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Abstract

Speech recordings taken from real-world environments often contain back-
ground noises which degrade the speech signal and reduce its intelligibility.
Such degradations also adversely affect the performance of digital systems
that operate on the recorded speech such as mobile communication, automatic
voice assistance, automatic speech recognition (ASR), hearing aids and speaker
identification systems. Robustness of such systems to the various acoustic
background noises is still a challenging problem despite decades of research and
myriad of different approaches. Speech enhancement schemes aim at recovering
the original speech signal by suppressing the noises to improve the speech
intelligibility and are popularly used as a front-end for most of the applications.

This dissertation concentrates on speech enhancement schemes for single-
channel recordings of noisy speech. Traditional single-channel speech enhance-
ment schemes such as Wiener filtering do not work satisfactorily well in the
presence of background noises that vary over time. Alternatively, composite
models that approximate the noisy speech as a linear combination of long-
context atoms that model the spectro-temporal behaviour of speech and noise
signals can be effectively used for suppressing such non-stationary noises. The
main goals of this thesis are to develop novel composite models for a better
speech enhancement quality and to investigate the application of these settings
as a front-end for the various state-of-the-art ASR systems. In particular,
composite models derived from the family of non-negative matrix factorisation
(NMF) algorithms, that have been successfully used for separating individual
signals from a noisy mixture, are proposed. This thesis describes a set of new
algorithms based on this theory that can be broadly subdivided into three main
(overlapping) sections.

First, we propose a coupled dictionary based approach to the family of NMF-
based speech enhancement systems. Typical NMF-based systems use the
decomposition in lower dimensional spectro-temporal feature representations.
Such feature spaces are preferred over the full-resolution frequency domain for
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vi ABSTRACT

their reduced computational complexity and the ability to better generalise to
unseen noise cases. But the resulting noise suppression may be sub-optimal
because a low-rank approximation is used to map the estimated speech and
noise features to the full-resolution frequency domain. The proposed approach
provides an efficient way to directly compute the full-resolution frequency
estimates of speech and noise using coupled dictionaries: an input dictionary
containing atoms from the desired feature space to obtain the decomposition
and a coupled output dictionary composed of atoms from the full-resolution
frequency domain. We also introduce the perceptually motivated modulation
spectrogram features for the NMF-based tasks. The idea of using coupled
dictionaries is then extended to define hybrid exemplar-spaces that are obtained
by concatenating different spectro-temporal representations for a better speech
and noise separation. The proposed systems were evaluated for various
choices of input representations and yielded improved speech enhancement
performances on the AURORA-2 and AURORA-4 databases. We further show
that the proposed approaches result in improved speech recognition accuracies
on the AURORA-2, AURORA-4 and the CHiME-3 challenge databases.

Next, we propose a novel approach to address the difficult problem of single-
channel speech enhancement under noisy and reverberant environments. Such
recordings are comprised of the original speech, its reflections from various
surfaces and the background noise. Thus, the speech enhancement schemes
for such scenarios should be able to remove these reflections as well, apart
from separating background noise from the target speech. The effect of such
reflections are mathematically modelled as a convolution of the original speech
with a room impulse response (RIR) that typically has a decaying nature over
time. We propose a novel approximation of the noisy reverberant speech
in the frequency domain and non-negative matrix deconvolution (NMD). In
the proposed model, the RIR in the frequency domain is defined such that
its decaying structure can also be estimated from the recording itself. The
proposed model is evaluated on a synthetic dataset created by convolving the
recordings from the TIMIT database with RIRs measured from different rooms
and varying speaker-and-microphone locations, and adding background noises
taken from the CHiME-1 corpus. Simulation results show that the proposed
model results in a better RIR estimate over the existing model and improves
various instrumental speech quality measures.

Finally, we present an application of one of the proposed speech enhancement
schemes together with an ASR setting in the field of clinical neuroscience
for the pre-operative planning on patients with brain tumor. During the
pre-operative planning, a neurosurgeon has to decide if the affected brain
region is essential for the major functions such as motor movement and
language related processes. To identify the functional relevance of a brain
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region for language related processes, a picture naming task together with
magnetic stimulation of the relevant brain region has been used. The magnetic
stimulation equipment produces impulsive noises which are also captured by the
microphone. Currently, the accuracy and the reaction times of the responses
are found manually from the recordings which is prone to substantial intra-
and inter-observer variabilities especially in the presence of the noise from
the equipment. A novel automatic and objective evaluation routine for the
picture naming task using ASR and the proposed speech enhancement schemes
is developed and is tested against the manual annotations on responses collected
from 8 subjects.





Beknopte samenvatting

Spraak opgenomen in reële omstandigheden bevat vaak achtergrondlawaai dat
het spraaksignaal degradeert en de verstaanbaarheid vermindert. Dergelijke
degradaties verminderen ook de performantie van digitale systemen die het
opgenomen signaal verwerken, zols mobiele communicaties, automatische
spraakassitentie, automatische spraakherkenning (ASH), hoorapparaten en
sprekeridentificatiesystemen. Ondanks de decennia aan onderzoek en de
vele gepubliceerde methoden is de robuustheid van dergelijke systemen
tegen verschillende achtergrondgeluiden nog steeds een uitdagend probleem.
Spraakverbeteringsalgoritmen proberen het originele spraaksignaal te her-
stellen door de ruis te onderdrukken. Ze worden dan ook toegepast als
voorverwerking in de meeste toepassingen.

Dit proefschrift handelt over spraakverbeteringsalgoritmen voor éénkanaalsop-
names van ruizige spraak. Traditionele éénkanaalsspraakverbetering zoals
Wienerfiltering werken niet op een bevredigende manier in de aanwezigheid
van achtergrondlawaai dat variëert over de tijd. Samengestelde modellen die
ruizige spraak modelleren als een lineaire combinatie van lange contextuele
atomen die het tijds-frequentiegedrag van spraak en ruis vatten vormen een
effectief alternatief voor het onderdrukken van niet-stationaire ruis. De
belangrijkste doelen van dit proefschrift zijn om nieuwe samengestelde modellen
te ontwikkelen teneinde een betere spraakverbeteringskwaliteit te bieden en om
de toepassing ervan als voorverwerking voor verschillende hedendaagse ASH-
systemen te onderzoeken. In het bijzonder worden samengestelde modellen
voorgesteld gebaseerd op niet-negatieve matrixfactorisatie (NMF), die al eerder
met succes werden toegepast voor het scheiden van individuele signalen uit
een ruizig mengsel van geluiden. Dit proefschrift beschrijft een aantal nieuwe
algoritmen die op deze theorie gebaseerd zijn en die onderverdeeld kunnen
worden in drie (overlappende) secties.

Ten eerste wordt in de familie van op NMF gebaseerde spraakverbeter-
ingssysteemen een aanpak voorgesteld gebaseerd op gekoppelde woordenboeken.
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Typische op NMF gebaseerde systemen gebruiken een ontbinding in laagdimen-
sionale tijd-frequentievoorstellingen. Deze kenmerken worden verkozen boven
voorstellingen die de volledige frequentieresolutie benutten omwille van de
lagere complexiteit van de berekeningen en hun vermogen om te veralgemenen
naar ongeziene ruissoorten. De resulterende ruisonderdrukking kan echter
suboptimaal zijn omdat een benadering van lage rang gebruikt wordt om de
geschatte spraak en ruis terug af te beelden op een spectrum van volle resolutie.
In de voorgestelde aanpak wordt een spectrum van volle frequentieresolutie
van zowel de spraak als de ruis berekend: een ingangswoordenboek bevat
atomen in een geschikte ruimte om het ruizige signaal effectief en efficiënt
te ontbinden terwijl een gekoppeld uitgangswoordenboek atomen bevat van
volle freuentieresolutie voor de signaalreconstructie. Ook introduceren we
de perceptueel gemotiveerde modulatiespectrogramkenmerken voor NMF-
gebaseerde taken. Het concept van gekoppelde woordenboeken wordt dan
verder uitgebreid naar hybride ruimten die bekomen worden door meerdere tijd-
frequentievoorstellingen naast elkaar te plaatsen zodat een betere spraak/ruis-
scheiding bekomen wordt. De voorgestelde systemen werden geëvalueerd
voor verschillende keuzes van de ingangsvoorstelling en leidden tot een betere
spraakverbetering op de AURORA-2 en AURORA-4 databanken, evenals tot
betere spraakherkenning op de AURORA-2, AURORA-4 en CHiME-3 taken.

Vervolgens stellen we een nieuwe aanpak voor voor het moeilijke probleem
van éénkanaals spraakverbetering onder ruizige omstandigheden met galm.
Het opgenomen signaal bevat nu de originele spraak, de reflecties hiervan op
verschillende oppervlakken en achtergrondlawaai. De spraakverbetering moet
in een dergelijk scenario in staat zijn om deze reflecties te onderdrukken én
het achtergrondlawaai van de doelspraak te scheiden. Het effect van dergelijke
reflecties wordt wiskundig gemodelleerd door middel van een convolutie van
de originele spraak met een kamerimpulsresponsie (KIR), die typisch een
uitdijende structuur vertoont. We stellen een nieuwe benadering in het
freuentiedomein voor van de ruizige spraak met galm, gebruik makend van niet-
negatieve matrixdeconvolutie (NMD). De KIR wordt in het frequentiedomein
voorgesteld zodat het uitdijend gedrag kan geschat worden uit de opname.
Het voorgestelde model wordt geëvalueerd op synthetische data bekomen door
opnames uit de TIMIT-databank te convolueren met KIRs die opgemeten
werden in verschillende kamers en verschillende locaties van de sprekers
en opnamemicrofoons, en het bekomen signaal met galm te verstoren met
achtergrondlawaai uit het CHiME-1 corpus. De simulaties tonen aan dat het
voorgestelde model resulteert in een betere KIR-schatting dan een bestaand
model en bovendien verschillende instrumentele spraakkwaliteitsmetrieken
verbetert.
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Tenslotte presenteren we een toepassing van één van de voorgestelde spraakver-
beteringsalgoritmen samen met spraakherkenningstechnologye, in het domein
van de klinische neurowetenschappen voor pre-operatieve planning ten behoeve
van patiënten met een hersentumor. Tijdens de pre-operatieve planning moet
een neurochirurg nagaan of het aangetaste hersenweefsel essentieel is voor
functies als motoriek of taal. Om de functionele relevantie van een hersengebied
voor taalgerelateerde processen te bepalen wordt een beeldbenoemingstaak
opgezet onder inhibiterende magnetische stimulatie. De magnetische stimulatie
is zo sterk dat deze ook opgevangen wordt door de microfoon. Vóór ons
werk werd de responstijd van de patiënt manueel gemeten, wat substantiële
intra- en interwaarnemervariaties teweeg brengt, zeker in de aanwezigheid
van de stoorpulsen. Een nieuw automatisch en objectief evaluatieprotocol
voor de beeldbenoemingstaak gebruik makend van ASH en de voorgestelde
spraakverbetering werd ontwikkeld en vergeleken met de manuele annotaties
voor acht testpersonen.
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Chapter 1

Introduction

Speech is one of the most fundamental forms of human communication.
Human speech has been researched for several years focussing on various
speech technology applications such as speech transmission over mobile
communication, background noise suppression, automatic speech recognition
(ASR) and speaker identification. Most of these systems make use of a
microphone to capture the speech signal and process it digitally to achieve
the various tasks. However in the real world, the speech is recorded from
environments with varying levels and types of background noises such as
traffic noise, environmental noises and multi-talker babble noise as in a
restaurant. Such background noises have a detrimental effect on the various
speech technology applications such as poorer speech intelligibility over mobile
communication and reduced performance of ASR and speaker identification
systems.

Thus, the recorded signal fed to the various speech related applications is
typically a mixture of the clean speech signal that we want to process and
background noises. Robustness to such background noises is among the
major limiting factors to the widespread deployment of speech related services.
Even though the various state-of-the-art speech related applications show
impressive performances under controlled environments, the performance of
such applications degrades rapidly in real world scenarios. Suppression of the
acoustic background noise is a relevant and challenging problem that can reduce
listener fatigue by improving the intelligibility of speech and is crucial for a
better and reliable performance of the various speech processing systems under
such adverse conditions.

The family of speech enhancement algorithms include various approaches
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2 INTRODUCTION

to recovering the clean speech signal from the noisy mixture by acoustic
background noise reduction, dereverberation, separation of multiple speech
signals from a mixture, bandwidth extension of narrow-band speech, correcting
the distortions introduced by different recording equipments, etc. The term
dereverberation denotes the process of removing the echos in a recorded signal
when the recording is taken from an enclosed space. This thesis concentrates
mostly on the acoustic background noise suppression and then proceeds to joint
noise suppression and dereverberation, and this thesis uses the term speech
enhancement to describe these topics. Such speech enhancement settings can
be broadly classified into two categories: single-channel and multi-channel
systems. Single-channel methods operate on recordings obtained using a single
microphone whereas the multi-channel techniques operate on recordings that
are obtained using an array of two or more microphones to exploit the spatial
information.

This thesis concentrates on single-channel speech enhancement systems and
introduces several novel approaches for noise suppression and dereverberation.
This chapter aims at giving an introduction to the noise suppression schemes
and the fundamental mathematical model used in this thesis that is later
extended for dereverberation as well. The dereverberation problem is addressed
in the later chapters of this thesis and a brief overview is given in Chapter 5.
The fundamentals of ASR systems is also included in this chapter since the
thesis also investigates the application of the proposed speech enhancement
schemes as a pre-processing stage for ASR systems for an improved recognition
performance.

1.1 Traditional single-channel noise suppression
schemes

The problem of single-channel noise suppression aims at recovering the
unknown clean speech signal from a noisy mixture. Such systems typically
operate by exploiting the spectral diversity between the speech and noise
signals. However, the frequency spectra of speech and noise often overlap
and therefore such systems generally achieve noise reduction at the expense
of speech distortion. Such methods require to estimate the noise statistics
assuming the additive noise model,

z[n] = y[n] + w[n] (1.1)

where, z[n], y[n] and w[n] are respectively the sampled noisy mixture, speech
signal and the additive background noise at index n. Thus the goal is to obtain
an estimate of the clean speech signal from z[n].
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Figure 1.1: Block diagram of a traditional speech enhancement system.

In order to make use of the spectral diversity between speech and noise signals,
we operate on the frequency domain over short segments of the recording,
typically of the order of 20 − 30 ms assuming the speech signal is wide-sense
stationary over such small durations. The segmentation is done using a sliding
window of appropriate shape to reduce the spectral leakage and with a window
shift of typically 10 ms. Let F be the number of such sliding windows (or
frames). The short-time Fourier transforms (STFT) over these windows are
then obtained, which according to the additive model becomes:

Z(b, f) = Y(b, f) +W(b, f) (1.2)

where, Z, Y and W are the STFTs of z[n], y[n] and w[n], respectively. b
and f denote the frequency-bin and frame indices respectively. Assuming that
the speech and noise signals are statistically independent, the power spectral
density (PSD) holds the following relation:

Pz(f) = Py(f) + Pw(f) (1.3)

where the frequency-index b is omitted for brevity. Typical speech enhancement
schemes attempt to estimate the PSD of noise and the spectral amplitudes of
the noisy mixture are modified according to this estimate. Then the enhanced
speech signal is obtained using the overlap-add method using the noisy phase
[188].

The block diagram of a traditional speech enhancement system is given in
Figure 1.1. An estimate of the noise PSD is obtained from the noisy mixture
and using any a-priori information about noise if available. This PSD estimate
is used to enhance the noisy mixture to suppress the noise, and the enhanced
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speech is obtained using the inverse STFT (overlap-add) operation. In addition,
depending on the problem definition, any a-priori information available on the
speech spectrum can also be used to get a better estimate of the clean speech.

As it can be seen, estimating the PSD of the additive noise is an essential
component in traditional speech enhancement schemes. A common approach
is to use a binary voice activity detector (VAD) to identify the segments of
speech activity and estimate the noise statistics from segments where speech is
absent [32,107,108]. Such settings assume that noise is contained in the speech-
free regions of the signal. The noise statistics are updated for every segment
of speech pause. There are soft-VAD versions as well where the VAD output
is not binary. Such soft-VADs assign the probability of speech presence and
allow estimating the noise PSD continuously during the speech activity as well
[31,146,170]. However, the VAD becomes unreliable when the signal-to-noise
ratios are low. Such models work reliably well when the noise is stationary
which is not often the case in practice.

Another approach to adaptively estimate the noise PSD is based on the
minimum statistics approach [120]. This approach exploits the fact that the
PSD of the noisy signal often decays to that of the noise signal. For every
frequency bin, the noise statistics are obtained by taking the minimum of a
buffer containing the smoothed PSD of the noisy signal over frames. The
minima-controlled recursive averaging technique [40,41] is a derivative of the
minimum statistics method where the minima are taken from a recursively
averaged power spectrum of noisy speech. The improved minima controlled
averaging (IMCRA) presented in [40] uses two iterations of smoothing and
minimum tracking.

The popular single-channel methods that make use of the estimated noise
statistics include Wiener filtering, spectral subtraction, signal subspace models
[79,91], missing data techniques [25,61] and Kalman filtering [28,56,99]. In
the following subsections, the Wiener filtering and spectral subtraction -based
techniques are briefly summarised since they appear in the later sections of the
thesis. More information on the other mentioned techniques can be found in
the references given above.

1.1.1 Wiener filtering

In the context of speech enhancement, the Wiener filter is obtained by
minimising the mean-square error between the target clean speech y and its
estimate ŷ = Hz = Hy+Hw, y, z and w are the vectorised versions (of length,
say N) of the signals y[n], z[n] and w[n], respectively. The filter H will thus
be of size N × N . The estimator error is ǫ = y −Hy −Hw. The minimum
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mean-square error (MMSE) estimate for H can be obtained as given below.
The derivation assumes that the speech and noise signals are uncorrelated and
stationary stochastic processes. In the frequency domain, the MMSE estimator
is obtained as (derivations can be found in [122,174]):

Ĥ = Py(Py + Pw)−1 = PyP−1
z (1.4)

where, Py, Pz and Pz are diagonal matrices containing the PSDs of y, z and
w, respectively. However in practice, the PSD of clean speech is not known
and an estimate is used instead. The estimate of the PSD of speech is obtained
from (1.3) and the estimated noise PSD P̂w as P̂y = max(Pz − P̂w, 0). The
negative values are set to 0 since the PSD cannot be negative. Pz is typically
obtained as a smoothed periodogram of the noisy signal. Thus the resulting
enhanced speech spectra in the Wiener filtering approach is obtained as,

Ŷ(f) =
max(Pz(f)− P̂w(f), 0)

Pz(f)
· Z(f). (1.5)

1.1.2 Spectral subtraction

The spectral subtraction technique presented in [20] is based on a direct
estimation of short-time spectral amplitude of clean speech. This technique
makes use of an average estimate of the magnitude spectrum of the additive
noise |Ŵ(f)|. The magnitude STFT of clean speech is directly obtained by
subtracting this noise estimate from the magnitude STFT of the noisy speech
signal. In order to obtain a non-negative magnitude spectrum, the negative
values are set to 0. The resulting estimate of the STFT of clean speech is,

Ŷ(f) = max(|Z(f)| − |Ŵ(f)|, 0) ·
Z(f)

|Z(f)|
. (1.6)

One of the drawbacks of spectral subtraction schemes is that it suffers from
musical noise arising from the randomly spaced peaks in the resulting enhanced
spectrum that are caused by the random fluctuations in the periodogram.
Algorithms that attempt to reduce such musical noise are presented in [24,
50,90,127]. Other variants of spectral subtraction can be found in [12,119,184].

1.2 Spectrogram factorisation

Another class of speech enhancement systems is based on decomposing
the noisy speech spectrogram as a linear combination of speech and noise
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components. The fundamental assumption in such models is that the individual
sound/noise events have their characteristic spectro-temporal patterns that can
be represented using a dictionary of basis atoms. This thesis concentrates
on such a class of enhancement schemes where the non-negative spectral
representations of the noisy mixture are approximated as a linear combination
of previously stored speech and noise spectro-temporal patches by means
of non-negative matrix factorisation (NMF)-based approaches. Ever since
its introduction [110], NMF has been successfully used for numerous source
separation problems [157,167,185]. Given a dictionary containing atoms
representing the sources, NMF-based algorithms decompose a noisy observation
as a sparse non-negative linear combination of the atoms. In our framework,
the atoms used are time-frequency representations of the training speech and of
the noise data. The NMF-based decomposition thus yields estimates of speech
and noise from the observation which can then be used to obtain a time-varying
filter in the full-resolution frequency domain for speech enhancement.

Notice that the underlying concept in this model is strict additivity, where the
magnitude of the sum of sound sources in the spectral domain is approximated
as the sum of magnitudes of individual sound sources. Even though such a
model holds only approximately, such models are shown to perform reasonably
well in practice [62,185], especially when the signals are spectro-temporally
sparse where the energy of each source is concentrated only over a limited
amount of spectrogram bins.

One of the popular approaches in NMF-based algorithms is to use overcomplete
dictionaries created using “exemplars” of speech and noise that are the
directly sampled versions of the training speech and noise data itself [58,62,
89]. Another approach is to train the dictionary atoms from the training
samples using the NMF updates [111], where generalisable models for speech
and noise are learned as undercomplete dictionaries [132,156]. A study
presented in [109] compares these two approaches and showed that the NMF-
learned dictionaries outperform the exemplar-based dictionaries for speech
enhancement in reverberant environments. However, the comparisons are done
only with undercomplete dictionaries. It is also observed that, given enough
training data to create overcomplete dictionaries, using exemplars from the
training data as such leads to better separation performance than the NMF-
learned dictionaries [130,168]. In this work we use overcomplete dictionaries
where exemplars are expected to work better and we refer this approach to as
“exemplar-based approach”.

Exemplar-based separation of speech and noise in a noisy recording makes use
of a speech dictionary S containing Js exemplars sampled from segments of
clean speech and a noise dictionary N containing Jn exemplars sampled from
segments of noise recordings. Exemplars are spectro-temporal representations
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of the recorded data, with the spectral axis referred to as frequency bins or
coefficients and temporal axis as frames. The principle behind the approach
is that the noisy speech, being an addition of speech and noise, can be
approximated as a weighted sum of atoms in the speech and noise dictionaries.
The exemplars may span multiple, say T , frames (which are reshaped to a
vector) to capture the temporal dynamics [63]. Let D be the dimensionality of
the resulting exemplars and A = [S N] be the dictionary of size D× (Js + Jn)
used for the decomposition. The various exemplar spaces used in this work are
detailed in Section 2.3.

Given the non-negative representation of noisy speech Z and the exemplar
dictionary A, there are two popular models that decompose Z into its speech
and noise components: one is called non-negative matrix factorisation where
every T frames of the input test data is decomposed independently to get the
mixing weights and the second one is called non-negative matrix deconvolution
that models the frame-level speech and noise components as a convolution
between the corresponding exemplars and mixing weights. Both of these
paradigms are detailed below.

1.2.1 Non-negative matrix factorisation (NMF)

To obtain the NMF-based decomposition of noisy data, the noisy recording
is first converted to the desired time-frequency representation used to create
the dictionaries. Let this representation be denoted as Z ∈ R

B×F
+ , where B

is the dimensionality of the spectral representation and F is the number of
frames. A sliding window of length T frames is moved along its time axis at
a hop size of 1 frame resulting in a total of W = F − T + 1 windows. The
frames corresponding to each window are reshaped to a vector and are stacked
as columns in the observation data matrix Ψ of size D×W , where D = B · T .
This is then approximated as a weighted sum of the atoms in the speech and
noise dictionaries to obtain the activations X (of size (Js + Jn)×W ) as:

Ψ ≈ Ψ̃ =
[
S N

]
[

Xs

Xn

]

= AX s.t. X ≥ 0 (1.7)

where, Xs and Xn are the activations for the speech and noise dictionaries
respectively and X = [Xs

⊺ Xn
⊺]⊺. Here, ⊺ denotes the matrix transpose. For

the rest of the thesis, the subscripts s and n denote the speech and noise,
respectively.

Given the dictionary of exemplars, the decomposition problem boils down to
estimating the activations so that they minimise some cost metric between
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Ψ and its approximation Ψ̃. One of the common metrics used is the
Eucledian distance which however is dominated by the largest differences
between the elements in Ψ and Ψ̃. In speech and audio related applications,
the generalised Kullback-Leibler divergence (KLD) measure that emphasises
differences between elements of smaller magnitude is found to perform better
[185]. Other divergence measures are also proposed [37] and their performances
are compared in various papers [36,38,52,53,112,172,197]. The generalised KLD
between two vectors x and y of length B each is given as:

DKLD(x‖y) =

B∑

b=1

(

xb · log
xb

yb
− xb + yb

)

(1.8)

where, xb is the b-th element of a vector x. The optimal values for the
activations that minimise the KLD can be obtained using a gradient-descent
technique that also ensures the non-negativity of the resulting solution (given
in Section 1.2.3).

After this decomposition, we can obtain the windowed estimates of speech and
noise as ŝw = SXs and n̂w = NXn respectively, each of size D×W . Notice that
there are multiple approximations of the same time-frequency frame appearing
over multiple overlapping windows of these windowed estimates. To remove
this windowing effect and to obtain the frame level estimates, we first append
a zero matrix of size D × (T − 1) to the windowed estimate, to get a matrix
of size D × F , and consider it as a block matrix having T block rows of size
(D/T ) × F each (notice that D/T = B). Let ŝw,τ be the τ -th block matrix.
The frame-level estimate of size (D/T ) × F is then obtained, similar to an
overlap-add method, as:

ŷ =

T∑

τ=1

→(τ−1)

ŝw,τ (1.9)

where,
→(τ)

(·) denotes right shifting a matrix by τ columns (prepending τ columns
of zeros on the left and deleting τ columns on the right so as to maintain the
original matrix size during addition). Averaging by the number of overlapping
windows is omitted as it will be typically cancelled in the later processing stages.
The frame-level noise estimate ŵ is obtained in the same manner.

From the frame level estimates ŷ and ŵ the corresponding time-varying filter
is obtained by element-wise division as:

G = ŷ⊘ (ŷ + ŵ) . (1.10)
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This is then multiplied element-wise to the short-time Fourier transform
(STFT) of the noisy speech Z of size B×L, where B is the number of frequency
bins used to obtain the STFT. The enhanced STFT, Ŷ = Z ⊙G, is converted
to the time-domain by taking its inverse STFT using the overlap-add method
to obtain the enhanced speech.

1.2.2 Non-negative matrix deconvolution

As mentioned before, NMF processes every window of T frames of the test
data independently even if there is overlap between the consecutive processing
windows. Non-negative matrix deconvolution [166] is proposed as an alternative
to NMF where the approximation for Z is obtained convolutively over all the
time (or frame) indices. Thus the resulting activations jointly generate a single
approximation which is of the same size as the test data. Mathematically, NMD
is formulated as:

Z ≈ Z̃ =

T∑

t=1

St

(t−1)→

Xs +

T∑

t=1

Nt

(t−1)→

Xn (1.11)

=
T∑

t=1

At

(t−1)→

X . (1.12)

The matrix St denotes the t-th block matrix obtained by partitioning S into
T block rows each of size B × Js [166]. Nt is also defined in the same manner
from N and At = [St Nt]. The approximation is obtained such that mixing
weights or activations Xs and Xn are also non-negative. These activations
can also be obtained by minimising some dissimilarity metric between Z and
its approximation. Here also, we make use of KLD and the corresponding
gradient-descent updates preserving the non-negativity of the activations can
be found in Section 1.2.3. Notice that the NMD approximation using the
optimal activations directly yields the frame-level estimates.

NMD has also been widely used for speech enhancement [85] and other speech
related applications [59,88,183,194]. It is also observed that given a limited
number of exemplars, NMD performs better than NMF [87].
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1.2.3 Obtaining the activations

For both the NMF and NMD formulations, the approximations are done
to obtain the activations X that minimise the generalised Kullback-Leibler
divergence between Ψ or Z and its approximation with additional sparsity
constraint on X, which in matrix form is formulated as (for NMF):

C =
D∑

d=1

W∑

w=1

{

Ψd,w log
Ψd,w

(Ψ̃)d,w

−Ψd,w + (Ψ̃)d,w

}

+

(Js+Jn)
∑

n=1

W∑

w=1

(Λ⊙X)n,w

(1.13)

where Λ is a matrix of size (Js + Jn) ×W which, in effect, penalises the ℓ1-
norm of the activations and serves as a parameter to control the sparsity of
X. ⊙ denotes element-wise multiplication. The cost function for NMD can be
obtained by replacing Ψ by Z. Notice that sparse activations are an integral
part of such approximations especially when we use an overcomplete dictionary
of exemplars. The sparsity forces the setting to use only a few best matching
exemplars for approximation and yield a more plausible solution.

Notice that the sparsity penalty matrix Λ has a size equal to the number of
atoms in the dictionary times the number of observation vectors. This matrix
thus can be used to individually adjust the relative weight of any atom in the
dictionary to approximate any column in the observation matrix Ψ. However,
in practise, the penalty is kept constant as λs for all speech atoms and λn for all
noise atoms across all columns in the observation matrix, reducing the number
of parameters to be tuned to two. Λ will thus have a structure comprised of
an upper-block matrix of size Js×W with all elements equal to λs and a lower
block matrix of size Jn ×W with all elements set as λn.

The cost function (1.13) can be minimised by iteratively applying the
multiplicative-update rule on activations [64,111] using the method of positive
and negative gradients [109,185]:

X←− X ⊙
∇−

X
C

∇+
X
C

(1.14)

where,∇−
X
C and∇+

X
C are respectively the negative and the positive terms in the

derivative ∇XC = ∂C/∂X. It is shown that these multiplicative updates always
result in a decreasing cost without affecting the non-negativity of the variable
being updated [109,111]. The derivative of C with respect to the parameter X
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is :

∇XC =

F∑

w=W

D∑

d=1

(

−
Ψ(d, w)

Ψ̃(d, w)

∂Ψ̃(d, w)

∂X
+

∂Ψ̃(d, w)

∂X

)

+ Λ. (1.15)

For NMF, the resulting multiplicative update for obtaining the activations is:

X← X⊙

A⊺

(
Ψ

Ψ̃

)

A⊺1 + Λ
(1.16)

where all divisions are element-wise and 1 is a matrix of ones of size D ×W .
This update rule is the bottleneck to the processing speed and computational
complexity is linear in D, Js, Jn and W .

Similarly for NMD, the multiplicative updates for the activations is:

X← X⊙

∑T
t=1 At

⊺

←(t−1)

Z

Z̃
∑T

t=1 At
⊺
←(t−1)

1 +Λ

. (1.17)

The derivation for the above updates can be found in Appendix A.

1.3 Automatic speech recognition

Apart from proposing novel speech enhancement schemes to improve the speech
intelligibility, this thesis also investigates its applications to the various state-
of-the-art automatic speech recognition (ASR) systems. One of the biggest
issues the current ASR systems face is the degradation in performance due
to added background noise. So in order to improve noise robustness, most
of the ASR systems employ some mechanism which attempts to enhance the
speech features by removing these artefacts [115]. Most of these mechanisms,
like spectral subtraction [20], vector Taylor series [135], etc., work on spectro-
temporal representations spanning a few tens of milli-seconds of the speech
recording. An ASR system that makes use of longer contexts of data for
recognising noisy speech that makes use of hidden-Markov model decomposition
is presented in [179]. This work investigates the use of the proposed spectral
factorisation-based speech enhancement schemes using exemplars which span
hundreds of milli-seconds of the recorded data.

The main goal of an ASR system is to convert a speech recording into a word
sequence that best fits the given recording. The basic architecture of an ASR
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Linguistic Database
- Dictionary
- Acoustic Model
- Language Model

ASR DecoderFront-end

Speech
Waveform

Features

Word Sequence

W1,W2, . . . , Wn

Figure 1.2: Architecture of an ASR system.

setting is given in Figure 1.2. An ASR system takes the recorded raw speech
waveform as input and the front-end converts the raw signal into a sequence
of feature vectors. Since the spectral characteristics of speech vary over time,
these feature vectors are extracted over short intervals of time (also called
as frames). Typically a time-window of length 25 ms and 100 windows per
second are used, corresponding to a window-shift of 10 ms. These features
are typically represented in the frequency domain and the goal of the ASR
decoder is to uncover the underlying word sequence corresponding to these
spectro-temporal patterns. The ASR decoder also makes use of language
specific information such as a vocabulary (that defines the list of words to
be recognised), pronunciation of words (or lexicon) and the grammar in order
to arrive at the best matching word sequence.

For mathematical formulation, let the input speech signal be y[n] and O be the
corresponding sequence of feature vectors. The goal of the ASR decoder is to
find the most probable word sequence W = {W1, W2, . . . , Wn} obtained as:

Ŵ = argmax
W

P(W|O). (1.18)

After applying Bayes’ rule and omitting the normalisation, the above formula-
tion becomes,

Ŵ = argmax
W

P(O|W) · P(W) (1.19)

where, P(O|W) is the likelihood of the observed feature vectors O for a given
word sequence W and P(W) is the prior probability of the word sequence W

which is obtained using the language specific knowledge mentioned above.

The likelihood term is also known as the acoustic model in the ASR context
since it yields the probability of an acoustic pattern to occur for a given word
sequence, which is learned during the training phase of the ASR design using
large corpora of speech recordings. Further, the words are decomposed into
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sub-word units such as phones or triphones in order to reduce the complexity
of learning the likelihoods corresponding to every word in the vocabulary.
Thus the acoustic model can be trained to yield likelihoods for an observed
feature vector for a sequence of speech units defined by the ASR architecture.
Notice that these speech units have to be decided before-hand depending on
the complexity of the ASR task. For small vocabulary ASR task (e.g. digit
recognition), a word level speech unit can be used whereas for larger vocabulary
ASR tasks, phone level speech units are preferred. The prior probability P(W)
is also referred to as the language model since it makes use of language specific
information which maps the sequence of speech units to the corresponding word
sequence and filters out grammatically unlikely sequences, thereby improving
the recognition accuracy. These language models are typically learned from
corpora of written text in the target language.

Since the ASR problem is the same as identifying the underlying sequence of
speech units corresponding to the given acoustic feature pattern, typical ASR
systems make use of hidden Markov models (HMM) that statistically model the
observed features as the outputs of hidden state sequences. In this formulation,
every frame of the input data is assumed to be emitted by a hidden state
with some probability (or likelihood). These emission probabilities are to be
learned during the training phase of the ASR setting. Thus, an HMM-based
ASR decoder makes use of these emission probabilities as the acoustic model
which yields the likelihood of the observed feature vectors given the HMM
state sequence. Thus, HMMs can deal with the temporal variabilities in speech
and the acoustic model determines how well an HMM state fits an observed
feature vector. HMM state sequences are constrained by the lexicon allowing
only speech unit sequences that correspond to valid words. State sequences
can hence also be assigned a likelihood from the HMM’s state transition model
and the word sequence model, i.e. the language model. This thesis makes
use of HMM-based ASR decoders for evaluation. Other ASR decoder variants
include end-to-end speech recognition systems such as connectionist temporal
classification [69] and attention-based neural networks [11,27,34] which will be
briefly discussed in the later sections.

1.3.1 Acoustic modelling

As mentioned above, in an HMM-based ASR system the likelihoods for an
observed feature vector given the HMM state sequence are computed from the
emission probabilities. Thus the likelihoods are obtained for every frame in the
observed feature vectors O for every HMM state. There are several approaches
to obtaining these emission probabilities that include Gaussian mixture models
(GMMs), template-matching followed by mapping to likelihoods [3,43,153] and
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neural networks that are trained to yield “pseudo-likelihoods” [81]. This thesis
makes use of only GMM-based and neural network-based acoustic modelling
which are discussed below.

Gaussian mixture models

Acoustic modelling using GMMs yields the emission probability of an HMM
state q to emit a feature vector ot at frame t as a weighted sum of multivariate
Gaussian distributions as follows:

p(ot|q) ,
N∑

k=1

wk · N (ot; µk, Σk) . (1.20)

Here, wk are the mixing weights with
∑N

k=1 wk = 1, N is the number of
Gaussians in the GMM and N (ot; µk, Σk) is a multivariate Gaussian with
mean µk and covariance Σk. Notice that these emission probabilities are to be
obtained for every HMM state. Thus, the training phase of the ASR requires
labelled training data that maps the feature vectors to different HMM states
and the GMM tries to find the best fitting probability distribution using these
feature vectors for every HMM state. Let the feature vectors be of length G.
Acoustic modelling using GMMs makes use of the fact that it can approximate
probability distributions to any required level of accuracy, provided that there
are enough components.

Notice that every GMM is characterised using three sets of parameters, viz, N
weights, N mean-vectors each of size G × 1 and N covariance matrices of size
G×G each which are to estimated during the acoustic model training. In order
to reduce the number of parameters to be estimated, the covariance matrix is
assumed to be diagonal which can be achieved by using decorrelated feature
vectors. Popular choices of feature vectors include linear predictive coding
(LPC) coefficients [4], Mel-frequency cepstral coefficients (MFCC), perceptual
linear prediction (PLP) coefficients [77] and relative spectral transform -
perceptual linear prediction (RASTA-PLP) features [78]. We refer the reader
to [144] for further details on the training procedure. Other feature transform
techniques for decorrelation, dimensionality reduction and speaker adaptation
on top of these features have also been shown to improve the recognition
accuracies. Popular feature transforms include principle component analysis
(PCA) [95], linear discriminative analysis (LDA) [55], maximum-likelihood
linear transform (MLLT) [154] and feature space maximum likelihood linear
regression (fMLLR) [65].
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Figure 1.3: Basic structure of a fully-connected DNN trained to yield HMM
state posteriors.

Neural networks

Recently, neural network-based acoustic modelling has been successfully used
to directly obtain the likelihoods at its output with significant performance
improvements over the GMM-based likelihoods. In this framework, deep neural
networks (DNNs) that have many hidden layers are trained to output the
likelihoods over the HMM states with several frames of features as input [81].
The basic structure of a DNN that contains three hidden layers is shown in
Figure 1.3. Let x = [x1, x2, . . . , xD]⊺ be the input feature vector typically
obtained by concatenating several frames of feature vectors. This vector is
then fed-forward through the fully-connected hidden layers to finally yield the
likelihoods.

In the figure every edge is associated with a multiplication with a weight
and at the nodes the weighted values are summed and undergone a non-
linear transformation. For mathematical formulation, let the first hidden layer
contains J states and h1 = [h1

1, h1
2, . . . , h1

J ]⊺ be its output. Let wij be the
weight associated with the connection between the i-th input state and j-th
output state and W1 be the matrix formed by these weights where i and j are
the row and column indices. Then the output of the first hidden layer can be
written as h1 = f(W1⊺

x + b1), where f denotes the element-wise non-linear
transformation applied on the linear combinations of the input and b1 is the
bias term. Popular choices of the non-linear functions include sigmoid non-
linearity, rectified linear units (ReLU) and hyperbolic tangent (tanh). Thus at
every hidden layer, the input data is multiplied by a matrix which acts like a
feature extractor followed by a non-linear transformation.

As mentioned before, the output layer of a DNN is designed to yield the
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likelihoods corresponding to the HMM states. Thus the number of states in
the output layer equals the number of HMM states Nh and the total input to
the output layer W4⊺

h3 + b4 is converted into probabilities using the softmax
function. Let p ∈ R

Nh×1
+ be the resulting “probabilities” which are obtained

as

p =
exp(W4⊺

h3 + b4)

‖ exp(W4⊺h3 + b4)‖1

(1.21)

where, ‖ · ‖1 denotes the ℓ1 norm of a vector. Since these are in fact not based
on any probability distribution, these are also called as “pseudo-likelihoods”.
All the weight matrices and the biases are learned during the training phase by
minimising the cross-entropy between p and and the target probabilities d,

C = −
Nh∑

n=1

dn log pn (1.22)

where, dn and pn are the n-th component of the vectors d and p, respectively.
The target probability vector d is typically a one-hot vector obtained from the
labelling information.

Intuitively, the first layers act as the feature detectors and the last layers act as
the classifier that are jointly trained to get the optimal classification. Such a
joint optimisation is one of the reasons why DNNs have a better discrimination
ability than the GMMs where the features are typically engineered independent
of the cost function that is being minimised during the GMM training. These
pseudo-likelihoods generated by the DNNs have been successfully used for a
wide variety of ASR applications [42,92,129,161]. Such systems are known as
neural network-HMM (NN-HMM) hybrid systems.

Since the first few layers of a DNN architecture essentially act as feature
detectors, several attempts have been made to replace the input part with other
neural network architectures such as convolutional neural networks (CNN)
[1,149], recurrent neural networks (RNN) or long short-term memory (LSTM)
cells [152] in order to obtain better features that also take care of the spectral
and temporal redundancies in the speech spectrum. Notice that such systems
use a few DNN layers at the output to classify the features extracted using the
CNN and LSTM layers [151].

1.3.2 Language modelling

The language model provides the prior probability of a word sequence W

to occur in the target language. Typically, these probabilities are learned
independently of the acoustics using large corpora of text from the target
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language. A language model can improve the recognition accuracy of an ASR
setting by incorporating the semantic, syntactic and grammatic information
of the target language. During the decoding phase, the language model
also helps to reduce the possible number of hypotheses on W by suppressing
grammatically unlikely word sequences. The popular language modelling
techniques can be broadly divided into deterministic and probabilistic language
models [83]. For most of the small vocabulary ASR tasks, deterministic
language models such as context-free grammars would suffice. But for large
vocabulary tasks, probabilistic language models such as N -grams are preferred.

The large vocabulary ASR evaluations presented in this thesis make use of
N -grams which predicts the probability of a word based on the context,
i.e. the preceding N − 1 words. The probability for a word sequence
W = {W1, W2, . . . , Wn} can be found using the chain rule as

P(W) =

n∏

j=1

P(Wj |W1, W2, . . . , Wj−1). (1.23)

An N -gram language model approximates the conditional probability of the
word Wj to depend only on the preceding N − 1 words, i.e.
{Wj−N+1, Wj−N+2, . . . , Wj−1}. The prior probability of W is thus simplified
to

P(W) ≈
n∏

j=1

P(Wj |Wj−N+1, Wj−N+2, . . . , Wj−1). (1.24)

The maximum likelihood estimator of the N -gram probability of a word is
obtained by counting the instances of the context followed by the the target
word appearing in the text and normalising it with the total instances of the
context.

P(Wj |Wj−N+1, Wj−N+2, . . . , Wj−1) =
count(Wj−N+1, Wj−N+2, . . . , Wj−1, Wj)

count(Wj−N+1, Wj−N+2, . . . , Wj−1)
(1.25)

Typically N ≤ 3 is used to limit the complexity and cope with data sparsity
problems since there will be fewer instances of the context word sequences
for larger N resulting in unreliable estimates. Notice that, even with a small
N some grammatically correct word sequences still might end up with very
small, even zero, estimates simply because those do not appear in the chosen
text corpora. In order to address these issues, several back-off and smoothing
techniques have also been proposed in the literature [29,98,103]. Apart from the
popular N -grams, recurrent neural network (RNN)-based language modelling
is also becoming popular and several architectures have been proposed recently
[123,124,195]. These topics are not discussed since those are beyond the scope
of the brief introduction of this thesis.
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1.3.3 End-to-end speech recognition

As described before, the traditional ASR systems that use an acoustic model
and a language model to predict the most likely word sequence hypothesis
have gained much success. The model still considers acoustic and language
models as two different entities that are trained independent from each other.
The field of end-to-end ASR approaches attempts to train both these models
jointly using neural networks to directly yield character sequences at the output
without using HMMs. These systems use acoustic feature vectors at its input
and generates character level transcriptions of the underlying word sequence
at its output.

One of such end-to-end trainable HMM-free neural models is called as
connectionist temporal classification (CTC) [69] where the neural network
predicts the posterior probability of a character (for e.g., English alphabets)
for every frame in the input data. These are modelled as bag of characters that
are later mapped to the corresponding words. Such CTC models combined
with some word level language model (for rescoring) achieved promising results
on various ASR benchmarks [2,70,75].

Another architecture used in end-to-end speech recognition makes use of a
sequence-to-sequence model where the neural networks that learn to focus their
“attention” to specific parts of their input which is named as Listen, Attend
and Spell [26]. Such systems have an encoder-decoder structure [30,175]. The
encoder part typically is comprised of a bi-directional RNN that converts the
input speech to a suitable feature representation. These features are then fed
to the decoder part that is an attention-based recurrent sequence generator to
yield a sequence of characters [11]. Other ASR systems that make use of this
architecture can be found in [10,33,34].

1.4 Scope of the thesis

The fundamental mathematical model used in this thesis is based on the
spectrogram factorisation of noisy speech using exemplars stored in a dictionary.
The common goal is to decompose the noisy speech into its speech and
noise components for single-channel speech enhancement. Emphasis is given
to improve the speech intelligibility in terms of various speech enhancement
quality measures and to investigate how such settings can benefit when used as
a front-end to the various state-of-the-art ASR systems. The work is motivated
from earlier works on NMF-based decomposition of noisy speech [64,185] and
the key factor that decides the performance of such settings is how well the
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constituent speech and noise can be differentiated in the chosen exemplar space.
This thesis proposes several extensions to these models in order to achieve a
better speech and noise separation for an improved speech enhancement quality.

The major part of thesis was done as part of the Marie-Curie ITN project
INSPIRE (INvestigating Speech Processing In Realistic Environments) of
which our contribution was aimed at incorporating our knowledge about
human speech recognition into the ASR frameworks. This work introduces
the perceptually motivated modulation envelope spectrogram (or modulation
spectrogram) features, referred to as MS features, [8,71] into the field of
spectrogram factorisation and proposes an efficient way to map these features
back to the magnitude short-time Fourier Transform (STFT) for speech
enhancement. The setting uses coupled dictionaries where the exemplars
corresponding to the MS and STFT feature spaces are jointly extracted.

It was observed that the speech and noise separation capabilities of different
exemplar spaces depends on the different noise types and the separation
problem becomes difficult when the type of additive noise is not present in
the noise dictionary. In order to achieve a better speech and noise separation
especially in the presence of such unseen noises, hybrid exemplar spaces formed
by combining different feature spaces are proposed. The technique also makes
use of the previously proposed coupled dictionaries.

The thesis also evaluates and compares various features for training a state-of-
the-art DNN-based acoustic model. In particular, the use of the perceptually
motivated features such as MS features and Gabor filter-bank features [155]
are investigated and are compared with the conventional features such as Mel,
STFT and PLP features.

The thesis also addresses the difficult problem of single-channel speech
enhancement in noisy and reverberant environments. An algorithm that
incorporates the reverberation into the NMD-based spectrogram factorisation
model is proposed and the multiplicative updates to jointly estimate the
reverberation, anechoic speech and noise are provided.

Finally, the proposed speech enhancement schemes are applied to the field
of clinical neuroscience for the pre-operative planning on patients with brain
tumor. During the pre-operative planning, a neurosurgeon has to decide
if the affected brain region is essential for the major functions such as
motor movement and language related processes. To identify the functional
relevance of a brain region for language related processes, a picture naming
task together with magnetic stimulation of the relevant brain region (called
transcranial magnetic stimulation or TMS) [17,74] has been effectively used.
The methodology currently followed is to record the responses and to manually
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check the accuracy and the reaction time by listening to it. However, such a
process is prone to substantial intra- and inter-observer variabilities [105,171].
A novel automatic and objective evaluation routine for the picture naming task
using ASR and the proposed speech enhancement schemes is developed.

The algorithms proposed in this thesis are evaluated on various competitive
benchmark databases which are described next.

1.4.1 Databases used

Aurora-2

AURORA-2 database [82] is a database based on the TI Digits corpus [114]
containing utterances of digits from ’0-9’ and ’oh’ sampled at 8 kHz. For
training the acoustic models, a clean speech dataset and a noisy training dataset
each containing 8 440 utterances are used. The noisy training set contains car,
babble, subway and exhibition hall noises added artificially at signal-to-noise
ratios (SNRs) of 5, 10, 15 and 20 dB.

For testing, test sets A and B of the database are used. Test set A contains one
clean subset containing 1 001 recordings of clean speech and its noisy versions
at varying SNRs -5, 0, 5, 10, 15 and 20 dB for every noise type present in the
training set, summing to a total of 28 subsets. Test set B also has the same
structure as in test set A but with four different noise types which are not
present in the training data. The noise types in test set B are restaurant, train
station, street and airport noises.

Aurora-4

AURORA-4 database is a large vocabulary continuous speech recognition
database based on the Wall Street Journal-0 (WSJ0) corpus of read English
speech. In order to study the effect of channel variations, the database contains
two different sets of recordings: one recorded using a Sennheiser microphone
(denoted as Mic1) and the second set recorded using multiple microphones
(denoted as Mic2 or multicondition set). In order to train the acoustic models,
there are four training conditions each containing 7 138 utterances which are
listed below.

1. Clean Set : Noise-free speech recorded using the Sennheiser microphone.

2. Multi-clean Set : Noise-free speech recorded using multiple microphones.
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3. Multinoise Set : Clean Set added with 6 additive noise types synthetically
added at SNRs between 10 dB to 20 dB in steps of 1 dB.

4. Multicondition Set : Same as the multinoise set but created using the
multi-clean training set.

The test set of the database contains 14 sets (test01-test14), each containing
330 utterances. Test01 (or test A) contains the clean utterances recorded
with the single microphone (Sennheiser) and test02-test07 sets (or collectively
test B) contain its noisy versions added with the six noise types at varying
SNRs between 5 to 15 dB in steps of 1 dB. Test08 (or test C) contains
the clean utterances recorded with multiple microphones and test09-test14
(or collectively test C) sets contain its noisy versions same as in test B. A
development set of the same structure as of the test set is provided, but with a
different set of 330 utterances, for parameter tuning and cross-validation. The
six types of noise conditions used are car, babble, restaurant, street, airport
and train station. Word error rates (WER) in % is used to compare the various
ASR systems evaluated on this database.

TIMIT

TIMIT is a benchmark database for evaluating and comparing the phone
recognition accuracy of various ASR systems in clean conditions [57]. The
training set of the database contains 3 696 utterances recorded from 462
speakers with 8 utterances per speaker. For evaluation, the core test set is
used, which contains 192 utterances with 8 sentences each from 24 speakers.
The development set of the database contains 400 utterances from 50 speakers.
The ASR setting used in this thesis is designed to recognise the underlying
phone sequence that uses a phone set containing 39 symbols. The phone error
rates (PER) in % are reported for ASR evaluations on the TIMIT database.

CHiME-3

The CHiME-3 challenge [14] targets the performance of an ASR setting in a
real world, commercially motivated scenario where the recordings are obtained
using a tablet fitted with a six-channel microphone array. It contains WSJ0
sentences recorded using an apparatus that yields six-channel recordings. There
are real (REAL), and simulated (SIM) utterances in the database. The real
utterances are recorded from four outdoor environments; bus, pedestrian street,
cafe and street junction. Simulated data contains WSJ0 utterances that are
filtered using an estimated impulse response and added noise from each of these
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environments. The development set contains 410 real and simulated utterances
for each of the four environments. The test set also has the same structure,
but with 330 different utterances. The test and the development sets contain
a total of 2 840 and 3 280 utterances, respectively. The training data contains
7 138 utterances that are simulated from the WSJ0 training set and 1 600
real recordings taken from the four environments, adding to a total of 8 738
utterances. A detailed description of the CHiME-3 dataset can be found in
[14].

Background noise from the CHiME challenge

The PASCAL-CHiME challenge [15] investigates ASR in the presence of
background noises from a domestic environment. This thesis makes use of
the background noise recordings provided with this database to simulate noisy
speech for some experiments. These background noises are recorded from two
rooms in a house: the lounge and the kitchen that capture multi-source noise
from different locations including washing machine noise, kids running and
playing, audio from the television and multiple speakers talking [35].

1.5 Thesis overview

This section provides a short overview of the thesis which proposes various novel
algorithms for spectrogram factorisation -based speech enhancement models. A
brief summary of the remaining chapters is provided below.

� Chapter 2 : A novel approach using coupled dictionaries for exemplar-
based speech enhancement is proposed in this chapter in order to
obtain better estimates of speech and noise for the time-varying filter.
This chapter also introduces the perceptually motivated modulation
spectrogram features to the field of exemplar-based techniques. The
performance of the proposed scheme is evaluated using various speech
intelligibility measures and by using it as a front-end of the state-of-
the-art GMM and DNN-based ASR systems (with AURORA-2 and
AURORA-4 databases).

This chapter also includes our contribution to the CHiME-3 challenge
where the online learning of coupled dictionary atoms from the test data
is also proposed. The use of exemplar-based schemes as a front-end to a
CNN-DNN-based ASR setting is also investigated.
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This chapter is adapted from the following publications: [1] D. Baby, T.
Virtanen, J. F. Gemmeke and H. Van hamme. Coupled Dictionaries for
Exemplar-based Speech Enhancement and Automatic Speech Recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
23 (11), pp 1788–1799, November 2015.

[2] D. Baby, T. Virtanen and H. Van hamme. Coupled Dictionary-
based Speech Enhancement for the CHiME-3 Challenge. Technical report
KUL/ESAT/PSI/1503, Leuven, Belgium, KU Leuven, ESAT. September
2015.

� Chapter 3 : This chapter introduces the aforementioned idea of hybrid-
exemplar spaces obtained by concatenating two different feature spaces
to combine the speech and noise discrimination capabilities of different
feature spaces. The goal is to combine the speech and noise separation
capabilities of different feature spaces to get a better speech enhancement
quality. The proposed framework makes use of coupled dictionaries and
investigates several combinations of features for a better speech and
noise separation. The experiments were conducted on the AURORA-2
database.

This chapter is adapted from: Deepak Baby and Hugo Van hamme.
Hybrid Input Spaces for Exemplar-based Noise Robust Speech Recognition
using Coupled Dictionaries. 23rd European Signal Processing Conference
(EUSIPCO), pp. 1676-1680, September 2015.

� Chapter 4 : Motivated from the performance of the modulation
spectrogram features in exemplar-based speech enhancement from the
previous chapters, this chapter investigates the use of these features
for DNN-based acoustic modelling. The chapter presents comparison
between different features such as Mel, PLP, Gabor filter-bank features
and the STFT features when used as an input to the DNN. Evaluations
are provided on TIMIT and AURORA-4 databases.

This chapter is adapted from: Deepak Baby and Hugo Van hamme.
Investigating Modulation Spectrogram Features for Deep Neural Network-
based Automatic Speech Recognition. Proc. INTERSPEECH, ISCA, pp.
2479–2483, September 2015.

� Chapter 5 : This chapter extends the spectrogram factorisation models
to achieve joint denoising and dereverberation for enhancing speech
recordings taken from a noisy enclosed room and when the speaker is
far from the microphone. A novel algorithm to incorporate and estimate
the room impulse response (RIR) with a decaying norm constraint is
proposed. The chapter provides multiplicative updates to jointly estimate
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the RIR, its decay and the estimates of anechoic speech and noise. The
updates are derived by using the NMD-based spectral factorisation model.

This chapter is adapted from: Deepak Baby and Hugo Van hamme. Joint
Denoising and Dereverberation using Exemplar-based Sparse Representa-
tions and Decaying Norm Criterion. Submitted to IEEE/ACM Trans. on
Audio, Speech and Language Processing, 2016.

� Chapter 6 : An application of the proposed speech enhancement settings
as the front-end of an ASR setting for clinical neuroscience is presented
in this chapter. A novel framework to automate the reaction time
measurement on a picture naming task is proposed. The responses are
recorded and the algorithm operates on these recordings to identify if
the responses were indeed correct and it also yields the reaction times
for the correct responses. The algorithm makes use of SPRAAK [44]
for ASR and the evaluations are performed on the data collected from
patients/volunteers.

This chapter is adapted from: Deepak Baby, Laura Seynaeve, Patrick
Dupont, Wim Van Paesschen and Hugo Van hamme. An automatic
evaluation routine for picture naming task with transcranial magnetic
stimulation using machine speech recognition. Submitted to the Journal
of Neuroscience Methods, 2016.

� Chapter 7 : This chapter concludes the thesis by listing the original
contributions and suggestions for future work.



Chapter 2

Coupled Dictionaries for
Exemplar-based Speech
Enhancement & ASR

For decomposing the noisy speech in traditional exemplar-based speech enhance-
ment systems, exemplars sampled in lower dimensional spaces are preferred over
the full-resolution frequency domain for their reduced computational complexity
and the ability to better generalise to unseen cases. But the resulting filter
may be sub-optimal as the mapping of the obtained speech and noise estimates
to the full-resolution frequency domain involves a low-rank approximation.
This chapter presents an efficient way to directly compute the full-resolution
frequency estimates of speech and noise using coupled dictionaries: an input
dictionary containing atoms from the desired exemplar space to obtain the
decomposition and a coupled output dictionary containing exemplars from the
full-resolution frequency domain. We also introduce modulation spectrogram
features for the exemplar-based tasks using this approach. The proposed
system was evaluated for various choices of input exemplars and yielded
improved speech enhancement performances on the AURORA-2 and AURORA-
4 databases. We further show that the proposed approach also results in
improved word error rates (WERs) for the speech recognition tasks using GMM-
HMM and DNN-HMM -based systems.

This chapter also includes our contribution to the CHiME-3 challenge where
the coupled dictionary -based speech enhancement setting is used as a front-
end to the various ASR decoders provided by the challenge organisers [14].

25
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The algorithm is also extended to learn adaptive atoms to model unseen noise
cases and the coupled atoms are also learned from the test data. We also
introduced a CNN-DNN-based decoder for CHiME-3 evaluation and it is shown
that the coupled dictionary-based speech enhancement together with adaptive
noise dictionaries significantly improves the ASR performance.

This chapter is adapted from: D. Baby, T. Virtanen, J. F. Gemmeke and H.
Van hamme. Coupled Dictionaries for Exemplar-based Speech Enhancement
and Automatic Speech Recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23 (11), pp 1788–1799, November 2015.

D. Baby, T. Virtanen and H. Van hamme. Coupled Dictionary-based Speech
Enhancement for the CHiME-3 Challenge. Technical report KUL/ESAT/P-
SI/1503, Leuven, Belgium, KU Leuven, ESAT. September 2015.
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2.1 Introduction

Speech recordings taken from realistic environments typically contain degra-
dations along with the required speech signal which reduce its intelligibility
and also result in poor performance of speech related tasks like automatic
speech recognition (ASR), automatic voice assistance, etc. Therefore, some
speech enhancement mechanism is deployed as the first step in most of these
applications to circumvent the degradations which are mainly introduced by
the background noise and room reverberation.

In scenarios where a model for speech and noise is not known a priori,
unsupervised techniques like spectral subtraction [20], Kalman filtering [68],
using the periodic structure in speech [93], etc., have been successfully
used for speech enhancement. But most of these approaches rely on
stationarity assumptions on the noise, which are often invalid for realistic
data. Alternatively, supervised techniques can yield improved performance
using codebook based [173] or model based [49] approaches, since the models
for speech and noise are known a priori.

In this work, we investigate speech enhancement on a single channel noisy
recording in the presence of additive noise using non-negative matrix factor-
ization (NMF) algorithms employing exemplars of speech and noise. The
performance of an exemplar-based approach depends on two key factors:
First, on how well the speech and noise can be differentiated in the chosen
time-frequency representation or the “exemplar space”. Popular choices of
exemplar spaces include Mel-integrated magnitude spectra [62], DFT (refers
to the magnitude of the short-time Fourier transform in this work) [145]
and Gabor filterbank coefficients [89]. Using DFT as the exemplar space
has the advantage that the time-varying filter can be directly obtained in
the full-resolution frequency (DFT) domain. However, such systems suffer
from increased computational complexity, poor speech and noise separation
especially in presence of babble noise [134] and inability to generalise well for
unseen noise cases [7]. It is observed that using lower dimensional features
like the Mel features can address most of these issues fairly well [7] and
this introduces the second factor: how well we can map the resulting lower-
dimensional estimates to the DFT space to obtain the time-varying filter?
Most of the current approaches make use of a pseudo-inverse [58] to obtain
the mapping which always yield a low-rank approximation of the estimates,
resulting in a sub-optimal filter which cannot account for all the added noise
content and results in poorer noise suppression.

In this work, we have three main goals. First, to effectively utilise the
advantages of the low-dimensional features and to address the low-rank
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approximation, we propose to use coupled dictionaries, which has been used
earlier to increase the spectro-temporal resolution [130,137], voice conversion
[193] and dimensionality reduction for multi-label learning [67]. In this work,
we make use of two (coupled) dictionaries: an input dictionary containing
atoms sampled in the exemplar space where the NMF-based decomposition
is to be done and a coupled output dictionary containing the corresponding
DFT exemplars to directly reconstruct the estimates in the DFT domain. This
approach thus can obtain a better decomposition at a reduced computational
complexity, and make use of the resulting weights or activations of the input
dictionary atoms to directly reconstruct the DFT estimates using the coupled
output dictionary, which will be explained in Section 2.2.

Second, we introduce using modulation spectrogram (MS) features [71] for
exemplar-based speech enhancement. The MS representation for speech was
introduced as part of a computational model for human hearing and a better
separation between speech and noise can be expected in the MS domain
considering the fact that speech and noise often have different modulation
frequency contents. However, obtaining the MS representation involves non-
linear operations making it hard to invert to the frequency domain where
the mixture signal is processed. In this work, we investigate the use of
coupled dictionaries to reconstruct the underlying DFT features following the
decomposition in the MS domain for exemplar-based speech enhancement and
ASR tasks.

Finally, we investigate the performance of various state-of-the-art automatic
speech recognition (ASR) tasks on these enhanced speech data. ASR evaluation
serves two purposes in this work. First, the recognition performance acts as an
additional evaluation measure to assess the utility of the enhanced speech data
on small and large vocabulary speech recognition. Second, we investigate how
much the HMM-GMM based and deep-neural network (DNN) based state-of-
the-art ASR systems can benefit from making use of the enhanced data.

The rest of the chapter is organised as follows: Section 2.2 details the proposed
exemplar-based speech enhancement technique using coupled dictionaries. The
various choices of input exemplars investigated in this work are described
in Section 2.3. The evaluation setup is explained in Section 2.4 followed
by some results and observations made on the experiments done on the
AURORA-2 database in Section 2.5. Section 2.6 details the results obtained for
speech enhancement and ASR evaluations on the AURORA-4 database. Our
contribution to the CHiME-3 challenge using the proposed speech enhancement
setting is given in Section 2.7. Section 2.8 concludes the work along with some
directions for future work.



SPEECH ENHANCEMENT USING COUPLED DICTIONARIES 29

Training
data

Input Exemplar
Representation Ain

DFT Exemplar
Representation Adft

Ψin ≈ AinXin

noisy data

ŝw = SdftXin
s

n̂w = NdftXin
n

TRAINING TESTING

Figure 2.1: Block diagram overview of the proposed system using modulation
spectrogram features and coupled dictionaries.

2.2 Speech enhancement using coupled dictionar-
ies

The proposed approach to obtain the DFT estimates using coupled dictionaries
is summarised in Fig. 2.1. In this approach, the NMF-based decomposition is
obtained in an additive and non-negative feature space of choice which serves as
the front-end of the speech enhancement system. For simplicity, the front-end
features are referred to as “input exemplars” and the dictionary used to obtain
the NMF compositional model is denoted as Ain = [Sin Nin]. This dictionary
has a size Din×(Js+Jn), where Din is the dimensionality of the input exemplar
space. The observation data matrix in the input exemplar domain Ψin is
decomposed using Ain as explained in section 1.2.1. The resulting activations
Xin are then applied with the output DFT dictionary to directly obtain the
windowed speech and noise estimates in the DFT domain as ŝw = SdftXin

s

and n̂w = NdftXin
n , respectively. For the remaining part of the thesis, the

superscripts denote the type of exemplar space used.

To obtain a reliable reconstruction of the underlying DFT estimates, the
mapping between the corresponding atoms in both the dictionaries should
nearly be one-to-one. Such an approximation would work if the input and
the output DFT exemplars are temporally aligned and scale alike with signal
strength. Regarding the last criterion, signal representations that vary linearly
with the input signal strength work best in conjunction with the considered cost
function (1.13). These are achieved by properly choosing the input exemplars
and extracting the corresponding DFT exemplars from the same piece of
training data spanning T frames (ref. Fig. 2.1).

From the windowed estimates, the frame level estimates ŷ and ŵ are obtained
by removing the windowing effect and the corresponding time-varying filter is
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obtained by element-wise division as:

G = ŷ⊘ (ŷ + ŵ) . (2.1)

This is then multiplied element-wise to the short-time Fourier transform
(STFT) of the noisy speech Z of size B×L, where B is the number of frequency
bins used to obtain the STFT. The enhanced STFT, Ŷ = Z⊙G, is converted to
time-domain using overlap-add method to obtain the enhanced speech. Notice
that the DFT dictionary is of size Ddft× (Js + Jn), where Ddft = B ·T and the
time-varying filter has the same size as Y. In short, the proposed method thus
can exploit the speech and noise separation capabilities for various choices of
input spaces and can generate a filter which has full-rank in the DFT space.

2.3 Choice of input representation

The various choices for input representation that are investigated in this
work are explained in this section. Notice that the underlying assumption
in the exemplar-based approach is that the speech and noise are approximately
additive in the chosen exemplar spaces. The processing chains for obtaining
the coupled exemplars are summarised in Fig. 2.2.

2.3.1 DFT exemplars

First, the DFT space is chosen as the input exemplar space to obtain the
decomposition. To obtain DFT exemplars to create the DFT dictionary, a
segment of length T frames (Tt seconds in time domain) of training data is
chosen at random and its magnitude STFT is used for non-negativity. Let
the STFT be obtained using a window length and hop size of tdft

w and tdft
h ,

respectively. This yields a spectro-temporal representation of size 2B × T ,
where 2B is the number of frequency bins used to obtain the STFT. Since
the magnitude STFT is symmetric, only the positive half is considered. This
is reshaped to a vector of size (B · T ) × 1 to obtain the DFT exemplar. i.e.,
Ddft = B · T .

During evaluation, the NMF-based decomposition is done in the DFT space
after converting the noisy observation into its equivalent DFT exemplar
representation. The resulting activations are used to obtain the frame-level
speech and noise estimates, and the enhanced speech is obtained as explained
in Section 2.2. This setting is chosen as one of the baseline systems in this
work and is denoted as DFT-DFT setting.
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Figure 2.2: Block diagram overview of the processing chains to obtain various
exemplars. All the coupled exemplars are extracted from the same piece of
recorded data spanning T frames (Tt seconds in time-domain). The resulting
representations along with their size are shown below in each of the steps.
Figures are not shown at the same scale.

2.3.2 Mel exemplars

Mel exemplars are chosen for their lower dimensionality and robust speech and
noise separation performance in the presence of a variety of noises. First, the
Mel features for T frames of data are obtained after applying Mel-integration of
the magnitude STFT as depicted in Fig. 2.2. This is done by multiplying the
magnitude STFT by the DFT-to-Mel matrix M which contains the magnitude
response of M Mel bands along its rows. The resulting representation of size
M × T is reshaped to a vector to obtain the Mel exemplar of length Dmel =
M ·T . The Mel dictionaries for speech and noise are denoted as Smel and Nmel,
respectively.
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During the test phase, the noisy data represented in the Mel exemplar
space is decomposed using the Mel dictionary Amel = [Smel Nmel] and the
corresponding activations Xmel

s
and Xmel

n
are obtained. Once these activations

are obtained, we use it to evaluate two systems.

First, another baseline system is defined which is denoted as the Mel-Mel
setting. In this setup, the windowed speech and noise estimates are obtained
using the Mel dictionary as SmelXmel

s
and NmelXmel

n
, respectively. The frame

level Mel estimates, ŷ′ and ŵ′ are obtained as explained in Section 1.2.1. These
are then mapped to the DFT domain using the pseudo-inverse of the DFT-to-
Mel matrix, M† = M⊺(MM⊺)−1 to obtain the enhanced STFT as [58]:

Ŷ = Z ⊙
(
M† [ŷ′ ⊘ (ŷ′ + ŵ′)]

)
. (2.2)

It is evident that this setting has a lower computational complexity as M ≪ B
while performing the multiplicative updates. It is also observed that Mel
features have a better speech and noise separation capability and generalise
better for unseen noise cases when compared to the DFT exemplars [7].
However, the pseudo-inverse mapping in (2.2) will always fall in a subspace
of rank M spanned by the rows of M. The frequency response of the Mel
filter-bank being triangular, such a mapping is equivalent to a piece-wise linear
approximation of M points located at the central frequencies of the filter-bank.
It is thus clear that such a transformation may not be able to model most of
the speech and noise content in the full-resolution DFT space with M ≪ B,
which in turn may reduce the speech enhancement quality. This issue will be
further explored in later sections.

For the second setting, we investigate the proposed approach using Mel
exemplars as the input features to deal with the low-rank approximation in the
Mel-Mel setting. Here, the underlying (windowed) DFT estimates for speech
and noise are directly obtained using the Mel activations as ŝw = SdftXmel

s
and

n̂w = NdftXmel
n , and are then used for speech enhancement (ref. Section 2.2).

This is referred to as the Mel-DFT setting. Since in this setting, the output
DFT dictionary is coupled to the Mel input dictionary and is overcomplete,
a full-rank reconstruction of the estimates can be enforced and a better noise
suppression could be achieved.

2.3.3 MS exemplars

The modulation spectrogram (MS) representation of speech was proposed as
part of a computational model for human hearing which relies on low frequency
amplitude modulation variations within frequency bands [141]. These
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variations play a key role in the higher level human auditory processing [21]
and are computationally modelled as modulation envelopes. The bottom row
in Fig. 2.2 summarises the processing chain to obtain the MS representation
for speech.

To obtain the modulation envelopes, the acoustic data is first filtered using
a filter bank containing M channels to model the frequency discrimination
property of the basilar membrane. The resulting M bandlimited signals are
half-wave rectified to model the non-negative nerve firings followed by low-pass
filtering to obtain the modulation envelopes. The 3dB cut-off frequency of
the low-pass filter used is around 20Hz as human speech contains modulations
of very low frequency [158] and hence the spectrograms of these envelopes,
called the modulation spectrograms, can yield a more effective representation
[71] in comparison to the time domain. Let the window length and hop size
used to obtain the MS representation be tMS

w and tMS
h , respectively. The MS

representation is typically obtained over longer window lengths when compared
to the DFT features (i.e., tMS

w > tdft
w ), to capture the variation in modulation

envelopes, which also allows larger choices for tMS
h than tdft

h . This representation
of speech has successfully been used for blind source separation [16] and noise-
robust ASR [100].

Notice that converting acoustic data into the MS space results in a three-
dimensional representation of size M × K × T , where M , K and T are the
number of input frequency channels, number of modulation frequency bins
and number frames in the acoustic data, respectively. However, since the
modulation envelopes are obtained after a low-pass filtering operation, only
a few bins in the MS will contain significant energy and it is possible to
truncate each of the MS to the lowest few, say k, bins. These truncated
M modulation spectrograms, each of size k × T , are stacked to get a two-
dimensional representation of size (M·k)×T , referred to as the MS features. This
representation is then reshaped to a vector to obtain the MS exemplar. The
dimensionality of an MS exemplar will thus be DMS = M ·k ·T . In our previous
works [7,8] we showed that the approximate additivity assumption of speech and
noise is valid in the MS exemplar space as well. In comparison to the established
Mel exemplar-based approaches, the MS representation essentially retains the
same information within each frequency band for each frame, but also more
accurate information about the spectral distribution of different modulation
frequencies.

In this work, the MS exemplars are used as input exemplars to obtain the NMF-
based decomposition using the dictionary of MS exemplars AMS = [SMS NMS]
to obtain the activations XMS. However, since the processing chain to obtain
the MS features involves non-linear operations, there is no direct way to make
use of this decomposition to enhance the noisy speech as the inversion of the
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MS features to the time domain is not unique. We propose using the coupled
DFT dictionary extracted together with the MS dictionary to reconstruct
the DFT estimates and to obtain speech enhancement, i.e., the speech and
noise estimates are approximated as SdftXMS

s and NdftXMS
n , respectively. The

resulting frame-level estimates are used to enhance the noisy spectrogram. This
system is denoted as the MS-DFT setting.

However, any circular temporal shift (modulo the window length) of the DFT
spectrogram can yield the same MS representation and makes the mapping
many-to-one. To address this, we make use of temporal oversampling, i.e.,
smaller tMS

h while obtaining the MS, to reduce this ambiguity as pointed out in
[72]. In our previous work, setting tMS

h = tdft
h was found to be the best choice

[8]. It is also to be noted that increasing the low-pass cut of frequency beyond
20 Hz should be useful for a better speech and noise separation when the data
is corrupted by some noise having higher modulation frequencies. This on
the other hand requires a higher value of k which increases the computational
complexity and may lead to data overfitting. Hence, a compromise must be
pursued.

2.4 Experimental setup

2.4.1 Databases

To evaluate and compare the various settings, two databases were used.
Preliminary experiments were conducted on the AURORA-2 database which is
a small-vocabulary task and are then extended to the large-vocabulary database
AURORA-4 [82].

1) AURORA-2 Database: is a database based on the TI Digits corpus containing
utterances of digits from ’0-9’ and ’oh’ sampled at 8 kHz. For training the
acoustic models, a clean speech dataset and a noisy training dataset each
containing 8 440 utterances are used. For testing, test sets A and B are used.
The description of the database can be found in Section 1.4.1.

2) AURORA-4 Database: is a large vocabulary continuous speech database
based on the WSJ-0 corpus of read speech. In this work, only the single
microphone test set with 16 kHz sampling frequency, which contains a noise
free data set (test 01 or test A) with six noisy sets (test 02-07 or collectively
test B) corrupted with car, babble, restaurant, airport, street and train noises
added artificially at varying SNRs between 5 and 15 dB in steps of 1 dB, is
used. The development set of the database was for validation and parameter
tuning. For training the acoustic models and preparing the dictionaries, the
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clean and the multi-noise training sets containing 7 138 utterances each were
used. The description of the database is given in Section 1.4.1.

2.4.2 Exemplars and dictionary preparation

The dictionaries used to obtain the decomposition were prepared from the
training data. The noise data used to create the noise exemplars were obtained
from the noisy training data using the two-step procedure described in [64]. The
dictionaries were created using exemplars originating from random segments
of length T frames taken from the clean and noise training sets. Throughout
this work, the choice of T used was 30 and 15 frames for the AURORA-2 and
AURORA-4 databases, respectively as these values were found to yield the best
performance on similar tasks [58,62]. The value of T for AURORA-4 is chosen
to be smaller than the AURORA-2 database as the former has a lot more
variety of speech to be modelled as opposed to the latter and it demands a
larger dictionary to reasonably model the large vocabulary speech data, which
increases the computational complexity.

Every chosen random segment of length Tt seconds was first pre-processed by
removing the DC component and applying a pre-emphasis filter (a single order
high-pass filter of coefficient 0.97). The coupled exemplars were then extracted
as follows (ref. Fig. 2.2):

1. The STFT of the samples were obtained using a Hamming window of
length tdft

w = 25 ms and a hop size tdft
h = 10 ms. The magnitude of the

STFT is then obtained yielding a representation of size B × T . This is
then reshaped to obtain the DFT exemplar of length B · T .

2. The magnitude STFT obtained in the step above is pre-multiplied with
the DFT-to-Mel matrix M of size M × B to obtain the Mel-integrated
magnitude spectra of size M ×T . The Mel exemplar is then obtained by
reshaping the Mel spectra.

3. To obtain the MS representation, the time-domain signal is first filtered
into M band-limited signals using the equivalent rectangular bandwidth
filter banks implemented using Slaney’s toolbox [165]. Each of these
signals is then half-wave rectified and low-pass filtered at a 3 dB cut-off
frequency of 30 Hz (as used in [16]) to obtain the modulation envelopes.
A cut-off frequency of 30 Hz was chosen as it was found to perform better
when compared to other cut-off frequencies (20, 25 and 35 Hz) during the
pilot experiments (not included in the thesis). The MS representation
is then obtained by taking the magnitude STFT of these envelopes by
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keeping the hop size tMS
h = tdft

h = 10 ms and using a window length
tMS
w = 64 ms as in [8]. K = 64ms × fs frequency bins are used to

obtain the STFT, where fs is the sampling frequency. i.e., the frequency
resolution is ≈ 15 Hz resulting in approximately 3 frequency bins below
30 Hz cut-off frequency including the DC component. A value of k = 5
is chosen to capture the frequency leakage during low-pass filtering and
windowing. The MS exemplar is then obtained as detailed in Section
2.3.3.

Notice that the number of channels in the filter bank is the same as the
number of Mel filters used in the previous step. This choice is made to
have a fair comparison between the performances of the Mel and the MS
exemplars in separating speech and noise.

For the experiments on the AURORA-2 database, the parameters used were
B = 128 and M = 23 whereas the AURORA-4 setting used were B = 256 and
M = 40. Zero-padding was used while taking the STFT, whenever necessary.
Then three coupled dictionaries each for speech and noise were created with
the corresponding exemplars extracted from the same piece of training data.

To create the speech dictionary, Js = 10 000 exemplars were extracted
at random from the respective clean training data for experiments on the
AURORA-2 and AURORA-4 databases as used in [7,8]. Evaluations on the
AURORA-2 database used a noise dictionary containing Jn = 10 000 exemplars,
whilst for the AURORA-4 experiments, the noise dictionary used is comprised
of two parts: a fixed noise dictionary containing 5 000 exemplars extracted
from the noise training data and a small noise dictionary extracted from the
noisy test data to be enhanced itself, which are the cyclicly shifted versions
of its first T = 15 frames resulting in a total of Jn = 5 015 noise exemplars
as in [8,58]. Making use of the first 15 frames to model the noise is termed
noise-sniffing assuming the first 15 frames of the noisy test data contain noise
only. Notice that the second noise dictionary is changed for every utterance
and is concatenated with the fixed noise dictionary.

Extracting the fixed part of the coupled dictionaries was done only once per
database and they are kept fixed for all the experiments. The noise dictionaries
for the AURORA-2 database contain exemplars sampled from all the four
noise types available in the training data and the fixed noise dictionary for
AURORA-4 experiments contain all the six noise types in the training data.
No supervision was done to avoid silences in the speech exemplars or adjusting
the number of exemplars per noise type in the noise dictionary.
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2.4.3 NMF based speech enhancement

For testing, the noisy utterance is converted to the input exemplar space to
obtain the observation data matrix Ψin as explained in Section 2.2. Ψin is then
decomposed using the respective input dictionary using 600 NMF multiplicative
updates (1.16) with Xin initialised as (Ain)

⊺
Ψin and the corresponding filters

are obtained as described in Section 2.3. The resulting enhanced STFT
is inverted to the time-domain using the overlap-add method to obtain the
enhanced speech.

For the AURORA-2 setting, the decomposition was obtained with speech and
noise sparsity penalties as λs = 1.5 and λn = 1 for the Mel dictionary as used
in [64] whilst for the decomposition using the MS and DFT dictionaries, the
values used were λs = 1.75 and λn = 0.75 as in [7]. These values were obtained
after doing a grid-search in the range [0, 3] on a development set which is a
subset of 100 files taken from the test set A.

For the AURORA-4 experiments, in contrast to the AURORA-2 setting, the
noise sparsity penalty is fixed as 0.5 times the sparsity penalty of speech, i.e.,
λn = λs/2 , to reduce the computational effort while doing the grid-search
[58] on the development set. The decomposition using the Mel, MS and DFT
settings used a λs equal to 1.2, 1.6 and 1.7 respectively.

Speech enhancement was implemented using MATLAB and GPUs were used
for accelerating the NMF multiplicative updates using the parallel computing
toolbox. To evaluate and compare the speech enhancement qualities, we
used signal-to-distortion ratio (SDR), segmental SNR (SegSNR) and PESQ
measurements. SDRs were obtained using the BSS evaluation toolkit [181],
and the other two measurements were calculated using an implementation
by Loizou [118]. The improvement of these quality measures over the noisy
speech is reported as ∆SDR in dB, ∆PESQ in mean opinion score (MOS) and
∆SegSNR in dB.

2.4.4 ASR back-ends

1) HMM-GMM decoder for AURORA-2: For evaluating the ASR performance
on the AURORA-2 database, a GMM-HMM-based recogniser using the Mel-
frequency cepstral coefficients (MFCCs) was used. The HMM topology had a
total of 179 states comprised of 16 states describing each digit with 3 states
for silence (16× 11 + 3). GMM models were trained on MFCCs with 13 static
coefficients along with the delta and delta-delta coefficients leading to a 39
dimensional feature space. The emission probabilities of each of the HMM
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states were modelled using a GMM of 32 Gaussians with diagonal covariance.
The decoding is done using the Viterbi decoder with a finite state language
model as given in the AURORA-2 benchmark [82] with all digits having the
same word entrance penalties.

2) Hybrid setting for AURORA-2: Preliminary experiments on the AURORA-2
database revealed a complementarity in the number of insertions and deletions
between the MS-DFT and the Mel-DFT systems. So a hybrid approach is
proposed to combine the outcomes of these two recognisers to achieve a better
ASR performance. There exist several ways to combine results from two
systems like assuming independence and then balance the two streams [62],
minimum error based approach [54], etc. In order to avoid extra parameters,
we propose to combine the two streams by simply multiplying the likelihoods
originating from the Mel-DFT and MS-DFT settings [62]. Equal weights are
given to both the streams by raising both the resulting likelihoods by 0.5. i.e.,

p′(yt|qt) = (pmel(yt|qt))
1/2

(pMS(yt|qt))
1/2

(2.3)

where, pmel and pMS are the likelihoods for the observation yt given the HMM
state qt resulting from the Mel-DFT and MS-DFT streams, respectively. These
are then fed to the Viterbi decoder to obtain the ASR results.

3) HMM-GMM decoder for AURORA-4: For the AURORA-4 experiments,
the “recipe” recognisers in the Kaldi toolkit [143] are used. The HMM-GMM-
based recipe decoder for AURORA-4 makes use of context dependent tied-state
triphone models. Each model is comprised of three states and there are around
2000 distinct HMM states in total. GMM models are trained on 13 static
MFCC features from 7 consecutive frames upon which feature decorrelation is
applied using maximum-likelihood linear transform (MLLT) [154] and linear
discriminant analysis (LDA) [73], reducing the 91-dimensional vector to 40
dimensions. To compensate for channel variations, cepstral mean and variance
normalisation was also applied on the MFCC features.

4) DNN-HMM decoder for AURORA-4: In this work, we also evaluate the
ASR performance using the DNN-HMM hybrid system, where the posterior
probability estimates for the HMM states are provided by the trained DNNs
[81]. DNNs are comprised of multiple hidden layers stacked on top of each other
which allow them to learn higher-level information in the upper layers [138].
The recipe recogniser is based on the implementation described in [180] with
6 hidden layers comprised of 2048 sigmoid neurons per layer. The input layer
used 40 Mel filterbank coefficients with a context size of 11 frames summing
up to 440 input features in total.



PILOT EXPERIMENTS ON AURORA-2 39

-5 0 5 10 15 20
0

2

4

6

8

10

Input SNR (dB)

∆
S

D
R

(d
B

)

(a) Test set A

-5 0 5 10 15 20
0

2

4

6

8

10

Input SNR (dB)

∆
S

D
R

(d
B

)

Mel-Mel

DFT-DFT

Mel-DFT

MS-DFT

(b) Test set B

Figure 2.3: Average SDR improvements in dB obtained on test sets A and B
of the AURORA-2 database as a function of input SNRs in dB for various
settings. Legends are same for both plots.

To train the DNN, pre-training based on restricted Boltzmann machines
(RBMs) [80] is done first in order to avoid issues with random initialization
of the layers resulting in poor local optima. Once the pre-training is done,
a DNN which classifies the frames into triphone states is trained using the
stochastic gradient descent technique. Finally, the DNN is trained to classify
the whole sentence correctly. For the DNNs trained on clean training data,
only the clean part of the development set was used for cross-validation.

Average word error rates (WERs) are used as the performance measure in all
the ASR experiments. For training the acoustic models, the original clean
training data (referred to as clean training) and the enhanced noisy training
data processed by the corresponding NMF-based front-ends (referred to as
retraining) are used. Retraining equips the GMMs and DNNs to learn the
artefacts introduced by the enhancement stage and thus can improve the ASR
performance on the enhanced noisy test data.

2.5 Pilot experiments on AURORA-2

This section details the speech enhancement and ASR evaluations performed
on the AURORA-2 database. The results are reported on the entire test sets
including the 100 files used for tuning the sparsity parameters. Some useful
insights and discussions are also included in this section.
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2.5.1 Results on speech enhancement

∆SDR in dB averaged over the four noise types obtained for various systems
on the AURORA-2 database are summarised in Fig. 2.3. The shaded bars
denote the baseline systems and it can be seen that the proposed approach
using coupled dictionaries results in better SDRs in all cases. Notice that, even
though the Mel-Mel setting uses a pseudo-inverse, it yields almost the same
SDRs as of the DFT-DFT setting on test set A. This can be attributed to
the better speech and noise separation achieved by the Mel exemplars when
compared to the DFT exemplars. It can also be seen that the Mel-DFT
setting yields better SDRs than the Mel-Mel setting for both test sets, even
though the decomposition in both the systems are done in the Mel exemplar
space. It reveals the effectiveness of using the proposed coupled DFT dictionary
approach to directly obtain the DFT estimates over the low-rank approximation
using pseudo-inverse.

From the SDR evaluations on test set B which contains unseen noise cases, it
can be seen that the speech enhancement obtained is poorer when compared
to that of test set A, as the noise dictionary generalises poorly to the unseen
noise cases. It can also be seen that the Mel feature space is able to better
generalise to the unseen noise cases when compared to the DFT and MS
exemplar spaces. Using the proposed Mel-DFT approach can further increase
the SDR performance, which is a scenario where the proposed approach is
highly beneficial. It can also be seen that the MS space can yield a better
speech and noise separation at high SNRs when compared to the Mel features.

2.5.2 ASR evaluation

The average WERs obtained on the enhanced AURORA-2 data using the
HMM-GMM based decoder and also using the hybrid setting described in
Section 2.4.4 are summarised in Table 2.1 for GMMs trained on the clean
training data (clean training) and the enhanced noisy training data (retrained).
It can be seen that the method using coupled dictionaries yields improved
WERs and retraining the GMMs using the enhanced training data can further
improve the ASR performance. The Mel-DFT setting resulted only in a
slight improvement when compared to the Mel-Mel setting, even though the
former setting yielded a better speech enhancement in terms of SDRs. This
can be attributed to the simplicity of the AURORA-2 recognition task as it
has a limited vocabulary, and the digit classification is not affected by the
deformation introduced during the pseudo-inverse step.
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Table 2.1: Average WERs in % obtained for test sets A and B of the AURORA-2 database for various settings with
GMMs trained on clean and enhanced noisy training data. Shaded rows denote the baseline settings. Best scores are
highlighted in bold font.

Test Set A Test Set B

Setting clean -5 0 5 10 15 20 Avg. -5 0 5 10 15 20 Avg.
(20-0) (20-0)

GMM on clean training data

No Enh. 0.3 76.9 48.7 22.4 9.2 3.6 1.6 17.1 77.2 46.9 20.7 7.7 2.8 1.2 15.9
Mel-Mel 0.4 31.2 12.4 6.1 3.6 2.3 1.4 5.2 58.2 30.3 12.4 5.8 2.7 0.9 10.4
DFT-DFT 0.3 34.7 17.5 7.8 3.1 1.7 0.9 6.2 70.8 40.1 16.9 6.1 2.3 1.0 13.3
Mel-DFT 0.4 31.1 12.4 6.0 3.5 2.1 1.2 5.0 58.0 30.1 12.4 5.7 2.7 0.8 10.3
MS-DFT 0.3 30.5 12.5 4.4 2.1 1.3 0.7 4.2 68.6 34.3 14.5 5.1 2.1 0.8 11.4
Hybrid 0.4 27.2 11.4 3.7 2.1 1.5 0.9 3.9 62.4 32.8 13.0 5.3 2.0 0.6 10.7

GMM on noisy training data (Retrained)

No Enh. 0.8 61.9 24.9 6.8 2.6 1.2 0.7 7.2 64.3 26.2 8.5 2.9 1.4 0.8 8.0
Mel-Mel 0.5 25.1 8.9 3.3 1.5 0.9 1.0 3.1 52.8 20.8 6.8 2.6 1.2 0.7 6.4
DFT-DFT 0.4 21.4 8.5 2.5 1.1 0.7 0.5 2.7 58.1 24.5 7.5 2.4 1.0 0.6 7.2
Mel-DFT 0.5 25.2 9.0 3.1 1.4 0.7 0.6 3.0 52.6 21.0 6.8 2.7 1.2 0.6 6.4
MS-DFT 0.4 21.1 7.7 2.4 1.0 0.7 0.4 2.4 62.4 26.3 7.6 2.2 1.0 0.5 7.5
Hybrid 0.4 20.6 7.1 2.4 1.0 0.7 0.7 2.4 54.2 20.7 6.3 2.1 1.0 0.5 6.1
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It is also observed that the use of the MS representation can result in a WER
improvement for test set A and poorer results for test set B as it generalises
poorly for unseen noise cases. Nevertheless, it yielded complementary results
in terms of insertions and deletions when compared to the Mel setting and the
proposed hybrid setting was found to yield superior WER improvements on
both test sets by exploiting this complementarity. To the best of our knowledge,
average WERs of 20.6% (test A, SNR-5), 2.4% (test A, SNR(20-0)) and 6.1%
(test B, SNR(20-0)) using the hybrid setting are among the best results ever
reported on the AURORA-2 recognition task (reported in [62]). Overall, from
SNR -5 dB to 20 dB, the hybrid setting yielded WERs of 5.4% and 14.1% on
test set A and B, respectively.

Also notice that the method described in [64] directly makes use of enhanced
Mel features for the ASR back-end rather than going back to the time-domain.
Evaluations (not shown) revealed that this setting and the Mel-Mel setting are
equivalent as the ASR back-end for the latter also goes back to the Mel domain
by multiplication with the same Mel matrix M to obtain the MFCCs.

2.5.3 A qualitative analysis

A qualitative analysis on the observations made during the pilot experiments
on the AURORA-2 database is discussed in this section. The outcomes of
interest resulting from these evaluations are visualised in Fig. 2.4. The input
noisy signal is an arbitrary signal from the AURORA-2 database containing the
utterance "nine six zero" (transcribed as 96Z ) corrupted with babble noise at
an SNR of 0 dB. The filter weights used for enhancing the noisy STFT arising
from the various settings are shown in the middle row followed by the resulting
enhanced speech in the bottom row. For comparison, the oracle binary mask
is also included which yielded an output SDR of 10.9 dB. It is evident that the
quality of enhanced speech depends on how well these filter weights model the
constituent speech and noise contained in the noisy speech. The key aspects
which decide the performance of various settings are detailed below (ref. Fig.
2.4):

1) Low-rank approximation in the Mel-Mel setting: It can be seen that the piece-
wise linear approximation results in a set of filter weights that are smooth which
in turn cannot model the underlying harmonic structure of the constituent
speech signal and results in frequency smearing. This setting thus will always
result in a sub-optimal set of filter weights. Also notice that this setting still
yielded a reasonable SDR improvement which can be attributed to a better
speech and noise separation achieved using the Mel exemplars.
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Figure 2.4: Comparison of filter weights with oracle binary mask and the resulting enhanced speech spectrograms
obtained for various settings for an arbitrary noisy speech signal from the AURORA-2 database corrupted with
babble noise at an SNR of 0 dB. Log spectrograms are shown for a better visualisation. All filter weight plots used a
linear color mapping in [0, 1]. The resulting SDRs are also shown below each of the enhanced spectrograms.
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2) Poorer speech and noise separation in the DFT exemplar space: It can
be seen that the filter weights arising from the DFT-DFT setting are able
to model the underlying harmonic structure of speech since this setting can
directly obtain the estimates in the full-resolution frequency domain. However,
a majority of these weights are close to 1 even though the true SNR of the
underlying speech is 0 dB, which in turn retain most of the noise content and
results in poorer SDRs. Also notice that the noise in the speech inactive regions
are not properly suppressed. These happen because the speech exemplars are
also activated to model the babble noise contained in the noisy input during the
exemplar-based decomposition in the DFT space. Similar instances of speech
exemplars modelling noise are observed for unseen noise cases also (not shown)
[7]. This setting hence results in a poorer SDR improvement even though the
detrimental mapping stage is absent.

3) Full-rank approximation in the Mel-DFT setting: The filter weights obtained
for the Mel-Mel and Mel-DFT settings arise from the same set of activations
obtained from the NMF-based decomposition in the Mel exemplar space. It
can be seen that the Mel-DFT approach is able to better model the harmonic
structure in speech and utilise the better speech and noise separation properties
of the Mel exemplar space, yielding an SDR improvement of 0.9 dB over the
setting where the pseudo-inverse is used. This approach thus can yield a better
speech enhancement without any additional computational cost in the matrix
factorisation part, which is the most time-consuming part of the method.

4) Coupled dictionaries as a reliable mapping from the MS space to the
DFT/time domain: It is evident from the filter weights obtained for the
MS-DFT setting that the MS exemplars can yield a good speech and noise
separation, and using the coupled DFT dictionary can yield a reliable mapping
of these estimates to the full-resolution frequency domain.

2.5.4 Computational complexity vs performance

All the evaluated experiments in this work were accelerated using GPUs. The
computational complexity of these experiments depends on the length of the
temporal context T , the number of exemplars (Js + Jn) and the dimension
of features per frame considered. The average execution time needed for the
experiments on the AURORA-2 database, which used 10 000 exemplars each of
speech and noise with T = 30 frames for various settings are tabulated in Table
2.2. From the evaluations, it is clear that the proposed Mel-DFT setting results
in a good ASR and SDR performance without much additional computational
cost.



EXPERIMENTS ON AURORA-4 DATABASE 45

Table 2.2: Average execution time in seconds needed for various settings
evaluated on the AURORA-2 database. D is the number of rows in the
dictionary used to obtain the NMF-based decomposition. All dictionaries had
a total of 20, 000 columns each.

Mel-Mel DFT-DFT Mel-DFT MS-DFT

Exec.time 5.8s 16.2s 6.0s 14.8s
D 690 3840 690 3450

It is also observed in [8] that increasing the low-pass 3 dB cut-off frequency in
the MS exemplar extraction stage can yield an improvement both in terms of
SDRs and WERs, in presence of seen noise cases. However, this can have a
detrimental effect for signals corrupted with unseen noise and also results in
an increased computational complexity as the size of the MS exemplars should
also be increased.

Similar to the MS features, the performance of the DFT exemplars depends
on the type of noise and the true SNRs in the input noisy signal, and its
computational complexity depends solely on the sampling frequency of the
input data, given T and the window length tdft

w used to obtain the STFT. On
the other hand, the Mel and MS features are more flexible in the sense that their
dimensionality can be adjusted by varying choices for M , tMS

w etc., depending
on the application and allowable computational complexity.

2.6 Experiments on AURORA-4 database

2.6.1 Results on speech enhancement

∆SDR, ∆PESQ and ∆SegSNR averaged per test set obtained for the various
settings on the AURORA-4 database are presented in Fig. 2.5. As an additional
baseline system, a speech enhancement algorithm based on minimum mean-
square error log-spectral amplitude estimation [50] with the improved minima
controlled recursive averaging (IMCRA) technique for noise variance estimation
[40] is included.

It can be seen that the proposed approach using coupled dictionaries results
in better SDRs in all cases, consistent with the observations made during
the AURORA-2 experiments. It can also be seen that additional evaluations
using the PESQ and SegSNR also yielded promising improvements. IMCRA
approach yielded better SegSNR for some noise types, but poorer PESQ and
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Figure 2.5: Average improvements in speech enhancement performance in terms
of ∆SDR, ∆PESQ and ∆SegSNR obtained for each test set on the AURORA-
4 database for various settings. From left to right, these noises correspond to
test02-07 (car, babble, restaurant, street airport and train noises, respectively).
The legends are same for all plots.

SDR improvements were obtained. The MS-DFT setting yielded superior
improvements in PESQ MOS evaluation reaffirming the effectiveness of using
coupled dictionaries to obtain a reliable reconstruction in the DFT space.

2.6.2 ASR evaluation

The average WERs obtained for the HMM-GMM-based and HMM-DNN-
based decoders on various test sets of the NMF-enhanced AURORA-4 data
are tabulated in Table 2.3. The results for the retrained scenarios only are
presented for both the GMM and DNN based settings.

For acoustic modelling based on retrained GMMs, it can be seen that
the various speech enhancement approaches can greatly improve the ASR
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Table 2.3: Average WERs obtained in % for various test sets on the AURORA-4
data using the various settings with the HMM-GMM-based and HMM-DNN-
based ASR back-ends. Best scores are highlighted in bold font. Shaded rows
denote the baseline systems.

(a) Retrained GMM

Test Sets

Setting A B

01 02 03 04 05 06 07 Avg.

No Enh. 5.7 6.2 11.5 22.3 16.7 10.9 15.8 13.9
Mel-Mel 5.1 5.6 8.4 10.6 9.8 8.1 10.1 8.8
DFT-DFT 6.0 5.8 8.9 12.2 10.3 8.7 11.2 9.5
Mel-DFT 4.9 5.4 8.0 10.7 9.8 7.7 10.2 8.6
MS-DFT 4.9 5.7 7.3 11.1 9.0 7.0 10.1 8.4

IMCRA 4.6 5.6 10.7 15.3 13.8 11.4 14.4 11.9

(b) Retrained DNN

Test Sets

Setting A B

01 02 03 04 05 06 07 Avg.

No Enh. 3.3 4.6 7.3 9.3 8.5 6.6 9.1 7.7
Mel-Mel 2.9 4.1 6.6 8.8 8.9 6.1 9.2 7.3
DFT-DFT 3.2 4.1 6.9 7.8 7.6 6.5 8.0 6.8
Mel-DFT 3.2 4.7 7.5 8.5 8.4 6.9 8.2 7.4
MS-DFT 3.0 4.2 6.0 7.4 7.1 5.3 6.9 6.2

IMCRA 2.9 4.1 7.2 9.4 9.6 7.6 9.0 7.8

performance over a GMM trained and evaluated on noisy test data. IMCRA
yields the best performance on clean speech as it introduces the least distortions
on clean speech during speech enhancement. It can also be seen that the MS-
DFT setting yields the best performance out of all the evaluated settings with a
statistical significance of p < 0.03 (over a total of 32 118 words using a binomial
independence assumption).

On the other hand, a DNN trained on noisy training data yields around 40%
relative improvement over the GMM-based system and is even better than
the best performing retrained GMM setting (ref. Table 2.3a), thanks to its
multiple hidden layers which can learn and compensate for the noise also. It
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can be seen that using exemplar-based approaches for speech enhancement and
retraining can further improve its performance (ref. Table 2.3b). Also notice
that all settings yielded a better WER for clean speech as well, which can be
attributed to the ability of sparse representations in moving the test features
closer to the training features, thereby minimizing the speaker mismatches in
the training and test sets as pointed out in [150].

The MS-DFT setting yielded the best WERs here as well with a statistical
significance of p < 0.001 over all the other settings yielding an average WER
of 6.2% over test B of the AURORA-4 database.

2.7 Contribution to the CHiME-3 challenge

This section investigates the combination of the proposed NMF-based speech
enhancement technique using coupled dictionaries with the various ASR back-
ends for evaluation of the CHiME-3 challenge [14]. The CHiME-3 challenge
targets the performance of an ASR setting in real world, commercially
motivated scenario where the recordings are obtained using a tablet fitted with
a six-channel microphone array (more details can be found in Section 1.4.1). In
our framework, the six-channel data is converted to a single-channel signal using
a beamformer, enhanced using the NMF-based technique and fed to different
ASR decoders that use GMM, DNN and CNN-DNN -based acoustic modelling.

This section also presents an extension to the technique using coupled
dictionaries by adding adaptive dictionaries that are learned online from the
test data. In addition to the fixed speech and noise dictionaries, we add an
adaptive dictionary to model unseen noise which is also learned together with
the activations from the test data. The coupled atoms in the STFT space
for the adaptive dictionary are then learned using the activations (see Section
2.7.1). Such a setting is particularly useful when the noise in the test utterance
is not present in the training data, which is often the case in real applications.

2.7.1 Extension using the adaptive dictionary learning

In this section, we extend the approach using coupled dictionaries by adding
an adaptive noise dictionary to the existing fixed speech and noise dictionaries.
Adaptive noise dictionaries have been effectively used to model unseen noise
for the single dictionary cases [87]. In the coupled dictionary framework, the
input dictionary will be Ain = [Sin Nin N⋆in], where the superscript ⋆ denotes
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the adaptive part which will also be estimated from the test data as:

Ψin ≈
[

Sin
... Nin

... N⋆in

]









Xin
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· · ·
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n









= AinXin (2.4)

Both Xin and N⋆in are estimated by applying alternating multiplicative
updates to minimize the KLD between Ψin and AinXin given in [109], with the
adaptive dictionary initialised randomly and activations initialised as Ain⊺

Ψin,
where ⊺ denotes matrix transpose. Once the activations Xin are obtained, the
coupled adaptive dictionary in the STFT space is obtained such that :

Ψdft ≈
[

Sdft
... Ndft

... N⋆dft

]

Xin (2.5)

The multiplicative updates (same as used above from [109]) are applied only
on N⋆dft keeping everything else fixed. The time-varying filter is obtained in
the same manner as in Section 2.2 with Adft = [Sdft Ndft N⋆dft]. Notice that,
this approach is reliable only when the learned atoms model only noise and
not speech. Therefore, we use only a limited number of adaptive atoms which
is dependent on the length of the utterance and assume that the fixed speech
dictionary is sufficient to model speech and the adaptive atoms only model the
unseen noise.

2.7.2 Evaluation setup for CHiME-3

The decoders used are based on the Kaldi toolkit [143] scripts provided by the
CHiME-3 challenge organisers [14] for GMM, DNN and DNN+sMBR -based
evaluations. We used the training data enhanced by the respective front ends
to train all the models. In addition, we also include a CNN-based decoder
containing 2 convolutive hidden layers and 2 DNN-layers at input followed by
4 fully connected DNN layers as presented in1 [149].

The GMMs used are trained on MFCC features after applying LDA, MLLT
and fMLLR transforms [14]. DNNs are trained on 40 log-Mel features with a
temporal context of 5 frames on either side of the central frame. The DNN
contains six hidden layers with 2048 sigmoid neurons per layer. For training
the CNN system, the input features fed to the 2 CNN layers are 40 log-Mel

1The Kaldi CNN-DNN recipe used for the CHiME-3 challenge evaluation is available at
https://github.com/deepakbaby/chime3cnn
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features together with their delta and delta-delta as used in [149] and the 2
DNN layers at the input are fed with the pitch features along with the delta
and delta-delta coefficients. The output of the CNN and the DNN are fed to 4
DNN layers.

The speech and noise dictionaries used by the NMF-based speech enhancement
setting were created using the clean WSJ0 utterances and background noise
recordings respectively, that are provided with the CHiME-3 dataset. The
coupled speech and noise dictionaries contained 10 000 and 5 000 exemplars
respectively extracted by random sampling. For the adaptive dictionary part,
we choose the number of adaptive atoms as ⌈α ·Tf /T ⌉, where Tf is the number
of frames in the test utterance and 0 < α < 1. We chose α = 0.2 as it was found
to yield reasonably good enhancement on a few utterances in the development
set. The fixed part of all the coupled dictionaries are created only once and
are kept fixed for all the evaluations in this paper.

To compare various settings, the evaluations using the output of the beam-
former (enhanced in the CHiME-3 dataset) is considered as the baseline setting.

2.7.3 Results without the adaptive dictionaries

The average WERs obtained in % for various speech enhancement approaches
without adaptive atoms are given in Table 2.4. It can be seen that the
CNN-based decoders significantly outperform the DNN-based settings with an
absolute WER reduction of 3.3% on real development data (DNN+sMBR vs.
CNN-DNN+sMBR) for the baseline system.

The results show that the NMF-based approaches can improve the performance
of all the investigated ASR back-ends. Among the evaluated speech
enhancement front-ends, Mel-DFT setting performs the best in most of the
cases on the development data. Most of the enhancement approaches yield
only minor improvements on simulated data, thanks to a larger amount of
simulated training data over the real training utterances.

Also notice that the DFT-DFT setting performs better with the test set. It
can also be seen that the MS features perform better with the simulated data
than with the real data. This is because the modulation envelopes are sensitive
to the reverberant or noisy environments and hence it fails to model the highly
non-stationary and unseen noise in the real data.
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Baseline Mel-Mel Mel-DFT DFT-DFT MS-DFT

AM REAL SIM REAL SIM REAL SIM REAL SIM REAL SIM

Development Set

GMM 20.9 10.0 17.9 8.8 17.9 8.8 18.4 8.9 18.7 9.1

DNN 20.4 9.3 20.2 9.4 20.3 9.5 19.8 9.8 20.6 9.3
+sMBR 17.7 8.4 17.7 8.3 17.5 8.3 17.6 8.6 17.5 8.3

CNN-DNN 16.1 7.1 15.6 6.7 15.0 6.8 15.2 6.6 15.6 6.8
+sMBR 14.4 6.2 14.0 6.2 13.7 6.2 13.7 6.1 14.5 6.0

Test Set

GMM 37.7 11.1 31.2 9.6 30.8 9.9 30.9 9.6 33.6 9.6

DNN 41.9 12.5 40.0 12.6 40.6 12.7 37.9 12.8 40.8 11.7
+sMBR 34.5 10.6 32.7 11.1 32.9 11.3 32.4 11.0 33.2 10.3

CNN-DNN 29.7 7.4 27.4 7.7 26.4 7.6 25.8 7.6 28.2 7.7
+sMBR 27.0 6.9 24.3 7.0 24.4 6.9 24.9 6.7 27.2 6.9

Table 2.4: WERs in % obtained for various ASR back-ends with speech enhancement without the adaptive dictionaries.
The best result for each ASR back-end is highlighted in bold font.
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Baseline Mel-Mel Mel-DFT DFT-DFT MS-DFT

AM REAL SIM REAL SIM REAL SIM REAL SIM REAL SIM

Development Set

GMM 20.9 10.0 17.3 8.8 16.9 8.9 17.5 8.9 18.2 8.9

DNN 20.4 9.3 18.8 9.3 18.8 9.0 18.2 9.1 19.7 9.5
+sMBR 17.7 8.4 16.7 8.4 16.7 8.1 16.5 8.2 17.2 8.4

CNN-DNN 16.1 7.1 14.3 7.0 14.7 7.2 14.3 6.8 15.2 6.8
+sMBR 14.4 6.2 13.2 6.1 12.9 6.4 13.2 6.2 13.6 6.2

Test Set

GMM 37.7 11.1 30.2 10.0 29.6 9.8 29.7 9.5 32.9 9.6

DNN 41.9 12.5 35.4 11.8 36.2 11.3 34.0 10.5 39.5 11.9
+sMBR 34.5 10.6 30.8 10.5 31.8 10.5 28.9 9.0 32.8 10.4

CNN-DNN 29.7 7.4 25.7 7.5 25.5 7.8 24.0 7.5 28.3 7.3
+sMBR 27.0 6.9 24.6 7.1 23.1 6.9 22.8 7.0 25.3 6.6

Table 2.5: WERs in % obtained for various ASR back-ends with speech enhancement with the adaptive dictionaries.
The best result for each ASR back-end is highlighted in bold font.



CONTRIBUTION TO THE CHIME-3 CHALLENGE 53

2.7.4 Results with the adaptive dictionaries

The average WERs obtained in % for various speech enhancement approaches
when adaptive atoms are used are tabulated in Table 2.5. It can be seen that
the inclusion of adaptive atoms and learning the coupled atoms online can yield
significant WER reductions over the fixed dictionary scenarios. Notice that the
improvements are mostly obtained on real data and the Mel-DFT setting with
adaptive atoms yielded an absolute WER reduction of 0.8% (6% relative) for
a state-of-the-art decoder using CNN-DNN+sMBR on real development data,
when compared to the same setting without adaptive atoms.

In short, the experiments reaffirm the effectiveness of the NMF-based speech
enhancement using coupled dictionaries as front-end for state-of-the-art ASR
back-ends and we show that the extension using adaptive atoms can be
particularly useful when processing recordings taken from real-world scenarios.

2.7.5 Best results obtained

Dev. Set Test Set

Environment REAL SIM REAL SIM

BUS 15.52 5.88 28.38 5.83
CAF 12.52 8.04 26.45 7.32
PED 11.59 5.32 22.29 6.76
STR 11.84 6.24 15.07 7.84

Avg. 12.87 6.37 23.05 6.94

Table 2.6: Detailed results obtained for the best ASR setting on CHiME-3
challenge data.

In this work, the best result obtained on the real development set is for the
setting which uses the Mel-DFT speech enhancement front-end with adaptive
atoms with a CNN-DNN+sMBR -based ASR back-end. The detailed results
are given in Table 2.6. These results are obtained for a language model weight
of 11 and 6 sMBR iterations. We report average WERs of 23.05% and 6.94%
on the real and simulated test sets, respectively.

On the real test data, the best setting yields an absolute WER improvement of
4% (15% relative) over the baseline setting which uses the beamformer output.
It is also interesting to notice that most of the speech enhancement front-
ends yield only slight improvements on the simulated data, thanks to a better
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acoustic modelling using CNN and a larger amount of simulated training data
over the real training data.

2.8 Conclusions

In this work, we proposed using coupled DFT dictionaries, extracted jointly
with the input dictionaries used in the exemplar-based speech enhancement
systems, for a better mapping from the input space to the DFT space to
obtain a better set of filter weights. The approach was found to be effective in
overcoming the low-rank approximation where the input dictionary is created
using lower-dimensional Mel features and also to obtain a reliable mapping
from the MS space to the DFT space. The simulation results revealed that the
proposed approach can improve the performance of exemplar-based techniques
for both speech enhancement and automatic speech recognition tasks.

The use of modulation spectrogram features, which are inspired from the
human auditory processing, was also introduced to the field of exemplar-based
techniques in this work, and we showed that using coupled dictionaries can be
a reliable way to reconstruct the underlying speech and noise estimates in the
DFT domain. The ASR evaluation also revealed that feeding NMF-enhanced
data can greatly benefit both the HMM-GMM-based and DNN-HMM-based
state-of-the-art ASR systems with and without retraining.

The best performing settings in this work yielded overall average WERs of 5.4%
and 14.1% respectively for test sets A and B of the AURORA-2 database, and
7.9% and 5.7% respectively for the GMM-HMM-based and DNN-HMM-based
ASR systems on the single microphone sets (test01-test07) in the AURORA-4
database.

In addition, we evaluated the combination of various NMF-based speech
enhancement front-ends and ASR back-ends for evaluation of the CHiME-3
challenge. We also introduced an extension to the existing work by adding an
adaptive dictionary, the atoms of which are learned online. The evaluations
reveal that the speech enhancement approaches together with adaptive atoms
can yield significant performance improvements for all the ASR back-ends
including the CNN-DNN-based system. The best WER on the real CHiME-
3 test data obtained in this work is 23.05%. It is also observed that, in a
realistic scenario where the training data available from real conditions is fewer,
the NMF-based speech enhancement using coupled dictionaries together with
adaptive atoms can be effectively used to mitigate the mismatches between the
training and the real test data.



Chapter 3

Hybrid Input Spaces for
Exemplar-based Feature
Enhancement

This chapter extends the use of coupled dictionaries by introducing hybrid input
spaces that are chosen for a more effective separation of speech from background
noise. This work investigates the use of two different hybrid input spaces
which are formed by incorporating the full-resolution and modulation envelope
spectral representations with the Mel features. A coupled output dictionary
containing Mel exemplars, which are jointly extracted with the hybrid space
exemplars, is used to reconstruct the enhanced Mel features for the ASR back-
end. When compared to the system which uses Mel features only as input
exemplars, these hybrid input spaces are found to yield improved word error
rates on the AURORA-2 database especially with unseen noise cases.

This chapter is adapted from: Deepak Baby and Hugo Van hamme. Hybrid
Input Spaces for Exemplar-based Noise Robust Speech Recognition using Cou-
pled Dictionaries. 23rd European Signal Processing Conference (EUSIPCO),
pp. 1676-1680, September 2015.
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3.1 Introduction

Spectral factorization methods based on NMF attempt to decompose the
features extracted from a noisy recording as the weighted sum of speech and
noise dictionary atoms or exemplars, and are found to be useful for noise-robust
ASR [60,191,196]. Most of the conventional exemplar-based ASR systems
use exemplars extracted from feature spaces like the Mel [64], Gabor [89],
DFT (refers to the magnitude of the discrete-Fourier transform) [186] etc., to
obtain the compositional model and enhance the corresponding features. These
enhanced features are then used to find the enhanced Mel-frequency cepstral
coefficients (MFCCs) to be fed to the ASR back-end.

The efficiency of an exemplar-based NMF approach depends on the ability of
the chosen exemplar space in differentiating features originating from speech
and noise, and it is found that different exemplar spaces yield different
performance depending on the type of added noise and signal-to-noise ratio
(SNR) levels [7]. It is also noticed that, apart from increasing the computational
complexity, using higher dimensional exemplars derived from feature spaces like
the DFT [186], or modulation envelope spectra (MS) [7,8], etc. will result in
too detailed modelling of the seen noise cases to generalise well for the unseen
noise cases.

In order to address the issues faced by the higher dimensional features and to
combine the speech and noise separation properties of different feature spaces,
we propose the use of hybrid input spaces to obtain the decomposition. To
reconstruct the Mel estimates from this, a variant of the coupled dictionary
approach described in [7] is used. In this setup, the exemplars for the coupled
hybrid input and the Mel output dictionaries are extracted from the same
piece of training data. Then for evaluation, the underlying Mel features are
reconstructed using the coupled Mel dictionary, following the decomposition in
the hybrid input space.

To obtain a hybrid input space, two feature spaces are chosen first which are
called as primary and secondary feature spaces. A hybrid exemplar is then
obtained by concatenating the exemplars belonging to these feature spaces
that are extracted from the same piece of training data. In this work, the Mel
space is chosen as the primary feature space for its reduced dimensionality and
good separation capabilities [7,63] with the DFT or MS representation as the
secondary feature space.

To address the "curse" of large dimensionality of the chosen secondary spaces,
we propose to use a trimmed secondary exemplar space to be concatenated with
the full length primary space exemplar. The trimmed exemplar is obtained
by reshaping only a subset of the feature frames belonging to the secondary
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feature space. The decomposition obtained with such a hybrid space will thus
rely mainly on the primary feature space with the trimmed secondary space
acting as a cue to regularise the separation.

The simulation results obtained on the AURORA-2 database revealed that,
even with the secondary space trimmed down to a single frame, both the hybrid
input spaces yield improved performances in terms of word error rate (WER)
over the baseline system which uses Mel features only. The computational
complexity of the proposed approach is also found to be comparable to that of
the baseline system as trimmed secondary spaces are used.

3.2 Method

3.2.1 Feature enhancement using NMF

NMF-based compositional models attempt to decompose the features extracted
from a noisy recording as a sparse non-negative weighted sum of speech and
noise atoms or exemplars stored as columns in a speech and noise dictionary
denoted as S and N, respectively. Exemplars are extracted from training
data spanning multiple, say T , frames to capture temporal dynamics, followed
by reshaping to form a vector. The representation for the noisy utterance
in the exemplar space, Ψ, the columns of which are obtained by reshaping
sliding windows of length T frames along the length of the utterance [63], is
decomposed to get the activations, X, as:

Ψ ≈
[
S N

]
[

Xs

Xn

]

= AX s.t. X ≥ 0. (3.1)

The approximation is done such that it minimises the cost function,

C = DKLD(Ψ‖AX) + Λ⊙X (3.2)

where, DKLD is the element-wise Kullback-Leibler divergence

DKLD(x‖y) = x log(x/y)− x + y (3.3)

and Λ is the sparsity penalty on the activations X [64]. ⊙ denotes element-
wise multiplication. The frame-wise speech and noise estimates, ŝ and n̂
are then obtained after removing the windowing effect by adding the frames
belonging to the overlapping windows in the windowed estimates SXs and
NXn, respectively. A frame-level Wiener-like filter is then obtained after
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Training
data

Hybrid Exemplar
Representation Ahyb

Mel Exemplar
Representation Amel

Ψhyb ≈ AhybXhyb

noisy data

W′ =

[
SmelX

hyb
s

]∗

[AmelXhyb]∗

TRAINING TESTING

Figure 3.1: Block diagram overview of the proposed system using hybrid input
spaces and coupled dictionaries for Mel feature enhancement.

element-wise division as, G = ŷ ⊘ (ŷ + ŵ), which when applied to the noisy
features yields enhanced features.

3.2.2 Proposed method using hybrid input spaces

In the proposed approach, the activations Xhyb are obtained using the
dictionary Ahyb =

[
Shyb Nhyb

]
, which contains exemplars belonging to a

hybrid input space, using the NMF approach explained in Section 3.2.1. The
windowed Mel speech and noise estimates are then reconstructed using the
coupled Mel dictionary, which contains coupled exemplars belonging to the
Mel feature space, as SmelXhyb

s and NmelXhyb
n , respectively. Notice that the

corresponding atoms in the coupled dictionaries, Ahyb and Amel, are extracted
from the same piece of training data which guarantees a reliable reconstruction
of the underlying speech and noise estimates in the Mel domain [7,130].

The proposed approach is summarised in Figure 3.1. The notations used to
explain the test phase are: Ψhyb for the noisy speech represented in the hybrid
exemplar domain and [Y]

∗
denotes the matrix obtained after removing the

effect of overlapping windows in the windowed observation Y. All matrix
divisions should be considered element-wise.

To obtain the hybrid input exemplars, the primary and secondary exemplars
are created first from the same piece of training data spanning T frames. Let TS

be the trimming operator which trims an exemplar spanning T frames down to
an exemplar spanning a subset S ⊆ {1, 2, . . . , T} of the T frames. Thus, from
an exemplar with frames indexed from 1 through T , the trimming operator TS

selects only the frames with index contained in S, and reshapes them into a
vector.
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Data
(T frames)

Primary Exemplar
Representation

Secondary Exemplar
Representation

A†

A‡

βTS{·}

Concatenate
Hybrid Space

Exemplar

Figure 3.2: Block diagram overview of the processing chain used to obtain the
proposed hybrid exemplar representation.

The trimmed secondary exemplars are obtained by applying TS on the
secondary exemplars, which are also scaled with β to balance its contribution
on obtaining the separation. This trimmed and scaled secondary exemplar is
then concatenated with the corresponding primary exemplar to get the hybrid
representation. Thus, the hybrid exemplar representation for noisy speech Ψhyb

and the hybrid dictionary can be expressed as:

Ψhyb =

[
Ψ†

βTSΨ‡

]

and Ahyb =

[
A†

βTSA‡

]

(3.4)

where, the superscripts † and ‡ denote the primary and secondary exemplar
spaces, respectively. The cost function in this setting thus can be expressed as:

C′ = DKLD(Ψhyb‖AhybXhyb) + Λ⊙Xhyb

= DKLD

([
Ψ†

βTSΨ‡

]∥
∥
∥
∥

[
A†

βTSA‡

]

Xhyb

)

+ Λ⊙Xhyb

= DKLD(Ψ†‖A†Xhyb) + βDKLD(TSΨ‡‖TSA‡Xhyb) + Λ⊙Xhyb

using (3.4) and since the cost function being element-wise. It can thus be
seen that the secondary space in effect acts as a regularisation to obtain the
activations and β acts as the regularisation weight.

3.3 Description of input spaces

The various input spaces which are chosen to evaluate the proposed approach
along with the chosen baseline systems are described in this section.
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3.3.1 Mel, DFT and MS only baselines

For a fair evaluation and completeness, three single-input space baseline
systems which uses the Mel, DFT and MS representations respectively are
evaluated and compared first. All these systems are evaluated using the
coupled Mel output dictionary approach depicted in Figure 3.1 with the hybrid
exemplars replaced by the Mel, DFT and the MS exemplars, respectively.

Mel baseline: This system uses the Mel exemplars, which are created by
reshaping the Mel-integrated magnitude spectra of acoustic data spanning T
frames. The decomposition of the noisy data expressed in the Mel exemplar
domain is obtained using the Mel dictionary, Amel = [Smel Nmel]. The Wiener
filter for the noisy Mel enhancement is found using the procedure explained in
Section 3.2.1. Also notice that these dictionaries act as the primary exemplar
space dictionaries also for the proposed hybrid approach.

DFT baseline: For this setup, the coupled DFT and the Mel dictionaries
are obtained first, with the DFT and Mel exemplars extracted from the same
piece of training data. To obtain a DFT exemplar, magnitude spectrogram of
a training data spanning T frames is reshaped to a vector. For evaluation, the
DFT exemplar representation of the noisy data is decomposed using the DFT
dictionary, Adft = [Sdft Ndft]. The activations thus obtained, Xdft are then
applied on to the coupled Mel dictionary to get the speech and noise estimates
for noisy Mel enhancement (ref. Section 3.2.2).

MS baseline: The MS representation was proposed as part of a computational
model for human hearing which relies on the low frequency amplitude
modulations within various frequency bands [141] which are called modulation
envelopes. Let M be the number of frequency bands considered. The MS
representation for acoustical data is obtained by taking the short-time Fourier
transform (STFT) of the modulation envelopes corresponding to each frequency
band [71]. For non-negativity, only the magnitude of the STFT is considered.

Because of the low-pass filtering operation, only very few lower bins of the
MS will contain significant energy and it is possible to truncate each of the
MS to the lowest k bins [16]. All these truncated MS of size k × T each are
then stacked to obtain a matrix of size (M ·k)×T which are referred to as MS
features [7]. The MS exemplars are then obtained by reshaping the MS features
which are stored in the MS Dictionary, AMS = [SMS NMS]. The MS baseline
system is then evaluated using the coupled dictionary approach explained in
Section 3.2.2 with the decomposition obtained in the MS exemplar space.
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3.3.2 Hybrid input spaces: Mel-DFT and Mel-MS spaces

In this work, we investigate the Mel-DFT and Mel-MS hybrid spaces. For
this, the Mel, DFT and MS exemplars are created first as explained in Section
3.3.1 from the same piece of data spanning T frames. The trimmed secondary
exemplars are then created, by applying TS on the DFT and MS exemplars,
which are also scaled with β1 and β2, respectively. These are then concatenated
with the corresponding Mel exemplar (ref. Section 3.2.2) to get the hybrid Mel-
DFT and Mel-MS exemplar representations, respectively.

During testing, for every sliding window of length T along the length of
the noisy utterance, the Mel and the secondary exemplar representations are
obtained. The secondary exemplar representation is then trimmed using TS

and scaled, followed by concatenating with the Mel exemplar representation to
be stored as columns in Ψhyb.

3.4 Evaluation experiments

3.4.1 Experimental setup

For evaluation, test sets ’A’ and ’B’ of the AURORA-2 corpus which contains
utterances of digits from ’0-9’ and ’oh’ are used. The training set of the corpus
is composed of 8440 clean speech utterances and 6768 noisy utterances which
are corrupted by four additive noises (subway, babble, car and exhibition hall).
Test Sets A and B are used for evaluating the various techniques discussed in
this chapter (refer Section 1.4.1). The WERs obtained after taking the average
over the four noise types for clean speech, -5 dB and the combined average of
results obtained for SNRs ranging from 20-0 dB are presented.

The noise data required to obtain the noise exemplars are created from the
noisy training set using the two step procedure explained in [64]. The clean
and the noise samples are pre-processed by removing the dc component and
applying pre-emphasis with filter coefficient 0.97. The exemplars for the Mel,
and the trimmed DFT and MS spaces are then created using the steps explained
in Section 3.3. To extract the coupled exemplars, random pieces of training
data spanning 300 ms were used. No supervision was done to avoid the overlap
between the chosen random pieces of data or to avoid silence. Then, for each
of the chosen random piece of training data:

1. To obtain the Mel exemplars, the DFT of the chosen random piece of training
data was first obtained using a window length and hop size of 25 ms and 10
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ms respectively with 128 frequency bins within the Nyquist frequency (4 kHz),
leading to a DFT representation of size 128× 30. This is then Mel-integrated
with M = 23 channels. These frame-level Mel features of size 23 × 30 thus
obtained are then reshaped to obtain a Mel exemplar of length 690.

2. To obtain the DFT exemplar, the DFT representation obtained in Step 1 is
reshaped to a vector (of length 3, 840).

3. To obtain the MS feature representation, the data is first split across M = 23
frequency channels using the equivalent rectangular bandwidth filter banks
implemented using Slaney’s toolbox [165]. Each of these is then half-wave
rectified and low-pass filtered at a 3 dB cut-off frequency of 30 Hz to obtain
the modulation envelopes. The modulation spectra for each channel is then
found by taking the STFT of each of these envelopes with a window length of
64 ms and hop size 10 ms. With the sampling frequency of 8 kHz and STFT
with 128 bins within the Nyquist frequency, each of the spectra was truncated
to k = 5 bins and are stacked to get the MS features [7] of size 115× 30. The
MS exemplar representation is then obtained after reshaping the MS features
to a vector of length 3, 450.

For evaluation, the coupled dictionaries Amel, Adft and AMS were created with
10000 speech and noise exemplars each. The hybrid input space dictionaries
were then created as explained in Section 3.3.2 for different choices of S, β1 and
β2. During testing, the corresponding exemplar space representations of the
noisy data, Ψ, were obtained as explained in Section 3.3 using the settings given
above. The NMF-based decomposition was obtained with 600 multiplicative
updates with sparsity constraint. A sparsity penalty of 1.5 for speech and 1 for
noise exemplars as in [62] were used for all the evaluated decompositions except
for the MS and DFT baselines, both of which used 1.75 and 0.75 respectively as
in [7]. GPUs were used to accelerate the NMF iterations using the MATLAB
parallel computing toolbox.

For the ASR back-end, a GMM-HMM based decoder using MFCC features
was used. Each digit in the HMM topology was described by 16 states together
with 3 silence states resulting in a total of 179 states. The GMM models were
trained on the MFCCs obtained from the clean training data and enhanced
noisy training data using the respective front-ends (referred to as retraining),
with 13 static features along with their velocity and acceleration coefficients
leading to a 39 dimensional feature space. The GMM for each of the HMM
state was modelled using 32 Gaussians with diagonal covariance.
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Table 3.1: WER in % obtained for various baseline systems as a function of
SNR in dB evaluated on a subset of 100 files per test set of the AURORA-2
database. The average execution time per utterance required by the setting is
also shown.

test set A test set B Exec.

cln 20 15 10 5 0 -5 20 15 10 5 0 -5 time

Mel BL 0.2 1.5 1.9 3.7 5.0 11.6 27.6 1.3 1.6 4.4 9.0 26.7 57.9 5.8s
DFT BL 0.1 0.9 1.9 2.7 7.2 17.2 33.3 0.6 1.6 6.3 14.2 35.1 67.8 12.2s
MS BL 0.0 0.7 1.3 1.9 4.4 12.5 30.5 0.5 1.7 5.1 11.2 34.8 69.0 10.8s

3.4.2 Comparison between the baseline systems

To reduce the experimentation time, we compare the three chosen baseline
systems evaluated on a subset of 100 files per test set which is tabulated in
Table 3.1. It can be seen that for test set A, the Mel baseline performs better at
lower SNRs and as the SNR increases, higher dimensional features yield better
separation than the Mel features resulting in improved WERs. The higher
dimensionality of these features results in poorer modelling of the unseen cases
which explains their inferior performance for test set B. Also notice that the
MS and DFT baseline settings are computationally expensive which is almost
twice that of the Mel baseline setting.

The different baseline streams were also found to yield complementary results
which can also benefit the hybrid input space approach. For the remaining part
of this chapter, the Mel exemplar system is chosen as the baseline for its good
performance, lower dimensionality and also being the primary input space for
the hybrid setup.

3.4.3 Parameters for the hybrid Mel-DFT space

With the baseline system chosen as the Mel exemplars only case, which is the
same as the primary exemplar space chosen for the proposed hybrid spaces,
the effectiveness of the proposed approach relies on the optimal choices of S
and β. These are the two parameters which decide on the contribution of
the secondary feature spaces on regularising the speech and noise separation
resulting from the Mel baseline system. This section details the analysis of the
hybrid Mel-DFT space for different choices of S and β1 which is summarised
in Table 3.2.
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Table 3.2: WER in % obtained as a function of SNR in dB on the AURORA-2
database for the hybrid Mel-DFT space approach. The results obtained for
various choices of S and β1 are given.

test set A test set B

S β1 clean (20-0) -5 (20-0) -5

Mel Baseline 0.4 5.2 28.0 9.2 59.4

Hybrid Mel-DFT space

{1} 0.5 0.4 5.0 27.6 9.3 59.9
{1} 0.2 0.4 4.9 27.1 9.2 60.1
{15} 0.2 0.4 5.1 27.8 9.4 60.4

Switching 0.2 0.3 4.7 26.6 9.0 59.7

As the minimum choice, the effect of using the secondary DFT spaces with
|S| = 1 are investigated. As a pilot experiment, the effect of the first DFT
frame i. e., S = {1} with β1 = 0.5 is investigated, which resulted in marginal
performance improvement over the Mel only system. The optimum value of
β1 to get the best separation was then found to be 0.2 after doing a grid
search in the range [0.05, 0.5] on a subset of 100 files per noise type . The
S = {1} system with tuned β1 is then evaluated over the complete test set
which confirmed the effectiveness of the secondary DFT space in significantly
improving the recognition results.

With the middle frame more correlated with the other frames in the given
temporal context of 30 frames, the choice of S ={15} was supposed to be more
effective as it can be a better representative of all the DFT frames compared
to the first DFT frame. However, on the contrary, the simulation experiments
yielded inferior performance when compared to the S ={1} case.

An analysis of the S = {1} and S = {15} cases revealed that such a fall in
performance can be attributed to the reshaping operation when considering
multiple frames (here, T = 30) to obtain the exemplar space representation of
the noisy test utterance Ψhyb (ref. Section 3.2). For the utterances in which
the speech onset happens before the 15th frame, S = {15} system was found
to fail in detecting the speech onset resulting in a substitution or deletion.
To address this and to capture the effectiveness of the middle DFT frame, a
switching system which chooses the set S adaptively along the length of the
utterance is proposed.

The proposed switching approach is depicted in Fig. 3.3. As explained in
Section 3.2, the noisy utterance is first converted to the primary and secondary
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Figure 3.3: Block diagram overview of the proposed switching approach to
obtain the activations.

exemplar space representations by means of a sliding window spanning T frames
along the length of the utterance. Let W be the total number of resulting
sliding windows. In the switching approach, for the first and the last T/2
sliding windows of the utterance we use the secondary exemplar with S ={1}
and S ={T } respectively, and S ={T/2} for all the remaining windows falling
in the middle. Thus we need to use three different dictionaries (A1, A2 and
A3) depending on the choice of S in this setup, and the resulting activations
are concatenated to obtain the overall activations as X = [X1 X2 X3]. It can
be seen from Table 3.2 that the assessment of the proposed approach yielded
improved WERs over all the other investigated setups.

The performance improvement over the baseline system can be attributed to
the inclusion of a secondary feature space which can regularise and improve
the speech and noise separation. Also notice that the secondary space is not
required to span the entire temporal context considered per exemplar to obtain
a significant improvement in separating speech from noise.

3.4.4 Comparison of Mel-DFT and Mel-MS spaces

A comparison between the systems using the proposed hybrid input spaces is
presented in this section. To obtain the Mel-MS results, the switching setup is
used with a β2 = 0.1 which was found after a grid search same as in Section
3.4.3. Table 3.3 summarises the evaluated results.
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Table 3.3: WER in % obtained for various approaches as a function of SNR in
dB on the AURORA-2 database.

test set A test set B

Experiments clean (20-0) -5 (20-0) -5

GMM trained on clean data

Mel Baseline 0.4 5.2 28.0 9.2 59.4
Mel-DFT space 0.3 4.7 26.6 9.0 59.7
Mel-MS space 0.3 4.7 27.2 8.8 59.2

GMM trained on enhanced noisy data

Mel Baseline 0.8 2.9 23.0 7.4 55.5
Mel-DFT space 0.6 2.8 22.2 6.5 53.3
Mel-MS space 0.5 2.7 21.2 6.2 52.3

It can be seen that both the proposed approaches yield statistically significant
(p < 0.01) improvement in performances when compared to the Mel baseline
system for both seen and unseen noise cases. Also notice that a significant 16%
relative WER improvement is obtained on test set B SNR(20-0), suggesting
that the proposed approach can mitigate the effects of unseen noise cases as
well. Inclusion of the MS space as a secondary space was found be more effective
when compared to the DFT space. This can be attributed to the better speech
and noise separation properties of the MS features when compared to the DFT
features as observed in [7,8].

It was also observed in [7] that the MS features can perform well only for the
seen noise cases as the MS features lead to more accurate representation of
speech and noise, which will not generalise well for the unseen noises. But
in the proposed approach, it is found that using trimmed MS exemplars as
secondary features can be beneficial for unseen noises also.

The average execution times per utterance are tabulated in Table 3.4. It can
be seen that the hybrid exemplar space yields an improved performance at a
comparable computational complexity.

3.5 Conclusion and future work

In this work, we presented an exemplar-based feature enhancement method
for ASR using hybrid input spaces and coupled dictionaries. The use of
hybrid spaces was found to yield improved recognition accuracies over the
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Table 3.4: Average execution time needed in seconds per utterance for the
various settings with 20000 exemplars in the dictionary. Size (or length) of the
exemplars are also shown.

Setting Mel Baseline Mel-DFT Space Mel-MS Space

Exec. time 5.9 s 6.4 s 6.2 s
Size 690 818 805

baseline system. This chapter also presented an effective way of combining
multiple input spaces by means of an adaptively trimmed secondary exemplar
representation without much increase in the computational complexity. The
trimmed representation is also found to be effective in reducing the effects of
overtraining to seen noise cases and generalises better to unseen noise cases
when compared to full length exemplar representations.

Further, possibly adaptive, feature dimensionality reduction and its effect on
reducing overfitting are to be investigated. Another future work is to study
the effect of the number of noise exemplars and sparsity penalties in modelling
unseen noise cases.



Chapter 4

Investigating Modulation
Spectrogram Features for
DNN-based ASR

Deep neural network (DNN) based acoustic modelling has been shown to yield
significant improvements over Gaussian Mixture Models (GMM) for a variety
of automatic speech recognition (ASR) tasks. In addition, it is also becoming
popular to use rich speech representations, such as full-resolution spectrograms
and perceptually motivated features, as input to the DNNs as they are less
sensitive to the increase in the input dimensionality. In this chapter, we
evaluate the performance of a DNN trained on the perceptually motivated
modulation envelope spectrogram features that model the temporal amplitude
modulations within sub-band speech signals. The proposed approach is shown
to outperform DNNs trained on a variety of conventional features such as Mel,
PLP and STFT features on both TIMIT phone recognition and the AURORA-
4 word recognition tasks. It is also shown that the approach outperforms a
sophisticated auditory model based on Gabor filter bank features on TIMIT and
the channel matched conditions of the AURORA-4 database.

This chapter is adapted from: Deepak Baby and Hugo Van hamme. Investigat-
ing Modulation Spectrogram Features for Deep Neural Network-based Automatic
Speech Recognition. Proc. INTERSPEECH, ISCA, pp. 2479–2483, September
2015.
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4.1 Introduction

Gaussian Mixture Model (GMM) -based hidden Markov models (HMMs)
have traditionally been the state-of-the-art in the field of automatic speech
recognition (ASR) technology. Recent advances in deep neural network based
approaches have shown significant performance improvements over the GMM
based approaches on a variety of ASR tasks [42,46,81], thanks to its multiple
hidden layers learning rich multiple projections. It is also shown to be robust to
various kinds of distortions when compared to the GMMs [45,162], sometimes
improving the performance by large margins.

However, the DNN performance is still far from that of humans especially
in noisy environments. Therefore, there is still a growing interest in feature-
related research that focuses on applying our knowledge about human auditory
processing into this framework. Traditionally, GMMs needed uncorrelated
observations due to its diagonal covariance design and this forced most of
these attempts to make use of a feature decorrelation step in the end. On
the other hand, it is shown that DNNs are less sensitive to the increase in
input dimensionality and correlation between features. In particular, Mel-filter
bank outputs are shown to yield better performance than the conventional lower
dimensional features such as MFCC or PLP coefficients [46,128]. This allows
us to use richer, physiologically motivated features to train the DNNs and aim
a better cross-fertilization between the human speech recognition (HSR) and
the ASR communities.

There exist some studies that evaluate the performance of DNNs trained on
physiologically motivated features. Most of these analyses take into account
the poorer frequency resolution of the basilar membrane and the role of
spectral and temporal modulations in human hearing. In [126], a comparison
of various features such as Gammatone filter coefficients, damped oscillator
coefficients etc. extracted from the time domain signal without explicitly going
to the frequency domain are presented. Another approach is to extract the
various spectro-temporal modulation patterns from the log-compressed Mel
spectrogram. An investigation based on the Gabor filter analysis and amplitude
modulation filter-banks are presented in [121]. Most of these features were
found to yield better performance over the Mel-filter bank features.

In this work, we investigate the performance of an auditory model which
relies on the amplitude modulations within frequency bands [141]. These are
computationally modelled as modulation envelopes that capture the amplitude
envelope of the half-wave rectified sub-band speech signals [71]. These features
have been successfully used for noise robust speech recognition [100] and phone
classification [39]. Since the human speech contains very low modulation
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frequencies of the order of 20-30 Hz [158], a low-pass filter with a cut-off
frequency of around 30 Hz is employed to capture the speech information.

The low-pass filtering used to obtain the modulation envelopes has two benefits;
One, it helps in getting rid of the added noise containing higher modulation
frequencies. Two, it yields a compact representation of speech in the spectral
domain. Therefore, the spectrograms of these envelopes are taken and are
truncated to the lowest few significant bins that fall below the 3 dB cut-
off frequency of the low-pass filter used. This representation of modulation
envelopes in the spectral domain are referred to as modulation spectrogram
(MS) features. In our previous works, these features have been successfully
used for exemplar-based speech enhancement as a front-end for DNN-based
ASR [5].

In this work, the MS features are used to train and evaluate a DNN-based
recogniser and the results are compared with the traditional Mel, STFT
and PLP features on TIMIT and AURORA-4 databases. We also include a
comparison with the Gabor filter bank features investigated in [155]. The rest
of the chapter is as follows: Section 2 details the MS feature extraction and
other baseline features together with the DNN architecture used for evaluation.
Section 3 details the evaluation setup followed by the results and discussion
in Section 4. Section 5 concludes the chapter along with some suggestions for
future work.

4.2 Methods

4.2.1 MS features

The MS representation was proposed as part of a computational model for
human hearing which relies on the low frequency amplitude modulations within
various frequency bands [141]. The processing chain used to obtain the MS
features is depicted in Figure 4.1.

To obtain the MS features, the input speech signal is first filtered using a filter-
bank having M channels to model the poor frequency resolution of the basilar
membrane. This is implemented using an equivalent rectangular bandwidth
(ERB) filter bank whose center frequencies are equally spaced along the log-
frequency axis that also model the non-linear frequency resolution property of
cochlea as defined in [139]. In this work we used ERB filter bank implemented
using Gammatone filters [164]. The frequency response of these filters are
shown in Figure 4.2. The resulting M band-limited signals are half-wave
rectified to model non-negative nerve firings. The modulation envelopes are
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Figure 4.2: Frequency response of the equivalent rectangular bandwidth filters
used to model the basilar membrane.

obtained by low-pass filtering these rectified sub-band signals at a 3 dB cut-off
frequency of around 30 Hz, since human speech contains very small amplitude
modulations.

From these envelopes which contain only low frequency signals, the modulation
spectrograms are obtained by taking the magnitude STFT, resulting in M
modulation spectrograms [71] of size K × T each, where K is the number of
modulation frequency bins used to obtain the STFT and T is the number of
frames in the signal. As there is a low-pass filtering operation, it is possible
to truncate each of these modulation spectrograms to their lowest few, say
k, bins [8,16], i.e, each modulation spectrogram now has size k × T . Only
the positive half of the magnitude modulation spectrogram is considered. To
obtain a compact two-dimensional representation, we stack these modulation
spectrograms originating from M channels to a matrix of size (M ·k)×T . These
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are then log compressed to model the non-linear intensity to loudness variation
of the ear. These are referred to as the MS features. Notice that k denotes the
number of amplitude modulation frequencies within each frequency sub-band
that are used in the model.

The dimensionality of the MS features depends on the value of K which is
approximately equal to the window-length used during the STFT step, the
sampling frequency fs and the 3 dB cut-off frequency of the low-pass filter
f3dB used to obtain the modulation envelope. The value of k thus will be
roughly ≥ f3dB · K/fs. i.e., a higher value of K and/or k can be used to
capture more temporal amplitude modulation frequencies.

4.2.2 Baseline features

In this work, we compare the proposed set of features with the conventional
Mel, short-time Fourier transform (STFT) and the perceptual linear prediction
(PLP) features. We also include the comparison with another physiologically
inspired features using Gabor filters, dubbed GBFB features [155]. GBFB
features are computed by processing the log-Mel spectrogram with 31 frequency
channels by a number of 2D modulation filters. In this setup, the 2D Gabor
filters are defined as the product of a complex sinusoidal function and a Hann
envelope function, such that they cover a wide range of spectro-temporal
modulation patterns [155]. With the setting described in [121], 59 spectro-
temporal filters are used per Mel channel which resulted in a total of 1829
components. These are then reduced to 657 features per frame by removing
redundant features. For further details, we refer the reader to [121,155].

4.2.3 DNN decoder

The evaluations are done using the “recipe” DNN-HMM-based recogniser in the
Kaldi toolkit [143]. A DNN is simply a multi-layer perceptron with multiple
hidden layers between its inputs and outputs. Performing back-propagation
training on such a network can result in a poor local optimum with a randomly
initialised network weights. To circumvent this, a pre-training is done first
by considering each pair of adjacent layers as restricted Boltzmann machines
(RBM) [80] and then a back propagation training is done over the entire network
such that it provides posterior probability estimates for the HMM states [180].
All DNNs used are comprised of 6 hidden layers with 2 048 sigmoid neurons
per layer. The input layer used a temporal context of 11 frames.
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To perform ASR using a DNN-HMM-hybrid setting, the state emission
likelihoods generated by the GMMs are replaced by the pseudo-likelihoods or
scaled-likelihoods generated by the DNN.

4.3 Evaluation setup

4.3.1 TIMIT database

TIMIT is a benchmark database for evaluating and comparing the phone
recognition accuracy of various ASR systems in clean conditions. The
description of the database can be seen in Section 1.4.1. The core test set of the
database is used for evaluation, which contains 192 utterances with 8 sentences
each from 24 speakers. The phone error rates (PER) in % are reported for
evaluations on the TIMIT database.

4.3.2 AURORA-4 database

AURORA-4 database is a large vocabulary continuous speech recognition
database based on the WSJ0 corpus of read English speech. The details of
the database can be found in Section 1.4.1. The multicondition training data
containing 7 138 utterances with channel variations and added noise is used
for training the DNNs. The ASR settings are evaluated on test01-test14 sets
of the database that contains both single microphone and multiple microphone
test conditions. The development set of the database was used for parameter
tuning and cross-validation. Word error rates (WER) in % is used to compare
the various systems evaluated on this database.

4.3.3 Feature extraction

All the testing and training data are first pre-processed using a DC removal filter
and a pre-emphasis filter of coefficient 0.97 before extracting the features. The
STFT features are obtained by taking the STFT of the signal with a window
length of 25 ms and a window shift of 10 ms with 512 bins. The absolute
values of the positive half of the STFT is taken to obtain STFT features of size
B = 256 per frame. To obtain the Mel features, the STFT features are Mel
integrated with M = 40 channels resulting in 40 Mel features per frame. The
log compressed Mel and STFT features are used to train the DNNs as they
were found to yield better results than the raw format. The PLP features are



76 INVESTIGATING MODULATION SPECTROGRAM FEATURES FOR DNN-BASED ASR

Table 4.1: Summary of the MS settings evaluated along with the modulation
frequencies considered and the number of features per frame.

Setting K k Mod. freqs. taken (Hz) Size

MS1024;5 1024 5 0, 15, 30, 45, 60 200
MS1024;3 1024 3 0, 15, 30 120
MS2048;5 2048 5 0, 7.5, 15, 22.5, 30 200

extracted using the Kaldi feature extraction script with 40 Mel channels and
13 PLP coefficients per frame are computed. The GBFB features are extracted
using the code provided in [121] which yielded 657 Gabor features per frame.

To obtain the MS features, equivalent rectangular bandwidth filter bank
containing M = 40 channels, implemented using Slaney’s toolbox [165], is
used to obtain the sub-band signals. These are then half-wave rectified and
low-pass filtered at a 3 dB cut-off frequency of 30 Hz to obtain the modulation
envelopes within each sub-band. Then an analysis is made for various choices
of K, which decides the resolution of the modulation frequencies used, and k
which decides the set of amplitude modulation frequencies considered. Two
choices of K are used; a window length of 64 ms with K = 1024, and a window
length of 128 ms with K = 2048. The resolution of the modulation spectra
will be roughly 15 Hz and 7.5 Hz with K = 1024 and 2048, respectively. The
evaluations are then made for various choices of k. The settings evaluated are
summarised in Table 4.1.

Since the alignments used for the DNN training are taken from a GMM-based
back-end which used a shorter window length (25 ms) than the ones used by
the MS, there will be a state-frame misalignment when MS features are used.
It is found that the MS features with window length 64 ms and 128 ms lead the
GMM features by 2 and 4 frames respectively and the alignments are corrected
by delaying the MS features by the respective number of frames. Also notice
that the MS features take into account a temporal context of 165 ms when 11
consecutive frames are used for DNN training, whereas all the baseline features
span only 115 ms context. For a fair comparison, we also include another
baseline system based on Mel features which uses a temporal context of 15
frames (splice = 7) which adds to 165 ms context (denoted as Melsplice7).



RESULTS AND DISCUSSION 77

Table 4.2: Average PER in % obtained for the TIMIT speaker-independent
phone recognition task with DNNs trained on various input features.

Features PER in %

Mel 21.5
Melsplice7 21.8
STFT 22.1
PLP 21.6
GBFB 21.0

MS1024;5 19.6
MS1024;3 19.8
MS2048;5 20.6

4.4 Results and discussion

4.4.1 Results on TIMIT database

The PER results obtained for various settings on the TIMIT database are
presented in Table 4.2. Notice that no speaker adaptation is done on any of
these features. It is observed that using a splice of 7 frames with Mel features
is found to be performing worse than the splice equal to 5 setting. It can be
seen that both the perceptually motivated models (GBFB and MS) outperform
the traditional features and the MS features yield the best result with a phone
recognition accuracy of more than 80 % on the TIMIT database. Given the
splice 5 vs. splice 7 comparison with the Mel features, this improvement cannot
be attributed to a longer temporal context used by the MS features.

It can also be seen that including more modulation frequencies (MS1024;5

vs. MS1024;3) indeed can benefit the PER performance. It is also seen
that increasing the modulation spectral resolution by increasing K could be
detrimental (ref. MS2048;5) mainly because of its too long temporal context (11
frames correspond to 218 ms) which could cover multiple phones at a time and
may result in a poorer classifier.

When compared to the GBFB features, MS features gave an absolute PER
improvement of 1.4 % (7% relative). This is in fact one of the best results
reported on the TIMIT database with the given DNN architecture without any
speaker adaptive training.
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Table 4.3: Summary of results on the AURORA-4 database with DNNs trained
on various input features.

Features test A test B test C test D Avg.

Mel 3.5 7.4 10.3 21.5 13.3
Melsplice7 3.3 7.5 9.8 21.0 13.2
STFT 3.3 7.6 10.8 22.0 13.7
PLP 3.9 8.6 10.4 22.8 14.5
GBFB 3.5 7.3 8.0 19.0 12.1

MS1024;5 2.6 7.1 8.7 19.5 12.2
MS1024;3 2.8 6.9 10.0 20.5 12.7

4.4.2 Results on AURORA-4 database

Next, the noise robustness of the features are evaluated on the AURORA-4
database. The WERs obtained on each of the test sets in the AURORA-4
for various input features are detailed in Table 4.4. It can be seen that both
GBFB and MS features yield a better robustness to both channel variation and
noisy conditions over the Mel, STFT and PLP features. The MS2048;5 is not
evaluated as it gave poorer performance on the TIMIT database. MS features
yielded the best performance on the single microphone cases. In particular, a
significant WER improvement even on clean speech is obtained which is even
better than the results obtained for the same DNN setting trained on Mel
features extracted from the clean training data of the database (2.9 % reported
in [5]).

The summary of WERs obtained on various test sets are presented in Table 4.3.
It can also be seen that including more modulation frequencies improves the
performance in channel mismatched conditions (ref. test C and test D results
of MS1024;5 vs. MS1024;3). For multiple microphone cases GBFB features
performed better because of its sophisticated design in which the features
are chosen such that they exhibit robustness to channel variations and noisy
conditions. However, no such adaptation is done for the MS feature extraction.
Also notice that the MS features use fewer features per frame when compared
to the GBFB features. These results reaffirm the effectiveness of combining
perceptually motivated rich features as inputs to the DNNs.

Additional experiments were also conducted by concatenating the Mel features
with the MS features. However, the evaluations using these concatenated
features (not shown) yielded more or less similar results as the MS features. It
implies that the information provided to the DNN by the MS and Mel features
are not complementary in general and no additional information is introduced
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by the Mel features.

4.5 Conclusions

In this chapter, we evaluated the performance of the perceptually motivated
modulation spectrogram features as input features to DNNs. The approach
yielded a PER of 19.6 % on the TIMIT database which is among the best results
published on the database without any speaker adaptive training. Further, the
noise robustness of these features are evaluated and compared on the AURORA-
4 database and it is shown that MS features yield robust performance in all cases
when compared to the Mel, STFT and PLP features. When compared to the
GBFB features, MS features gave a better performance on single microphone
cases. These results reaffirm that DNNs can be effectively combined with
perceptually motivated features to bridge the gap between the ASR and HSR
performances.

Further evaluations of MS features with other choices of low-pass cut of
frequencies f3dB and other values of K, to vary the number amplitude
modulation frequencies considered, are to be done. Other future work is to
incorporate channel adaptation and speaker adaptation into the MS feature
extraction framework.
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Table 4.4: Average WERs in % obtained on each test set of the AURORA-4 database for DNNs trained on various
input features.

Mic 1 Mic 2
Avg.

01 02 03 04 05 06 07 08 09 10 11 12 13 14

Mel 3.5 4.3 6.7 9.7 8.2 6.6 8.7 10.3 14.5 20.9 24.6 24.4 20.1 24.4 13.3
Melsplice7 3.3 4.5 7.1 9.8 8.3 6.7 8.6 9.8 14.1 20.5 24.6 23.0 19.6 24.4 13.2
STFT 3.3 4.6 6.9 9.6 8.9 6.7 8.9 10.8 14.9 21.3 25.6 24.5 20.5 25.2 13.7
PLP 3.9 5.3 7.8 10.7 9.8 7.8 10.0 10.4 14.9 22.6 25.9 26.0 21.4 25.8 14.5
GBFB 3.5 4.6 6.7 9.1 8.0 6.8 8.2 8.0 12.9 18.8 23.2 20.7 18.1 20.4 12.1

MS1024;5 2.6 4.0 6.6 8.8 8.4 6.4 8.7 8.7 11.8 20.0 23.7 21.5 18.0 22.0 12.2
MS1024;3 2.8 3.9 6.5 8.8 7.7 6.7 8.0 10.0 14.6 20.7 23.6 22.6 18.7 23.1 12.7



Chapter 5

Joint Denoising and
Dereverberation with
Decaying Norm Constraint

This chapter extends the exemplar-based technique for single-channel speech
enhancement in noisy reverberant environments using a novel approximation of
the noisy reverberant speech in the frequency domain and non-negative matrix
deconvolution (NMD). In the proposed model, the room impulse response (RIR)
in the magnitude STFT domain is defined such that its decaying structure can
also be estimated from the test data itself, whereas the existing models used a sub-
optimal bin-wise clamping procedure to impose such a decaying structure which
does not hold in a typical RIR. This chapter presents multiplicative updates for
estimating the RIR, its decay and the underlying anechoic speech and noise.
The proposed model is evaluated on a synthetically created dataset created by
convolving TIMIT recordings with RIRs measured from different rooms and
varying speaker-and-microphone locations, and adding background noises taken
from the CHiME corpus. Simulation results show that the proposed model
results in a better RIR estimate over the existing model and improves various
instrumental speech quality measures.

This chapter is adapted from: Deepak Baby and Hugo Van hamme. Joint
Denoising and Dereverberation using Exemplar-based Sparse Representations
and Decaying Norm Criterion. Submitted to IEEE/ACM Trans. on Audio,
Speech and Language Processing, 2016.
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5.1 Introduction

Speech signals recorded using a distant microphone in a noisy enclosed space
are comprised of the original speech, its reflections from various surfaces
in the room and the additive background noise. In such noisy reverberant
environments, these distortions highly degrade the speech intelligibility for
hearing impaired listeners [18,104], recognition accuracy in automatic speech
recognition [101,102] and speaker identification systems [148,201]. It is there-
fore desirable to have a mechanism for noise suppression and dereverberation
in these applications. Most of the traditional systems make use of a two
step procedure which is comprised of a source separation or denoising stage
followed by a dereverberation step. This work focusses on a setting that can
simultaneously achieve denoising and dereverberation.

There exist a few unsupervised techniques for joint denoising and derever-
beration. Huang et al. [84] used prior-knowledge about single-talk periods
for channel identification followed by signal estimation. Another technique
presented in [198] also requires a-priori knowledge about the noise statistics and
speech absence periods. A joint denoising and dererverberation approach using
the TRINICON technique that employs the higher order statistics of speech is
presented in [22,23]. The conditional separation and dereverberation technique
presented in [199] aims at achieving a similar task in a tandem manner where
a blind source separation and blind dereverberation approaches are alternated
to optimise the task.

This chapter concentrates on a joint denoising and dereverberation approach
that operates on the magnitude spectrogram of the noisy reverberant speech.
In this work, the magnitude short-time Fourier transform (STFT) of the
reverberant speech at every frequency bin is approximated as a convolution
of the magnitude STFT of clean (anechoic) speech signal with that of the
room impulse response (RIR) in the corresponding frequency bin. Notice
that this model also neglects the cross-band leakage due to windowing and
such an approximation based on the non-negative transfer function has been
successfully used for system identification and speech dereverberation under
noise-free conditions [97,106,116,131,163,176]. Even though such a model holds
only approximately, it does not require to explicitly model the phase of the RIR,
which is difficult especially in noisy conditions [97]. This work extends this
model to noisy scenarios where the magnitude STFT of the noisy spectrogram
is decomposed as the sum of the magnitude STFTs of the reverberant speech
and of the additive noise.

Notice that the proposed decomposition is comprised of three parameters that
are to be estimated from the single-channel noisy reverberant speech recording;
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magnitude STFTs of clean speech, additive noise and the RIR. In order to
get meaningful estimates from such an approximation, it is important to make
use of some constraints that capture the specific properties of speech, noise
and the RIR. For modelling speech and noise, an exemplar-based technique
based on non-negative matrix deconvolution (NMD) [167] is used where the
speech and noise estimates are approximated as a convolution of speech and
noise exemplars stored as atoms in a dictionary with the corresponding weights
or activations which also capture the temporal continuity of speech and noise.
Exemplars are directly sampled versions of the training speech and noise data
spanning multiple consecutive frames expressed in the required feature space
(magnitude STFT in this case) [62,89]. Thus the dictionary atoms model the
spectral structure of speech and noise and the activations model the discovery of
these underlying patterns in the recording. Such an NMD-based model using
exemplars has been successfully used for speech denoising and noise robust
automatic speech recognition (ASR) [86,89]. This work also extends such a
system to model the reverberation under noisy scenarios.

In addition, it is also important to impose some constraints on the RIR
in order to get a meaningful and reliable decomposition. One of the main
apriorily known constraints applied on the RIR is to force it to have a decaying
structure [113]. The techniques presented in [131] and [96] also use a similar
approximation where non-negative matrix factorisation (NMF) is used to
obtain the activations in noise-free and noisy scenarios, respectively. This work
differs from these existing approaches in three key aspects. First, the proposed
technique makes use of NMD to obtain the approximation which is shown to
outperform NMF for the denoising task when there are fewer dictionary atoms
[89]. Second, this work deals with dereveberation in noisy conditions which
makes the estimation problem even more challenging. Notice that [96] also
deals with noisy scenarios, but the RIR is estimated based on both speech
and noise estimates. However, such an estimate is not reliable when there are
multiple and/or moving noise sources which results in varying RIRs over time.
In this chapter, the RIR estimate is obtained based only on the speech estimate
assuming the speaker is stationary when the recording is made. Finally, the
decaying norm constraint on the RIR is not implicitly modelled in the previous
works and the constraint is imposed separately which may result in sub-optimal
estimates. This chapter proposes a novel approach where a decaying norm
criterion is imposed on the RIR which equips the model to uncover a better
RIR estimate together with its decay shape from the noisy speech.

The proposed model thus has an additional parameter that estimates how the
RIR decays over time (or frame in this work since the approximation is in
the magnitude STFT space). The estimators for the activations, RIR and
the decays are derived for the proposed model that minimise the Kullback-
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Leibler divergence between the original noisy reverberant speech and its
approximation. Experimental results show that the proposed model improves
various instrumental speech quality measures when compared to the previously
proposed joint denoising and dereverberation technique where the decaying
structure of the RIR is not implicitly modelled [6].

The rest of the chapter is organised as follows. Section 5.2 details an existing
model detailed in [6,131] on which this work is based on, estimators for
obtaining the model parameters and its limitations. The proposed technique
together with the estimators for the activations, RIR and the decays are
described in Section 5.3. The evaluation setup is explained in Section 5.4
followed by results and discussion in Section 5.5. Section 5.6 concludes the
chapter with some suggestions for future work.

5.2 Existing model

5.2.1 Non-negative representation of noisy reverberant speech

Let y[n] and w[n] be the clean and noise signals, respectively. The room impulse
response (RIR) is assumed to be a finite-impulse response h[n] of length Lt.
The noisy reverberant speech recorded by the microphone can be written as
z[n] = h[n] ∗ y[n] + w[n]. Notice that, we are only interested in the RIR that
is being convolved with the clean speech signal and everything else is modelled
as noise. Such an assumption will be more realistic in scenarios where there
are multiple and/or moving noise sources. In the complex STFT domain z[n]
can be approximated as [66,133,176]:

Z(f, t) ≈
L∑

p=1

H(f, p)Y(f, t− p + 1) +W(f, t) (5.1)

where Z, H, Y and W denote the complex-valued STFT of z[n], h[n], y[n]
and w[n], respectively. f and t denote the frequency-bin and frame indices,
respectively. L denotes the length of the RIR in the STFT space. Let the
STFT be obtained for 2B frequency bins and Z contains F frames.

For a non-negative representation, the noisy reverberant speech is approxi-
mated in the magnitude STFT domain as Z(f, t) ≈

∑L
p=1 H(f, p)Y(f, t −

p + 1) + W(f, t), where Z = |Z|, H = |H|, Y = |Y| and W = |W|.
Such an approximation has been successfully used for system identification
in [96,125,131]. For ease of notations, this approximation can be written in
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matrix form as:

Z ≈
L∑

p=1

[H]p ⊚
(p−1)→

Y + W (5.2)

where [H]p is the p-th column of the matrix H and
p→

Y denotes the right-shifting
operation by adding p columns of zeros to the left and removing the last p
columns of Y. The operation h⊚Y stands for the element-wise multiplication
of a vector h with the all the columns of Y. Since these magnitude STFTs are
symmetric, only the positive half of the magnitude STFT is considered for the
rest of the chapter, i.e., Z, Y, W ∈ R

B×F
+ and H ∈ R

B×L
+ .

The goal of the dereverberation task is thus to obtain reliable estimates for H, Y
and W from the magnitude STFT of the noisy reverberant speech Z. However,
obtaining the estimates using such an under-complete system is prone to local
optima and may not capture the typical characteristics of the speech, such as
its low-rank nature and spectral structure along harmonics, and results in a
very poor enhancement performance. Therefore, it is advised to make use of
some a-priori knowledge of speech and noise in order to achieve a better and
more reliable decomposition.

5.2.2 Modelling speech and noise using exemplar-based sparse
representations

This work makes use of exemplar-based techniques where the speech and noise
are approximated as a sparse linear combination of atoms (exemplars) in a
dictionary. Such models have been successfully used for speech enhancement
[7] and speech recognition [64,200]. Exemplars are randomly chosen magnitude
STFT patches obtained from a training set containing speech and noise only
recordings and are stored as columns in the speech dictionary S and the noise
dictionary N, respectively. The exemplars may span multiple frames, of length
say T frames, in order to capture the temporal continuity of speech and noise.
These patches are reshaped to a vector of length BT to form an exemplar. Let
the dictionaries are comprised of Js speech and Jn speech and noise exemplars,
respectively.

In this work, we use the non-negative deconvolution (NMD) based technique
[167] to obtain the approximation of speech and noise spectra as a linear
combination of the atoms in the dictionary.

Y ≈ Ỹ =
T∑

t=1

St

(t−1)→

Xs and W ≈
T∑

t=1

Nt

(t−1)→

Xn . (5.3)
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The matrix St denotes the t-th block matrix obtained by partitioning S into T
block rows each of size K×Js [166]. Nt is also defined in the same manner from
N. The approximation is obtained such that mixing weights or activations Xs

and Xn are also non-negative. Thus, the model for noisy reverberant speech
becomes,

Z̃ =

L∑

p=1

T∑

t=1

[H]p ⊚

(

St

τ→

Xs

)

+

T∑

t=1

Nt

(t−1)→

Xn (5.4)

using (5.2) and (5.3), where τ = p + t − 2. The problem thus boils down to
estimating H and the activations Xs and Xn.

5.2.3 Computing the estimates

In the existing model [6], the estimates are obtained such that they minimise
the Kullback-Leibler divergence (KLD) between the magnitude STFT of the
noisy reverberant speech Z and its approximation Z̃. The KLD between z and
z̃ is given as:

DKLD (z‖z̃) = z log
z

z̃
+ z̃ − z. (5.5)

In addition, we apply sparsity constraints such that the resulting activations
have a sparse structure. Such a sparse solution can be achieved by adding
λs‖Xs‖1 and λn‖Xn‖1 to the cost function, where ‖ · ‖1 denotes the sum of
all the elements in a matrix. Thus a larger value of λ forces a sparser solution
for the activations. In principle, the λ value can be specifically tuned to get a
better approximation for every frame if extra information such as the speech
activity and SNR in the frame are available. In this work, no such knowledge
is available a-priori and same sparsity penalties are used for all frames. The
optimal values for λs and λn are typically obtained after parameter tuning on
a development set.

The estimates for the RIR and the activations are obtained such that they
minimise the cost function,

C =
∑

f,t

DKLD(Z‖Z̃) + λs‖Xs‖1 + λn‖Xn‖1. (5.6)

The set of estimates that minimise this cost can be obtained by alternately ap-
plying the following multiplicative updates until convergence. The derivations
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are provided in Appendix A.1.

[H]p ← [H]p ⊙

∑F
l=1[Ỹ]l−p+1 ⊙ [R]l
∑F

l=1[Ỹ]l−p+1

Xs ← Xs ⊙

∑T
t=1

∑L
p=1 St

⊺

(

[H]p⊚
←τ

R
)

∑T
t=1

∑L
p=1 St

⊺

(

[H]p⊚
←τ
1
)

+ λs

Xn ← Xn ⊙

∑T
t=1 Nt

⊺
←(t−1)

R
∑T

t=1 Nt
⊺
←(t−1)

1 +λn

The element-wise ratio Z⊘ Z̃ is denoted as R, 1 is a matrix of ones of the same

size as Z and ⊙ denotes element-wise multiplication. The operation
←τ

R shifts
the matrix to the left by removing the first τ columns and adding τ columns
of zeros to the right.

Notice that obtaining the estimates without any additional constraint may
result in a scaling ambiguity since there are two free parameters: activations
and the RIR. Then for any scaled value of the RIR γH, the algorithm can
give the same minimum cost with the appropriately scaled activations Xs/γ.
This results in an infinite number of possible solutions that can yield the same
minimum cost. Apart from such a non-uniqueness problem, not constraining
the RIR may also result in an unrealistic solution that may not capture
the typical characteristics of an RIR. It is observed that the RIR has a
decaying structure and therefore in the STFT domain, it is safe to assume
that the columns of H have a decreasing ℓ2 norm. In order to impose such
a characteristic, the following operations are done on the RIR estimate after
every multiplicative update.

1. In order to force a decaying structure, every element in the RIR matrix
H is clamped such that H(f, t) ≤ H(f, t− 1).

2. Every row of H is scaled to have a unit ℓ1 norm in order to bound on the
energy introduced by the RIR per frequency-bin.

Once the optimal estimates are obtained, they are used to enhance the noisy
STFT by element-wise multiplying with the time-varying filter Z ⊙ Ỹ ⊘ Z̃.
The time-domain signal is then obtained using the overlap-add method. Such
a setting has been successfully used for dereverberation in [6,133]. This setting
is referred to as the NMD+R setting.
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Figure 5.1: The time and frequency domain representations of an arbitrary
room impulse response in the Aachen impulse response database. The ℓ2 norm
vs. frame index is also shown. It can be seen that the ℓ2 norm of the RIR
in magnitude spectral domain decays with frame and no bin-wise decaying
dependency is observed.

5.2.4 Limitations of the existing model

Even though the NMD+R setting is shown to yield a decent dereverberation
performance [6], the setting is still sub-optimal since neither the cost function
nor the multiplicative updates takes the decaying structure of H into account.
Rather, such a decaying structure is imposed by modifying H after every
multiplicative update. Such a setting has the following disadvantages.

1. Since the multiplicative update for H is derived such that it does not
preserve any decaying structure on the columns of H, such a setting
limits the discovery of the actual underlying pattern of H from the noisy
reverberant speech. Therefore it is advised to incorporate the decaying
nature of H in the cost function and derive multiplicative updates such
that the decaying structure is preserved.

2. Notice that the clamping is done for every frequency-bin with respect to
the same bin in the previous frame. However, such a bin-wise decaying
structure is not observed in a typical RIR. This step may alter a correctly
identified H and result in a wrong estimate. Figure 5.1 depicts an RIR in
the time and magnitude spectrogram domain together with the ℓ2 norm
of every frame in the magnitude spectrogram. It is clear that the RIR
does not contain any bin-wise dependency over frames and the ℓ2 norms
decay with frame index.

3. In the existing model, the clamping constraint applied on the RIR is
non-linear and there exists no straight-forward way to integrate such an
operation to the cost function or to derive the multiplicative updates.
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In this work, we propose a novel dereverberation scheme that can address these
disadvantages and obtain a more realistic and better RIR estimate.

5.3 Proposed model

This section describes the proposed model for noisy reverberant speech such
that an RIR with an inherent decaying structure can be estimated. This model
enables the shape of the RIR decay over frames to be estimated from the
noisy reverberant speech itself and we present the multiplicative updates for
estimating it.

5.3.1 Incorporating decaying norm constraint

In the proposed setting, the RIR matrix H is replaced by αp[H]p/‖[H]p‖, where
‖ · ‖ denotes the ℓ2 norm of a vector and αp is a scalar. The approximations
for the clean speech and noise spectrograms are kept the same. The term
[H]p/‖[H]p‖ ensures columns having unit norms and αp controls the norm of
every column in the RIR. Thus, in order to have a decaying structure, only the
scalar values αp are to be designed so that αp ≤ αp−1, ∀p = 2, . . . , L. Notice
that these α values are also to be estimated from the noisy reverberant speech.

In order to estimate the α values using multiplicative updates and to force the
decaying structure, we define αp = (1 + cp)αp+1 where cp is a non-negative
number that captures the scaling difference between αp and αp+1 and ensures
the decaying structure. Let α be a vector of entries αp. Thus an arbitrary l-th

element of α can be written as αl =
∏L

i=l(1 + ci) with cL = 0 and αL = 1.
Further, the α vector is also constrained to have a unit ℓ2 norm in order to avoid
the ambiguity due to scaling as mentioned in Section 5.2.3, i.e., ᾱp , αp/‖α‖.
Thus the approximation for the noisy reverberant speech in the proposed model
can be written as,

Z̃ =

L∑

p=1

ᾱp

[
H̄
]

p
⊚

(p−1)→

Ỹ + W̃

=

L∑

p=1

∏L
i=p(1 + ci)

‖α‖

[
H̄
]

p
⊚

(p−1)→

Ỹ + W̃. (5.7)

where, [H̄]p = [H]p/‖[H]p‖. Thus the problem boils down to estimating the
RIR H, decay coefficients ci and the activations Xs and Xn.
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Notice that there is no bin-wise constraint on the RIR matrix and for every
frame the bin-values are given full degree of freedom. In addition, since the
decaying norm structure is imposed using non-negative coefficients ci, they can
also be estimated using the multiplicative updates. Such a model with decaying
norm constraint can reliably estimate the underlying RIR structure and yield
a more realistic solution. This setting is denoted as the NMD+R+DN setting.

5.3.2 Multiplicative updates for the estimates

The multiplicative updates are derived such that they minimise the cost
function in (5.6) with the proposed approximation for Z̃ given in (5.7). The
derivation of these updates are provided in Appendix A.2. The multiplicative
updates for all the required parameters are given below. In addition, after
every multiplicative update, the rows of H is scaled to have a unit ℓ1 norm to
bound the energy contributed by the RIR matrix per frequency-bin.

Xs ←− Xs ⊙

∑T
t=1

∑L
p=1 ᾱp · St

⊺

(

[H̄]p⊚
←τ

R
)

∑T
t=1

∑L
p=1 ᾱp · St

⊺

(

[H̄]p⊚
←τ
1
)

+ λs

(5.8)

Xn ←− Xn ⊙

∑T
t=1 Nt

⊺
←(t−1)

R
∑T

t=1 Nt
⊺
←(t−1)

1 +λn

(5.9)

[
H̄
]

p
←−

[
H̄
]

p
⊙

∑F
l=1 ([R]l ⊙ [Y]l−p+1) + [H̄]p[H̄]⊺p

∑F
l=1[Y]l−p+1

[H̄]p[H̄]⊺p
∑F

l=1 (R]l ⊙ [Y]l−p+1) +
∑F

l=1[Y]l−p+1

(5.10)

ci ←− ci ·

∑i
l=1 ᾱl[H̄]⊺l

∑F
j=1[R]j ⊙ [Y]j−l+1 +

∑i
j=1 ᾱ2

j

∑L
l=1 ᾱl[H̄]⊺l

∑F
j=1[Y]j−l+1

∑i
l=1 ᾱl[H̄]⊺l

∑F
j=1[Y]j−l+1 +

∑i
j=1 ᾱ2

j

∑L
l=1 ᾱl[H̄]⊺l

∑F
j=1[R]j ⊙ [Y]j−l+1

(5.11)

5.4 Experimental setup

5.4.1 Dataset used

To evaluate and compare the performance of the various dereverberation
methods, recordings from the TIMIT database are used to generate noisy
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reverberated data. In order to consider a wide variety of conditions, RIRs from
the Aachen impulse response database [94] are used. The reverberation times
of the rooms are between 0.23 s and 1.20 s. The recordings from the TIMIT
database are convolved with a randomly chosen RIR from the Aachen RIR
database to obtain the noise-free reverberated signal. These are then added
with a randomly chosen noise segment provided with the CHiME challenge [35]
at SNRs 5, 10, 15 and 20 dB to create the noisy reverberant data. The core
test set of the TIMIT dataset containing 192 recordings of read speech is used
to synthetically create the test data. The sampling frequency is 16 kHz.

The RIR database contains impulse responses measured from various rooms
such as lecture room, stairway, meeting room and a cathedral with different
microphone and source locations. The background noise used also contains
a significant amount of reverberation with multiple noise sources that are
recorded from a domestic environment.

5.4.2 Dictionary creation

The speech and noise dictionaries used in this work are composed of STFT
exemplars extracted from TIMIT training set and the CHiME background
noises, respectively. In order to create an STFT exemplar, a random segment
of training speech or background noise spanning T frames is chosen and is
converted to the magnitude STFT domain with a window-length of 25 ms and
a window-shift of 10 ms. The number of FFT bins used is 512 and zero-padding
is used whenever necessary. Only the positive half of the magnitude STFT is
considered which yields an STFT of size 256×T which is reshaped to a vector
of length 256 · T to create an exemplar.

In this work, Js = 5000 speech exemplars and Jn = 2500 noise exemplars
are used to create the speech and noise dictionaries respectively. A temporal
context of T = 10 is used resulting in speech and noise dictionaries of size
2560 × 5000 and 2560 × 2500, respectively. The sparsity penalties used are
λs = 1.6 and λn = 0.8 as they were found to yield the best decomposition in
our previous work [6].

For all the evaluated NMD-based settings, the multiplicative updates for
activations and RIR are applied 100 times. A RIR length of L = 10 frames is
used in all the experiments. Both the activations and the RIR are initialised
to a matrix of all ones of appropriate size before applying the multiplicative
updates. For the NMD+R+DN setting, the decay coefficients are initialised to
0.1 and the multiplicative updates are applied 100 times.
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5.4.3 Evaluated methods

In addition to the NMD+R and the proposed NMD+R+DN settings, the
speech enhancement using NMD without any RIR model is evaluated first as
a baseline setting. This is the same as the NMD+R setting with L = 1 and
the resulting RIR matrix will be an all one vector. Notice that such a setting
is capable of doing only the denoising and is denoted as the NMD setting.
As an additional baseline system, a speech enhancement algorithm based on
minimum mean-square error log-spectral amplitude estimation [50] with the
improved minima controlled recursive averaging (IMCRA) technique for noise
variance estimation [40] is included.

The speech enhancement performance is evaluated using the following measures:
perceptual evaluation of speech quality (PESQ) [147] in terms of mean opinion
score (MOS), signal-to-distortion ratio (SDR) in dB, frequency-weighted
segmental SNR (fwsegSNR) in dB, cepstral distance (CD) in dB, log-likelihood
ratio (LLR) and speech-to-reverberation modulation energy ratio (SRMR)
[51] in dB. The SDR was obtained using the BSS evaluation toolkit [181]
and the CD, LLR, fwsegSNR and SRMR measures were obtained using the
implementations provided with the REVERB challenge [102]. Higher values of
PESQ, SDR, fwsegSNR and SRMR, and lower values of CD and LLR indicate a
better performance. For better readability, the improvements in these measures
(shown as ∆PESQ, ∆SDR, ∆fwsegSNR, ∆CD, ∆LLR and ∆SRMR) are used
for comparing the results. The ∆s for PESQ, SDR, fwsegSNR and SRMR
are obtained by subtracting the metric obtained on the noisy data from that
of the enhanced data, whereas the ∆CD and ∆LLR measures are obtained
by subtracting the metric obtained on the enhanced data from that of the
noisy data. In short, a higher ∆ value implies a better performance for all the
measures.

5.5 Results and discussion

5.5.1 Results on speech enhancement

Figure 5.2 depicts the improvement in speech enhancement quality measures
for the various evaluated settings. For the PESQ measure, the NMD+R and
the NMD+R+DN settings yield a similar performance. But for all the other
measures, the NMD+R+DN technique significantly outperforms all the other
evaluated settings. In particular, the improvement on the fwsegSNR and CD
measures using the proposed method is around 1 dB and 0.2 respectively for
all SNR conditions when compared to the other speech enhancement settings.
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Figure 5.2: Improvements in SDR, PESQ, frequency-weighted segmental SNR (fwsegSNR), CD, LLR and SRMR
obtained for various dereverberation techniques. Same legend is used for all plots.
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Also notice that the IMCRA and the NMD+R settings resulted in poorer LLR
measures whereas the NMD+R+DN setting yielded a slightly improved LLR
over the unprocessed data. These results confirms that the proposed technique
consistently outperforms the other speech enhancement settings by means of a
better RIR estimate.

5.5.2 Analysis on enhancement performance

To compare the joint denoising and dereverberation performance of the various
settings, the corresponding enhanced spectrograms from an arbitrarily chosen
noisy reverberant recording with noise added at 20 dB are shown in Figure 5.3.
The PESQ and the SDR values are also shown below each of the spectrograms.
The NMD technique that does only noise suppression was able to only slightly
improve the PESQ measure whereas the SDR is improved by 0.25 dB.

In the NMD+R model which captures the reverberation, both the measures
are improved where the SDR is further improved by 1 dB on both the the
noise-free and noisy reverberant cases. The non-negative approximations used
in this work model reverberation in the magnitude STFT domain as a spectral
leakage from one frame to a few upcoming frames. It can be seen that the
NMD+R model reduces such spectral leakages (comparing the high frequency
regions in the spectrograms for noise-free reverberant speech and the NMD+R
enhanced speech) and results in a better dereverberation and speech quality.
The NMD+R+DN setting is further able to reduce these spectral leakages and
results in almost 1 dB SDR improvement over the NMD+R setting, thanks to
a better RIR estimate.

5.5.3 Convergence of the cost function and computational
complexity

In all the proposed models, the multiplicative updates are computed such
that they minimise the defined cost function. This section discusses on the
convergence of the cost function upon alternately applying the multiplicative
updates. Figure 5.4 depicts the average cost per frame vs. the iteration count.
The cost is computed for 10 randomly chosen utterances in the dataset and the
total cost is averaged over the total number of frames. The costs for all the
approaches converge after 60-80 iterations suggesting that the multiplicative
updates indeed result in a decaying cost. Notice that the cost is not zero upon
convergence since the cost function includes the sparsity penalties as well. It
is also observed that the final cost of the proposed setting is higher than that
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Figure 5.3: Comparison of enhanced speech spectrograms obtained for various
settings for an arbitrary noisy and noise-free reverberated signal from the
database corrupted with additive noise at an SNR of 20 dB. Log spectrograms
are shown for a better visualisation. All figures used the same colormap. The
resulting SDRs and PESQ values are also shown below each of the spectrograms.

of the NMD solution, which is due to the increased sparsity cost arising from
the row normalisation of the RIR matrix.

Another point to be noted is that in the proposed model, the decay coefficients
ci are defined per RIR frame and multiplicative updates are also applied
separately. In principle, after every update for ci, the updates for activations
and the RIR should be done before updating ci+1. But in this work, to save
execution time, the updates for ci, ∀i are done together. It can be seen from
the costs curve that such a setting indeed converges and the evaluation results
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Figure 5.4: Average cost per frame vs iteration count for various enhancement
techniques based on NMD.

using various speech quality measures suggest that the setting yields reliable
estimates.

In order to compare the computational complexity, the total execution times
for the 10 randomly chosen utterances are measured and divided by the total
duration in seconds which yields the execution time required to process 1 second
of data. The execution times are computed for the multiplicative updates
implemented in MATLAB together with GPUs for acceleration. The average
execution time to process one second of test data using the NMD, NMD+R
and NMD+R+DN techniques are 1.08, 6.2 and 9.8 seconds, respectively. Such
an increased computational complexity is expected since the NMD+R+DN
setting has to estimate more parameters.

5.6 Conclusions and future work

This chapter proposed a novel technique to estimate the RIR with decaying
norms from a noisy reverberant single-channel recording. The proposed RIR
model is such that the decaying structure is inherently forced on the RIR
estimate and the estimators for obtaining the decay are also presented. The
estimators for obtaining the parameters in all the methods are obtained such
that they minimise the Kullback-Leibler divergence between the magnitude
STFT of the noisy reverberant speech and its approximation. In order to
impose a decaying structure on the RIR, an existing model clamped the energies
in every frequency-bin with respect to the same bin in the previous frame
whereas no such bin-wise dependency is observed in a typical RIR. To overcome
this, the proposed model used a novel approximation where the RIR bins are
given full degree of freedom and the decaying structure of the RIR is estimated
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from the data itself. The model is also defined in such a manner that the decay
coefficients can be estimated by applying multiplicative updates.

For evaluating and comparing the performance of the proposed technique
with that of the existing techniques, a noisy reverberant dataset is artificially
created using the TIMIT corpus, RIRs from the Aachen impulse response
database and the challenging background noise conditions from the CHiME
corpus. Evaluation results confirm the effectiveness of the proposed approach
by improving the various instrumental speech quality measures including PESQ,
SDR, SRMR, fwsegSNR, CD and LLR. In particular, the proposed model
yielded SDR, fwsegSNR, CD and SRMR improvements of around 0.5 dB, 1.0
dB, 0.2 dB and 0.15 dB, respectively when compared to the existing model
where the RIR decay is not incorporated in the approximation (NMD+R).

Investigating such a speech enhancement setting as a front-end for the ASR
systems is a suggested future work. As detailed before, the proposed technique
also estimates the decaying structure of the RIR from the test data itself
and such a setting may be useful for estimating the T60 of the room using
the recordings. Such an investigation might require some other changes such
as modifications to how the decays are defined and using different spectral
representations which is also a suggested future work.



Chapter 6

Application to Neuroscience
Research

In this chapter, the proposed speech enhancement schemes are applied to
the field of clinical neuroscience for the pre-operative planning on patients
with brain tumor. During the pre-operative planning, a neurosurgeon has to
decide if the affected brain region is essential for the major functions such as
motor movement and language related processes. To identify the functional
relevance of a brain region for language related processes, picture naming
task together with magnetic stimulation of the relevant brain region (called
transcranial magnetic stimulation or TMS) [17,74] has been effectively used.
The methodology followed now is to record the responses and to manually check
the accuracy and the reaction time by listening to it. However, such a process is
prone to substantial intra- and inter-observer variabilities [105,171]. A novel
automatic and objective evaluation routine for the picture naming task using
ASR and the proposed speech enhancement schemes is developed.

This chapter is adapted from: Deepak Baby, Laura Seynaeve, Patrick Dupont,
Wim Van Paesschen and Hugo Van hamme. An automatic evaluation routine
for picture naming task with transcranial magnetic stimulation using machine
speech recognition. Submitted to the Journal of Neuroscience Methods, 2016.
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6.1 Introduction

Transcranial magnetic stimulation (TMS) was introduced as a non-invasive
technique for magnetic stimulation of the human cortex [13]. A TMS device
generates a perpendicular time-varying magnetic field that can penetrate
the scalp without any attenuation. This magnetic field is produced by
passing a strong current through a stimulation coil and can interact with the
cortical processing non-invasively by stimulating the neuronal axons. Such
a stimulation occurs since the magnetic field induce a small and short-lived
current at the site of the stimulation which can either excite or inhibit the
stimulated area [17,74].

TMS has been successfully used for understanding the functional relevance
of the stimulated region, for example a motor evoked potential is used as a
measure to study the effect of TMS when applied over the primary motor cortex
[17]. However, for studying cognitive functions such as language processing, no
such direct measurement is available and are typically quantified either using
behavioural measurements (reaction times and accuracy of a specific task with
and without TMS) or changes in neural activation [76]. This paper concentrates
on the object naming task in presence of navigated repetitive TMS (rTMS) for
studying the functional relevance of the stimulated region for language related
tasks.

In many studies in healthy volunteers, reaction times (RTs) for the object
naming task are used as a sensitive marker to pick up an effect of TMS on
cognitive functioning [136,142,178,190]. TMS has also been used in patients
with brain tumors to determine what areas around the tumor are involved
in speaking and/or language [177]. This may aid in an objective risk-benefit
assessment of a planned surgery and precisely targeted smaller craniotomies.
Such preoperative planning would be a safer alternative for patients that cannot
undergo awake craniotomy [140,171]. In addition, the rTMS method has been
accepted by the Food and Drug Administration (FDA) of US for presurgical
speech mapping [48] and it probably will have wider applications in the near
future.

One of the main challenges in the object naming task is that it requires manual
review [159] to evaluate the accuracy of the responses and to find the RT. Such
a procedure has three main disadvantages: 1) it involves a high manual effort,
2) it is nearly impossible to measure the exact RT in the presence of rTMS noise
and 3) even in no rTMS conditions, these measurements are susceptible to a
high intra- and inter-observer variability [105,171]. Such variabilities reduce the
repeatability, scalability and reliability of object naming tasks in general and
objective evaluation routines are to be developed. Also, the methodology varies
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between different surgical groups applying it and no standardised procedure is
defined yet.

To overcome the observer variabilities, previous studies made use of objective
measurement schemes such as the responses of throat muscles, non-verbal
reaction times like button-presses (typically on healthy volunteers), or by
neglecting the reaction times completely to arrive at a conclusion. These
approaches are still sub-optimal and are not capturing the real variable of
interest. There exist some techniques to automate the evaluation task. The
technique presented in [117] makes use of a video classification algorithm to
evaluate the accuracy of the responses. An accelerometer-based approach to
detect speech onsets is presented in [187], which still requires manual review
to score the accuracy of the responses. Both these techniques required video
recordings and in this work, we concentrate on a simpler naming task setup
where only the audio recordings that are started simultaneously with the stimuli
onset are required. Such a setting is cheaper, requires far lesser storage and
is also advantageous in scenarios where the subject is not comfortable with
recording the video.

In order to evaluate the object naming task using the audio recordings, an
automatic speech recogniser setting is employed which can recognise the word
being said in the recording together with its temporal information. Since it is
noticed that the recogniser output may go wrong in presence of rTMS noise,
a noise suppression system is also used. In this paper, we propose a novel
automatic evaluation scheme for the object naming task that can generate text
files indicating the accuracy and the RT of every response. One of the main
challenges in automating the object naming task is when the subject gives a
synonym, hypernym or hyponym as the response. The proposed setting also
includes a functionality to add acceptable synonyms for every response, thereby
increasing the flexibility and objectivity of the setting.

6.2 Materials and methods

6.2.1 Experimental design

To evaluate the proposed setting, an object naming task with 140 objects
was conducted on 8 healthy Dutch speaking subjects (3 males and 5 females).
The subjects were asked to name black-and-white line drawings based on the
Snodgrass and Vanderwart picture set [169]. The stimuli were presented and
the corresponding responses were recorded using Presentation version 14.8
(Neurobehavioralsystems, USA). Every stimulus lasted for 3 seconds and the



MATERIALS AND METHODS 103

Recorded
Response

Speech
Enhancement

Speech
Recogniser

Post Processing
Recogniser output

Accuracy (Yes/No)

RT in seconds

4
4 5

-0.8

-0.4

0.4

0.8 73 126

sil tafel sil
time (ms)

Recogniser output

Figure 6.1: Block diagram overview of the proposed automatic evaluation
routine. An example output of the recogniser is shown for the stimuli tafel
(table in English). sil denotes the silence regions as given by the speech
recogniser.

corresponding recording started simultaneously with the projection of each
picture. The recordings taken from the 8 subjects are denoted as S1 to S8
and combination of all the recordings are denoted as S1-S8.

The dataset thus generated contains 1120 recordings. The RTs for these
recordings were manually annotated by a speech technology expert using Praat
[19] software with an accuracy of upto 10 ms, since the resolution of the
proposed automatic routine is also 10 ms. To obtain the RTs as correct as
possible, additional information such as spectrograms, pitch contours and voice
activity detection are used. This dataset is denoted as Noise-free. Notice
that the term noise-free denotes that the recordings do not contain the rTMS
noise and they still might contain other recording room noises like fan-noise,
breathing and patient movements.

The recordings in presence of rTMS were artificially created from the already
collected noise-free recordings to reduce the manual effort in annotating the
noisy data that are also error-prone since it is difficult to manually find the
speech onset in presence of the rTMS noise. Moreover, a reliable ground truth
is required to test the RT measurement accuracy of the proposed routine. The
noisy recordings were therefore synthetically created using a two step procedure.
First, the noise-free data was delayed for a random time period by padding zeros
at its beginning to model the delay in RT in the presence of rTMS. Notice that
the RT measurement is more challenging in scenarios where the speech onset
overlaps with the rTMS noise. To simulate such conditions, we chose a random
delay between 50 and 300 ms and these delays were added with the original RT
for comparison with the estimated RT. In principle we can choose a larger delay
than 300 ms, but that may make the speech onset not overlapping with the
rTMS noise and makes the problem less challenging. These delayed responses
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were then added with a previously recorded rTMS noise at the beginning of the
recording. The rTMS noise was recorded during a TMS stimulation using a
figure-8 coil (Magstim, United Kingdom) which contains 5 consecutive pulses of
5 Hz. To simulate a variety of rTMS conditions, the rTMS noise was recorded
by placing the coil on different locations of the head and a random noise
recording is chosen at random during the artificial generation of the database in
the presence of rTMS. The database thus simulates various rTMS conditions
where the coil is placed on different locations of the head. This procedure
generated 1120 noisy delayed recordings that contain the rTMS noise at random
positions and the dataset is denoted as Noise + Delay set.

In addition to the above two sets, a test set where no delay is present was also
created artificially. This set was created by adding rTMS noise to the beginning
of the noise-free set to model the scenario where a sham coil is used and this
set is denoted as Noisy set.

6.2.2 Proposed evaluation routine

The proposed automatic routine is derived from an automatic speech recog-
nition system presented in [47]. Figure 6.1 depicts the outline of the
proposed automatic evaluation routine. The speech recogniser takes in the
recorded response and generates the recognised word together with its timing
information. This output is then post-processed to check if the response is
correct and if yes, it also outputs the RT. A response is marked as a correct
response if the recogniser output matches the expected picture name or one of
its synonyms. The internals of each block are described below.

The statistical speech model required for the speech recogniser is trained
using the Flemish recordings contained in the CGN corpus [160]. A detailed
description of the speech recogniser can be found in [47]. Only the specific
details that are relevant for the object naming task are summarised here. Based
on the input recording of the response, the speech recogniser can handle the
following conditions.

1. Model the expected response : The speech recognition stage takes in one
recording at a time and it makes use of the expected response to model
the word in the recording. For this, the internal parameters of the speech
recogniser are updated for every response so that a higher weight is given to
the expected stimuli for it to be recognised. Notice that a much higher weight
will produce errors since it increases the chance of some background noise or
a wrong response being recognised as the expected response and therefore
a compromise must be pursued. In this task, the setting is adjusted so
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that all the wrong or no response events are detected correctly that can be
applicable to rTMS tasks where detecting such events are more important.
Notice that such a setting may reduce the recognition accuracy for correct
responses. The automatic routine is flexible so that the observer can vary the
parameters if a higher detection accuracy on correct responses is required.

A sample output for the input recording for the stimulus tafel (table in
English) can also be seen in Figure 6.1. The recogniser output can contain
the following: the expected stimulus, sil, garbage and/or stut. The sil output
refers to the regions recognised as silence. The stut output (not shown in
Figure 6.1) models stuttering which is detailed below. The garbage output
is comprised of phone sequences that are either random corresponding to
background noises or corresponding to a wrong response given by the subject.
The recogniser will yield the garbage output under the following scenarios:
wrong response from the subject, no-response event in presence of some noise
or if the recogniser fails to identify a correct response.

2. Modelling stuttering : During the picture naming task, it is observed that
sometimes the subject stutters or hesitates before saying the actual response.
Stuttering corresponds to repeating the parts of the stimuli name before
uttering the complete name. The recogniser can identify such events by
explicitly modelling the stuttering (the output in this case is stut) and
by modelling other hesitation sounds as garbage. The stut is modelled by
including phone sequences that skip parts of the stimuli name in the language
model graph [47].

3. Synonyms : Another challenge in automating the naming task is when the
subject says a synonym of an expected response. As described before, the
speech recogniser only outputs the expected response and any other sound
or response is modelled as garbage. The speech recogniser is modified so that
the synonym is also considered as an additional expected response. Notice
that not all the synonyms will be included in the basic evaluation package.
The observer has to listen to those recordings that are marked as wrong
responses by the automatic routine and if the subject used a synonym, a
separate routine is used to add synonyms to the existing setting. Such a
routine adds flexibility to the system as the set of synonyms to be added is
decided by the observer and the synonyms list has to be updated until all the
acceptable synonyms are added. Notice that after adding a synonym, the
automatic routine has to be executed again in order to update the RT and
accuracy results on the corresponding responses. After evaluating on a few
patients, the synonyms list is expected to converge and no more updating
is required.

4. Timing information : The recogniser can also yield the timing information
of the various outputs (expected response, sil, stut and garbage) along the
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length of the utterance upto an accuracy of 10 ms. The details of how these
temporal alignments are obtained can be found in [47].

In order to reduce the manual effort in going through all the recogniser
outputs corresponding to every response, a post processing stage is added which
generates a text file that summarises the accuracy and RTs of all the responses
recorded in a session. The functions of the post-processing module are:

1. Accuracy : The post-processing routine yields ‘Yes’ or ‘No’ output depending
on whether the expected response is present in the recogniser output by
means of a string comparison script.

2. RT estimate : If the recogniser output contains the expected response, the
post-processing stage next extracts the timing information corresponding
to the expected response. It is observed that the recogniser alignments
will contain some bias depending on the beginning sound (phoneme) of
the response. These biases are also not expected to be subject dependent
since the recognition engine used is designed for speaker independent speech
recognition. Therefore the biases for every class of phonemes are computed
experimentally (based on the subset S1 and S2) and are compensated by
the post-processing stage to yield RTs as close as possible to the manually
obtained RTs (more details can be found in Section 6.3). Notice that, if
the user is interested only in the difference in RT in two scenarios, this bias
correction is not necessary since these systematic biases will be cancelled
out when the difference in RT is computed.

6.2.3 Speech enhancement front-end

Since the speech models used by the recogniser is based on the CGN corpus
which contains noise-free recordings, such a recogniser is sensitive to distortions
introduced to the recording due to the rTMS noise and other background room
noises. Therefore, a speech enhancement front-end that suppresses the noises
and reduce distortions may improve the recogniser performance. Since the
responses are recorded in a controlled environment where the patient’s language
(Dutch) and the types of background noise (rTMS noise, room noises, etc.) are
known a-priori, a speech enhancement setting that makes use of this knowledge
can be used to achieve a better noise suppression. In this paper, the speech
enhancement technique detailed in [9] is used. Such a speech enhancement
setting is previously shown to significantly improve the performance of a state-
of-the-art speech recogniser [5]. The enhanced recordings are fed to the speech
recogniser system for evaluation.
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6.2.4 Splitting the data into subsets

It is observed that the speech recogniser yields temporal alignments with
differing offsets (or biases) depending on the beginning phoneme of the response.
In order to correct these biases, the test set is divided into 7 subsets based
on the starting phoneme. The subsets are named after the class of the
starting phoneme that are; vowels (VOW), voiced stops (VSTP), unvoiced
stops (USTP), nasals (NAS), sibilant fricatives (SIB), non-sibilant fricatives
(NSIB) and liquids (LIQ). The stimuli present in each subset can be found in
B. The analysis and the RT bias correction are done for every subset separately
to study and correct the systematic effects of the recogniser.

6.2.5 Evaluation metric

In the picture naming task, the responses are grouped into two categories:
events where the response is correct and where there is a wrong or no response.
The performance of the automatic routine in predicting the accuracy of the
response is computed by looking at the number of cases where these events are
detected correctly. In the picture naming task, the wrong or no response events
are expected to be detected at an accuracy of close to 100 %.

For the RT prediction performance, the error in RT with respect to the
manually obtained RT is computed using eRT = RTest −RTtrue, where RTest

and RTtrue are the estimated and the actual RTs, respectively. Then an
evaluation metric Et is defined, which is the percentage of cases where the
prediction error is between ±t ms, i.e., percentage of estimated RTs satisfying
−t ms ≤ eRT ≤ t ms. Notice that the automatic routine does not yield RTs
corresponding to the recordings that are detected as wrong responses and these
are omitted while calculating and analysing the Et and eRT measures.

6.3 Results

6.3.1 Evaluating the accuracy of the responses

The response detection accuracy of the automatic routine evaluated on data
collected from various subjects are tabulated in Table 6.1. The overall accuracy
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Table 6.1: Accuracy of the automatic routine in identifying the type of
responses from the subjects under different test conditions with and without
the speech enhancement (SE) front-end.

Subject Sex Condition Correct Responses Wrong/No Responses Overall

(F/M) Occuring Detected Occuring Detected Accuracy (%)

No SE SE No SE SE No SE SE

S1 M Noise-Free 135 125 126 5 5 5 92.9 93.6
Noisy 132 132 5 5 97.0 97.9
Noise + Delay 131 130 5 5 97.1 96.4

S2 F Noise-Free 124 111 113 16 16 16 90.7 92.1
Noisy 110 116 16 16 90.0 94.3
Noise + Delay 111 114 16 16 90.7 92.9

S3 M Noise-Free 134 109 112 6 4 4 80.7 82.9
Noisy 114 114 4 4 84.3 84.3
Noise + Delay 110 115 3 5 80.7 85.7

S4 F Noise-Free 139 118 119 1 1 1 85.0 85.7
Noisy 117 119 1 1 84.3 85.7
Noise + Delay 121 123 1 1 87.1 88.6

S5 F Noise-Free 133 125 126 7 7 7 94.3 95.0
Noisy 123 123 7 7 92.9 92.9
Noise + Delay 120 125 7 7 90.7 94.3

S6 M Noise-Free 131 124 124 9 9 9 95.0 95.0
Noisy 119 121 9 9 91.4 92.9
Noise + Delay 115 120 9 9 88.6 92.1

S7 F Noise-Free 136 99 106 4 4 4 73.6 78.6
Noisy 105 105 4 4 77.9 77.9
Noise + Delay 112 112 4 4 82.9 82.9

S8 F Noise-Free 137 122 123 3 2 2 88.6 89.3
Noisy 120 124 2 2 87.1 90.0
Noise + Delay 122 122 2 2 88.6 88.6

Overall Noise-Free 1069 933 949 51 48 48 87.7 89.1
Noisy 940 954 48 48 88.3 89.6
Noise + Delay 942 961 47 49 88.4 90.4

in % in the last column is computed as:

number of correct responses detected +
number of wrong/no responses detected

140
× 100. (6.1)



RESULTS 109

Out of the 1069 correct responses in the noise-free scenario, the automatic
routine is able to detect 933 and 949 of the cases without and with speech
enhancement, respectively. The 51 wrong/no response events are comprised of
28 wrong responses and 23 no-responses, out of which the evaluation routine
correctly identified more than 25 wrong responses and all the 23 no-response
events.

In general, the speech enhancement front-end is able to improve the response
detection accuracy especially under noisy conditions (except for S1). As noted
before, the speech recogniser is trained using the Dutch speech component of
the CGN corpus and that model is used to recognise a response that is recorded
with a different microphone in different room conditions. Some of the detection
errors are caused by this mismatch. The speech enhancement front-end was
able to improve the accuracy even in noise-free conditions, thanks to its ability
to reduce the mismatches between the test and training data as pointed out in
[5]. The automatic routine is also robust to false-detection of responses in noisy
conditions yielding an overall detection accuracy of 92.4% on wrong-response
events and 100% for no-response events with speech enhancement under the
noise+delay condition.

6.3.2 Analysis on RT measurement

In order to analyse the accuracy in predicting the RT, the Et measures are
plotted for varying t from 0 ms to 430 ms (which was the highest error) with
and without speech enhancement in Figure 6.2. For ease of visualisation, the Et

measures are obtained on the S1-S8 dataset. The speech enhancement front-
end was able to significantly improve the RT prediction in noisy conditions.
The automatic routine together with speech enhancement yielded an absolute
eRT of less than 40 ms for more than 88% of the cases under all conditions.

It is also observed that some responses are more prone to yield higher eRT (e.g.
oog, vis, vos, fiets, etc.) and it is possible to further improve the RT prediction
performance by omitting these from the stimuli set.

In order to analyse the RT prediction on various subsets on the test data, the
Et measure at t = 40 ms is given in Table 6.2. The value t = 40 ms is chosen
since it is the knee-point in the Et curve shown in Figure 6.2 where the curve
reaches a plateau. As described before, the subsets were created based on the
type of the first phoneme in the expected response. The automatic routine
was found to be robust to rTMS noise when the responses are starting with a
vowel or nasal sound. The RT prediction on responses starting with a voiced
stop sound (/b/, /d/) or a sibilant fricative sound (/s/,/z/) were found to be
the most error-prone in presence of rTMS and a speech enhancement front-end
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Figure 6.2: Et (percentage of cases where the prediction error is between ±t
ms) plot obtained on the complete test set (S1-S8). All figures uses the same
legend and x axis values.

was able to reduce many of these errors. However, for responses starting with
an unvoiced stop (/k/,/p/,/t/), the speech enhancement front-end sometimes
resulted in a poorer RT prediction. This is mainly because the unvoiced stop
sound is confused with the impulsive rTMS noise and the speech enhancement
scheme suppresses a part of the actual unvoiced sound as well resulting in a
wrong RT. It is also observed that the speech enhancement front-end was not
able to improve the RT prediction on the LIQ subset (/y/,/l/) because the
speech onset of such sounds are rather vague since the beginning of these can
be elongated. For such cases, even manual annotation is really difficult and an
objective prediction setting would be more desirable.

As an additional evaluation metric, the mean and standard deviation of the
absolute eRT are also shown in Table 6.3. It can be seen that the proposed
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Table 6.2: E40 (percentage of cases where the prediction error is between ±40
ms) values obtained in % for various test cases.
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Noise+Delay 94.1 85.2 46.2 88.2 82.1 100 75.0 82.6 93.8 96.4 71.4 88.9 86.2 100 75.0 89.0

S7 Noise-free 100 91.3 90.9 84.2 90.9 100 100 91.9 100 86.4 91.7 93.8 76.2 83.3 100 88.4
Noisy 100 84.6 80.0 84.2 76.2 100 100 86.0 100 88.9 68.8 80.0 69.2 100 100 82.6
Noise+Delay 92.3 88.9 60.0 76.2 79.2 100 100 82.1 92.3 85.7 73.3 94.4 88.5 100 100 88.4

S8 Noise-free 100 100 100 100 100 88.9 100 99.2 100 100 92.9 91.3 92.6 77.8 100 94.3
Noisy 100 90.3 66.7 87.0 72.0 87.5 100 84.9 100 96.3 72.7 78.3 87.5 87.5 100 88.4
Noise+Delay 94.1 83.3 76.9 82.6 61.5 88.9 75.0 79.5 100 96.7 92.9 83.3 70.8 66.7 75.0 86.1

ALL Noise-free 97.7 96.9 96.3 95.2 95.1 98.5 100 96.5 97.7 96.9 93.4 93.4 92.0 95.6 100 95.0
Noisy 97.7 85.0 63.6 85.5 78.8 95.8 96.3 84.1 97.7 91.3 72.0 88.0 80.9 94.3 93.1 87.4
Noise+Delay 96.9 86.7 68.5 83.1 75.6 95.5 90.3 83.6 97.6 92.9 76.9 89.2 79.2 94.0 90.3 88.0

automatic routine is able to estimate the RT with a small error mean and
standard deviation. The speech enhancement front-end is able to reduce the
standard deviation in all conditions in addition to making the mean absolute
error closer to zero. Notice in particular that the noisy test case without any
speech enhancement had a high standard deviation of 101.4 ms on the overall
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Table 6.3: The mean (µ) and standard deviation (σ) of the absolute eRT in ms
obtained on various test sets under varying testing conditions with and without
the speech enhancement (SE) front-end.

Subject Condition No SE With SE

µ σ µ σ

S1 Noise-free 11.0 12.7 10.9 11.8
Noisy 27.3 88.2 13.9 20.9
Noise+Delay 30.1 92.2 15.2 24.3

S2 Noise-free 12.5 40.3 9.4 10.8
Noisy 36.8 110.5 20.8 30.2
Noise+Delay 26.5 65.7 22.2 44.4

S3 Noise-free 20.7 78.3 13.4 26.4
Noisy 57.2 156.7 21.3 23.8
Noise+Delay 44.8 124.2 20.9 32.3

S4 Noise-free 13.5 21.3 16.6 22.7
Noisy 31.8 66.5 25.1 36.4
Noise+Delay 30.8 53.4 27.1 44.8

S5 Noise-free 11.0 12.9 10.3 12.7
Noisy 27.2 62.6 22.7 39.1
Noise+Delay 27.8 44.1 21.2 30.2

S6 Noise-free 12.0 23.0 13.5 25.1
Noisy 28.5 54.3 25.1 40.1
Noise+Delay 32.6 55.7 24.7 42.9

S7 Noise-free 17.3 33.4 21.1 34.7
Noisy 47.1 167.4 42.3 147.9
Noise+Delay 37.8 91.2 21.3 32.5

S8 Noise-free 7.9 10.8 13.1 26.1
Noisy 23.7 32.6 20.1 29.4
Noise+Delay 34.4 61.4 22.4 38.7

Overall Noise-free 13.0 34.9 13.4 23.2
Noisy 34.5 101.4 23.8 60.1
Noise+Delay 33.0 77.1 21.8 36.8

S1-S8 set which is reduced to 60.1 ms by using the speech enhancement front-
end.

6.4 Discussion

The proposed routine can automatically generate the RT and test the accuracy
of an object naming task from the recorded responses. A speech enhancement
front-end is also employed to improve the accuracy especially in presence of
the rTMS noise. The proposed routine was evaluated on responses obtained
from eight subjects with 140 stimuli each. To simulate the responses under
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rTMS, two test sets were artificially created, one for sham rTMS pulses where
no delay in RT is expected a and second one for the actual rTMS condition
with both delay and rTMS noise. To analyse the prediction errors, the RTs
given by the automatic routine were compared with the manually obtained
RTs. The absolute error was found to be less than 40 ms in 95.0% and
88.0% of the responses obtained without and with rTMS, respectively. The
automatic routine was able to yield absolute errors with small mean and
standard deviation.

Our setup can be a good alternative for the manual annotation of the recorded
response to obtain the RT especially in presence of the rTMS noise. The routine
yields an objective estimate of the RT thereby reducing the subjectivity and
increases the repeatability and reliability of the object naming experiments.
The proposed framework is flexible so that the observer can add synonyms to
the setting. The observer can decide whether a response is a synonym or not
depending on the level of abstraction needed for the experiment. This improves
the flexibility of the routine to suit the specific requirements of the task.

For the RT prediction routine, the speech enhancement front-end is found to
improve the prediction accuracy in general, especially in reducing the number
of outliers having high RT prediction errors. An analysis based on the type of
starting phone for the automatic RT measurement is also made and the paper
also gives advice on the type of stimuli to be chosen in order to get a reliable
performance using the proposed routine. To summarise, stimuli starting with a
vowel and nasal sound are more preferred for a better RT prediction. For stimuli
starting with a stop consonant (/b/, /d/, /k/, /p/, /t/), the RT measurement
in presence of the rTMS is difficult in general since the rTMS noise has very
similar characteristics as stop consonants. The speech enhancement front-
end was able to reduce RT errors in unvoiced stop consonants. For objects
starting with a liquid sound, an objective RT measurement system may be
more desirable.

Notice that the post-processing stage also corrects the RT prediction offset
depending on the type of the starting phone. These offsets are observed to be
pretty consistent for a given starting phone. Therefore, such an offset correction
will not be needed when the objective of the task is to measure the difference
in RTs with and without rTMS as these offsets will be cancelled out.

Notice that the recordings were obtained using a head-mounted microphone
which has higher chances of recording the breathing and microphone tapping
sounds. The automatic routine may be further improved by using a microphone
mounted on a stand with pop filter, thereby reducing distortions and
mismatches between the test and training recordings. The speech enhancement
setting is also flexible enough to incorporate knowledge of other noise sources
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so that such noises can also be suppressed by the setting.

6.5 Conclusion

In this work, we proposed an automatic routine for testing the accuracy and
obtaining the RT for an object naming task in presence of rTMS. The approach
made use of an automatic speech recognition system to obtain the RTs and
the response. A speech enhancement front-end is also employed to improve
the system accuracy in presence of the rTMS noise. The automatic routine
is found to yield small prediction errors with small standard deviation which
can be reliably used for automating the object naming task. The method can
produce tables indicating the accuracy and the RT of the response thereby
adding reliability, objectivity and repeatability to the rTMS object naming
analysis. The proposed setting is also flexible as it has the functionality to add
synonyms depending on the task definition.



Chapter 7

Conclusions and Future Work

This chapter concludes the thesis with a concise review of the original
contributions of this work with some suggestions for future research.

7.1 Original contributions

This thesis focused on speech enhancement using the spectrogram factorisation
techniques NMF and NMD. Several novel approaches have been proposed that
are shown to be beneficial for improving speech intelligibility and as a front-end
for ASR systems.

◮ Coupled dictionaries for exemplar-based speech enhancement
The idea of using coupled dictionaries to obtain a better mapping from
one feature space to the STFT space is one of the main contributions of
this thesis. The proposed setting can simultaneously benefit from a better
speech enhancement performance of one exemplar space and can directly
map the resulting estimates to the full resolution frequency domain for
a better set of filter weights. The setting was shown to be effective
across different databases such as AURORA-2, AURORA-4 and CHiME-
3. Chapter 2 details the proposed setting together with an extension to
learn the coupled noise atoms online from the test data.

◮ MS features for exemplar-based speech enhancement
The perceptually motivated MS features were introduced to the exemplar-
based speech enhancement framework. One of the main drawbacks
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of the MS features was that there is no direct mapping to the
STFT domain, despite having a good speech and noise separation
capability. Using the previously proposed coupled dictionary-based
speech enhancement setting, a reliable mapping from the MS domain
to the STFT domain was achieved. The MS features were also shown to
yield superior improvements in speech enhancement quality and a better
ASR performance in AURORA-2 and AURORA-4 databases (in Chapter
2). It is also observed that the MS exemplar space, mostly due to its
higher dimensionality, does not generalise well to unseen noise scenarios.

◮ Exemplar-based speech enhancement as a front-end to neural
network-based ASR settings
This work showed that using an exemplar-based speech enhancement
setting can improve the accuracy of neural network-based ASR settings,
while most of the traditional speech enhancement settings such as spectral
subtraction were found to be ineffective. The evaluations were performed
using a DNN-based ASR setting on the AURORA-4 database, and both
DNN- and CNN-DNN-based decoders on CHiME-3 (in Chapter 2).

◮ Hybrid exemplar spaces for NMF-based decomposition
Since it was observed that different exemplar spaces behave differently
in presence of different noise scenarios, a method to jointly obtain the
decomposition across different exemplar spaces was proposed in Chapter
3. The method was shown to result in a better speech and noise separation
especially in unseen noise conditions. A novel switching mechanism to
obtain an improved performance was also proposed.

◮ DNN training using MS features
DNN-based acoustic modelling has been shown to benefit from richer
feature representations and to be less sensitive to the dimensionality of the
input features. A DNN trained on MS features was investigated for ASR
tasks on the benchmark databases TIMIT and AURORA-4 in Chapter 4.
A comparison between different features, such as PLP, FBANK, GBFB
and STFT for DNN training was presented. The perceptually motivated
MS and GBFB features were shown to yield a better performance over
the conventional features.

◮ Joint denoising and dereverberation
Another important contribution of this thesis is to incorporate a
reverberation model in the NMD-based speech enhancement framework.
The proposed approach explicitly modelled a decaying RIR and provided
multiplicative updates to jointly estimate the RIR, its decay together with
the speech and noise activations. This setting was shown to yield a better
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speech enhancement quality based on various instrumental objective
quality measures in Chapter 5.

◮ Application to clinical neuroscience
The final contribution of this thesis was to develop an automatic
evaluation routine for a picture naming task on brain-tumor patients. The
software provides an objective evaluation measure of the reaction times
in addition to checking the accuracy of the response. The evaluations
were performed on the recordings obtained from 8 subjects and were
compared against the manual annotations. The coupled dictionary-based
speech enhancement setting was also effectively used to suppress the
noise from the magnetic stimulation device and other room noises for
a better reaction time estimation (in Chapter 6). This is a pioneering
work where the concepts of ASR and speech enhancement are applied to
automate the evaluation of a picture naming task in clinical neuroscience
that aids pre-operative planning and studying the functional relevance of
the stimulated brain region for language related processes.

7.2 Suggestions for future work

This section suggests a few possible extensions to the proposed denoising and
dereverberation algorithms for a better speech and noise separation, better
noise modelling when the noise characteristics are not known a-priori and a
better ASR performance.

� Offline learned speech and noise dictionaries
While this thesis concentrates mostly on exemplar-based techniques
which use randomly sampled spectro-temporal patches as exemplars
stored in overcomplete dictionaries, another research area is to learn
compact representations of speech and noise using NMF with an
undercomplete dictionary. It is recently shown in [109] that properly
learned dictionaries with tuned sparsity can outperform overcomplete
dictionaries for speech enhancement under certain noise scenarios. Using
undercomplete dictionaries also reduces the computational complexity.
Since the proposed coupled dictionary-based approach also can reduce
the computational complexity by obtaining the decomposition in lower
dimensional exemplar spaces and yield a better mapping to the STFT
domain, it is worth combining these two paradigms that learn coupled
dictionaries. Thus during the learning phase, the spectro-temporal
patches from one feature space and the corresponding STFT patch
are concatenated and a compact representation using NMF (or NMD)
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is learned. Then during the enhancement phase, the factorisation
is obtained using the learned dictionary corresponding to the lower
dimensional feature space and the mapping to the STFT space is obtained
using the jointly learned STFT dictionary. This approach can also
use some insights from Chapter 3 where hybrid exemplar spaces are
investigated such as relative weighting of feature spaces during the
learning phase.

� Discriminative online learning of noise and/or speech atoms
Most of the work in this thesis considers the scenario where the
noise examples are known a-priori. But such a scenario may not be
always realistic since the noise repository may not capture all the noise
characteristics and hence the adaptive learning of a few atoms to model
these unseen noise characteristics are found to be effective. This thesis
describes such an online noise learning in Chapter 3. However, such a
model is based on the assumption that the speech dictionary sufficiently
captures all the speech characteristics. Therefore, the number of atoms
to be learned is crucial in the performance of such a setting since if there
are too many adaptive atoms that are learned online, they might start
modelling speech as well which can degrade the performance. Therefore,
one possible future research direction is to add some constraint so that the
learned noise atoms have different characteristics from speech by means
of some discriminative constraint. Some examples of prior work on NMF
where such approaches are applied to source separation can be found
in [189,192]. Investigating better discriminative criteria, extending it to
the coupled dictionary framework and investigating such models on MS
features are also possible research directions.

Another possibility comes under the blind source separation scenario
where both the speech and noise atoms are learned online. There is scope
for extensive investigations using coupled dictionaries in this case as well.
These can also be derived from the aforementioned online learning of
noise atoms.

� Perceptually motivated features for neural network training
In Chapter 4, it is observed that the perceptually motivated MS and
GBFB features result in a better acoustic modelling using a state-of-
the-art DNN setting when compared to the traditional GMM-based
approaches. However, these features are sensitive to reverberation and
to the type of background noise. Therefore some feature enhancement
schemes, say the proposed exemplar-based techniques, may benefit such
systems. Such an evaluation using enhanced features is not covered in
this thesis. Application of neural network based denoising settings such
as stacked autoencoders [182] is also a suggested future work.
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� Better RIR models for dereverberation
This work proposed a novel algorithm to jointly estimate the RIR, its
decay, and the activations with decaying constraint on the RIR. While the
proposed constraint is shown to yield an improved performance, further
constraints can be introduced for a better RIR estimate based on the
observations made from the STFT of a typical RIR shown in Chapter 5.
For instance, the RIR spectrum decays faster at higher frequencies when
compared the lower frequencies. Incorporating such constraints into the
system without affecting the convergence properties of the cost function
can result in further improvements.

� Improvements to the picture naming task evaluation routine
The automatic evaluation routine presented in Chapter 6 makes use of
a general purpose GMM-based acoustic model trained using the CGN
corpus. Since it is already shown that DNN-based acoustic modelling
outperforms GMM-based models, developing a DNN-based acoustic
model for the automatic routine is a suggested future work. Another
possible extension is to apply speaker adaptation on such models since it
is possible to record a few sentences from the patient before the picture
naming task. Thus the model can adapt to the speaker variations and
may result in better recognition accuracies.





Appendix A

Derivation of multiplicative
updates

This appendix details the derivation of multiplicative updates for obtaining
the estimates discussed in chapter 5. The updates are derived such that they
minimise the Kullback-Leibler divergence (KLD) between the noisy reverberant
speech Z ∈ R

B×F
+ and its approximation Z̃ ∈ R

B×F
+ in the magnitude STFT

domain. The KLD between Z and Z̃ is defined as:

D , DKLD

(
Z‖Z̃

)

=

F∑

f=1

B∑

b=1

(

Z(b, f) log
Z(b, f)

Z̃(b, f)
− Z(b, f) + Z̃(b, f)

)

In general, the cost function used for solving the dereverberation problem in
this work is:

C = D + f(Θ) (A.1)

where, Θ denotes the variable set used in the approximation Z̃ and f(Θ) denotes
some additional constraint imposed on these variables so that a meaningful
approximation is obtained. The optimal estimate for a variable θ in the
parameter set Θ is obtained by iteratively applying the following multiplicative
updates,

θ ←− θ
∇−θ C

∇+
θ C

(A.2)

where, ∇−θ C and ∇+
θ C are respectively the negative and the positive terms in

the derivative ∇θC = ∂C/∂θ as used in [109,185]. The derivative of C with
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respect to the parameter θ is :

∇θC = ∇θD +∇θf(Θ) (A.3)

∇θC =

F∑

f=1

B∑

b=1

(

−
Z(b, f)

Z̃(b, f)

∂Z̃(b, f)

∂θ
+

∂Z̃(b, f)

∂θ

)

+
∂f(Θ)

∂θ
. (A.4)

The element-wise ratio Z ⊘ Z̃ is denoted as R. In the proposed models, the
approximation used for clean speech and noise in the STFT domain are Ỹ and
W̃, respectively.

Ỹ =

T∑

t=1

St

(t−1)→

Xs and W̃ =

T∑

t=1

Nt

(t−1)→

Xn . (A.5)

An arbitrary l-th column in Z̃ can be written as [Z̃]l =
∑T

t=1 St[Xs]l−t+1 +
∑T

t=1 Nt[Xn]l−t+1. Thus every k-th column in Xs and Xn appears in columns
in the range [k, k + T − 1] of Z̃. The derivative of D with respect to a column
[Xs]k is:

∇[Xs]k
D = −

T∑

t=1

St
⊺[R]k+t−1 +

T∑

t=1

St
⊺1B×1 (A.6)

which in matrix form can be written as:

∇Xs
D = −

T∑

t=1

St
⊺
←(t−1)

R +
T∑

t=1

St
⊺
←(t−1)

1 (A.7)

where, 1 is a matrix of ones of size B × F . The same derivation can be used
to obtain ∇Xn

D.

In this work, the constraint f(Θ) used is to force the activations to have sparse
solutions which is given as f(Θ) = λs‖Xs‖1 + λn‖Xn‖1, where ‖ · ‖1 denotes
the sum of all the elements in a matrix. Thus a larger λ value ensures a sparser
solution. The derivative of f(Θ) with respect to any element in Xs and Xn is
thus λs and λn, respectively.
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A.1 Derivations for the NMD+R setting

In this setting, the approximation for the noisy reverberant speech used is

Z̃ =

L∑

p=1

[H]p ⊚
(p−1)→

Ỹ + W̃ (A.8)

⇒ Z̃ =
L∑

p=1

T∑

t=1

[H]p ⊚

(

St

τ→

Xs

)

+
T∑

t=1

Nt

(t−1)→

Xn (A.9)

where τ = p + t − 2 and Ỹ and W̃ are the STFT estimates of clean speech
and noise, respectively. Using the notations defined before, an arbitrary l-th
column of Z̃ can be written as

[Z̃]l =

L∑

p=1

[H]p ⊙ [Ỹ]l−p+1 + [W̃]l (A.10)

=

L∑

p=1

[H]p ⊙

(
T∑

t=1

St[Xs]l−τ

)

+

T∑

t=1

Nt[Xn]l−t+1.

A.1.1 Multiplicative updates for activations

It is clear from the formulation that every k-th column in Xs appears in columns
in the range [k, k + T + L − 2] of Z̃. The derivatives ∇Xs

C and ∇Xn
C can be

obtained as described in Section A.

∇Xs
C = −

L∑

p=1

[H]p ⊚

(
T∑

t=1

St
⊺
←τ

R

)

+

L∑

p=1

[H]p ⊚

(
T∑

t=1

St
⊺
←τ
1

)

+ λs

∇Xn
C = −

T∑

t=1

Nt
⊺
←(t−1)

R +
T∑

t=1

Nt
⊺
←(t−1)

1 +λn.
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The multiplicative updates for the activations are (using (A.2)),

Xs ← Xs ⊙

∑L
p=1[H]p ⊚

(
∑T

t=1 St
⊺
←τ

R
)

∑L
p=1[H]p ⊚

(
∑T

t=1 St
⊺
←τ
1
)

+ λs

Xn ← Xn ⊙

∑T
t=1 Nt

⊺
←(t−1)

R
∑T

t=1 Nt
⊺
←(t−1)

1 +λn

A.1.2 Multiplicative updates for RIR

The derivative of C with respect to an arbitrary p-th column of H can be
obtained using (A.4) and (A.10) as follows.

∇[H]p
C = −

F∑

l=1

[Ỹ]l−p+1 ⊙ [R]l +

F∑

l=1

[Ỹ]l−p+1

The multiplicative update for the RIR estimate is,

[H]p ← [H]p ⊙

∑F
l=1[Ỹ]l−p+1 ⊙ [R]l
∑F

l=1[Ỹ]l−p+1

. (A.11)

A.2 Derivations for the NMD+R+DN setting

In the proposed setting, the approximation for the noisy reverberant signal
used is

Z̃ =
L∑

p=1

ᾱp

[
H̄
]

p
⊚

(p−1)→

Ỹ + W̃ (A.12)

where, [H̄]p , [H]p/‖[H]p‖2. The ᾱ vector is used to impose a decaying
structure on the ℓ2 norm of the RIR matrix by setting the l-th element in
α as αl = (1 + cl)αl+1 =

∏L
n=l(1 + cl), where cl ≥ 0, ∀l = 1, . . . , L, where

αL = 1 and cL = 0. The decays are also constrained to have an ℓ2 norm
of 1, denoted as ᾱ, to avoid indeterminacy due to scaling (the algorithm may
converge to any scaled value of α and this scaling difference can be captured by
the activations. This results in an infinite number of solutions with the same

minimum cost). The ℓ2 norm of the α vector is ‖α‖ ,
√
∑L

l=1

∏L
n=l(1 + cn)2.
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Thus the elements of ᾱ are:

ᾱl =

∏L
n=l(1 + cn)

‖α‖
(A.13)

Thus the approximation problem boils down to estimating the activations X,
RIR H and the decay coefficients ci.

A.2.1 Multiplicative updates for activations

Obtaining the multiplicative updates for activations is straight-forward using
the steps described in Section A.1.1 by replacing [H]p with ᾱp[H̄]p.

Xs ← Xs ⊙

∑L
p=1 ᾱp[H̄]p ⊚

(
∑T

t=1 St
⊺
←τ

R
)

∑L
p=1 ᾱp[H̄]p ⊚

(
∑T

t=1 St
⊺
←τ
1
)

+ λs

Xn ← Xn ⊙

∑T
t=1 Nt

⊺
←(t−1)

R
∑T

t=1 Nt
⊺
←(t−1)

1 +λn

A.2.2 Multiplicative updates for RIR

In this section, we describe the multiplicative updates for the RIR H such that
its ℓ2 norm is always preserved to be equal to 1. To obtain the derivative w.r.t.
an arbitrary p-th column of H, we define the following. h = [H]p, h̄ = h/‖h‖2

and hi be the i-th element of h. We also make use of the known derivative
∂‖h‖

∂h
=

h

‖h‖
. Then,

∂

∂hi
C =

B∑

j=1

∂h̄j

∂hi

∂C

∂h̄j

∂h̄j

∂hi
=

∂

∂hi

hj

‖h‖
=







1

‖h‖
−

h2
i

‖h‖3
i = j

−
hihj

‖h‖3
i 6= j

⇒
∂

∂hi
C =

1

‖h‖




∂C

∂h̄i

−
B∑

j=1

hihj

‖h‖2

∂C

∂h̄j
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Using h̄i = hi/‖h‖ we can write the above expression as:

▽hC =
1

‖h‖

(
IB − h̄h̄⊺

)
▽

h̄
C (A.14)

The derivative ∇
h̄
C can be directly obtained using the derivation given in

Section A.1.2.

∇
h̄
C = − ᾱp

F∑

l=1

[Ỹ]l−p+1 ⊙ [R]l

︸ ︷︷ ︸

∇
−

h̄
C

+ ᾱp

F∑

l=1

[Ỹ]l−p+1

︸ ︷︷ ︸

∇
+

h̄
C

(A.15)

Using (A.14) and (A.15), the required derivative and the multiplicative updates
can be obtained as follows.

∇hC = −
1

‖h‖

(
IB − h̄h̄⊺

) (

−∇−
h̄
C +∇+

h̄
C
)

= −
1

‖h‖

(

∇−
h̄
C + h̄h̄⊺∇+

h̄
C
)

+

1

‖h‖

(

h̄h̄⊺∇−
h̄
C + ∇+

h̄
C
)

⇒ h←− h⊙
∇−

h̄
C + h̄h̄⊺∇+

h̄
C

h̄h̄⊺∇−
h̄
C + ∇+

h̄
C

The updates are such that the ℓ2 norm of every column of H is preserved to
unity.

A.2.3 Multiplicative updates for the decay coefficients

The multiplicative updates for the decay coefficients ci can be found using

∇ci
C =

L∑

l=1

∂ᾱl

∂ci
· ∇ᾱl

C

∇ᾱl
C = − [H̄]⊺l

F∑

j=1

[R]j ⊙ [Y]j−l+1

︸ ︷︷ ︸

∇
−

ᾱl
C

+ [H̄]⊺l

F∑

j=1

[Y]j−l+1

︸ ︷︷ ︸

∇
+

ᾱl
C
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∂ᾱl

∂ci
=







∏L
n=l(1 + cn)

∂

∂ci

1

‖α‖
i < l

∏L
n=l
n6=i

(1 + cn)

‖α‖
+
∏L

n=l(1 + cn)
∂

∂ci

1

‖α‖
i ≥ l

=







−

∏L
n=l(1 + cn)

‖α‖2

∂

∂ci
‖α‖ i < l

∏L
n=l(1 + cn)

‖α‖(1 + ci)
−

∏L
n=l(1 + cn)

‖α‖2

∂

∂ci
‖α‖ i ≥ l

=







−
ᾱl
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The derivative of ‖α‖ w.r.t. ci can be found as:

∂‖α‖
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= (1 + ci)

∑i
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Thus the derivative w.r.t. ci becomes,
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j

(1 + ci)
∇ᾱl
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ᾱl∇ᾱl
C







128 DERIVATION OF MULTIPLICATIVE UPDATES

The multiplicative updates can now be obtained as follows.

ci ←− ci ·

∑i
l=1 ᾱl∇

−
ᾱl
C +

∑i
j=1 ᾱ2

j

∑L
l=1 ᾱl∇

+
ᾱl
C

∑i
l=1 ᾱl∇

+
ᾱl
C +

∑i
j=1 ᾱ2

j

∑L
l=1 ᾱl∇

−
ᾱl
C

(A.16)



Appendix B

Stimuli Set used for the
picture naming task

The list of stimuli used in the picture naming task in Chapter 6 divided into
subsets are given below. The bias corrections used for every subset is also given
in brackets.

1. Vowels (VOW) (30 ms) : aap, aardbei, accordeon, ananas, anker, appel,
arm, artisjok, asbak, asperge, auto, eekhoorn, eend, eikel, ezel, olifant, oog,
oor, uil

2. Voiced stops (VSTP) (30 ms) : bal, ballon, banaan, bed, beer, beitel,
berg, bij, bloem, boek, boom, bril, broek, bus, deegrol, deur, duim

3. Unvoiced stops (USTP) (40 ms) : clown, kaars, kam, kanon, kerk, kers,
kever, kikker, kip, koe, koffer, konijn, kreeft, krokodil, kroon, paard, padden-
stoel, paprika, paraplu, pauw, peer, pijp, pinguin, pompoen, pop, potlood,
tafel, tandenborstel, tang, telefoon,
tijger, tomaat, ton, trompet, trui

4. Nasals (NAS) (30 ms) : maan, mand, mes, neushoorn

5. Sibilant Fricatives (SIB) (20 ms) : citroen, schaap, schaar, schildpad,
schoen, schommel, schommelstoel, schroevendraaier, sigaar, sigaret, slak,
sleutel, spin, spinnenwiel, sprinkhaan, ster, stoel, strijkplank, struisvogel,
zaag, zebra, zeepaardje, zon, zwaan

6. Non-sibilant Fricatives (NSIB) (10 ms) : fiets, gieter, glas, giraf, gitaar,
haan, hand, harp, hart, helicopter, hert, hoed, hond, huis, vaas, varken,
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verkeerslicht, vingerhoed, viool, vis, vlag, vlieg, vlieger, vliegtuig, vlinder,
vork, vos, wasknijper, wiel, wolk, wortel

7. Liquids and approximants (LIQ) (10 ms) : jojo, laars, ladder, leeuw,
lepel, ring, rits, rok, rolschaats, rups
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