates, and inductive definitions. An example of such a theory is given in Listing
1.1. It contains an inductive definition for Path/2, and one constraint.

Our inference of choice in the graph mining problem is model expansion; we search
for an interpretation I of symbols in the vocabulary V , called a model, such that this
interpretation I satisfies the theory T . This corresponds to the implicit existential quan-
tification of all symbols in the vocabulary, both the propositional as well as the first

5

order symbols. In the example of Listing 1.1, we expand the given interpretation S
to the model Result with 3 edges: One from the first node to itself, one from the first
node to the second, and one from the second to the third. Path contains all corresponding
paths between these three nodes.

In conclusion, we say the IDP language can express model expansion for Existential
Second Order problems. This level of expressiveness is not sufficient for general graph
mining problems.

Listing 1.1: IDP example using inductive definitions
1 vocabulary V{
2 type Node,
3 Edge(Node, Node), Path(Node, Node)
4 }
5 theory T : V {
6 ∀n[Node] : ∃n2[Node] : Edge(n,n2) ∨ Edge(n2,n).
7 {
8 Path(x,y) ← Edge(x,y).
9 Path(x,y) ← ∃z[Node] : Path(x,z) ∧ Path(z,y).

10 Path(x,y) ← Path(y,z).
11 }
12 }
13 structure S : V{ Node = {1;2;3} }
14 structure Result : V{
15 Node = {1; 2; 3}, Edge = {1,1; 1,2; 2,3}
16 Path = {1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3 }
17 }

Issue 1 First, we must represent the set of example graphs, as specified in Def. 6. This
definition uses a higher order predicate GraphInst/3 (See Listing 1.2) with the edge
predicate as first argument and the labeling function as second argument. For the first
graph, {1,2; 2,1} and {1 7→ a; 27→ b} respectively. It represents a single graph as
a tuple of predicates and functions, which is a highly locally coherent representation,
preserving the independence of graph characteristics. However, as we are restricted to
Existential Second Order, we cannot express this higher order predicate in IDP.

One possible solution is to replicate for each graph the different characteristic pred-
icates and functions, as shown in Listing 1.3. In this encoding, every graph has its own
edge predicate and label function. Because there is now no relation between the dif-
ferent edge predicates and label functions, it is necessary to formulate our theory in
terms of these different predicates and functions. Encoding a property such as “In every
graph, all nodes have at least two outgoing edges” must be stated for each of the edge
predicates explicitly:

∀ n[Node] : ∃ n1,n2[Node] : E1(n, n1) ∧ E1(n,n2) ∧ n1 6= n2.
∀ n[Node] : ∃ n1,n2[Node] : E2(n, n1) ∧ E2(n,n2) ∧ n1 6= n2.

It is clear that this solution is undesirable due to the way it scales and the theory
modifications needed with growing problem instances. It retains the local coherence
and independence of graph characteristics when it comes to data representation, but
prohibits the abstraction (generalization) of knowledge in the theory.

Listing 1.2: Higher order predicate modeling the set G of Def. 6.
GraphInst({1,2; 2,1},{1 7→a; 2 7→b},pos).
GraphInst({1,3; 2,1},{1 7→c; 2 7→b; 3 7→a},neg).

6

Listing 1.3: Multiple individual global
relations
E1(1,2). lb1(1)=a.
E1(2,1). lb1(2)=b.
E2(1,3). lb2(1)=c.
E2(2,1). lb2(2)=b.

lb2(3)=a.

Listing 1.4: Disjoint union using in-
dexed global relations
E(g1,1,2). lb(g1,1)=a.
E(g1,2,1). lb(g1,2)=b.
E(g2,1,3). lb(g2,1)=c.
E(g2,2,1). lb(g2,2)=b.

lb(g2,3)=a.

A more workable solution is to represent each characteristic property, such as the
edge relation, by a single global relation for all graphs, as shown in Listing 1.4. This
relation behaves the way it should for a specific graph instance based on an additional
argument serving as an identifier for the graph of interest. This global edge relation
now corresponds to the disjoint or tagged union of the graphs’ edge relations, where
the tags are drawn from a set G consisting of graph identifiers. It is clear that this
representation forces us to give up the local coherence of graph characteristics that was
present in Def. 6. However, generalizing over the different graphs, we can now encode
the property stated above as:

∀ gid[GraphId] : ∀ n[Node] : ∃ n1,n2[Node] : E(gid, n, n1) ∧ E(gid, n,n2) ∧ n1 6= n2
.

Issue 2 The homomorphic property can be expressed using a count aggregate, as shown
in Listing 1.5. First we quantify over all example graphs g, or per Issue 1, their iden-
tifiers, and subsequently express that there must exist a function f that represents a
homomorphism from our pattern graph P to g.

Listing 1.5: Quantifying over functions outside the vocabulary
#{g | g ∈ G ∧ ∃ f : f is a homomorphism from P to g} ≥ N+

However, IDP restricts us to Existential Second Order, which forbids us from quanti-
fying over first order entities such as the function f from Listing 1.5 outside of the
vocabulary. Thus, we are required to promote the homomorphic mapping functions to
a global property in the vocabulary, even though we are only interested in the existence
of a mapping, and not in the concrete instance of the mapping itself. We prevent the
same explosion of mapping functions as with the graph characteristics in Issue 1, by
reusing the disjoint union technique proposed above. Note that in this case, the disjoint
union technique greatly resembles Skolemization. We introduce a general function f
that represents all homomorphisms, and make its dependency on a specific example
graph explicit using an additional argument: f(graphId, node):node. In Sec-
ond Order Logic, this dependency would follow directly from the syntactic order of the
quantifications.

Listing 1.6: Globalized existential functions
#{g | g ∈ G : f(g) is a homomorphism from P to g} ≥ N+

We can now use this f anywhere we would use the regular homomorphic function
for a specific graph by fixing the chosen example graph. We denote by f(g) the function
f partially applied on argument g. Because the disjoint union technique introduces a
single function f which is the union of all these smaller functions, function f becomes

7

partial: it is not defined for tuples where the first the argument is an identifier for a graph
G for which no homomorphic function exists.

Issue 3 The problem of deciding whether a homomorphism from one graph to another
exists is NP-complete. As a result, deciding that no homomorphism from one graph to
another exists, which forms the basis for the negative homomorphic property, is coNP.
As an NP (or Σp

1) solver, IDP cannot solve this problem directly. The straightforward
encoding of the negative homomorphic property reuses the result from Issue 2:

#{g | g ∈ G : f(g) is a homomorphism from P to g}≤ N−

But now, our solver must choose a single global function f which satisfies the con-
straints. It has no obligation to maximize the number of homomorphisms in f , only
to satisfy the constraints. Thus, even if there is a negative example G− for which a
homomorphism exists, the solver can choose f such that f does not represent a homo-
morphism for this graph G−. As our constraints are satisfied, we are led to believe that
our pattern candidate is a valid pattern.

[Immerman, 1998] has shown that this is inherently linked to IDPs limit to Existen-
tial Second Order. Indeed, in order to check that our pattern P is homomorphic with no
more than N− negative graphs, we have to check that there are enough negative graphs
for which no homomorphism exists, for example using a count aggregate as in List-
ing 1.7. By asserting a property for all candidate homomorphic functions f of a certain
graph g, the negative homomorphic constraint leads to universal quantification over a
function variable.

Listing 1.7: Quantifying over functions outside the vocabulary
#{g | g ∈ G ∧ ∀ f : f is not a homomorphism from P to g}

A way to solve a coNP problem such as the negative homomorphism constraint
using an NP solver is by encoding the dual (i.e. negated) problem, and conclude that the
problem is satisfied if no model exists for the dual problem. This can be checked using
an NP solver. However, this technique can only be implemented in IDP by writing two
theories:

– one (positive) theory T + (see C), which expresses the positive homomorphic prop-
erty and generates pattern candidates, and

– one negative theory T −, which expresses the (dual of) negative homomorphic prop-
erty and rejects pattern candidates that do not satisfy this constraint.

In IDP, one must provide procedural (lua) code that ties these two theories and their
inferences together by allowing the communication of pattern candidates between these
two theories.

It is not known whether the problem of graph isomorphism is polynomial time solv-
able, however it is sure to be no more complex than NP. Conversely, the isomorphism
restriction when looking for multiple patterns is also no more complex than coNP.
Therefore, we can use the same technique, giving rise to another theory T iso. Note
that it is possible to combine the negative theories T − and T iso into a single negative
theory.

8

Inductive Definitions One of the main features of the IDP language is the fact that it
extends first order logic with inductive definitions. These definitions, evaluated under
the well-founded semantics, allow the derivation of negative knowledge that otherwise
would be underivable. Take the path predicate defined in Listing 1.1. Models of this
theory contain the transitive closure Path/2 of Edge/2. When the edge relation would
be chosen such that two nodes a and b are part of two disconnected graphs, there is no
model in which Path(a,b) holds. Note that when the transitivity property is expressed
as an FO constraint instead, there do exist models in which Path(a,b) is true.

Other inferences One of the advantages of IDP is its underlying Knowledge Base
paradigm [De Cat et al., 2016]. Essentially, this paradigm ensures that we can perform
other inferences on the graph mining problem. One of these inferences is, for example,
optimization. This would allow us to, e.g., minimize or maximize over the number of
nodes in the pattern graph, or the number of nodes in the pattern with a certain label,
with only minimal changes to the specification.

3.2 ASP

In ASP, a language family closely related to IDP, one would mostly encounter the
same issues when modeling the graph mining problem. One of the main differences
between ASP and IDP is the choice of semantics: ASP looks for the answer set models,
whereas IDP looks for well-founded models. Leveraging the minimality property of
answer sets, ASP can prevent the invalid models of the example discussed in Issue 3.
The corresponding technique is called the saturation technique [Eiter et al., 2009] and
can prevent the creation of two separate theories and writing of procedural code that
IDP requires.

When using this technique, ASP detects negative example graphs for which the
f does not represent a homomorphism, and requires for these example graphs that f
must map every node of the pattern on every node of that example graph, dropping
the injectivity constraint. This way, f becomes so large that it is impossible that it
belongs to the minimal answer set unless there does not exist a homomorphism from
the pattern to this (negative) example graph. Consequently, the minimality property will
cause the solver to look for an f that represents a homomorphism for as many example
graphs (including negatives) as possible. The same technique can be applied to the
isomorphism restriction and other possible Σp

2 constraints such as subset minimality.
While this technique successfully prevents the need of a procedural loop and the

rewriting of the negative homomorphic property and the isomorphism restriction, it
is clear that this technique is not derived from a natural KR translation of the Graph
Mining definition. Furthermore, as line 1 of Listing 1.11 (See C) shows, it is necessary
to encode instance specific knowledge into the model.

3.3 ProB

The ProB System can handle mathematical specifications using higher order logic and
set theory. As a result, ProB specifications can cover the polynomial hierarchy PH [Im-
merman, 1999].

9

Higher Order Logic Because of ProB’s Higher Order logic support, we can treat
graphs as the inherent higher order objects with structure 〈E, l, c〉 that represents them.
This allows us to quantify over a graph and easily access all its characteristic predicates
and functions.

ProB’s higher order logic support also makes it possible to quantify over the func-
tions f that represent homorphisms locally: there is no need to declare the function f
globally, instead they are defined within the context of the set of homomorphic posi-
tive (negative) examples. Here, the representation of these functions f is direct, without
graph identifier that corresponds to the disjoint union technique as proposed for IDP.
Instead, the graph G for which a homomorphic function is sought, is brought in scope
by the quantifier of the set expression.

Because these are now quantified locally, the solver will find a homorphism if one
exists, regardless of whether we are expressing the positive or negative homomorphism
property. As a result, ProB can model the negative homomorphism property directly,
without the need for a second theory and procedural tie-in code.

The same reasoning allows ProB to model the isomorphism restriction when look-
ing for multiple patterns.

Inductive definitions ProB does not support inductive definitions, but allows the ex-
pression these constraints using either the B transitive closure primitive or by expressing
the completion of the definition. However, these techniques tend to reduce the readabil-
ity of the constraint, making it difficult for modelers to reason about the connectedness
constraint and its derivatives. Furthermore, these constraints incur a high performance
loss. Recently, efforts have been made to integrate Kodkod, which provides a high-level
interface to SAT-solvers [Torlak and Jackson, 2007], into ProB [Plagge and Leuschel,
2012], which allows offloading these constraints to a SAT-solver that is capable of solv-
ing them fast.

3.4 Comparative Summary

Using the graph mining problem as a case study, we derived a set of desirable properties
that a good KR specification should satisfy.

1. Labeled graphs are the main concept in the mathematical definition of the graph
mining problem. Here, labeled graphs are seen as a mathematical object consisting
of an edge relation and a labeling function, and should be treated as higher order
objects in the specification.

2. All example graphs are independent, so the search for a homomorphism between a
pattern and a given example graph can be performed independently. In essence we
want to allow local second order quantification.

3. The search for a homomorphism between pattern and example graph is always the
same, regardless of the sign of the example graph (negative or positive). The only
difference is the at most/at least constraint on the number of homomorphisms. We
want a specification that preserves the similarity of these constraints.

4. We want to be able to find multiple, non-isomorphic, patterns.

10

5. We want to express constraints such as connectedness of the different nodes in the
pattern.

6. We want to perform multiple inferences on the problem, with only minimal changes
to the model.

7. We prefer a single specification over multiple specifications. Although specifica-
tions are preferably modular to make it easier to reuse them, ideally the specifica-
tion would be solved within a single solver call, requiring no procedural code to tie
them together.

Table 1 provides an overview of how the three systems (IDP, ASP and ProB) support
the desirable properties, either natively (X) or using one of the discussed techniques.

Property IDP ASP ProB
1. Graph as a single

object
Global disjoint union

technique
See IDP X

2. Independence of
homomorphisms

Global disj. union &
partial function

See IDP X

3. Similarity of ≥ and ≤
constraint

Requires theory
splitting

No: Saturation
technique

X

4. Multiple patterns
(isomorphism)

Requires theory
splitting

No: Saturation
technique

X

5. Connectedness X X Transitive closure
primitive

6. Multiple inferences Model checking,
expansion,

minimization

See IDP Model checking,
expansion.

Minimization must
be encoded in the

model.
7. Single solver call No One for each pattern X

Table 1: Evaluation of the desirable properties in IDP / ASP / ProB for modeling the
general graph mining problem based on its key components (matching, pattern enumer-
ation, etc)

4 Performance
To compare the performance of higher order and first order systems, we compared the
IDP system with the ProB system (which uses higher order specifications). To this end,
we used the positive examples of the Yoshida [Rückert and Kramer, 2007] dataset,
which is derived from biochemics, for graph mining. First, we randomly picked an
example to use as the template graph. Next, we mined a pattern from this template,
using the threshold value N+ = 13 (5% of the size of the example set). During the
mining process, we tracked the time it takes to mine the i = 1..n-th pattern. The results
are averaged over ten runs.

The ProB model from Subsection 3.3 comes closest to the higher order formulation
(as demonstrated in Table 1), however, the solver support is not yet sufficient to effi-
ciently execute the higher order graph mining model on larger datasets, i.e., currently
we have not found an efficient way to mine patterns using a higher order B model.
Consequently, from a KR point of view, we consider the higher order formulation of

11

the graph mining problem as a challenge and goal for future solver techniques. The key
issue preventing an efficient higher order formulation lies in reifying the higher order
existential quantifier inside the set comprehension. A possible future solution would be
to provide a Prolog implementation for the homomorphism predicate (e.g., as a ProB
external function). For IDP, the results can be found in Table 3.

To analyze the effect of the disjoint union technique, we compared the performance
of IDP and ASP on the Yoshida dataset using different encodings of the graph mining
problem. In Fig. 3, we see the performance of IDP (Fig. 3a) and ASP (Fig. 3b) on
finding the i-th pattern. Two different encodings are used: one that uses the disjoint
union technique, and one that performs a new IDP/ASP call for every different example
graph, and aggregates this data using procedural code (i.e. in a decomposed fashion).

It is clear from Fig. 3 and the order(s) of magnitude difference between the de-
composition and disjoint union technique that these systems can highly benefit from
detecting the independence of these different subproblems and solving them separately.
We expect that expressing the problems in a higher order fashion will allow detection of
this subproblem independence and allow for more performant and expressive systems.

●
●

●

●

● ●
● ●

●

●

●
● ●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

0

100

200

300

400

0 10 20 30 40 50
i−th pattern

R
un

tim
e

in
 S

ec
on

ds

Model ● ●Higher Order Simulation Disjoint Union

(a) IDP: the disjoint model has a growing
trend while the simulation stays flat. The
gap is one order of magnitude. (Paramonov
et al. [2015])

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●
●

●

●

●

● ●0

10

20

30

40

0 10 20 30 40 50
i−th pattern

R
un

tim
e

in
 S

ec
on

ds

Model ● ●Higher Order Simulation Disjoint Union

(b) ASP: the disjoint model exhibits fluctua-
tion around 30s with a slow runtime growth,
while the simulation stays flat. The gap is
two orders of magnitude.

Fig. 3: Frequent graph enumeration problem (5% threshold) on Yoshida dataset for IDP (a) and
ASP (b), comparing disjoint union (in blue) and higher order simulations (in red). Further details
can be found in A.

5 A faithful encoding
In Listing 1.8, we now propose a new encoding for a language combining higher order
logic support with the readability of inductive definitions. This encoding is more faithful
to the problem with respect to the definition given in Def. 6.

In the vocabulary, the second order type graph, parametrized by two first order
types node and label, is declared as a tuple of a predicate vertex/1, a predi-
cate edge/2, and a function label. Next, we declare the higher order predicates
(homomorphism, reachable, isPattern, canonical_pattern, positive, and
negative) and function (template).

12

Within the theory, higher order predicates are defined using the concept of templates
as described by Dasseville et al. [2015]. The higher order arguments are decomposed
using matching (e.g. line 9) or using dot notation (e.g. line 22). Quantification over
second order objects uses annotated quantifiers (∃SO and ∀SO) and must be typed (any
unary predicate represents a type), e.g. line 10.

Listing 1.8: Faithful encoding for the general graph mining problem
1 Vocabulary V {
2 type node, type label
3 so-type graph(node, label) of (vertex(node), edge(node,node), label(node):label)
4 homomorphism(graph, graph), reachable(node,node, graph)
5 isPattern(graph), canonical_pattern(graph)
6 positive(graph), negative(graph), template:graph
7 }
8 Theory T {
9 {homomorphism((V1, Edge1, Label1), (V2, Edge2, Label2)) ←

10
(
∃SO F [V1:V2] : (∀ x, y : x 6= y =⇒ F(x) 6= F(y)) ∧

11 (∀ x, y : Edge1(x, y) =⇒ Edge2(F(x), F(y))) ∧
12 (∀ x : Label1(x) = Label2(F(x)))

)
.

13 isomorph((V1, Edge1, Label1),(V2, Edge2, Label2)) ←
14

(
∃SO F [V1:V2] : (∀ y : y => ∃ x : F(x)=y) ∧

15 (∀ x, y : x 6= y =⇒ F(x) 6= F(y)) ∧
16 (∀ x, y : Edge1(x, y) =⇒ Edge2(F(x), F(y))) ∧
17 (∀ x, y : Edge2(x, y) =⇒ ∃ fx, fy : Edge1(fx, fy) ∧ x = F(fx) ∧ y = F(fy))
18 ∧ (∀ x : Label1(x) = Label2(F(x)))

)
.

19 reachable(x, y, (Vertex, Edge, Label)) ← Edge(x, y) ∨ Edge(y, x).
20 reachable(x, y, (Vertex, Edge, Label)) ← ∃ z : reachable(x, z, (Vertex, Edge,

Label)) ∧ reachable(z, y, (Vertex, Edge, Label)).
21 isPattern((Vertex, Edge, Label)) ←
22

(
(∀x: Vertex(x) =⇒ template.vertex(x)) ∧

23 (∀x, y: Vertex(x) ∧ Vertex(y) ∧ template.vertex(x) ∧ template.vertex(y) ∧
template.edge(x,y) =⇒ Edge(x,y)) ∧

24 (#{ Pos : positive(Pos) ∧ homomorphism(P, Pos) } ≥ N+) ∧
25 (#{ Neg : negative(Neg) ∧ homomorphism(P, Neg) } ≤ N−) ∧
26 (∀ x, y : reachable(x, y, P))

)
. }

27 ∀P : canonical_pattern(P) =⇒ isPattern(P).
28 ∀P,P2 : canonical_pattern(P)∧canonical_pattern(P2)∧P6=P2 =⇒ ¬isomorph(P, P2).
29 }

This encoding compactly specifies the graph mining problem, in a way that closely
corresponds to its mathematical definition. To allow inferences on this theory, extended
solver support is necessary. We now propose a way in which a solver can provide this
additional support, and potentially even improve performance.

Second order types The solver can represent objects of any so-type using the disjoint
union technique, declaring a new first order type id containing identifiers for the higher
objects, e.g. graphId. Using theory analysis, we determine whether the size of the
second order type is bounded and if so, impose the same bound on the size of the type
id. If no such bound can be detected, we treat id as an infinite type, relying on lazy
grounding to create new id objects when necessary and to subsequently instantiate the
required rules for the new id object.

Next, every occurrence of an object of type graph is replaced by the correct iden-
tifier, and quantifications over this type are replaced by quantifications over the set of
identifiers. Furthermore, every time a component of an object is accessed (e.g. Edge/2)
it is replaced by a global predicate representing this component (i.e. Edge(gid, x,

y)).

13

Second order quantifications ∃SO/∀SO Second order quantifications such as ∃SO

and ∀SO are supported using the concept of oracles as subsolvers. First, all second
order universal quantifications ∀SOX : φ are rewritten to existential quantification
¬∃SOX : ¬φ. Suppose now that φ does not contain any further second order quan-
tifications. Then the above formula is an existential second order formula, which can be
solved by a new instance of the NPsolver. Recently, Bogaerts et al. [2016] have identi-
fied an interface by which any solver can be nested within another solver. Because our
NPsolver conforms to this interface, we can modify the NPsolver such that it calls
a new instance of itself as an oracle to evaluate the truth of these formulas. The outer
solver is called the top solver, and the inner solver is called the subsolver or oracle. As
it is possible to nest these solvers arbitrarily deep, we can now solve a formula of the
form ∃SOX : φ, regardless of whether φ contains any more second order quantifica-
tions. Essentially, the NPsolver becomes a QBFsolver.

To set up a nested solver for a formula ∃SOX : φ, we must set up a vocabulary V
and a theory T over V for this solver. To this end, we first identify the variables Σ used
in φ. These variables Σ, together with the variable X from the quantification itself, are
collected in the new vocabulary V . We call the free variables of φ the shared variables
Σs. We now use the formula φ as the theory T for the subsolver.

Whenever the solver needs to evaluate the truth of a second order quantification,
the solver simply calls this oracle on vocabulary V and theory T , providing it with
a set of assumptions consisting of the values that the top level solver assigns to the
shared symbols Σs. Depending on whether the subsolver succeeds or fails to find a
model, we update the current interpretation of the top solver with the model or learn a
new clause, as detailed by Bogaerts et al. [2016]. We expect this subsolver technique
to allow detection of the independence of subproblems, thanks to the expressivity of
higher order logic, and expect the performance of such a solver to close the gap with
the performance of the decomposition technique detailed in Section 4.

6 Conclusion and future work
In this paper we used graph mining as an example of a higher order problem and made
a thorough analysis of the problem from the knowledge representation point of view.
While techniques exist to express these higher order problems in first order logic, some-
times, explicitly specifying the additional structure HO exhibits allows systems to per-
form better. For example, in the case of graph mining, higher order logic preserves the
local coherence of graphs, and the independence of homomorphisms for the different
examples, a property that a higher order solver can exploit in order to raise efficiency.
In its current state however, no technique combines the expressiveness of higher order
logic with high performance solving techniques.

Inspired by this case study, we propose higher-order language extensions for IDP
and propose alternative ways to implement them in the solver. In particular, as shown in
Section 4, the use of subsolvers seems promising and will be further explored together
with the idea of Benders decomposition [Hooker and Ottosson]. The performance of
the encodings in IDP or ASP can be considered as the ultimate target.

14

Bibliography

H. Abramson and H. Rogers. Meta-programming in Logic Programming. MIT Press, 1989. ISBN 9780262510479.
J.-R. Abrial. The B-Book. Cambridge University Press, 1996. doi: 10.1017/CBO9780511624162.
J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010. ISBN 0521895561.
B. Bogaerts, T. Janhunen, and S. Tasharrofi. Solving qbf instances with nested sat solvers. 2016.
J. P. Bowen. Formal Specification and Documentation using Z. International Thomson Computer Press, 1996.
W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order logic programming. The Journal of Logic

Programming, 15(3):187–230, 1993.
I. Dasseville, M. van der Hallen, G. Janssens, and M. Denecker. Semantics of templates in a compositional framework for

building logics. TPLP, 15(4-5):681–695, 2015.
B. De Cat, B. Bogaerts, M. Bruynooghe, G. Janssens, and M. Denecker. Predicate logic as a modelling language: The IDP

system. CoRR, abs/1401.6312v2, 2016. URL http://arxiv.org/abs/1401.6312v2.
L. De Raedt, T. Guns, and S. Nijssen. Constraint programming for itemset mining. In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages
204–212, 2008.

A. Dries and S. Nijssen. Mining patterns in networks using homomorphism. In Proceedings of the Twelfth SIAM International
Conference on Data Mining, Anaheim, California, USA, April 26-28, 2012., pages 260–271, 2012.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning and external evaluations
in answer-set programming. In IJCAI, pages 90–96. Professional Book Center, 2005.

T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer. In Reasoning Web, volume 5689 of Lecture
Notes in Computer Science, pages 40–110. Springer, 2009.

M. Gebser, T. Guyet, R. Quiniou, J. Romero, and T. Schaub. Knowledge-based Sequence Mining with ASP. In IJCAI 2016-
25th International joint conference on artificial intelligence, page 8, New-york, United States, Jul 2016. AAAI.

J. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical Programming, 96(1):33–60. ISSN 1436-
4646. doi: 10.1007/s10107-003-0375-9. URL http://dx.doi.org/10.1007/s10107-003-0375-9.

N. Immerman. Descriptive complexity and model checking. In FSTTCS, volume 1530 of Lecture Notes in Computer Science,
pages 1–5. Springer, 1998.

N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
M. Järvisalo. Logic Programming and Nonmonotonic Reasoning: 11th International Conference, LPNMR 2011, Vancouver,

Canada, May 16-19, 2011. Proceedings, chapter Itemset Mining as a Challenge Application for Answer Set Enumeration,
pages 304–310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley,
2002. ISBN 0-3211-4306-X.

M. Leuschel and M. J. Butler. ProB: An automated analysis toolset for the B method. STTT, 10(2):185–203, 2008.
M. Leuschel and D. Schneider. Towards b as a high-level constraint modelling language. In Y. Ait Ameur and K.-D. Schewe,

editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z, volume 8477 of Lecture Notes in Computer Science,
pages 101–116. Springer Berlin Heidelberg, 2014. ISBN 978-3-662-43651-6. doi: 10.1007/978-3-662-43652-3 8. URL
http://dx.doi.org/10.1007/978-3-662-43652-3_8.

L. A. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266, 1973.
J. McCarthy. Elaboration tolerance. In Working Papers of the Fourth International Symposium on Logical formalizations of

Commonsense Reasoning, Commonsense-1998, 1998.
B. Négrevergne and T. Guns. Constraint-based sequence mining using constraint programming. In Integration of AI and OR

Techniques in Constraint Programming - 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22,
2015, Proceedings, pages 288–305, 2015.

S. Paramonov, M. van Leeuwen, M. Denecker, and L. De Raedt. An exercise in declarative modeling for relational query
mining. In International Conference on Inductive Logic Programming, Inductive Logic Programming, Kyoto, 20-22
August 2015. Springer, Dec. 2015.

D. Plagge and M. Leuschel. Validating b, Z and TLA + using prob and kodkod. In D. Giannakopoulou and D. Méry, editors,
FM 2012: Formal Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceedings, volume
7436 of Lecture Notes in Computer Science, pages 372–386. Springer, 2012. doi: 10.1007/978-3-642-32759-9 31. URL
http://dx.doi.org/10.1007/978-3-642-32759-9_31.

U. Rückert and S. Kramer. Optimizing feature sets for structured data. ECML ’07, pages 716–723, 2007.
E. Torlak and D. Jackson. Kodkod: A relational model finder. In TACAS, volume 4424 of Lecture Notes in Computer Science,

pages 632–647. Springer, 2007.
X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Confer-

ence on Data Mining, ICDM ’02, pages 721–, Washington, DC, USA, 2002. IEEE Computer Society.

http://arxiv.org/abs/1401.6312v2
http://dx.doi.org/10.1007/s10107-003-0375-9
http://dx.doi.org/10.1007/978-3-662-43652-3_8
http://dx.doi.org/10.1007/978-3-642-32759-9_31

A Higher Order Logic Simulation Description

Key dataset characteristics for the experiments, visualized in Fig. 3, can be found in
Table 2.

Table 2: Yoshida datasets parameters
Name Number of Graphs Avg Vertices Avg Edges Labels Possible classes
Yoshida 265 20 23 9 2

The experimental setup for the results visualized in Fig. 3 is the following: in both
disjoint union and higher order models we mined the patterns from smaller to larger
in an iterative fashion. First, we set the pattern length, equal to the number of nodes,
to two, then computed graph coverage for the pattern. Based on the coverage we add
the pattern as frequent and then compute isomorphic patterns in the template. For each
isomorphic graph in the template we add a no-good clause. Once all frequent patterns
of the length n are mined, i.e., the solver cannot find any other non-isomorphic patterns
of the length n, we increase the pattern length to n+1, remove all no-goods and repeat
the process.

The key difference between the disjoint union model and the higher order simulation
model is in the coverage computation. In case of disjoint union model we make a single
call to get a pattern such that it is frequent (i.e., matches at least the threshold amount
of graphs) and in the higher order model we make a single call to get a non-isomorphic
candidate graph and then a separate call per graph to find if it is covered or not. If we
found that a pattern covers more than a threshold amount of graphs, we stop computing
the coverage and add the pattern as frequent.

Both models in the described computations follow the general schema used in the
specialized algorithms such as gSpan (Yan and Han, 2002). We have also obtained
similar runtime patterns on other standard graph datasets described in (Paramonov et al.,
2015).

B IDP enumeration results

In this section, we present the experimental results on the general graph mining IDP
encoding using theory splitting (that allows incorporating positive, negative examples
and other higher order checks in a uniform fashion). We have applied this encoding to
Yoshida dataset on positive examples and used the isomorphism check as a negative
theory. The results summarized in Table 3. The results are consistent with the results in
Fig. 3 of the more specialized encoding (that uses imperative code around the IDP/ASP
calls) based on gSpan schema (Yan and Han, 2002).

C Code

This appendix provides the relevant code for the IDP, ASP and ProB systems. The full
IDP code is available at

16

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Runtime 148 164 173 199 285 364 401 445 490 533 548 585 591 687 802

Table 3: Averaged runtimes in seconds for IDP general graph mining encoding with the
theory splitting on the Yoshida dataset.

https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_
IDP.zip and at
https://github.com/SergeyParamonov/LGM,
while the ASP code is available at
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_
ASP.zip
and the ProB code at
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_
ProB.zip.

Listing 1.9: IDP positive constraint
1 vocabulary V{
2 type node isa nat
3 type graphid
4 type label
5
6 // Predicates determining the template graph.
7 template_edge(node, node)
8 template_label(node):label
9

10 // Predicates describing the positive example graphs
11 example_edge(graphid, node, node)
12 label(graphid, node):label
13 threshold: int
14
15 // Predicates describing the pattern graph
16 inpattern(node) // True for the nodes which occur in the pattern
17 partial f(graphid, node):node // Represents the homomorphisms with the example

graphs
18 homowith(graphid) // True for graphs for which f represents a correct

homomorphism
19 path(node, node) // path(a,b): True if there exists a path from a to b in the

pattern
20 }
21
22 theory Positive:V_Pos{
23 //The pattern is a connected subgraph of the template: From every node in the

pattern,
24 //there exists a path to every other node in the pattern.
25 !x,y[node] : x ˜= y & inpattern(x) & inpattern(y) => path(x,y).
26 {
27 path(x,y) <- template_edge(x,y) & inpattern(x) & inpattern(y).
28 path(x,y) <- ?z[node] : path(x,z) & path(z,y).
29 path(x,y) <- path(y,x).
30 }
31
32 //existence of a homomorphic f from the pattern to example graph with graphid

gid.
33 !gid[graphid] : !x[node] : homowith(gid) & inpattern(x) <=> ? y[node] : y=f(gid,

x).
34 !gid[graphid] : !x,y[node] : homowith(gid) & inpattern(x) & inpattern(y) & x˜=y

=> f(gid, x) ˜= f(gid,y).

17

https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_IDP.zip
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_IDP.zip
https://github.com/SergeyParamonov/LGM
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_ASP.zip
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_ASP.zip
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_ProB.zip
https://dtai.cs.kuleuven.be/static/krr/files/experiments/aspocp16_ProB.zip

35 !gid[graphid] : !x,y[node] : homowith(gid) & inpattern(x) & inpattern(y) &
template_edge(x,y) => edge(gid, f(gid,x). f(gid,y)).

36 !gid[graphid] : !x[node] : homowith(gid) & inpattern(x) => template_label(x) =
label(gid, f(gid,x)).

37
38 // At least N homomorphisms must be found
39 #{ gid [graphid] : homowith(graph) } >= threshold.
40 }

Listing 1.10: ASP positive matching
1 0 { homowith(G) } 1 :- positive(G).
2
3 1 { f(G,X,V) : node(G,V) } 1 :- positive(G), inpattern(X).
4
5 :- used_f(G,X,V1), used_f(G,Y,V2), template_edge(X,Y), not edge(G,V1,V2),

inpattern(X), inpattern(Y).
6 :- used_f(G,X,V), t_label(X,L), not label(G,V,L), inpattern(X).
7
8 used_f(G,X,V) :- homo_with(G), f(G,X,V).
9 :- used_f(G,X,V), used_f(G,Y,V), X != Y.

10
11 positive_count(N) :- N = #count{G:homowith(G)}.
12
13 :- positive_count(N), N < 13.

Listing 1.11: ASP negative matching using saturation technique
1 map(G,X,v1) | map(G,X,v2) | map(G,X,v3) | map(G,X,v4) :- invar(X), negative(G).
2 map(G,X,V) :- saturated(G), t_node(X), node(G,V).
3
4 saturated(G) :- t_edge(X,Y), map(G,X,V1), map(G,Y,V2), not edge(G,V1,V2), negative

(G), invar(X), invar(Y).
5 saturated(G) :- map(G,X,V), map(G,Y,V), X != Y, invar(X), invar(Y). // we cannot

map two different template nodes to the same
6
7 neg_homowith(G) :- not saturated(G), negative(G).
8
9 negative_count(N) :- N = #count{G:neg_homowith(G)}.

10 :- negative_count(N), N > 1.

Listing 1.12: ASP Canonicity template-based check
1 iso(X,x1) | iso(X,x2) | iso(X,x3) | iso(X,x4) :- invar(X).
2
3 candidate_var(X) :- iso(_,X).
4
5 %not iso!
6 iso_saturated :- invar(X1), invar(X2), iso(X1,V1), iso(X2,V2), t_edge(V1,V2), not

t_edge(X1,X2).
7 iso_saturated :- invar(X1), invar(X2), iso(X1,V1), iso(X2,V2), not t_edge(V1,V2),

t_edge(X1,X2).
8
9 iso(X,V) :- invar(X), t_node(V), iso_saturated.

10
11 d1(X) :- invar(X), not candidate_var(X).
12 d2(X) :- not invar(X), candidate_var(X).
13
14 not_equal :- d1(X). % check that in fact candidate is different from the pattern

itself
15 not_equal :- d2(X). % check that in fact candidate is different from the pattern

itself
16
17 iso_saturated :- not not_equal. % should not be completely equal
18

18

19 min_d1(N) :- N = #min{ X: d1(X) }, not iso_saturated.
20 min_d2(N) :- N = #min{ X: d2(X) }, not iso_saturated.
21
22 iso_saturated :- min_d1(N1), min_d2(N2), N1 > N2.

Listing 1.13: ASP auxilary predicates
1 %selects subpattern
2
3 t_path(X,Y) :- t_edge(X,Y), invar(X), invar(Y).
4 t_path(X,Y) :- t_edge(X,Z), t_path(Z,Y), invar(X).
5
6 :- invar(X), invar(Y), not t_path(X,Y).
7
8 0 { invar(X) } 1 :- t_node(X).
9 % auxilary constraints

10
11
12 edge(G,Y,X) :- edge(G,X,Y).
13 t_edge(Y,X) :- t_edge(X,Y).
14 node(G,Y) :- edge(G,Y,_).
15 t_node(X) :- t_edge(X,_).

Listing 1.14: ASP canonicity previous solution isomorphism check
1 iso(s1,X,x1) | iso(s1,X,x2) :- invar(X).
2 iso(s2,X,x2) | iso(s2,X,x3) :- invar(X).
3
4 candidate_var(G,X) :- iso(G,_,X).
5
6 iso_saturated(G) :- invar(X1), invar(X2), iso(G,X1,V1), iso(G,X2,V2), t_edge(V1,V2

), not t_edge(X1,X2).
7 iso_saturated(G) :- invar(X1), invar(X2), iso(G,X1,V1), iso(G,X2,V2), not t_edge(

V1,V2), t_edge(X1,X2).
8 iso_saturatea(G) :- not equal(G), iso(G,_,_).
9

10 iso(G,X,V) :- invar(X), t_node(V), iso_saturated(G).
11
12 :- not iso_saturated(G), iso(G,_,_).
13
14 d1(G,X) :- invar(X), not candidate_var(G,X), iso(G,_,_).
15 d2(G,X) :- not invar(X), candidate_var(G,X).
16
17 not_equal(G) :- d1(G,X). % check that in fact candidate is different from the

pattern itself
18 not_equal(G) :- d2(G,X). % check that in fact candidate is different from the

pattern itself
19
20 equal(G) :- not not_equal(G), iso(G,_,_).

Listing 1.15: ProB specification (without dataset)
1 MACHINE Knowledge
2 INCLUDES Dataset
3 SETS
4 /* Two predefined sets exist, the vertices that the template and pattern can

connect, and the labels.
5 * The labels are already defined within Dataset.mch
6 */
7 Vertices = {x1,x2,x3,x4,x5,x6,x7,x8}
8 CONSTANTS
9 /* The template and our pattern are the constants.

10 * * Template is given
11 * * Patterns is a set that must be found
12 */

19

13 Template,
14 Patterns
15 DEFINITIONS
16
17 SET_PREF_TIME_OUT == 70000; SET_PREF_MAX_INITIALISATIONS == 1;
18
19 /* The (most general, i.e. ternary) definition of homomorphism. Note ’ is the

property accessor for records*/
20 homomorph_with(FromGraph, iso, ToGraph) == (
21 iso : Vertices >-> dom(ToGraph’LABEL) &
22 !x.(x:Vertices => FromGraph’LABEL(x) = ToGraph’LABEL(iso(x))) &
23 !(x,y).(x|->y : FromGraph’EDGES
24 => iso(x)|->iso(y) : ToGraph’EDGES)
25);
26
27 /* The (most general, i.e. ternary) definition of isomorphism*/
28 isomorphic(FirstGraph, iso, SecondGraph) == (
29 #(V1,V2).(
30 vertices(FirstGraph’EDGES, V1) &
31 vertices(SecondGraph’EDGES, V2) &
32 iso : V1 >->> V2 &
33 !x.(x:V1 => FirstGraph’LABEL(x) = SecondGraph’LABEL(iso(x))) &
34 !(x,y).(x|->y: FirstGraph’EDGES
35 => iso(x)|->iso(y) : SecondGraph’EDGES) &
36 !(x,y).(x|->y: SecondGraph’EDGES
37 => iso˜(x)|->iso˜(y) : FirstGraph’EDGES)
38)
39);
40
41 vertices(EdgeRelation, Vertices) == (
42 Vertices = dom(EdgeRelation) \/ ran(EdgeRelation)
43)
44
45 PROPERTIES
46
47 /*This is our given template*/
48 Template = {(x1,x2),(x2,x3),(x3,x4),(x4,x5),(x5,x6),(x6,x7),(x7,x8)} &
49
50 /*Typing our Patterns set. It’s a set of records (struct-type) with label a total

function and edges a relation */
51 Patterns : POW(struct(LABEL:Vertices-->Labels, EDGES:Vertices<->Vertices)) &
52 /*Derived type: POW(struct(EDGES:POW(Vertices*Vertices), LABEL:POW(Vertices*

Labels)))*/
53
54 /*A single small test, this is not used anymore but is useful to check edits*/
55 /* #isop.(homomorph_with(rec(LABEL:{(x1,a),(x2,b),(x3,a),(x4,a),(x5,a),(x6,a),(x7

,a),(x8,a)}, EDGES:{(x1,x2),(x2,x3)}), isop, rec(LABEL:{(1,a),(2,a),(3,b)
,(4,a),(5,a),(6,a),(7,a),(8,a)}, EDGES:{(1,2),(2,3),(3,4)},SIGN:"POS"))) &*/

56
57 /* Feed the pattern set with one specific pattern already */
58 rec(LABEL:{(x1,a),(x2,b),(x3,a),(x4,a),(x5,a),(x6,a),(x7,a),(x8,a)}, EDGES:{(x1,

x2),(x2,x3)}) : Patterns &
59
60 /* Requirements on patterns:
61 * * The pattern is a subgraph of the template
62 * * The number of homomorphisms with positive graphs is great enough (at least-

requirement)
63 * * The number of homomorphisms with negative graphs is small enough (at most-

requirement)
64 * * No two patterns in the Patterns set are isomorphic
65 */
66 !pattern.(pattern:Patterns => pattern’EDGES <: Template) &
67 !pattern.(pattern:Patterns => card({p|p:graphs & p’SIGN="POS" & #isop.(

homomorph_with(pattern, isop, p))}) >= 1) &
68 !pattern.(pattern:Patterns => card({p|p:graphs & p’SIGN="NEG" & #isop.(

homomorph_with(pattern, isop, p))}) <= 0) &
69 !(p1,p2).(p1:Patterns & p2:Patterns & p1 /= p2 => not (#iso.(isomorphic(p1, iso,

p2)))) &

20

70
71 #iso.(homomorph_with(rec(EDGES:{(x1|->x2)},LABEL:{(x1|->a),(x2|->a),(x3|->a),(x4

|->a),(x5|->a),(x6|->a),(x7|->a),(x8|->a)}),iso,rec(EDGES:{(x1|->x2),(x3|->
x4)},LABEL:{(x1|->a),(x2|->a),(x3|->a),(x4|->a),(x5|->a),(x6|->a),(x7|->a),(
x8|->a)}))) &

72
73 /* We look for at least n patterns */
74 card(Patterns) = 6 &
75
76 1=1
77 OPERATIONS
78 Pat(pattern) = SELECT pattern:Patterns THEN skip END
79 END

21

	Knowledge Representation Analysis of Graph Mining

